diff options
Diffstat (limited to 'fpu')
-rw-r--r-- | fpu/softfloat-parts.c.inc | 125 | ||||
-rw-r--r-- | fpu/softfloat.c | 126 |
2 files changed, 152 insertions, 99 deletions
diff --git a/fpu/softfloat-parts.c.inc b/fpu/softfloat-parts.c.inc index efb81bbebe..d1bd5c6edf 100644 --- a/fpu/softfloat-parts.c.inc +++ b/fpu/softfloat-parts.c.inc @@ -1331,3 +1331,128 @@ static void partsN(scalbn)(FloatPartsN *a, int n, float_status *s) g_assert_not_reached(); } } + +/* + * Return log2(A) + */ +static void partsN(log2)(FloatPartsN *a, float_status *s, const FloatFmt *fmt) +{ + uint64_t a0, a1, r, t, ign; + FloatPartsN f; + int i, n, a_exp, f_exp; + + if (unlikely(a->cls != float_class_normal)) { + switch (a->cls) { + case float_class_snan: + case float_class_qnan: + parts_return_nan(a, s); + return; + case float_class_zero: + /* log2(0) = -inf */ + a->cls = float_class_inf; + a->sign = 1; + return; + case float_class_inf: + if (unlikely(a->sign)) { + goto d_nan; + } + return; + default: + break; + } + g_assert_not_reached(); + } + if (unlikely(a->sign)) { + goto d_nan; + } + + /* TODO: This algorithm looses bits too quickly for float128. */ + g_assert(N == 64); + + a_exp = a->exp; + f_exp = -1; + + r = 0; + t = DECOMPOSED_IMPLICIT_BIT; + a0 = a->frac_hi; + a1 = 0; + + n = fmt->frac_size + 2; + if (unlikely(a_exp == -1)) { + /* + * When a_exp == -1, we're computing the log2 of a value [0.5,1.0). + * When the value is very close to 1.0, there are lots of 1's in + * the msb parts of the fraction. At the end, when we subtract + * this value from -1.0, we can see a catastrophic loss of precision, + * as 0x800..000 - 0x7ff..ffx becomes 0x000..00y, leaving only the + * bits of y in the final result. To minimize this, compute as many + * digits as we can. + * ??? This case needs another algorithm to avoid this. + */ + n = fmt->frac_size * 2 + 2; + /* Don't compute a value overlapping the sticky bit */ + n = MIN(n, 62); + } + + for (i = 0; i < n; i++) { + if (a1) { + mul128To256(a0, a1, a0, a1, &a0, &a1, &ign, &ign); + } else if (a0 & 0xffffffffull) { + mul64To128(a0, a0, &a0, &a1); + } else if (a0 & ~DECOMPOSED_IMPLICIT_BIT) { + a0 >>= 32; + a0 *= a0; + } else { + goto exact; + } + + if (a0 & DECOMPOSED_IMPLICIT_BIT) { + if (unlikely(a_exp == 0 && r == 0)) { + /* + * When a_exp == 0, we're computing the log2 of a value + * [1.0,2.0). When the value is very close to 1.0, there + * are lots of 0's in the msb parts of the fraction. + * We need to compute more digits to produce a correct + * result -- restart at the top of the fraction. + * ??? This is likely to lose precision quickly, as for + * float128; we may need another method. + */ + f_exp -= i; + t = r = DECOMPOSED_IMPLICIT_BIT; + i = 0; + } else { + r |= t; + } + } else { + add128(a0, a1, a0, a1, &a0, &a1); + } + t >>= 1; + } + + /* Set sticky for inexact. */ + r |= (a1 || a0 & ~DECOMPOSED_IMPLICIT_BIT); + + exact: + parts_sint_to_float(a, a_exp, 0, s); + if (r == 0) { + return; + } + + memset(&f, 0, sizeof(f)); + f.cls = float_class_normal; + f.frac_hi = r; + f.exp = f_exp - frac_normalize(&f); + + if (a_exp < 0) { + parts_sub_normal(a, &f); + } else if (a_exp > 0) { + parts_add_normal(a, &f); + } else { + *a = f; + } + return; + + d_nan: + float_raise(float_flag_invalid, s); + parts_default_nan(a, s); +} diff --git a/fpu/softfloat.c b/fpu/softfloat.c index 27306d6a93..c0fe191f4d 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -927,6 +927,12 @@ static void parts128_scalbn(FloatParts128 *a, int n, float_status *s); #define parts_scalbn(A, N, S) \ PARTS_GENERIC_64_128(scalbn, A)(A, N, S) +static void parts64_log2(FloatParts64 *a, float_status *s, const FloatFmt *f); +static