/*
* MIPS ASE DSP Instruction emulation helpers for QEMU.
*
* Copyright (c) 2012 Jia Liu <proljc@gmail.com>
* Dongxue Zhang <elta.era@gmail.com>
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "helper.h"
#include "qemu/bitops.h"
/* As the byte ordering doesn't matter, i.e. all columns are treated
identically, these unions can be used directly. */
typedef union {
uint8_t ub[4];
int8_t sb[4];
uint16_t uh[2];
int16_t sh[2];
uint32_t uw[1];
int32_t sw[1];
} DSP32Value;
typedef union {
uint8_t ub[8];
int8_t sb[8];
uint16_t uh[4];
int16_t sh[4];
uint32_t uw[2];
int32_t sw[2];
uint64_t ul[1];
int64_t sl[1];
} DSP64Value;
/*** MIPS DSP internal functions begin ***/
#define MIPSDSP_ABS(x) (((x) >= 0) ? x : -x)
#define MIPSDSP_OVERFLOW_ADD(a, b, c, d) (~(a ^ b) & (a ^ c) & d)
#define MIPSDSP_OVERFLOW_SUB(a, b, c, d) ((a ^ b) & (a ^ c) & d)
static inline void set_DSPControl_overflow_flag(uint32_t flag, int position,
CPUMIPSState *env)
{
env->active_tc.DSPControl |= (target_ulong)flag << position;
}
static inline void set_DSPControl_carryflag(bool flag, CPUMIPSState *env)
{
env->active_tc.DSPControl &= ~(1 << 13);
env->active_tc.DSPControl |= flag << 13;
}
static inline uint32_t get_DSPControl_carryflag(CPUMIPSState *env)
{
return (env->active_tc.DSPControl >> 13) & 0x01;
}
static inline void set_DSPControl_24(uint32_t flag, int len, CPUMIPSState *env)
{
uint32_t filter;
filter = ((0x01 << len) - 1) << 24;
filter = ~filter;
env->active_tc.DSPControl &= filter;
env->active_tc.DSPControl |= (target_ulong)flag << 24;
}
static inline uint32_t get_DSPControl_24(int len, CPUMIPSState *env)
{
uint32_t filter;
filter = (0x01 << len) - 1;
return (env->active_tc.DSPControl >> 24) & filter;
}
static inline void set_DSPControl_pos(uint32_t pos, CPUMIPSState *env)
{
target_ulong dspc;
dspc = env->active_tc.DSPControl;
#ifndef TARGET_MIPS64
dspc = dspc & 0xFFFFFFC0;
dspc |= (pos & 0x3F);
#else
dspc = dspc & 0xFFFFFF80;
dspc |= (pos & 0x7F);
#endif
env->active_tc.DSPControl = dspc;
}
static inline uint32_t get_DSPControl_pos(CPUMIPSState *env)
{
target_ulong dspc;
uint32_t pos;
dspc = env->active_tc.DSPControl;
#ifndef TARGET_MIPS64
pos = dspc & 0x3F;
#else
pos = dspc & 0x7F;
#endif
return pos;
}
static inline void set_DSPControl_efi(uint32_t flag, CPUMIPSState *env)
{
env->active_tc.DSPControl &= 0xFFFFBFFF;
env->active_tc.DSPControl |= (target_ulong)flag << 14;
}
#define DO_MIPS_SAT_ABS(size) \
static inline int##size##_t mipsdsp_sat_abs##size(int##size##_t a, \
CPUMIPSState *env) \
{ \
if (a == INT##size##_MIN) { \
set_DSPControl_overflow_flag(1, 20, env); \
return INT##size##_MAX; \
} else { \
return MIPSDSP_ABS(a); \
} \
}
DO_MIPS_SAT_ABS(8)
DO_MIPS_SAT_ABS(16)
DO_MIPS_SAT_ABS(32)
#undef DO_MIPS_SAT_ABS
/* get sum value */
static inline int16_t mipsdsp_add_i16(int16_t a, int16_t b, CPUMIPSState *env)
{
int16_t tempI;
tempI = a + b;
if (MIPSDSP_OVERFLOW_ADD(a, b, tempI, 0x8000)) {
set_DSPControl_overflow_flag(1, 20, env);
}
return tempI;
}
static inline int16_t mipsdsp_sat_add_i16(int16_t a, int16_t b,
CPUMIPSState *env)
{
int16_t tempS;
tempS = a + b;
if (MIPSDSP_OVERFLOW_ADD(a, b, tempS, 0x8000)) {
if (a > 0) {
tempS = 0x7FFF;
} else {
tempS = 0x8000;
}
set_DSPControl_overflow_flag(1, 20, env);
}
return tempS;
}
static inline int32_t mipsdsp_sat_add_i32(int32_t a, int32_t b,
CPUMIPSState *env)
{
int32_t tempI;
tempI = a + b;
if (MIPSDSP_OVERFLOW_ADD(a, b, tempI, 0x80000000)) {
if (a > 0) {
tempI = 0x7FFFFFFF;
} else {
tempI = 0x80000000;
}
set_DSPControl_overflow_flag(1, 20, env);
}
return tempI;
}
static inline uint8_t mipsdsp_add_u8(uint8_t a, uint8_t b, CPUMIPSState *env)
{
uint16_t temp;
temp = (uint16_t)a + (uint16_t)b;
if (temp & 0x0100) {
set_DSPControl_overflow_flag(1, 20, env);
}
return temp & 0xFF;
}
static inline uint16_t mipsdsp_add_u16(uint16_t a, uint16_t b,
CPUMIPSState *env)
{
uint32_t temp;
temp = (uint32_t)a + (uint32_t)b;
if (temp & 0x00010000) {
set_DSPControl_overflow_flag(1, 20, env);
}
return temp & 0xFFFF;
}
static inline uint8_t mipsdsp_sat_add_u8(uint8_t a, uint8_t b,
CPUMIPSState *env)
{
uint8_t result;
uint16_t temp;
temp = (uint16_t)a + (uint16_t)b;
result = temp & 0xFF;
if (0x0100 & temp) {
result = 0xFF;
set_DSPControl_overflow_flag(1, 20, env);
}
return result;
}
static inline uint16_t mipsdsp_sat_add_u16(uint16_t a, uint16_t b,
CPUMIPSState *env)
{
uint16_t result;
uint32_t temp;
temp = (uint32_t)a + (uint32_t)b;
result = temp & 0xFFFF;
if (0x00010000 & temp) {
result = 0xFFFF;
set_DSPControl_overflow_flag(1, 20, env);
}
return result;
}
static inline int32_t mipsdsp_sat32_acc_q31(int32_t acc, int32_t a,
CPUMIPSState *env)
{
int64_t temp;
int32_t temp32, temp31, result;
int64_t temp_sum;
#ifndef TARGET_MIPS64
temp = ((uint64_t)env->active_tc.HI[acc] << 32) |
(uint64_t)env->active_tc.LO[acc];
#else
temp = (uint64_t)env->active_tc.LO[acc];
#endif
temp_sum = (int64_t)a + temp;
temp32 = (temp_sum >> 32) & 0x01;
temp31 = (temp_sum >> 31) & 0x01;
result = temp_sum & 0xFFFFFFFF;
if (temp32 != temp31) {
if (temp32 == 0) {
result = 0x7FFFFFFF;
} else {
result = 0x80000000;
}
set_DSPControl_overflow_flag(1, 16 + acc, env);
}
return result;
}
/* a[0] is LO, a[1] is HI. */
static inline void mipsdsp_sat64_acc_add_q63(int64_t *ret,
int32_t ac,
int64_t *a,
CPUMIPSState *env)
{
bool temp64;
ret[0] = env->active_tc.LO[ac] + a[0];
ret[1] = env->active_tc.HI[ac] + a[1];
if (((uint64_t)ret[0] < (uint64_t)env->active_tc.LO[ac]) &&
((uint64_t)ret[0] < (uint64_t)a[0])) {
ret[1] += 1;
}
temp64 = ret[1] & 1;
if (temp64 != ((ret[0] >> 63) & 0x01)) {
if (temp64) {
ret[0] = (0x01ull << 63);
ret[1] = ~0ull;
} else {
ret[0] = (0x01ull << 63) - 1;
ret[1] = 0x00;
}
set_DSPControl_overflow_flag(1, 16 + ac, env);
}
}
static inline void mipsdsp_sat64_acc_sub_q63(int64_t *ret,
int32_t ac,
int64_t *a,
CPUMIPSState *env)
{
bool temp64;
ret[0] = env->active_tc.LO[ac] - a[0];
ret[1] = env->active_tc.HI[ac] - a[1];
if ((uint64_t)ret[0] > (uint64_t)env->active_tc.LO[ac]) {
ret[1] -= 1;
}
temp64 = ret[1] & 1;
if (temp64 != ((ret[0] >> 63) & 0x01)) {
if (temp64) {
ret[0] = (0x01ull << 63);
ret[1] = ~0ull;
} else {
ret[0] = (0x01ull << 63) - 1;
ret[1] = 0x00;
}
set_DSPControl_overflow_flag(1, 16 + ac, env);
}
}
static inline int32_t mipsdsp_mul_i16_i16(int16_t a, int16_t b,
CPUMIPSState *env)
{
int32_t temp;
temp = (int32_t)a * (int32_t)b;
if ((temp > (int)0x7FFF) || (temp < (int)0xFFFF8000)) {
set_DSPControl_overflow_flag(1, 21, env);
}
temp &= 0x0000FFFF;
return temp;
}
static inline int32_t mipsdsp_mul_u16_u16(int32_t a, int32_t b)
{
return a * b;
}
static inline int32_t mipsdsp_mul_i32_i32(int32_t a, int32_t b)
{
return a * b;
}
static inline int32_t mipsdsp_sat16_mul_i16_i16(int16_t a, int16_t b,
CPUMIPSState *env)
{
int32_t temp;
temp = (int32_t)a * (int32_t)b;
if (temp > (int)0x7FFF) {
temp = 0x00007FFF;
set_DSPControl_overflow_flag(1, 21, env);
} else if (temp < (int)0xffff8000) {
temp = 0xFFFF8000;
set_DSPControl_overflow_flag(1, 21, env);
}
temp &= 0x0000FFFF;
return temp;
}
static inline int32_t mipsdsp_mul_q15_q15_overflowflag21(uint16_t a, uint16_t b,
CPUMIPSState *env)
{
int32_t temp;
if ((a == 0x8000) && (b == 0x8000)) {
temp = 0x7FFFFFFF;
set_DSPControl_overflow_flag(1, 21, env);
} else {
temp = ((int16_t)a * (int16_t)b) << 1;
}
return temp;
}
/* right shift */
static inline uint8_t mipsdsp_rshift_u8(uint8_t a, target_ulong mov)
{
return a >> mov;
}
static inline uint16_t mipsdsp_rshift_u16(uint16_t a, target_ulong mov)
{
return a >> mov;
}
static inline int8_t mipsdsp_rashift8(int8_t a, target_ulong mov)
{
return a >> mov;
}
static inline int16_t mipsdsp_rashift16(int16_t a, target_ulong mov)
{
return a >> mov;
}
static inline int32_t mipsdsp_rashift32(int32_t a, target_ulong mov)
{
return a >> mov;
}
static inline int16_t mipsdsp_rshift1_add_q16(int16_t a, int16_t b)
{
int32_t temp;
temp = (int32_t)a + (int32_t)b;
return (temp >> 1) & 0xFFFF;
}
/* round right shift */
static inline int16_t mipsdsp_rrshift1_add_q16(int16_t a, int16_t b)
{
int32_t temp;
temp = (int32_t)a + (int32_t)b;
temp += 1;
return (temp >> 1) & 0xFFFF;
}
static inline int32_t mipsdsp_rshift1_add_q32(int32_t a, int32_t b)
{
int64_t temp;
temp = (int64_t)a + (int64_t)b;
return (temp >> 1) & 0xFFFFFFFF;
}
static inline int32_t mipsdsp_rrshift1_add_q32(int32_t a, int32_t b)
{
int64_t temp;
temp = (int64_t)a + (int64_t)b;
temp += 1;
return (temp >> 1) & 0xFFFFFFFF;
}
static inline uint8_t mipsdsp_rshift1_add_u8(uint8_t a, uint8_t b)
{
uint16_t temp;
temp = (uint16_t)a + (uint16_t)b;
return (temp >> 1) & 0x00FF;
}
static inline uint8_t mipsdsp_rrshift1_add_u8(uint8_t a, uint8_t b)
{
uint16_t temp;
temp = (uint16_t)a + (uint16_t)b + 1;
return (temp >> 1) & 0x00FF;
}
static inline uint8_t mipsdsp_rshift1_sub_u8(uint8_t a, uint8_t b)
{
uint16_t temp;
temp = (uint16_t)a - (uint16_t)b;
return (temp >> 1) & 0x00FF;
}
static inline uint8_t mipsdsp_rrshift1_sub_u8(uint8_t a, uint8_t b)
{
uint16_t temp;
temp = (uint16_t)a - (uint16_t)b + 1;
return (temp >> 1) & 0x00FF;
}
/* 128 bits long. p[0] is LO, p[1] is HI. */
static inline void mipsdsp_rndrashift_short_acc(int64_t *p,
int32_t ac,
int32_t shift,
CPUMIPSState *env)
{
int64_t acc;
acc = ((int64_t)env->active_tc.HI[ac] << 32) |
((int64_t)env->active_tc.LO[ac] & 0xFFFFFFFF);
p[0] = (shift == 0) ? (acc << 1) : (acc >> (shift - 1));
p[1] = (acc >> 63) & 0x01;
}
/* 128 bits long. p[0] is LO, p[1] is HI */
static inline void mipsdsp_rashift_acc(uint64_t *p,
uint32_t ac,
uint32_t shift,
CPUMIPSState *env)
{
uint64_t tempB, tempA;
tempB = env->active_tc.HI[ac];
tempA = env->active_tc.LO[ac];
shift = shift & 0x1F;
if (shift == 0) {
p[1] = tempB;
p[0] = tempA;
} else {
p[0] = (tempB << (64 - shift)) | (tempA >> shift);
p[1] = (int64_t)tempB >> shift;
}
}
/* 128 bits long. p[0] is LO, p[1] is HI , p[2] is sign of HI.*/
static inline void mipsdsp_rndrashift_acc(uint64_t *p,
uint32_t ac,
uint32_t shift,
CPUMIPSState *env)
{
int64_t tempB, tempA;
tempB = env->active_tc.HI[ac];
tempA = env->active_tc.LO[ac];
shift = shift & 0x3F;
if (shift == 0) {
p[2] = tempB >> 63;
p[1] = (tempB << 1) | (tempA >> 63);
p[0] = tempA << 1;
} else {
p[0] = (tempB << (65 - shift)) | (tempA >> (shift - 1));
p[1] = (int64_t)tempB >> (shift - 1);
if (tempB >= 0) {
p[2] = 0x0;
} else {
p[2] = ~0ull;
}
}
}
static inline int32_t mipsdsp_mul_q15_q15(int32_t ac, uint16_t a, uint16_t b,
CPUMIPSState *env)
{
int32_t temp;
if ((a == 0x8000) && (b == 0x8000)) {
temp = 0x7FFFFFFF;
set_DSPControl_overflow_flag(1, 16 + ac, env);
} else {
temp = ((int16_t)a * (int16_t)b) << 1;
}
return temp;
}
static inline int64_t mipsdsp_mul_q31_q31(int32_t ac, uint32_t a, uint32_t b,
CPUMIPSState *env)
{
uint64_t temp;
if ((a == 0x80000000) && (b == 0x80000000)) {
temp = (0x01ull << 63) - 1;
set_DSPControl_overflow_flag(1, 16 + ac, env);
} else {
temp = ((int64_t)(int32_t)a * (int32_t)b) << 1;
}
return temp;
}
static inline uint16_t mipsdsp_mul_u8_u8(uint8_t a, uint8_t b)
{
return (uint16_t)a * (uint16_t)b;
}
static inline uint16_t mipsdsp_mul_u8_u16(uint8_t a, uint16_t b,
CPUMIPSState *env)
{
uint32_t tempI;
tempI = (uint32_t)a * (uint32_t)b;
if (tempI > 0x0000FFFF) {
tempI = 0x0000FFFF;
set_DSPControl_overflow_flag(1, 21, env);
}
return tempI & 0x0000FFFF;
}
static inline uint64_t mipsdsp_mul_u32_u32(uint32_t a, uint32_t b)
{
return (uint64_t)a * (uint64_t)b;
}
static inline int16_t mipsdsp_rndq15_mul_q15_q15(uint16_t a, uint16_t b,
CPUMIPSState *env)
{
uint32_t temp;
if ((a == 0x8000) && (b == 0x8000)) {
temp = 0x7FFF0000;
set_DSPControl_overflow_flag(1, 21, env);
} else {
temp = ((int16_t)a * (int16_t)b) << 1;
temp = temp + 0x00008000;
}
return (temp & 0xFFFF0000) >> 16;
}
static inline int32_t mipsdsp_sat16_mul_q15_q15(uint16_t a, uint16_t b,
CPUMIPSState *env)
{
int32_t temp;
if ((a == 0x8000) && (b == 0x8000)) {
temp = 0x7FFF0000;
set_DSPControl_overflow_flag(1, 21, env);
} else {
temp = (int16_t)a * (int16_t)b;
temp = temp << 1;
}
return (temp >> 16) & 0x0000FFFF;
}
static inline uint16_t mipsdsp_trunc16_sat16_round(int32_t a,
CPUMIPSState *env)
{
uint16_t temp;
/*
* The value 0x00008000 will be added to the input Q31 value, and the code
* needs to check if the addition causes an overflow. Since a positive value
* is added, overflow can happen in one direction only.
