summaryrefslogtreecommitdiffstats
path: root/include/hw/i386/apic-msidef.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/hw/i386/apic-msidef.h')
-rw-r--r--include/hw/i386/apic-msidef.h30
1 files changed, 30 insertions, 0 deletions
diff --git a/include/hw/i386/apic-msidef.h b/include/hw/i386/apic-msidef.h
new file mode 100644
index 0000000000..6e2eb71f2f
--- /dev/null
+++ b/include/hw/i386/apic-msidef.h
@@ -0,0 +1,30 @@
+#ifndef HW_APIC_MSIDEF_H
+#define HW_APIC_MSIDEF_H
+
+/*
+ * Intel APIC constants: from include/asm/msidef.h
+ */
+
+/*
+ * Shifts for MSI data
+ */
+
+#define MSI_DATA_VECTOR_SHIFT 0
+#define MSI_DATA_VECTOR_MASK 0x000000ff
+
+#define MSI_DATA_DELIVERY_MODE_SHIFT 8
+#define MSI_DATA_LEVEL_SHIFT 14
+#define MSI_DATA_TRIGGER_SHIFT 15
+
+/*
+ * Shift/mask fields for msi address
+ */
+
+#define MSI_ADDR_DEST_MODE_SHIFT 2
+
+#define MSI_ADDR_REDIRECTION_SHIFT 3
+
+#define MSI_ADDR_DEST_ID_SHIFT 12
+#define MSI_ADDR_DEST_ID_MASK 0x00ffff0
+
+#endif /* HW_APIC_MSIDEF_H */
128' href='#n128'>128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
/*
 * NeXT Cube System Driver
 *
 * Copyright (c) 2011 Bryce Lanham
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published
 * by the Free Software Foundation; either version 2 of the License,
 * or (at your option) any later version.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/hwaddr.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include "hw/irq.h"
#include "hw/m68k/next-cube.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/scsi/esp.h"
#include "hw/sysbus.h"
#include "qom/object.h"
#include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
#include "hw/block/fdc.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "ui/console.h"
#include "target/m68k/cpu.h"

/* #define DEBUG_NEXT */
#ifdef DEBUG_NEXT
#define DPRINTF(fmt, ...) \
    do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif

#define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
OBJECT_DECLARE_SIMPLE_TYPE(NeXTState, NEXT_MACHINE)

#define ENTRY       0x0100001e
#define RAM_SIZE    0x4000000
#define ROM_FILE    "Rev_2.5_v66.bin"

typedef struct next_dma {
    uint32_t csr;

    uint32_t saved_next;
    uint32_t saved_limit;
    uint32_t saved_start;
    uint32_t saved_stop;

    uint32_t next;
    uint32_t limit;
    uint32_t start;
    uint32_t stop;

    uint32_t next_initbuf;
    uint32_t size;
} next_dma;

typedef struct NextRtc {
    uint8_t ram[32];
    uint8_t command;
    uint8_t value;
    uint8_t status;
    uint8_t control;
    uint8_t retval;
} NextRtc;

struct NeXTState {
    MachineState parent;

    uint32_t int_mask;
    uint32_t int_status;

    uint8_t scsi_csr_1;
    uint8_t scsi_csr_2;
    next_dma dma[10];
    qemu_irq *scsi_irq;
    qemu_irq scsi_dma;
    qemu_irq scsi_reset;
    qemu_irq *fd_irq;

    uint32_t scr1;
    uint32_t scr2;

    NextRtc rtc;
};

/* Thanks to NeXT forums for this */
/*
static const uint8_t rtc_ram3[32] = {
    0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
    0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
};
*/
static const uint8_t rtc_ram2[32] = {
    0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
    0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
};