void parts128_log2(FloatParts128 *a, float_status *s, const FloatFmt *f); + +#define parts_log2(A, S, F) \ + PARTS_GENERIC_64_128(log2, A)(A, S, F) + /* * Helper functions for softfloat-parts.c.inc, per-size operations. */ @@ -4060,6 +4066,27 @@ floatx80 floatx80_sqrt(floatx80 a, float_status *s) return floatx80_round_pack_canonical(&p, s); } +/* + * log2 + */ +float32 float32_log2(float32 a, float_status *status) +{ + FloatParts64 p; + + float32_unpack_canonical(&p, a, status); + parts_log2(&p, status, &float32_params); + return float32_round_pack_canonical(&p, status); +} + +float64 float64_log2(float64 a, float_status *status) +{ + FloatParts64 p; + + float64_unpack_canonical(&p, a, status); + parts_log2(&p, status, &float64_params); + return float64_round_pack_canonical(&p, status); +} + /*---------------------------------------------------------------------------- | The pattern for a default generated NaN. *----------------------------------------------------------------------------*/ @@ -5247,56 +5274,6 @@ float32 float32_exp2(float32 a, float_status *status) } /*---------------------------------------------------------------------------- -| Returns the binary log of the single-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ -float32 float32_log2(float32 a, float_status *status) -{ - bool aSign, zSign; - int aExp; - uint32_t aSig, zSig, i; - - a = float32_squash_input_denormal(a, status); - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - if ( aSign ) { - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - if ( aExp == 0xFF ) { - if (aSig) { - return propagateFloat32NaN(a, float32_zero, status); - } - return a; - } - - aExp -= 0x7F; - aSig |= 0x00800000; - zSign = aExp < 0; - zSig = aExp << 23; - - for (i = 1 << 22; i > 0; i >>= 1) { - aSig = ( (uint64_t)aSig * aSig ) >> 23; - if ( aSig & 0x01000000 ) { - aSig >>= 1; - zSig |= i; - } - } - - if ( zSign ) - zSig = -zSig; - - return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); -} - -/*---------------------------------------------------------------------------- | Returns the remainder of the double-precision floating-point value `a' | with respect to the corresponding value `b'. The operation is performed | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. @@ -5385,55 +5362,6 @@ float64 float64_rem(float64 a, float64 b, float_status *status) } /*---------------------------------------------------------------------------- -| Returns the binary log of the double-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ -float64 float64_log2(float64 a, float_status *status) -{ - bool aSign, zSign; - int aExp; - uint64_t aSig, aSig0, aSig1, zSig, i; - a = float64_squash_input_denormal(a, status); - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - if ( aSign ) { - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - if ( aExp == 0x7FF ) { - if (aSig) { - return propagateFloat64NaN(a, float64_zero, status); - } - return a; - } - - aExp -= 0x3FF; - aSig |= UINT64_C(0x0010000000000000); - zSign = aExp < 0; - zSig = (uint64_t)aExp << 52; - for (i = 1LL << 51; i > 0; i >>= 1) { - mul64To128( aSig, aSig, &aSig0, &aSig1 ); - aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); - if ( aSig & UINT64_C(0x0020000000000000) ) { - aSig >>= 1; - zSig |= i; - } - } - - if ( zSign ) - zSig = -zSig; - return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); -} - -/*---------------------------------------------------------------------------- | Rounds the extended double-precision floating-point value `a' | to the precision provided by floatx80_rounding_precision and returns the | result as an extended double-precision floating-point value. |