*/
if (a > 0x7FFF7FFF) {
temp = 0x7FFF;
set_DSPControl_overflow_flag(1, 22, env);
} else {
temp = ((a + 0x8000) >> 16) & 0xFFFF;
}
return temp;
}
static inline uint8_t mipsdsp_sat8_reduce_precision(uint16_t a,
CPUMIPSState *env)
{
uint16_t mag;
uint32_t sign;
sign = (a >> 15) & 0x01;
mag = a & 0x7FFF;
if (sign == 0) {
if (mag > 0x7F80) {
set_DSPControl_overflow_flag(1, 22, env);
return 0xFF;
} else {
return (mag >> 7) & 0xFFFF;
}
} else {
set_DSPControl_overflow_flag(1, 22, env);
return 0x00;
}
}
static inline uint8_t mipsdsp_lshift8(uint8_t a, uint8_t s, CPUMIPSState *env)
{
uint8_t discard;
if (s != 0) {
discard = a >> (8 - s);
if (discard != 0x00) {
set_DSPControl_overflow_flag(1, 22, env);
}
}
return a << s;
}
static inline uint16_t mipsdsp_lshift16(uint16_t a, uint8_t s,
CPUMIPSState *env)
{
uint16_t discard;
if (s != 0) {
discard = (int16_t)a >> (15 - s);
if ((discard != 0x0000) && (discard != 0xFFFF)) {
set_DSPControl_overflow_flag(1, 22, env);
}
}
return a << s;
}
static inline uint32_t mipsdsp_lshift32(uint32_t a, uint8_t s,
CPUMIPSState *env)
{
uint32_t discard;
if (s == 0) {
return a;
} else {
discard = (int32_t)a >> (31 - (s - 1));
if ((discard != 0x00000000) && (discard != 0xFFFFFFFF)) {
set_DSPControl_overflow_flag(1, 22, env);
}
return a << s;
}
}
static inline uint16_t mipsdsp_sat16_lshift(uint16_t a, uint8_t s,
CPUMIPSState *env)
{
uint8_t sign;
uint16_t discard;
if (s == 0) {
return a;
} else {
sign = (a >> 15) & 0x01;
if (sign != 0) {
discard = (((0x01 << (16 - s)) - 1) << s) |
((a >> (14 - (s - 1))) & ((0x01 << s) - 1));
} else {
discard = a >> (14 - (s - 1));
}
if ((discard != 0x0000) && (discard != 0xFFFF)) {
set_DSPControl_overflow_flag(1, 22, env);
return (sign == 0) ? 0x7FFF : 0x8000;
} else {
return a << s;
}
}
}
static inline uint32_t mipsdsp_sat32_lshift(uint32_t a, uint8_t s,
CPUMIPSState *env)
{
uint8_t sign;
uint32_t discard;
if (s == 0) {
return a;
} else {
sign = (a >> 31) & 0x01;
if (sign != 0) {
discard = (((0x01 << (32 - s)) - 1) << s) |
((a >> (30 - (s - 1))) & ((0x01 << s) - 1));
} else {
discard = a >> (30 - (s - 1));
}
if ((discard != 0x00000000) && (discard != 0xFFFFFFFF)) {
set_DSPControl_overflow_flag(1, 22, env);
return (sign == 0) ? 0x7FFFFFFF : 0x80000000;
} else {
return a << s;
}
}
}
static inline uint8_t mipsdsp_rnd8_rashift(uint8_t a, uint8_t s)
{
uint32_t temp;
if (s == 0) {
temp = (uint32_t)a << 1;
} else {
temp = (int32_t)(int8_t)a >> (s - 1);
}
return (temp + 1) >> 1;
}
static inline uint16_t mipsdsp_rnd16_rashift(uint16_t a, uint8_t s)
{
uint32_t temp;
if (s == 0) {
temp = (uint32_t)a << 1;
} else {
temp = (int32_t)(int16_t)a >> (s - 1);
}
return (temp + 1) >> 1;
}
static inline uint32_t mipsdsp_rnd32_rashift(uint32_t a, uint8_t s)
{
int64_t temp;
if (s == 0) {
temp = (uint64_t)a << 1;
} else {
temp = (int64_t)(int32_t)a >> (s - 1);
}
temp += 1;
return (temp >> 1) & 0xFFFFFFFFull;
}
static inline uint16_t mipsdsp_sub_i16(int16_t a, int16_t b, CPUMIPSState *env)
{
int16_t temp;
temp = a - b;
if (MIPSDSP_OVERFLOW_SUB(a, b, temp, 0x8000)) {
set_DSPControl_overflow_flag(1, 20, env);
}
return temp;
}
static inline uint16_t mipsdsp_sat16_sub(int16_t a, int16_t b,
CPUMIPSState *env)
{
int16_t temp;
temp = a - b;
if (MIPSDSP_OVERFLOW_SUB(a, b, temp, 0x8000)) {
if (a >= 0) {
temp = 0x7FFF;
} else {
temp = 0x8000;
}
set_DSPControl_overflow_flag(1, 20, env);
}
return temp;
}
static inline uint32_t mipsdsp_sat32_sub(int32_t a, int32_t b,
CPUMIPSState *env)
{
int32_t temp;
temp = a - b;
if (MIPSDSP_OVERFLOW_SUB(a, b, temp, 0x80000000)) {
if (a >= 0) {
temp = 0x7FFFFFFF;
} else {
temp = 0x80000000;
}
set_DSPControl_overflow_flag(1, 20, env);
}
return temp & 0xFFFFFFFFull;
}
static inline uint16_t mipsdsp_rshift1_sub_q16(int16_t a, int16_t b)
{
int32_t temp;
temp = (int32_t)a - (int32_t)b;
return (temp >> 1) & 0x0000FFFF;
}
static inline uint16_t mipsdsp_rrshift1_sub_q16(int16_t a, int16_t b)
{
int32_t temp;
temp = (int32_t)a - (int32_t)b;
temp += 1;
return (temp >> 1) & 0x0000FFFF;
}
static inline uint32_t mipsdsp_rshift1_sub_q32(int32_t a, int32_t b)
{
int64_t temp;
temp = (int64_t)a - (int64_t)b;
return (temp >> 1) & 0xFFFFFFFFull;
}
static inline uint32_t mipsdsp_rrshift1_sub_q32(int32_t a, int32_t b)
{
int64_t temp;
temp = (int64_t)a - (int64_t)b;
temp += 1;
return (temp >> 1) & 0xFFFFFFFFull;
}
static inline uint16_t mipsdsp_sub_u16_u16(uint16_t a, uint16_t b,
CPUMIPSState *env)
{
uint8_t temp16;
uint32_t temp;
temp = (uint32_t)a - (uint32_t)b;
temp16 = (temp >> 16) & 0x01;
if (temp16 == 1) {
set_DSPControl_overflow_flag(1, 20, env);
}
return temp & 0x0000FFFF;
}
static inline uint16_t mipsdsp_satu16_sub_u16_u16(uint16_t a, uint16_t b,
CPUMIPSState *env)
{
uint8_t temp16;
uint32_t temp;
temp = (uint32_t)a - (uint32_t)b;
temp16 = (temp >> 16) & 0x01;
if (temp16 == 1) {
temp = 0x0000;
set_DSPControl_overflow_flag(1, 20, env);
}
return temp & 0x0000FFFF;
}
static inline uint8_t mipsdsp_sub_u8(uint8_t a, uint8_t b, CPUMIPSState *env)
{
uint8_t temp8;
uint16_t temp;
temp = (uint16_t)a - (uint16_t)b;
temp8 = (temp >> 8) & 0x01;
if (temp8 == 1) {
set_DSPControl_overflow_flag(1, 20, env);
}
return temp & 0x00FF;
}
static inline uint8_t mipsdsp_satu8_sub(uint8_t a, uint8_t b, CPUMIPSState *env)
{
uint8_t temp8;
uint16_t temp;
temp = (uint16_t)a - (uint16_t)b;
temp8 = (temp >> 8) & 0x01;
if (temp8 == 1) {
temp = 0x00;
set_DSPControl_overflow_flag(1, 20, env);
}
return temp & 0x00FF;
}
static inline uint32_t mipsdsp_sub32(int32_t a, int32_t b, CPUMIPSState *env)
{
int32_t temp;
temp = a - b;
if (MIPSDSP_OVERFLOW_SUB(a, b, temp, 0x80000000)) {
set_DSPControl_overflow_flag(1, 20, env);
}
return temp;
}
static inline int32_t mipsdsp_add_i32(int32_t a, int32_t b, CPUMIPSState *env)
{
int32_t temp;
temp = a + b;
if (MIPSDSP_OVERFLOW_ADD(a, b, temp, 0x80000000)) {
set_DSPControl_overflow_flag(1, 20, env);
}
return temp;
}
static inline int32_t mipsdsp_cmp_eq(int32_t a, int32_t b)
{
return a == b;
}
static inline int32_t mipsdsp_cmp_le(int32_t a, int32_t b)
{
return a <= b;
}
static inline int32_t mipsdsp_cmp_lt(int32_t a, int32_t b)
{
return a < b;
}
static inline int32_t mipsdsp_cmpu_eq(uint32_t a, uint32_t b)
{
return a == b;
}
static inline int32_t mipsdsp_cmpu_le(uint32_t a, uint32_t b)
{
return a <= b;
}
static inline int32_t mipsdsp_cmpu_lt(uint32_t a, uint32_t b)
{
return a < b;
}
/*** MIPS DSP internal functions end ***/
#define MIPSDSP_LHI 0xFFFFFFFF00000000ull
#define MIPSDSP_LLO 0x00000000FFFFFFFFull
#define MIPSDSP_HI 0xFFFF0000
#define MIPSDSP_LO 0x0000FFFF
#define MIPSDSP_Q3 0xFF000000
#define MIPSDSP_Q2 0x00FF0000
#define MIPSDSP_Q1 0x0000FF00
#define MIPSDSP_Q0 0x000000FF
#define MIPSDSP_SPLIT32_8(num, a, b, c, d) \
do { \
a = (num >> 24) & MIPSDSP_Q0; \
b = (num >> 16) & MIPSDSP_Q0; \
c = (num >> 8) & MIPSDSP_Q0; \
d = num & MIPSDSP_Q0; \
} while (0)
#define MIPSDSP_SPLIT32_16(num, a, b) \
do { \
a = (num >> 16) & MIPSDSP_LO; \
b = num & MIPSDSP_LO; \
} while (0)
#define MIPSDSP_RETURN32_8(a, b, c, d) ((target_long)(int32_t) \
(((uint32_t)a << 24) | \
(((uint32_t)b << 16) | \
(((uint32_t)c << 8) | \
((uint32_t)d & 0xFF)))))
#define MIPSDSP_RETURN32_16(a, b) ((target_long)(int32_t) \
(((uint32_t)a << 16) | \
((uint32_t)b & 0xFFFF)))
#ifdef TARGET_MIPS64
#define MIPSDSP_SPLIT64_16(num, a, b, c, d) \
do { \
a = (num >> 48) & MIPSDSP_LO; \
b = (num >> 32) & MIPSDSP_LO; \
c = (num >> 16) & MIPSDSP_LO; \
d = num & MIPSDSP_LO; \
} while (0)
#define MIPSDSP_SPLIT64_32(num, a, b) \
do { \
a = (num >> 32) & MIPSDSP_LLO; \
b = num & MIPSDSP_LLO; \
} while (0)
#define MIPSDSP_RETURN64_16(a, b, c, d) (((uint64_t)a << 48) | \
((uint64_t)b << 32) | \
((uint64_t)c << 16) | \
(uint64_t)d)
#define MIPSDSP_RETURN64_32(a, b) (((uint64_t)a << 32) | (uint64_t)b)
#endif
/** DSP Arithmetic Sub-class insns **/
#define MIPSDSP32_UNOP_ENV(name, func, element) \
target_ulong helper_##name(target_ulong rt, CPUMIPSState *env) \
{ \
DSP32Value dt; \
unsigned int i; \
\
dt.sw[0] = rt; \
\
for (i = 0; i < ARRAY_SIZE(dt.element); i++) { \
dt.element[i] = mipsdsp_##func(dt.element[i], env); \
} \
\
return (target_long)dt.sw[0]; \
}
MIPSDSP32_UNOP_ENV(absq_s_ph, sat_abs16, sh)
MIPSDSP32_UNOP_ENV(absq_s_qb, sat_abs8, sb)
MIPSDSP32_UNOP_ENV(absq_s_w, sat_abs32, sw)
#undef MIPSDSP32_UNOP_ENV
#if defined(TARGET_MIPS64)
#define MIPSDSP64_UNOP_ENV(name, func, element) \
target_ulong helper_##name(target_ulong rt, CPUMIPSState *env) \
{ \
DSP64Value dt; \
unsigned int i; \
\
dt.sl[0] = rt; \
\
for (i = 0; i < ARRAY_SIZE(dt.element); i++) { \
dt.element[i] = mipsdsp_##func(dt.element[i], env); \
} \
\
return dt.sl[0]; \
}
MIPSDSP64_UNOP_ENV(absq_s_ob, sat_abs8, sb)
MIPSDSP64_UNOP_ENV(absq_s_qh, sat_abs16, sh)
MIPSDSP64_UNOP_ENV(absq_s_pw, sat_abs32, sw)
#undef MIPSDSP64_UNOP_ENV
#endif
#define MIPSDSP32_BINOP(name, func, element) \
target_ulong helper_##name(target_ulong rs, target_ulong rt) \
{ \
DSP32Value ds, dt; \
unsigned int i; \
\
ds.sw[0] = rs; \
dt.sw[0] = rt; \
\
for (i = 0; i < ARRAY_SIZE(ds.element); i++) { \
ds.element[i] = mipsdsp_##func(ds.element[i], dt.element[i]); \
} \
\
return (target_long)ds.sw[0]; \
}
MIPSDSP32_BINOP(addqh_ph, rshift1_add_q16, sh);
MIPSDSP32_BINOP(addqh_r_ph, rrshift1_add_q16, sh);
MIPSDSP32_BINOP(addqh_r_w, rrshift1_add_q32, sw);
MIPSDSP32_BINOP(addqh_w, rshift1_add_q32, sw);
MIPSDSP32_BINOP(adduh_qb, rshift1_add_u8, ub);