#define SCR2_RTCLK 0x2
#define SCR2_RTDATA 0x4
#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))

static void nextscr2_write(NeXTState *s, uint32_t val, int size)
{
    static int led;
    static int phase;
    static uint8_t old_scr2;
    uint8_t scr2_2;
    NextRtc *rtc = &s->rtc;

    if (size == 4) {
        scr2_2 = (val >> 8) & 0xFF;
    } else {
        scr2_2 = val & 0xFF;
    }

    if (val & 0x1) {
        DPRINTF("fault!\n");
        led++;
        if (led == 10) {
            DPRINTF("LED flashing, possible fault!\n");
            led = 0;
        }
    }

    if (scr2_2 & 0x1) {
        /* DPRINTF("RTC %x phase %i\n", scr2_2, phase); */
        if (phase == -1) {
            phase = 0;
        }
        /* If we are in going down clock... do something */
        if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
                ((scr2_2 & SCR2_RTCLK) == 0)) {
            if (phase < 8) {
                rtc->command = (rtc->command << 1) |
                               ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
            }
            if (phase >= 8 && phase < 16) {
                rtc->value = (rtc->value << 1) |
                             ((scr2_2 & SCR2_RTDATA) ? 1 : 0);

                /* if we read RAM register, output RT_DATA bit */
                if (rtc->command <= 0x1F) {
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
                    if (rtc->ram[rtc->command] & (0x80 >> (phase - 8))) {
                        scr2_2 |= SCR2_RTDATA;
                    }

                    rtc->retval = (rtc->retval << 1) |
                                  ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
                }
                /* read the status 0x30 */
                if (rtc->command == 0x30) {
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
                    /* for now status = 0x98 (new rtc + FTU) */
                    if (rtc->status & (0x80 >> (phase - 8))) {
                        scr2_2 |= SCR2_RTDATA;
                    }

                    rtc->retval = (rtc->retval << 1) |
                                  ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
                }
                /* read the status 0x31 */
                if (rtc->command == 0x31) {
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
                    if (rtc->control & (0x80 >> (phase - 8))) {
                        scr2_2 |= SCR2_RTDATA;
                    }
                    rtc->retval = (rtc->retval << 1) |
                                  ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
                }

                if ((rtc->command >= 0x20) && (rtc->command <= 0x2F)) {
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
                    /* for now 0x00 */
                    time_t time_h = time(NULL);
                    struct tm *info = localtime(&time_h);
                    int ret = 0;

                    switch (rtc->command) {
                    case 0x20:
                        ret = SCR2_TOBCD(info->tm_sec);
                        break;
                    case 0x21:
                        ret = SCR2_TOBCD(info->tm_min);
                        break;
                    case 0x22:
                        ret = SCR2_TOBCD(info->tm_hour);
                        break;
                    case 0x24:
                        ret = SCR2_TOBCD(info->tm_mday);
                        break;
                    case 0x25:
                        ret = SCR2_TOBCD((info->tm_mon + 1));
                        break;
                    case 0x26:
                        ret = SCR2_TOBCD((info->tm_year - 100));
                        break;

                    }

                    if (ret & (0x80 >> (phase - 8))) {
                        scr2_2 |= SCR2_RTDATA;
                    }
                    rtc->retval = (rtc->retval << 1) |
                                  ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
                }

            }

            phase++;
            if (phase == 16) {
                if (rtc->command >= 0x80 && rtc->command <= 0x9F) {
                    rtc->ram[rtc->command - 0x80] = rtc->value;
                }
                /* write to x30 register */
                if (rtc->command == 0xB1) {
                    /* clear FTU */
                    if (rtc->value & 0x04) {
                        rtc->status = rtc->status & (~0x18);
                        s->int_status = s->int_status & (~0x04);
                    }
                }
            }
        }
    } else {
        /* else end or abort */
        phase = -1;
        rtc->command = 0;
        rtc->value = 0;
    }
    s->scr2 = val & 0xFFFF00FF;
    s->scr2 |= scr2_2 << 8;
    old_scr2 = scr2_2;
}