MIPSDSP32_BINOP(adduh_r_qb, rrshift1_add_u8, ub);
MIPSDSP32_BINOP(subqh_ph, rshift1_sub_q16, sh);
MIPSDSP32_BINOP(subqh_r_ph, rrshift1_sub_q16, sh);
MIPSDSP32_BINOP(subqh_r_w, rrshift1_sub_q32, sw);
MIPSDSP32_BINOP(subqh_w, rshift1_sub_q32, sw);
#undef MIPSDSP32_BINOP
#define MIPSDSP32_BINOP_ENV(name, func, element) \
target_ulong helper_##name(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
DSP32Value ds, dt; \
unsigned int i; \
\
ds.sw[0] = rs; \
dt.sw[0] = rt; \
\
for (i = 0 ; i < ARRAY_SIZE(ds.element); i++) { \
ds.element[i] = mipsdsp_##func(ds.element[i], dt.element[i], env); \
} \
\
return (target_long)ds.sw[0]; \
}
MIPSDSP32_BINOP_ENV(addq_ph, add_i16, sh)
MIPSDSP32_BINOP_ENV(addq_s_ph, sat_add_i16, sh)
MIPSDSP32_BINOP_ENV(addq_s_w, sat_add_i32, sw);
MIPSDSP32_BINOP_ENV(addu_ph, add_u16, sh)
MIPSDSP32_BINOP_ENV(addu_qb, add_u8, ub);
MIPSDSP32_BINOP_ENV(addu_s_ph, sat_add_u16, sh)
MIPSDSP32_BINOP_ENV(addu_s_qb, sat_add_u8, ub);
MIPSDSP32_BINOP_ENV(subq_ph, sub_i16, sh);
MIPSDSP32_BINOP_ENV(subq_s_ph, sat16_sub, sh);
MIPSDSP32_BINOP_ENV(subq_s_w, sat32_sub, sw);
MIPSDSP32_BINOP_ENV(subu_ph, sub_u16_u16, sh);
MIPSDSP32_BINOP_ENV(subu_qb, sub_u8, ub);
MIPSDSP32_BINOP_ENV(subu_s_ph, satu16_sub_u16_u16, sh);
MIPSDSP32_BINOP_ENV(subu_s_qb, satu8_sub, ub);
#undef MIPSDSP32_BINOP_ENV
#ifdef TARGET_MIPS64
#define MIPSDSP64_BINOP(name, func, element) \
target_ulong helper_##name(target_ulong rs, target_ulong rt) \
{ \
DSP64Value ds, dt; \
unsigned int i; \
\
ds.sl[0] = rs; \
dt.sl[0] = rt; \
\
for (i = 0 ; i < ARRAY_SIZE(ds.element); i++) { \
ds.element[i] = mipsdsp_##func(ds.element[i], dt.element[i]); \
} \
\
return ds.sl[0]; \
}
MIPSDSP64_BINOP(adduh_ob, rshift1_add_u8, ub);
MIPSDSP64_BINOP(adduh_r_ob, rrshift1_add_u8, ub);
MIPSDSP64_BINOP(subuh_ob, rshift1_sub_u8, ub);
MIPSDSP64_BINOP(subuh_r_ob, rrshift1_sub_u8, ub);
#undef MIPSDSP64_BINOP
#define MIPSDSP64_BINOP_ENV(name, func, element) \
target_ulong helper_##name(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
DSP64Value ds, dt; \
unsigned int i; \
\
ds.sl[0] = rs; \
dt.sl[0] = rt; \
\
for (i = 0 ; i < ARRAY_SIZE(ds.element); i++) { \
ds.element[i] = mipsdsp_##func(ds.element[i], dt.element[i], env); \
} \
\
return ds.sl[0]; \
}
MIPSDSP64_BINOP_ENV(addq_pw, add_i32, sw);
MIPSDSP64_BINOP_ENV(addq_qh, add_i16, sh);
MIPSDSP64_BINOP_ENV(addq_s_pw, sat_add_i32, sw);
MIPSDSP64_BINOP_ENV(addq_s_qh, sat_add_i16, sh);
MIPSDSP64_BINOP_ENV(addu_ob, add_u8, uh);
MIPSDSP64_BINOP_ENV(addu_qh, add_u16, uh);
MIPSDSP64_BINOP_ENV(addu_s_ob, sat_add_u8, uh);
MIPSDSP64_BINOP_ENV(addu_s_qh, sat_add_u16, uh);
MIPSDSP64_BINOP_ENV(subq_pw, sub32, sw);
MIPSDSP64_BINOP_ENV(subq_qh, sub_i16, sh);
MIPSDSP64_BINOP_ENV(subq_s_pw, sat32_sub, sw);
MIPSDSP64_BINOP_ENV(subq_s_qh, sat16_sub, sh);
MIPSDSP64_BINOP_ENV(subu_ob, sub_u8, uh);
MIPSDSP64_BINOP_ENV(subu_qh, sub_u16_u16, uh);
MIPSDSP64_BINOP_ENV(subu_s_ob, satu8_sub, uh);
MIPSDSP64_BINOP_ENV(subu_s_qh, satu16_sub_u16_u16, uh);
#undef MIPSDSP64_BINOP_ENV
#endif
#define SUBUH_QB(name, var) \
target_ulong helper_##name##_qb(target_ulong rs, target_ulong rt) \
{ \
uint8_t rs3, rs2, rs1, rs0; \
uint8_t rt3, rt2, rt1, rt0; \
uint8_t tempD, tempC, tempB, tempA; \
\
MIPSDSP_SPLIT32_8(rs, rs3, rs2, rs1, rs0); \
MIPSDSP_SPLIT32_8(rt, rt3, rt2, rt1, rt0); \
\
tempD = ((uint16_t)rs3 - (uint16_t)rt3 + var) >> 1; \
tempC = ((uint16_t)rs2 - (uint16_t)rt2 + var) >> 1; \
tempB = ((uint16_t)rs1 - (uint16_t)rt1 + var) >> 1; \
tempA = ((uint16_t)rs0 - (uint16_t)rt0 + var) >> 1; \
\
return ((uint32_t)tempD << 24) | ((uint32_t)tempC << 16) | \
((uint32_t)tempB << 8) | ((uint32_t)tempA); \
}
SUBUH_QB(subuh, 0);
SUBUH_QB(subuh_r, 1);
#undef SUBUH_QB
target_ulong helper_addsc(target_ulong rs, target_ulong rt, CPUMIPSState *env)
{
uint64_t temp, tempRs, tempRt;
bool flag;
tempRs = (uint64_t)rs & MIPSDSP_LLO;
tempRt = (uint64_t)rt & MIPSDSP_LLO;
temp = tempRs + tempRt;
flag = (temp & 0x0100000000ull) >> 32;
set_DSPControl_carryflag(flag, env);
return (target_long)(int32_t)(temp & MIPSDSP_LLO);
}
target_ulong helper_addwc(target_ulong rs, target_ulong rt, CPUMIPSState *env)
{
uint32_t rd;
int32_t temp32, temp31;
int64_t tempL;
tempL = (int64_t)(int32_t)rs + (int64_t)(int32_t)rt +
get_DSPControl_carryflag(env);
temp31 = (tempL >> 31) & 0x01;
temp32 = (tempL >> 32) & 0x01;
if (temp31 != temp32) {
set_DSPControl_overflow_flag(1, 20, env);
}
rd = tempL & MIPSDSP_LLO;
return (target_long)(int32_t)rd;
}
target_ulong helper_modsub(target_ulong rs, target_ulong rt)
{
int32_t decr;
uint16_t lastindex;
target_ulong rd;
decr = rt & MIPSDSP_Q0;
lastindex = (rt >> 8) & MIPSDSP_LO;
if ((rs & MIPSDSP_LLO) == 0x00000000) {
rd = (target_ulong)lastindex;
} else {
rd = rs - decr;
}
return rd;
}
target_ulong helper_raddu_w_qb(target_ulong rs)
{
target_ulong ret = 0;
DSP32Value ds;
unsigned int i;
ds.uw[0] = rs;
for (i = 0; i < 4; i++) {
ret += ds.ub[i];
}
return ret;
}
#if defined(TARGET_MIPS64)
target_ulong helper_raddu_l_ob(target_ulong rs)
{
target_ulong ret = 0;
DSP64Value ds;
unsigned int i;
ds.ul[0] = rs;
for (i = 0; i < 8; i++) {
ret += ds.ub[i];
}
return ret;
}
#endif
#define PRECR_QB_PH(name, a, b)\
target_ulong helper_##name##_qb_ph(target_ulong rs, target_ulong rt) \
{ \
uint8_t tempD, tempC, tempB, tempA; \
\
tempD = (rs >> a) & MIPSDSP_Q0; \
tempC = (rs >> b) & MIPSDSP_Q0; \
tempB = (rt >> a) & MIPSDSP_Q0; \
tempA = (rt >> b) & MIPSDSP_Q0; \
\
return MIPSDSP_RETURN32_8(tempD, tempC, tempB, tempA); \
}
PRECR_QB_PH(precr, 16, 0);
PRECR_QB_PH(precrq, 24, 8);
#undef PRECR_QB_OH
target_ulong helper_precr_sra_ph_w(uint32_t sa, target_ulong rs,
target_ulong rt)
{
uint16_t tempB, tempA;
tempB = ((int32_t)rt >> sa) & MIPSDSP_LO;
tempA = ((int32_t)rs >> sa) & MIPSDSP_LO;
return MIPSDSP_RETURN32_16(tempB, tempA);
}
target_ulong helper_precr_sra_r_ph_w(uint32_t sa,
target_ulong rs, target_ulong rt)
{
uint64_t tempB, tempA;
/* If sa = 0, then (sa - 1) = -1 will case shift error, so we need else. */
if (sa == 0) {
tempB = (rt & MIPSDSP_LO) << 1;
tempA = (rs & MIPSDSP_LO) << 1;
} else {
tempB = ((int32_t)rt >> (sa - 1)) + 1;
tempA = ((int32_t)rs >> (sa - 1)) + 1;
}
rt = (((tempB >> 1) & MIPSDSP_LO) << 16) | ((tempA >> 1) & MIPSDSP_LO);
return (target_long)(int32_t)rt;
}
target_ulong helper_precrq_ph_w(target_ulong rs, target_ulong rt)
{
uint16_t tempB, tempA;
tempB = (rs & MIPSDSP_HI) >> 16;
tempA = (rt & MIPSDSP_HI) >> 16;
return MIPSDSP_RETURN32_16(tempB, tempA);
}
target_ulong helper_precrq_rs_ph_w(target_ulong rs, target_ulong rt,
CPUMIPSState *env)
{
uint16_t tempB, tempA;
tempB = mipsdsp_trunc16_sat16_round(rs, env);
tempA = mipsdsp_trunc16_sat16_round(rt, env);
return MIPSDSP_RETURN32_16(tempB, tempA);
}
#if defined(TARGET_MIPS64)
target_ulong helper_precr_ob_qh(target_ulong rs, target_ulong rt)
{
uint8_t rs6, rs4, rs2, rs0;
uint8_t rt6, rt4, rt2, rt0;
uint64_t temp;
rs6 = (rs >> 48) & MIPSDSP_Q0;
rs4 = (rs >> 32) & MIPSDSP_Q0;
rs2 = (rs >> 16) & MIPSDSP_Q0;
rs0 = rs & MIPSDSP_Q0;
rt6 = (rt >> 48) & MIPSDSP_Q0;
rt4 = (rt >> 32) & MIPSDSP_Q0;
rt2 = (rt >> 16) & MIPSDSP_Q0;
rt0 = rt & MIPSDSP_Q0;
temp = ((uint64_t)rs6 << 56) | ((uint64_t)rs4 << 48) |
((uint64_t)rs2 << 40) | ((uint64_t)rs0 << 32) |
((uint64_t)rt6 << 24) | ((uint64_t)rt4 << 16) |
((uint64_t)rt2 << 8) | (uint64_t)rt0;
return temp;
}
#define PRECR_QH_PW(name, var) \
target_ulong helper_precr_##name##_qh_pw(target_ulong rs, target_ulong rt, \
uint32_t sa) \
{ \
uint16_t rs3, rs2, rs1, rs0; \
uint16_t rt3, rt2, rt1, rt0; \
uint16_t tempD, tempC, tempB, tempA; \
\
MIPSDSP_SPLIT64_16(rs, rs3, rs2, rs1, rs0); \
MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); \
\
/* When sa = 0, we use rt2, rt0, rs2, rs0; \
* when sa != 0, we use rt3, rt1, rs3, rs1. */ \
if (sa == 0) { \
tempD = rt2 << var; \
tempC = rt0 << var; \
tempB = rs2 << var; \
tempA = rs0 << var; \
} else { \
tempD = (((int16_t)rt3 >> sa) + var) >> var; \
tempC = (((int16_t)rt1 >> sa) + var) >> var; \
tempB = (((int16_t)rs3 >> sa) + var) >> var; \
tempA = (((int16_t)rs1 >> sa) + var) >> var; \
} \
\
return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); \
}
PRECR_QH_PW(sra, 0);
PRECR_QH_PW(sra_r, 1);
#undef PRECR_QH_PW
target_ulong helper_precrq_ob_qh(target_ulong rs, target_ulong rt)
{
uint8_t rs6, rs4, rs2, rs0;
uint8_t rt6, rt4, rt2, rt0;
uint64_t temp;
rs6 = (rs >> 56) & MIPSDSP_Q0;
rs4 = (rs >> 40) & MIPSDSP_Q0;
rs2 = (rs >> 24) & MIPSDSP_Q0;
rs0 = (rs >> 8) & MIPSDSP_Q0;
rt6 = (rt >> 56) & MIPSDSP_Q0;
rt4 = (rt >> 40) & MIPSDSP_Q0;
rt2 = (rt >> 24) & MIPSDSP_Q0;
rt0 = (rt >> 8) & MIPSDSP_Q0;
temp = ((uint64_t)rs6 << 56) | ((uint64_t)rs4 << 48) |
((uint64_t)rs2 << 40) | ((uint64_t)rs0 << 32) |
((uint64_t)rt6 << 24) | ((uint64_t)rt4 << 16) |
((uint64_t)rt2 << 8) | (uint64_t)rt0;
return temp;
}
target_ulong helper_precrq_qh_pw(target_ulong rs, target_ulong rt)
{
uint16_t tempD, tempC, tempB, tempA;
tempD = (rs >> 48) & MIPSDSP_LO;
tempC = (rs >> 16) & MIPSDSP_LO;
tempB = (rt >> 48) & MIPSDSP_LO;
tempA = (rt >> 16) & MIPSDSP_LO;
return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA);
}
target_ulong helper_precrq_rs_qh_pw(target_ulong rs, target_ulong rt,
CPUMIPSState *env)
{
uint32_t rs2, rs0;
uint32_t rt2, rt0;
uint16_t tempD, tempC, tempB, tempA;
rs2 = (rs >> 32) & MIPSDSP_LLO;
rs0 = rs & MIPSDSP_LLO;
rt2 = (rt >> 32) & MIPSDSP_LLO;
rt0 = rt & MIPSDSP_LLO;
tempD = mipsdsp_trunc16_sat16_round(rs2, env);
tempC = mipsdsp_trunc16_sat16_round(rs0, env);
tempB = mipsdsp_trunc16_sat16_round(rt2, env);
tempA = mipsdsp_trunc16_sat16_round(rt0, env);
return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA);
}
target_ulong helper_precrq_pw_l(target_ulong rs, target_ulong rt)
{
uint32_t tempB, tempA;
tempB = (rs >> 32) & MIPSDSP_LLO;
tempA = (rt >> 32) & MIPSDSP_LLO;
return MIPSDSP_RETURN64_32(tempB, tempA);
}
#endif
target_ulong helper_precrqu_s_qb_ph(target_ulong rs, target_ulong rt,
CPUMIPSState *env)
{
uint8_t tempD, tempC, tempB, tempA;
uint16_t rsh, rsl, rth, rtl;
rsh = (rs & MIPSDSP_HI) >> 16;
rsl = rs & MIPSDSP_LO;
rth = (rt & MIPSDSP_HI) >> 16;
rtl = rt & MIPSDSP_LO;
tempD = mipsdsp_sat8_reduce_precision(rsh, env);
tempC = mipsdsp_sat8_reduce_precision(rsl, env);
tempB = mipsdsp_sat8_reduce_precision(rth, env);
tempA = mipsdsp_sat8_reduce_precision(rtl, env);
return MIPSDSP_RETURN32_8(tempD, tempC, tempB, tempA);
}
#if defined(TARGET_MIPS64)
target_ulong helper_precrqu_s_ob_qh(target_ulong rs, target_ulong rt,
CPUMIPSState *env)
{
int i;
uint16_t rs3, rs2, rs1, rs0;
uint16_t rt3, rt2, rt1, rt0;
uint8_t temp[8];
uint64_t result;
result = 0;
MIPSDSP_SPLIT64_16(rs, rs3, rs2, rs1, rs0);
MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0);
temp[7] = mipsdsp_sat8_reduce_precision(rs3, env);
temp[6] = mipsdsp_sat8_reduce_precision(rs2, env);
temp[5] = mipsdsp_sat8_reduce_precision(rs1, env);
temp[4] = mipsdsp_sat8_reduce_precision(rs0, env);
temp[3] = mipsdsp_sat8_reduce_precision(rt3, env);
temp[2] = mipsdsp_sat8_reduce_precision(rt2, env);
temp[1] = mipsdsp_sat8_reduce_precision(rt1, env);
temp[0] = mipsdsp_sat8_reduce_precision(rt0, env);
for (i = 0; i < 8; i++) {
result |= (uint64_t)temp[i] << (8 * i);
}
return result;
}
#define PRECEQ_PW(name, a, b) \
target_ulong helper_preceq_pw_##name(target_ulong rt) \
{ \
uint16_t tempB, tempA; \
uint32_t tempBI, tempAI; \
\
tempB = (rt >> a) & MIPSDSP_LO; \
tempA = (rt >> b) & MIPSDSP_LO; \
\
tempBI = (uint32_t)tempB << 16; \
tempAI = (uint32_t)tempA << 16; \
\
return MIPSDSP_RETURN64_32(tempBI, tempAI); \
}
PRECEQ_PW(qhl, 48, 32);
PRECEQ_PW(qhr, 16, 0);
PRECEQ_PW(qhla, 48, 16);
PRECEQ_PW(qhra, 32, 0);
#undef PRECEQ_PW
#endif
#define PRECEQU_PH(name, a, b) \
target_ulong helper_precequ_ph_##name(target_ulong rt) \
{ \
uint16_t tempB, tempA; \
\
tempB = (rt >> a) & MIPSDSP_Q0; \
tempA = (rt >> b) & MIPSDSP_Q0; \
\
tempB = tempB << 7; \
tempA = tempA << 7; \
\
return MIPSDSP_RETURN32_16(tempB, tempA); \
}
PRECEQU_PH(qbl, 24, 16);
PRECEQU_PH(qbr, 8, 0);
PRECEQU_PH(qbla, 24, 8);
PRECEQU_PH(qbra, 16, 0);
#undef PRECEQU_PH
#if defined(TARGET_MIPS64)
#define PRECEQU_QH(name, a, b, c, d) \
target_ulong helper_precequ_qh_##name(target_ulong rt) \
{ \
uint16_t tempD, tempC, tempB, tempA; \
\
tempD = (rt >> a) & MIPSDSP_Q0; \
tempC = (rt >> b) & MIPSDSP_Q0; \
tempB = (rt >> c) & MIPSDSP_Q0; \
tempA = (rt >> d) & MIPSDSP_Q0; \
\
tempD = tempD << 7; \
tempC = tempC << 7; \
tempB = tempB << 7; \
tempA = tempA << 7; \
\
return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); \
}
PRECEQU_QH(obl, 56, 48, 40, 32);
PRECEQU_QH(obr, 24, 16, 8, 0);
PRECEQU_QH(obla, 56, 40, 24, 8);
PRECEQU_QH(obra, 48, 32, 16, 0);
#undef PRECEQU_QH
#endif
#define PRECEU_PH(name, a, b) \
target_ulong helper_preceu_ph_##name(target_ulong rt) \
{ \
uint16_t tempB, tempA; \
\
tempB = (rt >> a) & MIPSDSP_Q0; \
tempA = (rt >> b) & MIPSDSP_Q0; \
\
return MIPSDSP_RETURN32_16(tempB, tempA); \
}
PRECEU_PH(qbl, 24, 16);
PRECEU_PH(qbr, 8, 0);
PRECEU_PH(qbla, 24, 8);
PRECEU_PH(qbra, 16, 0);
#undef PRECEU_PH
#if defined(TARGET_MIPS64)
#define PRECEU_QH(name, a, b, c, d) \
target_ulong helper_preceu_qh_##name(target_ulong rt) \
{ \
uint16_t tempD, tempC, tempB, tempA; \
\
tempD = (rt >> a) & MIPSDSP_Q0; \
tempC = (rt >> b) & MIPSDSP_Q0; \
tempB = (rt >> c) & MIPSDSP_Q0; \
tempA = (rt >> d) & MIPSDSP_Q0; \
\
return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); \
}
PRECEU_QH(obl, 56, 48, 40, 32);
PRECEU_QH(obr, 24, 16, 8, 0);
PRECEU_QH(obla, 56, 40, 24, 8);
PRECEU_QH(obra, 48, 32, 16, 0);
#undef PRECEU_QH
#endif
/** DSP GPR-Based Shift Sub-class insns **/
#define SHIFT_QB(name, func) \
target_ulong helper_##name##_qb(target_ulong sa, target_ulong rt) \
{ \
uint8_t rt3, rt2, rt1, rt0; \
\
sa = sa & 0x07; \
\
MIPSDSP_SPLIT32_8(rt, rt3, rt2, rt1, rt0); \
\
rt3 = mipsdsp_##func(rt3, sa); \
rt2 = mipsdsp_##func(rt2, sa); \
rt1 = mipsdsp_##func(rt1, sa); \
rt0 = mipsdsp_##func(rt0, sa); \
\
return MIPSDSP_RETURN32_8(rt3, rt2, rt1, rt0); \
}
#define SHIFT_QB_ENV(name, func) \
target_ulong helper_##name##_qb(target_ulong sa, target_ulong rt,\
CPUMIPSState *env) \
{ \
uint8_t rt3, rt2, rt1, rt0; \
\
sa = sa & 0x07; \
\
MIPSDSP_SPLIT32_8(rt, rt3, rt2, rt1, rt0); \
\
rt3 = mipsdsp_##func(rt3, sa, env); \
rt2 = mipsdsp_##func(rt2, sa, env); \
rt1 = mipsdsp_##func(rt1, sa, env); \
rt0 = mipsdsp_##func(rt0, sa, env); \
\
return MIPSDSP_RETURN32_8(rt3, rt2, rt1, rt0); \
}
SHIFT_QB_ENV(shll, lshift8);
SHIFT_QB(shrl, rshift_u8);
SHIFT_QB(shra, rashift8);
SHIFT_QB(shra_r, rnd8_rashift);
#undef SHIFT_QB
#undef SHIFT_QB_ENV
#if defined(TARGET_MIPS64)
#define SHIFT_OB(name, func) \
target_ulong helper_##name##_ob(target_ulong rt, target_ulong sa) \
{ \
int i; \
uint8_t rt_t[8]; \
uint64_t temp; \
\
sa = sa & 0x07; \
temp = 0; \
\
for (i = 0; i < 8; i++) { \
rt_t[i] = (rt >> (8 * i)) & MIPSDSP_Q0; \
rt_t[i] = mipsdsp_##func(rt_t[i], sa); \
temp |= (uint64_t)rt_t[i] << (8 * i); \
} \
\
return temp; \
}
#define SHIFT_OB_ENV(name, func) \
target_ulong helper_##name##_ob(target_ulong rt, target_ulong sa, \
CPUMIPSState *env) \
{ \
int i; \
uint8_t rt_t[8]; \
uint64_t temp; \
\
sa = sa & 0x07; \
temp = 0; \
\
for (i = 0; i < 8; i++) { \
rt_t[i] = (rt >> (8 * i)) & MIPSDSP_Q0; \
rt_t[i] = mipsdsp_##func(rt_t[i], sa, env); \
temp |= (uint64_t)rt_t[i] << (8 * i); \
} \
\
return temp; \
}
SHIFT_OB_ENV(shll, lshift8);
SHIFT_OB(shrl, rshift_u8);
SHIFT_OB(shra, rashift8);
SHIFT_OB(shra_r, rnd8_rashift);
#undef SHIFT_OB
#undef SHIFT_OB_ENV
#endif
#define SHIFT_PH(name, func) \
target_ulong helper_##name##_ph(target_ulong sa, target_ulong rt, \
CPUMIPSState *env) \
{ \
uint16_t rth, rtl; \
\
sa = sa & 0x0F; \
\
MIPSDSP_SPLIT32_16(rt, rth, rtl); \
\
rth = mipsdsp_##func(rth, sa, env); \
rtl = mipsdsp_##func(rtl, sa, env); \
\
return MIPSDSP_RETURN32_16(rth, rtl); \
}
SHIFT_PH(shll, lshift16);
SHIFT_PH(shll_s, sat16_lshift);
#undef SHIFT_PH
#if defined(TARGET_MIPS64)
#define SHIFT_QH(name, func) \
target_ulong helper_##name##_qh(target_ulong rt, target_ulong sa) \
{ \
uint16_t rt3, rt2, rt1, rt0; \
\
sa = sa & 0x0F; \
\
MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); \
\
rt3 = mipsdsp_##func(rt3, sa); \
rt2 = mipsdsp_##func(rt2, sa); \
rt1 = mipsdsp_##func(rt1, sa); \
rt0 = mipsdsp_##func(rt0, sa); \
\
return MIPSDSP_RETURN64_16(rt3, rt2, rt1, rt0); \
}
#define SHIFT_QH_ENV(name, func) \
target_ulong helper_##name##_qh(target_ulong rt, target_ulong sa, \
CPUMIPSState *env) \
{ \
uint16_t rt3, rt2, rt1, rt0; \
\
sa = sa & 0x0F; \
\
MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); \
\
rt3 = mipsdsp_##func(rt3, sa, env); \
rt2 = mipsdsp_##func(rt2, sa, env); \
rt1 = mipsdsp_##func(rt1, sa, env); \
rt0 = mipsdsp_##func(rt0, sa, env); \
\
return MIPSDSP_RETURN64_16(rt3, rt2, rt1, rt0); \
}
SHIFT_QH_ENV(shll, lshift16);
SHIFT_QH_ENV(shll_s, sat16_lshift);
SHIFT_QH(shrl, rshift_u16);
SHIFT_QH(shra, rashift16);
SHIFT_QH(shra_r, rnd16_rashift);
#undef SHIFT_QH
#undef SHIFT_QH_ENV
#endif
#define SHIFT_W(name, func) \
target_ulong helper_##name##_w(target_ulong sa, target_ulong rt) \
{ \
uint32_t temp; \
\
sa = sa & 0x1F; \
temp = mipsdsp_##func(rt, sa); \
\
return (target_long)(int32_t)temp; \
}
#define SHIFT_W_ENV(name, func) \
target_ulong helper_##name##_w(target_ulong sa, target_ulong rt, \
CPUMIPSState *env) \
{ \
uint32_t temp; \
\
sa = sa & 0x1F; \
temp = mipsdsp_##func(rt, sa, env); \
\
return (target_long)(int32_t)temp; \
}
SHIFT_W_ENV(shll_s, sat32_lshift);
SHIFT_W(shra_r, rnd32_rashift);
#undef SHIFT_W
#undef SHIFT_W_ENV
#if defined(TARGET_MIPS64)
#define SHIFT_PW(name, func) \
target_ulong helper_##name##_pw(target_ulong rt, target_ulong sa) \
{ \
uint32_t rt1, rt0; \
\
sa = sa & 0x1F; \
MIPSDSP_SPLIT64_32(rt, rt1, rt0); \
\
rt1 = mipsdsp_##func(rt1, sa); \
rt0 = mipsdsp_##func(rt0, sa); \
\
return MIPSDSP_RETURN64_32(rt1, rt0); \
}
#define SHIFT_PW_ENV(name, func) \
target_ulong helper_##name##_pw(target_ulong rt, target_ulong sa, \
CPUMIPSState *env) \
{ \
uint32_t rt1, rt0; \
\
sa = sa & 0x1F; \
MIPSDSP_SPLIT64_32(rt, rt1, rt0); \
\
rt1 = mipsdsp_##func(rt1, sa, env); \
rt0 = mipsdsp_##func(rt0, sa, env); \
\
return MIPSDSP_RETURN64_32(rt1, rt0); \
}
SHIFT_PW_ENV(shll, lshift32);
SHIFT_PW_ENV(shll_s, sat32_lshift);
SHIFT_PW(shra, rashift32);
SHIFT_PW(shra_r, rnd32_rashift);
#undef SHIFT_PW
#undef SHIFT_PW_ENV
#endif
#define SHIFT_PH(name, func) \
target_ulong helper_##name##_ph(target_ulong sa, target_ulong rt) \
{ \
uint16_t rth, rtl; \
\
sa = sa & 0x0F; \
\
MIPSDSP_SPLIT32_16(rt, rth, rtl); \
\
rth = mipsdsp_##func(rth, sa); \
rtl = mipsdsp_##func(rtl, sa); \
\
return MIPSDSP_RETURN32_16(rth, rtl); \
}
SHIFT_PH(shrl, rshift_u16);
SHIFT_PH(shra, rashift16);
SHIFT_PH(shra_r, rnd16_rashift);
#undef SHIFT_PH
/** DSP Multiply Sub-class insns **/
/* Return value made up by two 16bits value.