static uint32_t mmio_readb(NeXTState *s, hwaddr addr)
{
    switch (addr) {
    case 0xc000:
        return (s->scr1 >> 24) & 0xFF;
    case 0xc001:
        return (s->scr1 >> 16) & 0xFF;
    case 0xc002:
        return (s->scr1 >> 8)  & 0xFF;
    case 0xc003:
        return (s->scr1 >> 0)  & 0xFF;

    case 0xd000:
        return (s->scr2 >> 24) & 0xFF;
    case 0xd001:
        return (s->scr2 >> 16) & 0xFF;
    case 0xd002:
        return (s->scr2 >> 8)  & 0xFF;
    case 0xd003:
        return (s->scr2 >> 0)  & 0xFF;
    case 0x14020:
        DPRINTF("MMIO Read 0x4020\n");
        return 0x7f;

    default:
        DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr);
        return 0x0;
    }
}

static uint32_t mmio_readw(NeXTState *s, hwaddr addr)
{
    switch (addr) {
    default:
        DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr);
        return 0x0;
    }
}

static uint32_t mmio_readl(NeXTState *s, hwaddr addr)
{
    switch (addr) {
    case 0x7000:
        /* DPRINTF("Read INT status: %x\n", s->int_status); */
        return s->int_status;

    case 0x7800:
        DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
        return s->int_mask;

    case 0xc000:
        return s->scr1;

    case 0xd000:
        return s->scr2;

    default:
        DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr);
        return 0x0;
    }
}

static void mmio_writeb(NeXTState *s, hwaddr addr, uint32_t val)
{
    switch (addr) {
    case 0xd003:
        nextscr2_write(s, val, 1);
        break;
    default:
        DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val);
    }

}

static void mmio_writew(NeXTState *s, hwaddr addr, uint32_t val)
{
    DPRINTF("MMIO Write W\n");
}

static void mmio_writel(NeXTState *s, hwaddr addr, uint32_t val)
{
    switch (addr) {
    case 0x7000:
        DPRINTF("INT Status old: %x new: %x\n", s->int_status, val);
        s->int_status = val;
        break;
    case 0x7800:
        DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val);
        s->int_mask  = val;
        break;
    case 0xc000:
        DPRINTF("SCR1 Write: %x\n", val);
        break;
    case 0xd000:
        nextscr2_write(s, val, 4);
        break;

    default:
        DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val);
    }
}

static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size)
{
    NeXTState *ns = NEXT_MACHINE(opaque);

    switch (size) {
    case 1:
        return mmio_readb(ns, addr);
    case 2:
        return mmio_readw(ns, addr);
    case 4:
        return mmio_readl(ns, addr);
    default:
        g_assert_not_reached();
    }
}

static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value,
                         unsigned size)
{
    NeXTState *ns = NEXT_MACHINE(opaque);

    switch (size) {
    case 1:
        mmio_writeb(ns, addr, value);
        break;
    case 2:
        mmio_writew(ns, addr, value);
        break;
    case 4:
        mmio_writel(ns, addr, value);
        break;
    default:
        g_assert_not_reached();
    }
}

static const MemoryRegionOps mmio_ops = {
    .read = mmio_readfn,
    .write = mmio_writefn,
    .valid.min_access_size = 1,
    .valid.max_access_size = 4,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static uint32_t scr_readb(NeXTState *s, hwaddr addr)
{
    switch (addr) {
    case 0x14108:
        DPRINTF("FD read @ %x\n", (unsigned int)addr);
        return 0x40 | 0x04 | 0x2 | 0x1;
    case 0x14020:
        DPRINTF("SCSI 4020  STATUS READ %X\n", s->scsi_csr_1);
        return s->scsi_csr_1;

    case 0x14021:
        DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
        return 0x40;