* FIXME give the macro a better name.
*/
#define MUL_RETURN32_16_PH(name, func, \
rsmov1, rsmov2, rsfilter, \
rtmov1, rtmov2, rtfilter) \
target_ulong helper_##name(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
uint16_t rsB, rsA, rtB, rtA; \
\
rsB = (rs >> rsmov1) & rsfilter; \
rsA = (rs >> rsmov2) & rsfilter; \
rtB = (rt >> rtmov1) & rtfilter; \
rtA = (rt >> rtmov2) & rtfilter; \
\
rsB = mipsdsp_##func(rsB, rtB, env); \
rsA = mipsdsp_##func(rsA, rtA, env); \
\
return MIPSDSP_RETURN32_16(rsB, rsA); \
}
MUL_RETURN32_16_PH(muleu_s_ph_qbl, mul_u8_u16, \
24, 16, MIPSDSP_Q0, \
16, 0, MIPSDSP_LO);
MUL_RETURN32_16_PH(muleu_s_ph_qbr, mul_u8_u16, \
8, 0, MIPSDSP_Q0, \
16, 0, MIPSDSP_LO);
MUL_RETURN32_16_PH(mulq_rs_ph, rndq15_mul_q15_q15, \
16, 0, MIPSDSP_LO, \
16, 0, MIPSDSP_LO);
MUL_RETURN32_16_PH(mul_ph, mul_i16_i16, \
16, 0, MIPSDSP_LO, \
16, 0, MIPSDSP_LO);
MUL_RETURN32_16_PH(mul_s_ph, sat16_mul_i16_i16, \
16, 0, MIPSDSP_LO, \
16, 0, MIPSDSP_LO);
MUL_RETURN32_16_PH(mulq_s_ph, sat16_mul_q15_q15, \
16, 0, MIPSDSP_LO, \
16, 0, MIPSDSP_LO);
#undef MUL_RETURN32_16_PH
#define MUL_RETURN32_32_ph(name, func, movbits) \
target_ulong helper_##name(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int16_t rsh, rth; \
int32_t temp; \
\
rsh = (rs >> movbits) & MIPSDSP_LO; \
rth = (rt >> movbits) & MIPSDSP_LO; \
temp = mipsdsp_##func(rsh, rth, env); \
\
return (target_long)(int32_t)temp; \
}
MUL_RETURN32_32_ph(muleq_s_w_phl, mul_q15_q15_overflowflag21, 16);
MUL_RETURN32_32_ph(muleq_s_w_phr, mul_q15_q15_overflowflag21, 0);
#undef MUL_RETURN32_32_ph
#define MUL_VOID_PH(name, use_ac_env) \
void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int16_t rsh, rsl, rth, rtl; \
int32_t tempB, tempA; \
int64_t acc, dotp; \
\
MIPSDSP_SPLIT32_16(rs, rsh, rsl); \
MIPSDSP_SPLIT32_16(rt, rth, rtl); \
\
if (use_ac_env == 1) { \
tempB = mipsdsp_mul_q15_q15(ac, rsh, rth, env); \
tempA = mipsdsp_mul_q15_q15(ac, rsl, rtl, env); \
} else { \
tempB = mipsdsp_mul_u16_u16(rsh, rth); \
tempA = mipsdsp_mul_u16_u16(rsl, rtl); \
} \
\
dotp = (int64_t)tempB - (int64_t)tempA; \
acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \
dotp = dotp + acc; \
env->active_tc.HI[ac] = (target_long)(int32_t) \
((dotp & MIPSDSP_LHI) >> 32); \
env->active_tc.LO[ac] = (target_long)(int32_t)(dotp & MIPSDSP_LLO); \
}
MUL_VOID_PH(mulsaq_s_w_ph, 1);
MUL_VOID_PH(mulsa_w_ph, 0);
#undef MUL_VOID_PH
#if defined(TARGET_MIPS64)
#define MUL_RETURN64_16_QH(name, func, \
rsmov1, rsmov2, rsmov3, rsmov4, rsfilter, \
rtmov1, rtmov2, rtmov3, rtmov4, rtfilter) \
target_ulong helper_##name(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
uint16_t rs3, rs2, rs1, rs0; \
uint16_t rt3, rt2, rt1, rt0; \
uint16_t tempD, tempC, tempB, tempA; \
\
rs3 = (rs >> rsmov1) & rsfilter; \
rs2 = (rs >> rsmov2) & rsfilter; \
rs1 = (rs >> rsmov3) & rsfilter; \
rs0 = (rs >> rsmov4) & rsfilter; \
rt3 = (rt >> rtmov1) & rtfilter; \
rt2 = (rt >> rtmov2) & rtfilter; \
rt1 = (rt >> rtmov3) & rtfilter; \
rt0 = (rt >> rtmov4) & rtfilter; \
\
tempD = mipsdsp_##func(rs3, rt3, env); \
tempC = mipsdsp_##func(rs2, rt2, env); \
tempB = mipsdsp_##func(rs1, rt1, env); \
tempA = mipsdsp_##func(rs0, rt0, env); \
\
return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); \
}
MUL_RETURN64_16_QH(muleu_s_qh_obl, mul_u8_u16, \
56, 48, 40, 32, MIPSDSP_Q0, \
48, 32, 16, 0, MIPSDSP_LO);
MUL_RETURN64_16_QH(muleu_s_qh_obr, mul_u8_u16, \
24, 16, 8, 0, MIPSDSP_Q0, \
48, 32, 16, 0, MIPSDSP_LO);
MUL_RETURN64_16_QH(mulq_rs_qh, rndq15_mul_q15_q15, \
48, 32, 16, 0, MIPSDSP_LO, \
48, 32, 16, 0, MIPSDSP_LO);
#undef MUL_RETURN64_16_QH
#define MUL_RETURN64_32_QH(name, \
rsmov1, rsmov2, \
rtmov1, rtmov2) \
target_ulong helper_##name(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
uint16_t rsB, rsA; \
uint16_t rtB, rtA; \
uint32_t tempB, tempA; \
\
rsB = (rs >> rsmov1) & MIPSDSP_LO; \
rsA = (rs >> rsmov2) & MIPSDSP_LO; \
rtB = (rt >> rtmov1) & MIPSDSP_LO; \
rtA = (rt >> rtmov2) & MIPSDSP_LO; \
\
tempB = mipsdsp_mul_q15_q15(5, rsB, rtB, env); \
tempA = mipsdsp_mul_q15_q15(5, rsA, rtA, env); \
\
return ((uint64_t)tempB << 32) | (uint64_t)tempA; \
}
MUL_RETURN64_32_QH(muleq_s_pw_qhl, 48, 32, 48, 32);
MUL_RETURN64_32_QH(muleq_s_pw_qhr, 16, 0, 16, 0);
#undef MUL_RETURN64_32_QH
void helper_mulsaq_s_w_qh(target_ulong rs, target_ulong rt, uint32_t ac,
CPUMIPSState *env)
{
int16_t rs3, rs2, rs1, rs0;
int16_t rt3, rt2, rt1, rt0;
int32_t tempD, tempC, tempB, tempA;
int64_t acc[2];
int64_t temp[2];
int64_t temp_sum;
MIPSDSP_SPLIT64_16(rs, rs3, rs2, rs1, rs0);
MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0);
tempD = mipsdsp_mul_q15_q15(ac, rs3, rt3, env);
tempC = mipsdsp_mul_q15_q15(ac, rs2, rt2, env);
tempB = mipsdsp_mul_q15_q15(ac, rs1, rt1, env);
tempA = mipsdsp_mul_q15_q15(ac, rs0, rt0, env);
temp[0] = ((int32_t)tempD - (int32_t)tempC) +
((int32_t)tempB - (int32_t)tempA);
temp[0] = (int64_t)(temp[0] << 30) >> 30;
if (((temp[0] >> 33) & 0x01) == 0) {
temp[1] = 0x00;
} else {
temp[1] = ~0ull;
}
acc[0] = env->active_tc.LO[ac];
acc[1] = env->active_tc.HI[ac];
temp_sum = acc[0] + temp[0];
if (((uint64_t)temp_sum < (uint64_t)acc[0]) &&
((uint64_t)temp_sum < (uint64_t)temp[0])) {
acc[1] += 1;
}
acc[0] = temp_sum;
acc[1] += temp[1];
env->active_tc.HI[ac] = acc[1];
env->active_tc.LO[ac] = acc[0];
}
#endif
#define DP_QB(name, func, is_add, rsmov1, rsmov2, rtmov1, rtmov2) \
void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
uint8_t rs3, rs2; \
uint8_t rt3, rt2; \
uint16_t tempB, tempA; \
uint64_t tempC, dotp; \
\
rs3 = (rs >> rsmov1) & MIPSDSP_Q0; \
rs2 = (rs >> rsmov2) & MIPSDSP_Q0; \
rt3 = (rt >> rtmov1) & MIPSDSP_Q0; \
rt2 = (rt >> rtmov2) & MIPSDSP_Q0; \
tempB = mipsdsp_##func(rs3, rt3); \
tempA = mipsdsp_##func(rs2, rt2); \
dotp = (int64_t)tempB + (int64_t)tempA; \
if (is_add) { \
tempC = (((uint64_t)env->active_tc.HI[ac] << 32) | \
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO)) \
+ dotp; \
} else { \
tempC = (((uint64_t)env->active_tc.HI[ac] << 32) | \
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO)) \
- dotp; \
} \
\
env->active_tc.HI[ac] = (target_long)(int32_t) \
((tempC & MIPSDSP_LHI) >> 32); \
env->active_tc.LO[ac] = (target_long)(int32_t)(tempC & MIPSDSP_LLO); \
}
DP_QB(dpau_h_qbl, mul_u8_u8, 1, 24, 16, 24, 16);
DP_QB(dpau_h_qbr, mul_u8_u8, 1, 8, 0, 8, 0);
DP_QB(dpsu_h_qbl, mul_u8_u8, 0, 24, 16, 24, 16);
DP_QB(dpsu_h_qbr, mul_u8_u8, 0, 8, 0, 8, 0);
#undef DP_QB
#if defined(TARGET_MIPS64)
#define DP_OB(name, add_sub, \
rsmov1, rsmov2, rsmov3, rsmov4, \
rtmov1, rtmov2, rtmov3, rtmov4) \
void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \
CPUMIPSState *env) \
{ \
uint8_t rsD, rsC, rsB, rsA; \
uint8_t rtD, rtC, rtB, rtA; \
uint16_t tempD, tempC, tempB, tempA; \
uint64_t temp[2]; \
uint64_t acc[2]; \
uint64_t temp_sum; \
\
temp[0] = 0; \
temp[1] = 0; \
\
rsD = (rs >> rsmov1) & MIPSDSP_Q0; \
rsC = (rs >> rsmov2) & MIPSDSP_Q0; \
rsB = (rs >> rsmov3) & MIPSDSP_Q0; \
rsA = (rs >> rsmov4) & MIPSDSP_Q0; \
rtD = (rt >> rtmov1) & MIPSDSP_Q0; \
rtC = (rt >> rtmov2) & MIPSDSP_Q0; \
rtB = (rt >> rtmov3) & MIPSDSP_Q0; \
rtA = (rt >> rtmov4) & MIPSDSP_Q0; \
\
tempD = mipsdsp_mul_u8_u8(rsD, rtD); \
tempC = mipsdsp_mul_u8_u8(rsC, rtC); \
tempB = mipsdsp_mul_u8_u8(rsB, rtB); \
tempA = mipsdsp_mul_u8_u8(rsA, rtA); \
\
temp[0] = (uint64_t)tempD + (uint64_t)tempC + \
(uint64_t)tempB + (uint64_t)tempA; \
\
acc[0] = env->active_tc.LO[ac]; \
acc[1] = env->active_tc.HI[ac]; \
\
if (add_sub) { \
temp_sum = acc[0] + temp[0]; \
if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \
((uint64_t)temp_sum < (uint64_t)temp[0])) { \
acc[1] += 1; \
} \
temp[0] = temp_sum; \
temp[1] = acc[1] + temp[1]; \
} else { \
temp_sum = acc[0] - temp[0]; \
if ((uint64_t)temp_sum > (uint64_t)acc[0]) { \
acc[1] -= 1; \
} \
temp[0] = temp_sum; \
temp[1] = acc[1] - temp[1]; \
} \
\
env->active_tc.HI[ac] = temp[1]; \
env->active_tc.LO[ac] = temp[0]; \
}
DP_OB(dpau_h_obl, 1, 56, 48, 40, 32, 56, 48, 40, 32);
DP_OB(dpau_h_obr, 1, 24, 16, 8, 0, 24, 16, 8, 0);
DP_OB(dpsu_h_obl, 0, 56, 48, 40, 32, 56, 48, 40, 32);
DP_OB(dpsu_h_obr, 0, 24, 16, 8, 0, 24, 16, 8, 0);
#undef DP_OB
#endif
#define DP_NOFUNC_PH(name, is_add, rsmov1, rsmov2, rtmov1, rtmov2) \
void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int16_t rsB, rsA, rtB, rtA; \
int32_t tempA, tempB; \
int64_t acc; \
\
rsB = (rs >> rsmov1) & MIPSDSP_LO; \
rsA = (rs >> rsmov2) & MIPSDSP_LO; \
rtB = (rt >> rtmov1) & MIPSDSP_LO; \
rtA = (rt >> rtmov2) & MIPSDSP_LO; \
\
tempB = (int32_t)rsB * (int32_t)rtB; \
tempA = (int32_t)rsA * (int32_t)rtA; \
\
acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \
\
if (is_add) { \
acc = acc + ((int64_t)tempB + (int64_t)tempA); \
} else { \
acc = acc - ((int64_t)tempB + (int64_t)tempA); \
} \
\
env->active_tc.HI[ac] = (target_long)(int32_t)((acc & MIPSDSP_LHI) >> 32); \
env->active_tc.LO[ac] = (target_long)(int32_t)(acc & MIPSDSP_LLO); \
}
DP_NOFUNC_PH(dpa_w_ph, 1, 16, 0, 16, 0);
DP_NOFUNC_PH(dpax_w_ph, 1, 16, 0, 0, 16);
DP_NOFUNC_PH(dps_w_ph, 0, 16, 0, 16, 0);
DP_NOFUNC_PH(dpsx_w_ph, 0, 16, 0, 0, 16);
#undef DP_NOFUNC_PH
#define DP_HASFUNC_PH(name, is_add, rsmov1, rsmov2, rtmov1, rtmov2) \
void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int16_t rsB, rsA, rtB, rtA; \
int32_t tempB, tempA; \
int64_t acc, dotp; \
\
rsB = (rs >> rsmov1) & MIPSDSP_LO; \
rsA = (rs >> rsmov2) & MIPSDSP_LO; \
rtB = (rt >> rtmov1) & MIPSDSP_LO; \
rtA = (rt >> rtmov2) & MIPSDSP_LO; \
\
tempB = mipsdsp_mul_q15_q15(ac, rsB, rtB, env); \
tempA = mipsdsp_mul_q15_q15(ac, rsA, rtA, env); \
\
dotp = (int64_t)tempB + (int64_t)tempA; \
acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \
\
if (is_add) { \
acc = acc + dotp; \
} else { \
acc = acc - dotp; \
} \
\
env->active_tc.HI[ac] = (target_long)(int32_t) \
((acc & MIPSDSP_LHI) >> 32); \
env->active_tc.LO[ac] = (target_long)(int32_t) \
(acc & MIPSDSP_LLO); \
}
DP_HASFUNC_PH(dpaq_s_w_ph, 1, 16, 0, 16, 0);
DP_HASFUNC_PH(dpaqx_s_w_ph, 1, 16, 0, 0, 16);
DP_HASFUNC_PH(dpsq_s_w_ph, 0, 16, 0, 16, 0);
DP_HASFUNC_PH(dpsqx_s_w_ph, 0, 16, 0, 0, 16);
#undef DP_HASFUNC_PH
#define DP_128OPERATION_PH(name, is_add) \
void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int16_t rsh, rsl, rth, rtl; \
int32_t tempB, tempA, tempC62_31, tempC63; \
int64_t acc, dotp, tempC; \
\
MIPSDSP_SPLIT32_16(rs, rsh, rsl); \
MIPSDSP_SPLIT32_16(rt, rth, rtl); \
\
tempB = mipsdsp_mul_q15_q15(ac, rsh, rtl, env); \
tempA = mipsdsp_mul_q15_q15(ac, rsl, rth, env); \
\
dotp = (int64_t)tempB + (int64_t)tempA; \
acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \
if (is_add) { \
tempC = acc + dotp; \
} else { \
tempC = acc - dotp; \
} \
tempC63 = (tempC >> 63) & 0x01; \
tempC62_31 = (tempC >> 31) & 0xFFFFFFFF; \
\
if ((tempC63 == 0) && (tempC62_31 != 0x00000000)) { \
tempC = 0x7FFFFFFF; \
set_DSPControl_overflow_flag(1, 16 + ac, env); \
} \
\
if ((tempC63 == 1) && (tempC62_31 != 0xFFFFFFFF)) { \
tempC = (int64_t)(int32_t)0x80000000; \
set_DSPControl_overflow_flag(1, 16 + ac, env); \
} \
\
env->active_tc.HI[ac] = (target_long)(int32_t) \
((tempC & MIPSDSP_LHI) >> 32); \
env->active_tc.LO[ac] = (target_long)(int32_t) \
(tempC & MIPSDSP_LLO); \
}
DP_128OPERATION_PH(dpaqx_sa_w_ph, 1);
DP_128OPERATION_PH(dpsqx_sa_w_ph, 0);
#undef DP_128OPERATION_HP
#if defined(TARGET_MIPS64)
#define DP_QH(name, is_add, use_ac_env) \
void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \
CPUMIPSState *env) \
{ \
int32_t rs3, rs2, rs1, rs0; \
int32_t rt3, rt2, rt1, rt0; \
int32_t tempD, tempC, tempB, tempA; \
int64_t acc[2]; \
int64_t temp[2]; \
int64_t temp_sum; \
\
MIPSDSP_SPLIT64_16(rs, rs3, rs2, rs1, rs0); \
MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); \
\
if (use_ac_env) { \
tempD = mipsdsp_mul_q15_q15(ac, rs3, rt3, env); \
tempC = mipsdsp_mul_q15_q15(ac, rs2, rt2, env); \
tempB = mipsdsp_mul_q15_q15(ac, rs1, rt1, env); \
tempA = mipsdsp_mul_q15_q15(ac, rs0, rt0, env); \
} else { \
tempD = mipsdsp_mul_u16_u16(rs3, rt3); \
tempC = mipsdsp_mul_u16_u16(rs2, rt2); \
tempB = mipsdsp_mul_u16_u16(rs1, rt1); \
tempA = mipsdsp_mul_u16_u16(rs0, rt0); \
} \
\
temp[0] = (int64_t)tempD + (int64_t)tempC + \
(int64_t)tempB + (int64_t)tempA; \
\
if (temp[0] >= 0) { \
temp[1] = 0; \
} else { \
temp[1] = ~0ull; \
} \
\
acc[1] = env->active_tc.HI[ac]; \
acc[0] = env->active_tc.LO[ac]; \
\
if (is_add) { \
temp_sum = acc[0] + temp[0]; \
if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \
((uint64_t)temp_sum < (uint64_t)temp[0])) { \
acc[1] = acc[1] + 1; \
} \
temp[0] = temp_sum; \
temp[1] = acc[1] + temp[1]; \
} else { \
temp_sum = acc[0] - temp[0]; \
if ((uint64_t)temp_sum > (uint64_t)acc[0]) { \
acc[1] = acc[1] - 1; \
} \
temp[0] = temp_sum; \
temp[1] = acc[1] - temp[1]; \
} \
\
env->active_tc.HI[ac] = temp[1]; \
env->active_tc.LO[ac] = temp[0]; \
}
DP_QH(dpa_w_qh, 1, 0);
DP_QH(dpaq_s_w_qh, 1, 1);
DP_QH(dps_w_qh, 0, 0);
DP_QH(dpsq_s_w_qh, 0, 1);
#undef DP_QH
#endif
#define DP_L_W(name, is_add) \
void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int32_t temp63; \
int64_t dotp, acc; \
uint64_t temp; \
bool overflow; \
\
dotp = mipsdsp_mul_q31_q31(ac, rs, rt, env); \
acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \
if (is_add) { \
temp = acc + dotp; \
overflow = MIPSDSP_OVERFLOW_ADD((uint64_t)acc, (uint64_t)dotp, \
temp, (0x01ull << 63)); \
} else { \
temp = acc - dotp; \
overflow = MIPSDSP_OVERFLOW_SUB((uint64_t)acc, (uint64_t)dotp, \
temp, (0x01ull << 63)); \
} \
\
if (overflow) { \
temp63 = (temp >> 63) & 0x01; \
if (temp63 == 1) { \
temp = (0x01ull << 63) - 1; \
} else { \
temp = 0x01ull << 63; \
} \
\
set_DSPControl_overflow_flag(1, 16 + ac, env); \
} \
\
env->active_tc.HI[ac] = (target_long)(int32_t) \
((temp & MIPSDSP_LHI) >> 32); \
env->active_tc.LO[ac] = (target_long)(int32_t) \
(temp & MIPSDSP_LLO); \
}
DP_L_W(dpaq_sa_l_w, 1);
DP_L_W(dpsq_sa_l_w, 0);
#undef DP_L_W
#if defined(TARGET_MIPS64)
#define DP_L_PW(name, func) \
void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \
CPUMIPSState *env) \
{ \
int32_t rs1, rs0; \
int32_t rt1, rt0; \
int64_t tempB[2], tempA[2]; \
int64_t temp[2]; \
int64_t acc[2]; \
int64_t temp_sum; \
\
temp[0] = 0; \
temp[1] = 0; \
\
MIPSDSP_SPLIT64_32(rs, rs1, rs0); \
MIPSDSP_SPLIT64_32(rt, rt1, rt0); \
\
tempB[0] = mipsdsp_mul_q31_q31(ac, rs1, rt1, env); \
tempA[0] = mipsdsp_mul_q31_q31(ac, rs0, rt0, env); \
\
if (tempB[0] >= 0) { \
tempB[1] = 0x00; \
} else { \
tempB[1] = ~0ull; \
} \
\
if (tempA[0] >= 0) { \
tempA[1] = 0x00; \
} else { \
tempA[1] = ~0ull; \
} \
\
temp_sum = tempB[0] + tempA[0]; \
if (((uint64_t)temp_sum < (uint64_t)tempB[0]) && \
((uint64_t)temp_sum < (uint64_t)tempA[0])) { \
temp[1] += 1; \
} \
temp[0] = temp_sum; \
temp[1] += tempB[1] + tempA[1]; \
\
mipsdsp_##func(acc, ac, temp, env); \
\
env->active_tc.HI[ac] = acc[1]; \
env->active_tc.LO[ac] = acc[0]; \
}
DP_L_PW(dpaq_sa_l_pw, sat64_acc_add_q63);
DP_L_PW(dpsq_sa_l_pw, sat64_acc_sub_q63);
#undef DP_L_PW
void helper_mulsaq_s_l_pw(target_ulong rs, target_ulong rt, uint32_t ac,
CPUMIPSState *env)
{
int32_t rs1, rs0;
int32_t rt1, rt0;
int64_t tempB[2], tempA[2];
int64_t temp[2];
int64_t acc[2];
int64_t temp_sum;
rs1 = (rs >> 32) & MIPSDSP_LLO;
rs0 = rs & MIPSDSP_LLO;
rt1 = (rt >> 32) & MIPSDSP_LLO;
rt0 = rt & MIPSDSP_LLO;
tempB[0] = mipsdsp_mul_q31_q31(ac, rs1, rt1, env);
tempA[0] = mipsdsp_mul_q31_q31(ac, rs0, rt0, env);
if (tempB[0] >= 0) {
tempB[1] = 0x00;
} else {
tempB[1] = ~0ull;
}
if (tempA[0] >= 0) {
tempA[1] = 0x00;
} else {
tempA[1] = ~0ull;
}
acc[0] = env->active_tc.LO[ac];
acc[1] = env->active_tc.HI[ac];
temp_sum = tempB[0] - tempA[0];
if ((uint64_t)temp_sum > (uint64_t)tempB[0]) {
tempB[1] -= 1;
}
temp[0] = temp_sum;
temp[1] = tempB[1] - tempA[1];
if ((temp[1] & 0x01) == 0) {
temp[1] = 0x00;
} else {
temp[1] = ~0ull;
}
temp_sum = acc[0] + temp[0];
if (((uint64_t)temp_sum < (uint64_t)acc[0]) &&
((uint64_t)temp_sum < (uint64_t)temp[0])) {
acc[1] += 1;
}
acc[0] = temp_sum;
acc[1] += temp[1];
env->active_tc.HI[ac] = acc[1];
env->active_tc.LO[ac] = acc[0];
}
#endif
#define MAQ_S_W(name, mov) \
void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int16_t rsh, rth; \
int32_t tempA; \
int64_t tempL, acc; \
\
rsh = (rs >> mov) & MIPSDSP_LO; \
rth = (rt >> mov) & MIPSDSP_LO; \
tempA = mipsdsp_mul_q15_q15(ac, rsh, rth, env); \
acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \
tempL = (int64_t)tempA + acc; \
env->active_tc.HI[ac] = (target_long)(int32_t) \
((tempL & MIPSDSP_LHI) >> 32); \
env->active_tc.LO[ac] = (target_long)(int32_t) \
(tempL & MIPSDSP_LLO); \
}
MAQ_S_W(maq_s_w_phl, 16);
MAQ_S_W(maq_s_w_phr, 0);
#undef MAQ_S_W
#define MAQ_SA_W(name, mov) \
void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int16_t rsh, rth; \
int32_t tempA; \
\
rsh = (rs >> mov) & MIPSDSP_LO; \
rth = (rt >> mov) & MIPSDSP_LO; \
tempA = mipsdsp_mul_q15_q15(ac, rsh, rth, env); \
tempA = mipsdsp_sat32_acc_q31(ac, tempA, env); \
\
env->active_tc.HI[ac] = (target_long)(int32_t)(((int64_t)tempA & \
MIPSDSP_LHI) >> 32); \
env->active_tc.LO[ac] = (target_long)(int32_t)((int64_t)tempA & \
MIPSDSP_LLO); \
}
MAQ_SA_W(maq_sa_w_phl, 16);
MAQ_SA_W(maq_sa_w_phr, 0);
#undef MAQ_SA_W
#define MULQ_W(name, addvar) \
target_ulong helper_##name(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int32_t rs_t, rt_t; \
int32_t tempI; \
int64_t tempL; \
\
rs_t = rs & MIPSDSP_LLO; \
rt_t = rt & MIPSDSP_LLO; \
\
if ((rs_t == 0x80000000) && (rt_t == 0x80000000)) { \
tempL = 0x7FFFFFFF00000000ull; \
set_DSPControl_overflow_flag(1, 21, env); \
} else { \
tempL = ((int64_t)rs_t * (int64_t)rt_t) << 1; \
tempL += addvar; \
} \
tempI = (tempL & MIPSDSP_LHI) >> 32; \
\
return (target_long)(int32_t)tempI; \
}
MULQ_W(mulq_s_w, 0);
MULQ_W(mulq_rs_w, 0x80000000ull);
#undef MULQ_W
#if defined(TARGET_MIPS64)
#define MAQ_S_W_QH(name, mov) \
void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \
CPUMIPSState *env) \
{ \
int16_t rs_t, rt_t; \
int32_t temp_mul; \
int64_t temp[2]; \
int64_t acc[2]; \
int64_t temp_sum; \
\
temp[0] = 0; \
temp[1] = 0; \
\
rs_t = (rs >> mov) & MIPSDSP_LO; \
rt_t = (rt >> mov) & MIPSDSP_LO; \
temp_mul = mipsdsp_mul_q15_q15(ac, rs_t, rt_t, env); \
\
temp[0] = (int64_t)temp_mul; \
if (temp[0] >= 0) { \
temp[1] = 0x00; \
} else { \
temp[1] = ~0ull; \
} \
\
acc[0] = env->active_tc.LO[ac]; \
acc[1] = env->active_tc.HI[ac]; \
\
temp_sum = acc[0] + temp[0]; \
if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \
((uint64_t)temp_sum < (uint64_t)temp[0])) { \
acc[1] += 1; \
} \
acc[0] = temp_sum; \
acc[1] += temp[1]; \
\
env->active_tc.HI[ac] = acc[1]; \
env->active_tc.LO[ac] = acc[0]; \
}
MAQ_S_W_QH(maq_s_w_qhll, 48);
MAQ_S_W_QH(maq_s_w_qhlr, 32);
MAQ_S_W_QH(maq_s_w_qhrl, 16);
MAQ_S_W_QH(maq_s_w_qhrr, 0);
#undef MAQ_S_W_QH
#define MAQ_SA_W(name, mov) \
void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \
CPUMIPSState *env) \
{ \
int16_t rs_t, rt_t; \
int32_t temp; \
int64_t acc[2]; \
\
rs_t = (rs >> mov) & MIPSDSP_LO; \
rt_t = (rt >> mov) & MIPSDSP_LO; \
temp = mipsdsp_mul_q15_q15(ac, rs_t, rt_t, env); \
temp = mipsdsp_sat32_acc_q31(ac, temp, env); \
\
acc[0] = (int64_t)(int32_t)temp; \
if (acc[0] >= 0) { \
acc[1] = 0x00; \
} else { \
acc[1] = ~0ull; \
} \
\
env->active_tc.HI[ac] = acc[1]; \
env->active_tc.LO[ac] = acc[0]; \
}
MAQ_SA_W(maq_sa_w_qhll, 48);
MAQ_SA_W(maq_sa_w_qhlr, 32);
MAQ_SA_W(maq_sa_w_qhrl, 16);
MAQ_SA_W(maq_sa_w_qhrr, 0);
#undef MAQ_SA_W
#define MAQ_S_L_PW(name, mov) \
void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \
CPUMIPSState *env) \
{ \
int32_t rs_t, rt_t; \
int64_t temp[2]; \
int64_t acc[2]; \
int64_t temp_sum; \
\
temp[0] = 0; \
temp[1] = 0; \
\
rs_t = (rs >> mov) & MIPSDSP_LLO; \