    /*
     * These 4 registers are the hardware timer, not sure which register
     * is the latch instead of data, but no problems so far
     */
    case 0x1a000:
        return 0xff & (clock() >> 24);
    case 0x1a001:
        return 0xff & (clock() >> 16);
    case 0x1a002:
        return 0xff & (clock() >> 8);
    case 0x1a003:
        /* Hack: We need to have this change consistently to make it work */
        return 0xFF & clock();

    default:
        DPRINTF("BMAP Read B @ %x\n", (unsigned int)addr);
        return 0;
    }
}

static uint32_t scr_readw(NeXTState *s, hwaddr addr)
{
    DPRINTF("BMAP Read W @ %x\n", (unsigned int)addr);
    return 0;
}

static uint32_t scr_readl(NeXTState *s, hwaddr addr)
{
    DPRINTF("BMAP Read L @ %x\n", (unsigned int)addr);
    return 0;
}

#define SCSICSR_ENABLE  0x01
#define SCSICSR_RESET   0x02  /* reset scsi dma */
#define SCSICSR_FIFOFL  0x04
#define SCSICSR_DMADIR  0x08  /* if set, scsi to mem */
#define SCSICSR_CPUDMA  0x10  /* if set, dma enabled */
#define SCSICSR_INTMASK 0x20  /* if set, interrupt enabled */

static void scr_writeb(NeXTState *s, hwaddr addr, uint32_t value)
{
    switch (addr) {
    case 0x14108:
        DPRINTF("FDCSR Write: %x\n", value);

        if (value == 0x0) {
            /* qemu_irq_raise(s->fd_irq[0]); */
        }
        break;
    case 0x14020: /* SCSI Control Register */
        if (value & SCSICSR_FIFOFL) {
            DPRINTF("SCSICSR FIFO Flush\n");
            /* will have to add another irq to the esp if this is needed */
            /* esp_puflush_fifo(esp_g); */
            /* qemu_irq_pulse(s->scsi_dma); */
        }

        if (value & SCSICSR_ENABLE) {
            DPRINTF("SCSICSR Enable\n");
            /*
             * qemu_irq_raise(s->scsi_dma);
             * s->scsi_csr_1 = 0xc0;
             * s->scsi_csr_1 |= 0x1;
             * qemu_irq_pulse(s->scsi_dma);
             */
        }
        /*
         * else
         *     s->scsi_csr_1 &= ~SCSICSR_ENABLE;
         */

        if (value & SCSICSR_RESET) {
            DPRINTF("SCSICSR Reset\n");
            /* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
            /* qemu_irq_raise(s->scsi_reset); */
            /* s->scsi_csr_1 &= ~(SCSICSR_INTMASK |0x80|0x1); */

        }
        if (value & SCSICSR_DMADIR) {
            DPRINTF("SCSICSR DMAdir\n");
        }
        if (value & SCSICSR_CPUDMA) {
            DPRINTF("SCSICSR CPUDMA\n");
            /* qemu_irq_raise(s->scsi_dma); */

            s->int_status |= 0x4000000;
        } else {
            s->int_status &= ~(0x4000000);
        }
        if (value & SCSICSR_INTMASK) {
            DPRINTF("SCSICSR INTMASK\n");
            /*
             * int_mask &= ~0x1000;
             * s->scsi_csr_1 |= value;
             * s->scsi_csr_1 &= ~SCSICSR_INTMASK;
             * if (s->scsi_queued) {
             *     s->scsi_queued = 0;
             *     next_irq(s, NEXT_SCSI_I, level);
             * }
             */
        } else {
            /* int_mask |= 0x1000; */
        }
        if (value & 0x80) {
            /* int_mask |= 0x1000; */
            /* s->scsi_csr_1 |= 0x80; */
        }
        DPRINTF("SCSICSR Write: %x\n", value);
        /* s->scsi_csr_1 = value; */
        return;
    /* Hardware timer latch - not implemented yet */
    case 0x1a000:
    default:
        DPRINTF("BMAP Write B @ %x with %x\n", (unsigned int)addr, value);
    }
}