rt_t = (rt >> mov) & MIPSDSP_LLO; \
\
temp[0] = mipsdsp_mul_q31_q31(ac, rs_t, rt_t, env); \
if (temp[0] >= 0) { \
temp[1] = 0x00; \
} else { \
temp[1] = ~0ull; \
} \
\
acc[0] = env->active_tc.LO[ac]; \
acc[1] = env->active_tc.HI[ac]; \
\
temp_sum = acc[0] + temp[0]; \
if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \
((uint64_t)temp_sum < (uint64_t)temp[0])) { \
acc[1] += 1; \
} \
acc[0] = temp_sum; \
acc[1] += temp[1]; \
\
env->active_tc.HI[ac] = acc[1]; \
env->active_tc.LO[ac] = acc[0]; \
}
MAQ_S_L_PW(maq_s_l_pwl, 32);
MAQ_S_L_PW(maq_s_l_pwr, 0);
#undef MAQ_S_L_PW
#define DM_OPERATE(name, func, is_add, sigext) \
void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \
CPUMIPSState *env) \
{ \
int32_t rs1, rs0; \
int32_t rt1, rt0; \
int64_t tempBL[2], tempAL[2]; \
int64_t acc[2]; \
int64_t temp[2]; \
int64_t temp_sum; \
\
temp[0] = 0x00; \
temp[1] = 0x00; \
\
MIPSDSP_SPLIT64_32(rs, rs1, rs0); \
MIPSDSP_SPLIT64_32(rt, rt1, rt0); \
\
if (sigext) { \
tempBL[0] = (int64_t)mipsdsp_##func(rs1, rt1); \
tempAL[0] = (int64_t)mipsdsp_##func(rs0, rt0); \
\
if (tempBL[0] >= 0) { \
tempBL[1] = 0x0; \
} else { \
tempBL[1] = ~0ull; \
} \
\
if (tempAL[0] >= 0) { \
tempAL[1] = 0x0; \
} else { \
tempAL[1] = ~0ull; \
} \
} else { \
tempBL[0] = mipsdsp_##func(rs1, rt1); \
tempAL[0] = mipsdsp_##func(rs0, rt0); \
tempBL[1] = 0; \
tempAL[1] = 0; \
} \
\
acc[1] = env->active_tc.HI[ac]; \
acc[0] = env->active_tc.LO[ac]; \
\
temp_sum = tempBL[0] + tempAL[0]; \
if (((uint64_t)temp_sum < (uint64_t)tempBL[0]) && \
((uint64_t)temp_sum < (uint64_t)tempAL[0])) { \
temp[1] += 1; \
} \
temp[0] = temp_sum; \
temp[1] += tempBL[1] + tempAL[1]; \
\
if (is_add) { \
temp_sum = acc[0] + temp[0]; \
if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \
((uint64_t)temp_sum < (uint64_t)temp[0])) { \
acc[1] += 1; \
} \
temp[0] = temp_sum; \
temp[1] = acc[1] + temp[1]; \
} else { \
temp_sum = acc[0] - temp[0]; \
if ((uint64_t)temp_sum > (uint64_t)acc[0]) { \
acc[1] -= 1; \
} \
temp[0] = temp_sum; \
temp[1] = acc[1] - temp[1]; \
} \
\
env->active_tc.HI[ac] = temp[1]; \
env->active_tc.LO[ac] = temp[0]; \
}
DM_OPERATE(dmadd, mul_i32_i32, 1, 1);
DM_OPERATE(dmaddu, mul_u32_u32, 1, 0);
DM_OPERATE(dmsub, mul_i32_i32, 0, 1);
DM_OPERATE(dmsubu, mul_u32_u32, 0, 0);
#undef DM_OPERATE
#endif
/** DSP Bit/Manipulation Sub-class insns **/
target_ulong helper_bitrev(target_ulong rt)
{
int32_t temp;
uint32_t rd;
int i;
temp = rt & MIPSDSP_LO;
rd = 0;
for (i = 0; i < 16; i++) {
rd = (rd << 1) | (temp & 1);
temp = temp >> 1;
}
return (target_ulong)rd;
}
#define BIT_INSV(name, posfilter, ret_type) \
target_ulong helper_##name(CPUMIPSState *env, target_ulong rs, \
target_ulong rt) \
{ \
uint32_t pos, size, msb, lsb; \
uint32_t const sizefilter = 0x3F; \
target_ulong temp; \
target_ulong dspc; \
\
dspc = env->active_tc.DSPControl; \
\
pos = dspc & posfilter; \
size = (dspc >> 7) & sizefilter; \
\
msb = pos + size - 1; \
lsb = pos; \
\
if (lsb > msb || (msb > TARGET_LONG_BITS)) { \
return rt; \
} \
\
temp = deposit64(rt, pos, size, rs); \
\
return (target_long)(ret_type)temp; \
}
BIT_INSV(insv, 0x1F, int32_t);
#ifdef TARGET_MIPS64
BIT_INSV(dinsv, 0x7F, target_long);
#endif
#undef BIT_INSV
/** DSP Compare-Pick Sub-class insns **/
#define CMP_HAS_RET(name, func, split_num, filter, bit_size) \
target_ulong helper_##name(target_ulong rs, target_ulong rt) \
{ \
uint32_t rs_t, rt_t; \
uint8_t cc; \
uint32_t temp = 0; \
int i; \
\
for (i = 0; i < split_num; i++) { \
rs_t = (rs >> (bit_size * i)) & filter; \
rt_t = (rt >> (bit_size * i)) & filter; \
cc = mipsdsp_##func(rs_t, rt_t); \
temp |= cc << i; \
} \
\
return (target_ulong)temp; \
}
CMP_HAS_RET(cmpgu_eq_qb, cmpu_eq, 4, MIPSDSP_Q0, 8);
CMP_HAS_RET(cmpgu_lt_qb, cmpu_lt, 4, MIPSDSP_Q0, 8);
CMP_HAS_RET(cmpgu_le_qb, cmpu_le, 4, MIPSDSP_Q0, 8);
#ifdef TARGET_MIPS64
CMP_HAS_RET(cmpgu_eq_ob, cmpu_eq, 8, MIPSDSP_Q0, 8);
CMP_HAS_RET(cmpgu_lt_ob, cmpu_lt, 8, MIPSDSP_Q0, 8);
CMP_HAS_RET(cmpgu_le_ob, cmpu_le, 8, MIPSDSP_Q0, 8);
#endif
#undef CMP_HAS_RET
#define CMP_NO_RET(name, func, split_num, filter, bit_size) \
void helper_##name(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int##bit_size##_t rs_t, rt_t; \
int##bit_size##_t flag = 0; \
int##bit_size##_t cc; \
int i; \
\
for (i = 0; i < split_num; i++) { \
rs_t = (rs >> (bit_size * i)) & filter; \
rt_t = (rt >> (bit_size * i)) & filter; \
\
cc = mipsdsp_##func((int32_t)rs_t, (int32_t)rt_t); \
flag |= cc << i; \
} \
\
set_DSPControl_24(flag, split_num, env); \
}
CMP_NO_RET(cmpu_eq_qb, cmpu_eq, 4, MIPSDSP_Q0, 8);
CMP_NO_RET(cmpu_lt_qb, cmpu_lt, 4, MIPSDSP_Q0, 8);
CMP_NO_RET(cmpu_le_qb, cmpu_le, 4, MIPSDSP_Q0, 8);
CMP_NO_RET(cmp_eq_ph, cmp_eq, 2, MIPSDSP_LO, 16);
CMP_NO_RET(cmp_lt_ph, cmp_lt, 2, MIPSDSP_LO, 16);
CMP_NO_RET(cmp_le_ph, cmp_le, 2, MIPSDSP_LO, 16);
#ifdef TARGET_MIPS64
CMP_NO_RET(cmpu_eq_ob, cmpu_eq, 8, MIPSDSP_Q0, 8);
CMP_NO_RET(cmpu_lt_ob, cmpu_lt, 8, MIPSDSP_Q0, 8);
CMP_NO_RET(cmpu_le_ob, cmpu_le, 8, MIPSDSP_Q0, 8);
CMP_NO_RET(cmp_eq_qh, cmp_eq, 4, MIPSDSP_LO, 16);
CMP_NO_RET(cmp_lt_qh, cmp_lt, 4, MIPSDSP_LO, 16);
CMP_NO_RET(cmp_le_qh, cmp_le, 4, MIPSDSP_LO, 16);
CMP_NO_RET(cmp_eq_pw, cmp_eq, 2, MIPSDSP_LLO, 32);
CMP_NO_RET(cmp_lt_pw, cmp_lt, 2, MIPSDSP_LLO, 32);
CMP_NO_RET(cmp_le_pw, cmp_le, 2, MIPSDSP_LLO, 32);
#endif
#undef CMP_NO_RET
#if defined(TARGET_MIPS64)
#define CMPGDU_OB(name) \
target_ulong helper_cmpgdu_##name##_ob(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
int i; \
uint8_t rs_t, rt_t; \
uint32_t cond; \
\
cond = 0; \
\
for (i = 0; i < 8; i++) { \
rs_t = (rs >> (8 * i)) & MIPSDSP_Q0; \
rt_t = (rt >> (8 * i)) & MIPSDSP_Q0; \
\
if (mipsdsp_cmpu_##name(rs_t, rt_t)) { \
cond |= 0x01 << i; \
} \
} \
\
set_DSPControl_24(cond, 8, env); \
\
return (uint64_t)cond; \
}
CMPGDU_OB(eq)
CMPGDU_OB(lt)
CMPGDU_OB(le)
#undef CMPGDU_OB
#endif
#define PICK_INSN(name, split_num, filter, bit_size, ret32bit) \
target_ulong helper_##name(target_ulong rs, target_ulong rt, \
CPUMIPSState *env) \
{ \
uint32_t rs_t, rt_t; \
uint32_t cc; \
target_ulong dsp; \
int i; \
target_ulong result = 0; \
\
dsp = env->active_tc.DSPControl; \
for (i = 0; i < split_num; i++) { \
rs_t = (rs >> (bit_size * i)) & filter; \
rt_t = (rt >> (bit_size * i)) & filter; \
cc = (dsp >> (24 + i)) & 0x01; \
cc = cc == 1 ? rs_t : rt_t; \
\
result |= (target_ulong)cc << (bit_size * i); \
} \
\
if (ret32bit) { \
result = (target_long)(int32_t)(result & MIPSDSP_LLO); \
} \
\
return result; \
}
PICK_INSN(pick_qb, 4, MIPSDSP_Q0, 8, 1);
PICK_INSN(pick_ph, 2, MIPSDSP_LO, 16, 1);
#ifdef TARGET_MIPS64
PICK_INSN(pick_ob, 8, MIPSDSP_Q0, 8, 0);
PICK_INSN(pick_qh, 4, MIPSDSP_LO, 16, 0);
PICK_INSN(pick_pw, 2, MIPSDSP_LLO, 32, 0);
#endif
#undef PICK_INSN
target_ulong helper_packrl_ph(target_ulong rs, target_ulong rt)
{
uint32_t rsl, rth;
rsl = rs & MIPSDSP_LO;
rth = (rt & MIPSDSP_HI) >> 16;
return (target_long)(int32_t)((rsl << 16) | rth);
}
#if defined(TARGET_MIPS64)
target_ulong helper_packrl_pw(target_ulong rs, target_ulong rt)
{
uint32_t rs0, rt1;
rs0 = rs & MIPSDSP_LLO;
rt1 = (rt >> 32) & MIPSDSP_LLO;
return ((uint64_t)rs0 << 32) | (uint64_t)rt1;
}
#endif
/** DSP Accumulator and DSPControl Access Sub-class insns **/
target_ulong helper_extr_w(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
int32_t tempI;
int64_t tempDL[2];
shift = shift & 0x1F;
mipsdsp_rndrashift_short_acc(tempDL, ac, shift, env);
if ((tempDL[1] != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) &&
(tempDL[1] != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) {
set_DSPControl_overflow_flag(1, 23, env);
}
tempI = (tempDL[0] >> 1) & MIPSDSP_LLO;
tempDL[0] += 1;
if (tempDL[0] == 0) {
tempDL[1] += 1;
}
if (((tempDL[1] & 0x01) != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) &&
((tempDL[1] & 0x01) != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) {
set_DSPControl_overflow_flag(1, 23, env);
}
return (target_long)tempI;
}
target_ulong helper_extr_r_w(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
int64_t tempDL[2];
shift = shift & 0x1F;
mipsdsp_rndrashift_short_acc(tempDL, ac, shift, env);
if ((tempDL[1] != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) &&
(tempDL[1] != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) {
set_DSPControl_overflow_flag(1, 23, env);
}
tempDL[0] += 1;
if (tempDL[0] == 0) {
tempDL[1] += 1;
}
if (((tempDL[1] & 0x01) != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) &&
((tempDL[1] & 0x01) != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) {
set_DSPControl_overflow_flag(1, 23, env);
}
return (target_long)(int32_t)(tempDL[0] >> 1);
}
target_ulong helper_extr_rs_w(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
int32_t tempI, temp64;
int64_t tempDL[2];
shift = shift & 0x1F;
mipsdsp_rndrashift_short_acc(tempDL, ac, shift, env);
if ((tempDL[1] != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) &&
(tempDL[1] != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) {
set_DSPControl_overflow_flag(1, 23, env);
}
tempDL[0] += 1;
if (tempDL[0] == 0) {
tempDL[1] += 1;
}
tempI = tempDL[0] >> 1;
if (((tempDL[1] & 0x01) != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) &&
((tempDL[1] & 0x01) != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) {
temp64 = tempDL[1] & 0x01;
if (temp64 == 0) {
tempI = 0x7FFFFFFF;
} else {
tempI = 0x80000000;
}
set_DSPControl_overflow_flag(1, 23, env);
}
return (target_long)tempI;
}
#if defined(TARGET_MIPS64)
target_ulong helper_dextr_w(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
uint64_t temp[3];
shift = shift & 0x3F;
mipsdsp_rndrashift_acc(temp, ac, shift, env);
return (int64_t)(int32_t)(temp[0] >> 1);
}
target_ulong helper_dextr_r_w(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
uint64_t temp[3];
uint32_t temp128;
shift = shift & 0x3F;
mipsdsp_rndrashift_acc(temp, ac, shift, env);
temp[0] += 1;
if (temp[0] == 0) {
temp[1] += 1;
if (temp[1] == 0) {
temp[2] += 1;
}
}
temp128 = temp[2] & 0x01;
if ((temp128 != 0 || temp[1] != 0) &&
(temp128 != 1 || temp[1] != ~0ull)) {
set_DSPControl_overflow_flag(1, 23, env);
}
return (int64_t)(int32_t)(temp[0] >> 1);
}
target_ulong helper_dextr_rs_w(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
uint64_t temp[3];
uint32_t temp128;
shift = shift & 0x3F;
mipsdsp_rndrashift_acc(temp, ac, shift, env);
temp[0] += 1;
if (temp[0] == 0) {
temp[1] += 1;
if (temp[1] == 0) {
temp[2] += 1;
}
}
temp128 = temp[2] & 0x01;
if ((temp128 != 0 || temp[1] != 0) &&
(temp128 != 1 || temp[1] != ~0ull)) {
if (temp128 == 0) {
temp[0] = 0x0FFFFFFFF;
} else {
temp[0] = 0x0100000000ULL;
}
set_DSPControl_overflow_flag(1, 23, env);
}
return (int64_t)(int32_t)(temp[0] >> 1);
}
target_ulong helper_dextr_l(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
uint64_t temp[3];
target_ulong result;
shift = shift & 0x3F;
mipsdsp_rndrashift_acc(temp, ac, shift, env);
result = (temp[1] << 63) | (temp[0] >> 1);
return result;
}
target_ulong helper_dextr_r_l(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
uint64_t temp[3];
uint32_t temp128;
target_ulong result;
shift = shift & 0x3F;
mipsdsp_rndrashift_acc(temp, ac, shift, env);
temp[0] += 1;
if (temp[0] == 0) {
temp[1] += 1;
if (temp[1] == 0) {
temp[2] += 1;
}
}
temp128 = temp[2] & 0x01;
if ((temp128 != 0 || temp[1] != 0) &&
(temp128 != 1 || temp[1] != ~0ull)) {
set_DSPControl_overflow_flag(1, 23, env);
}
result = (temp[1] << 63) | (temp[0] >> 1);
return result;
}
target_ulong helper_dextr_rs_l(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
uint64_t temp[3];
uint32_t temp128;
target_ulong result;
shift = shift & 0x3F;
mipsdsp_rndrashift_acc(temp, ac, shift, env);
temp[0] += 1;
if (temp[0] == 0) {
temp[1] += 1;
if (temp[1] == 0) {
temp[2] += 1;
}
}
temp128 = temp[2] & 0x01;
if ((temp128 != 0 || temp[1] != 0) &&
(temp128 != 1 || temp[1] != ~0ull)) {
if (temp128 == 0) {
temp[1] &= ~0x00ull - 1;
temp[0] |= ~0x00ull - 1;
} else {
temp[1] |= 0x01;
temp[0] &= 0x01;
}
set_DSPControl_overflow_flag(1, 23, env);
}
result = (temp[1] << 63) | (temp[0] >> 1);
return result;
}
#endif
target_ulong helper_extr_s_h(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
int64_t temp, acc;
shift = shift & 0x1F;
acc = ((int64_t)env->active_tc.HI[ac] << 32) |
((int64_t)env->active_tc.LO[ac] & 0xFFFFFFFF);
temp = acc >> shift;
if (temp > (int64_t)0x7FFF) {
temp = 0x00007FFF;
set_DSPControl_overflow_flag(1, 23, env);
} else if (temp < (int64_t)0xFFFFFFFFFFFF8000ULL) {
temp = 0xFFFF8000;
set_DSPControl_overflow_flag(1, 23, env);
}
return (target_long)(int32_t)(temp & 0xFFFFFFFF);
}
#if defined(TARGET_MIPS64)
target_ulong helper_dextr_s_h(target_ulong ac, target_ulong shift,
CPUMIPSState *env)
{
int64_t temp[2];
uint32_t temp127;
shift = shift & 0x1F;
mipsdsp_rashift_acc((uint64_t *)temp, ac, shift, env);
temp127 = (temp[1] >> 63) & 0x01;
if ((temp127 == 0) && (temp[1] > 0 || temp[0] > 32767)) {
temp[0] &= 0xFFFF0000;
temp[0] |= 0x00007FFF;
set_DSPControl_overflow_flag(1, 23, env);
} else if ((temp127 == 1) &&
(temp[1] < 0xFFFFFFFFFFFFFFFFll
|| temp[0] < 0xFFFFFFFFFFFF1000ll)) {
temp[0] &= 0xFFFF0000;
temp[0] |= 0x00008000;
set_DSPControl_overflow_flag(1, 23, env);
}
return (int64_t)(int16_t)(temp[0] & MIPSDSP_LO);
}
#endif
target_ulong helper_extp(target_ulong ac, target_ulong size, CPUMIPSState *env)
{
int32_t start_pos;
int sub;
uint32_t temp;
uint64_t acc;
size = size & 0x1F;
temp = 0;
start_pos = get_DSPControl_pos(env);
sub = start_pos - (size + 1);
if (sub >= -1) {
acc = ((uint64_t)env->active_tc.HI[ac] << 32) |
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO);
temp = (acc >> (start_pos - size)) & (~0U >> (31 - size));
set_DSPControl_efi(0, env);
} else {
set_DSPControl_efi(1, env);
}
return (target_ulong)temp;
}
target_ulong helper_extpdp(target_ulong ac, target_ulong size,
CPUMIPSState *env)
{
int32_t start_pos;
int sub;
uint32_t temp;
uint64_t acc;
size = size & 0x1F;
temp = 0;
start_pos = get_DSPControl_pos(env);
sub = start_pos - (size + 1);
if (sub >= -1) {
acc = ((uint64_t)env->active_tc.HI[ac] << 32) |
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO);
temp = extract64(acc, start_pos - size, size + 1);
set_DSPControl_pos(sub, env);
set_DSPControl_efi(0, env);
} else {
set_DSPControl_efi(1, env);
}
return (target_ulong)temp;
}
#if defined(TARGET_MIPS64)
target_ulong helper_dextp(target_ulong ac, target_ulong size, CPUMIPSState *env)
{
int start_pos;
int len;
int sub;
uint64_t tempB, tempA;
uint64_t temp;
temp = 0;
size = size & 0x3F;
start_pos = get_DSPControl_pos(env);
len = start_pos - size;
tempB = env->active_tc.HI[ac];
tempA = env->active_tc.LO[ac];
sub = start_pos - (size + 1);
if (sub >= -1) {
temp = (tempB << (64 - len)) | (tempA >> len);
temp = temp & ((0x01 << (size + 1)) - 1);
set_DSPControl_efi(0, env);
} else {
set_DSPControl_efi(1, env);
}
return temp;
}
target_ulong helper_dextpdp(target_ulong ac, target_ulong size,
CPUMIPSState *env)
{
int start_pos;
int len;
int sub;
uint64_t tempB, tempA;
uint64_t temp;
temp = 0;
size = size & 0x3F;
start_pos = get_DSPControl_pos(env);
len = start_pos - size;
tempB = env->active_tc.HI[ac];
tempA = env->active_tc.LO[ac];
sub = start_pos - (size + 1);
if (sub >= -1) {
temp = (tempB << (64 - len)) | (tempA >> len);
temp = temp & ((0x01 << (size + 1)) - 1);
set_DSPControl_pos(sub, env);
set_DSPControl_efi(0, env);
} else {
set_DSPControl_efi(1, env);
}
return temp;
}
#endif
void helper_shilo(target_ulong ac, target_ulong rs, CPUMIPSState *env)
{
int8_t rs5_0;
uint64_t temp, acc;
rs5_0 = rs & 0x3F;
rs5_0 = (int8_t)(rs5_0 << 2) >> 2;
if (unlikely(rs5_0 == 0)) {
return;
}
acc = (((uint64_t)env->active_tc.HI[ac] << 32) & MIPSDSP_LHI) |
((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO);
if (rs5_0 > 0) {
temp = acc >> rs5_0;
} else {
temp = acc << -rs5_0;
}
env->active_tc.HI[ac] = (target_ulong)(int32_t)((temp & MIPSDSP_LHI) >> 32);
env->active_tc.LO[ac] = (target_ulong)(int32_t)(temp & MIPSDSP_LLO);
}
#if defined(TARGET_MIPS64)
void helper_dshilo(target_ulong shift, target_ulong ac, CPUMIPSState *env)
{
int8_t shift_t;
uint64_t tempB, tempA;
shift_t = (int8_t)(shift << 1) >> 1;
tempB = env->active_tc.HI[ac];
tempA = env->active_tc.LO[ac];
if (shift_t != 0) {
if (shift_t >= 0) {
tempA = (tempB << (64 - shift_t)) | (tempA >> shift_t);
tempB = tempB >> shift_t;
} else {
shift_t = -shift_t;
tempB = (tempB << shift_t) | (tempA >> (64 - shift_t));
tempA = tempA << shift_t;
}
}
env->active_tc.HI[ac] = tempB;
env->active_tc.LO[ac] = tempA;
}
#endif
void helper_mthlip(target_ulong ac, target_ulong rs, CPUMIPSState *env)
{
int32_t tempA, tempB, pos;
tempA = rs;
tempB = env->active_tc.LO[ac];
env->active_tc.HI[ac] = (target_long)tempB;
env->active_tc.LO[ac] = (target_long)tempA;
pos = get_DSPControl_pos(env);
if (pos > 32) {
return;
} else {
set_DSPControl_pos(pos + 32, env);
}
}
#if defined(TARGET_MIPS64)
void helper_dmthlip(target_ulong rs, target_ulong ac, CPUMIPSState *env)
{
uint8_t ac_t;
uint8_t pos;
uint64_t tempB, tempA;
ac_t = ac & 0x3;
tempA = rs;
tempB = env->active_tc.LO[ac_t];
env->active_tc.HI[ac_t] = tempB;
env->active_tc.LO[ac_t] = tempA;
pos = get_DSPControl_pos(env);
if (pos <= 64) {
pos = pos + 64;
set_DSPControl_pos(pos, env);
}
}
#endif
void cpu_wrdsp(uint32_t rs, uint32_t mask_num, CPUMIPSState *env)
{
uint8_t mask[6];
uint8_t i;
uint32_t newbits, overwrite;
target_ulong dsp;
newbits = 0x00;
overwrite = 0xFFFFFFFF;
dsp = env->active_tc.DSPControl;
for (i = 0; i < 6; i++) {
mask[i] = (mask_num >> i) & 0x01;
}
if (mask[0] == 1) {
#if defined(TARGET_MIPS64)
overwrite &= 0xFFFFFF80;
newbits &= 0xFFFFFF80;
newbits |= 0x0000007F & rs;
#else
overwrite &= 0xFFFFFFC0;
newbits &= 0xFFFFFFC0;
newbits |= 0x0000003F & rs;
#endif
}
if (mask[1] == 1) {
overwrite &= 0xFFFFE07F;
newbits &= 0xFFFFE07F;
newbits |= 0x00001F80 & rs;
}
if (mask[2] == 1) {
overwrite &= 0xFFFFDFFF;
newbits &= 0xFFFFDFFF;
newbits |= 0x00002000 & rs;
}
if (mask[3] == 1) {
overwrite &= 0xFF00FFFF;
newbits &= 0xFF00FFFF;
newbits |= 0x00FF0000 & rs;
}
if (mask[4] == 1) {
overwrite &= 0x00FFFFFF;
newbits &= 0x00FFFFFF;
#if defined(TARGET_MIPS64)
newbits |= 0xFF000000 & rs;
#else
newbits |= 0x0F000000 & rs;
#endif
}
if (mask[5] == 1) {
overwrite &= 0xFFFFBFFF;
newbits &= 0xFFFFBFFF;
newbits |= 0x00004000 & rs;
}
dsp = dsp & overwrite;
dsp = dsp | newbits;
env->active_tc.DSPControl = dsp;
}
void helper_wrdsp(target_ulong rs, target_ulong mask_num, CPUMIPSState *env)
{
return cpu_wrdsp(rs, mask_num, env);
}
uint32_t cpu_rddsp(uint32_t mask_num, CPUMIPSState *env)
{
uint8_t mask[6];
uint32_t ruler, i;
target_ulong temp;
target_ulong dsp;
ruler = 0x01;
for (i = 0; i < 6; i++) {
mask[i] = (mask_num & ruler) >> i ;
ruler = ruler << 1;
}
temp = 0x00;
dsp = env->active_tc.DSPControl;
if (mask[0] == 1) {
#if defined(TARGET_MIPS64)
temp |= dsp & 0x7F;
#else
temp |= dsp & 0x3F;
#endif
}
if (mask[1] == 1) {
temp |= dsp & 0x1F80;
}
if (mask[2] == 1) {
temp |= dsp & 0x2000;
}
if (mask[3] == 1) {
temp |= dsp & 0x00FF0000;
}
if (mask[4] == 1) {
#if defined(TARGET_MIPS64)
temp |= dsp & 0xFF000000;
#else
temp |= dsp & 0x0F000000;
#endif
}
if (mask[5] == 1) {
temp |= dsp & 0x4000;
}
return temp;
}
target_ulong helper_rddsp(target_ulong mask_num, CPUMIPSState *env)
{
return cpu_rddsp(mask_num, env);
}
#undef MIPSDSP_LHI
#undef MIPSDSP_LLO
#undef MIPSDSP_HI
#undef MIPSDSP_LO
#undef MIPSDSP_Q3
#undef MIPSDSP_Q2
#undef MIPSDSP_Q1
#undef MIPSDSP_Q0
#undef MIPSDSP_SPLIT32_8
#undef MIPSDSP_SPLIT32_16
#undef MIPSDSP_RETURN32_8
#undef MIPSDSP_RETURN32_16
#ifdef TARGET_MIPS64
#undef MIPSDSP_SPLIT64_16
#undef MIPSDSP_SPLIT64_32
#undef MIPSDSP_RETURN64_16
#undef MIPSDSP_RETURN64_32
#endif