static void scr_writew(NeXTState *s, hwaddr addr, uint32_t value)
{
    DPRINTF("BMAP Write W @ %x with %x\n", (unsigned int)addr, value);
}

static void scr_writel(NeXTState *s, hwaddr addr, uint32_t value)
{
    DPRINTF("BMAP Write L @ %x with %x\n", (unsigned int)addr, value);
}

static uint64_t scr_readfn(void *opaque, hwaddr addr, unsigned size)
{
    NeXTState *ns = NEXT_MACHINE(opaque);

    switch (size) {
    case 1:
        return scr_readb(ns, addr);
    case 2:
        return scr_readw(ns, addr);
    case 4:
        return scr_readl(ns, addr);
    default:
        g_assert_not_reached();
    }
}

static void scr_writefn(void *opaque, hwaddr addr, uint64_t value,
                        unsigned size)
{
    NeXTState *ns = NEXT_MACHINE(opaque);

    switch (size) {
    case 1:
        scr_writeb(ns, addr, value);
        break;
    case 2:
        scr_writew(ns, addr, value);
        break;
    case 4:
        scr_writel(ns, addr, value);
        break;
    default:
        g_assert_not_reached();
    }
}

static const MemoryRegionOps scr_ops = {
    .read = scr_readfn,
    .write = scr_writefn,
    .valid.min_access_size = 1,
    .valid.max_access_size = 4,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

#define NEXTDMA_SCSI(x)      (0x10 + x)
#define NEXTDMA_FD(x)        (0x10 + x)
#define NEXTDMA_ENTX(x)      (0x110 + x)
#define NEXTDMA_ENRX(x)      (0x150 + x)
#define NEXTDMA_CSR          0x0
#define NEXTDMA_NEXT         0x4000
#define NEXTDMA_LIMIT        0x4004
#define NEXTDMA_START        0x4008
#define NEXTDMA_STOP         0x400c
#define NEXTDMA_NEXT_INIT    0x4200
#define NEXTDMA_SIZE         0x4204

static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
                       unsigned int size)
{
    NeXTState *next_state = NEXT_MACHINE(opaque);

    switch (addr) {
    case NEXTDMA_ENRX(NEXTDMA_CSR):
        if (value & DMA_DEV2M) {
            next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
        }

        if (value & DMA_SETENABLE) {
            /* DPRINTF("SCSI DMA ENABLE\n"); */
            next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
        }
        if (value & DMA_SETSUPDATE) {
            next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
        }
        if (value & DMA_CLRCOMPLETE) {
            next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
        }

        if (value & DMA_RESET) {
            next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
                                                  DMA_ENABLE | DMA_DEV2M);
        }
        /* DPRINTF("RXCSR \tWrite: %x\n",value); */
        break;
    case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
        next_state->dma[NEXTDMA_ENRX].next_initbuf = value;
        break;
    case NEXTDMA_ENRX(NEXTDMA_NEXT):
        next_state->dma[NEXTDMA_ENRX].next = value;
        break;
    case NEXTDMA_ENRX(NEXTDMA_LIMIT):
        next_state->dma[NEXTDMA_ENRX].limit = value;
        break;
    case NEXTDMA_SCSI(NEXTDMA_CSR):
        if (value & DMA_DEV2M) {
            next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
        }
        if (value & DMA_SETENABLE) {
            /* DPRINTF("SCSI DMA ENABLE\n"); */
            next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
        }
        if (value & DMA_SETSUPDATE) {
            next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
        }
        if (value & DMA_CLRCOMPLETE) {
            next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
        }

        if (value & DMA_RESET) {
            next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
                                                  DMA_ENABLE | DMA_DEV2M);
            /* DPRINTF("SCSI DMA RESET\n"); */
        }
        /* DPRINTF("RXCSR \tWrite: %x\n",value); */
        break;

    case NEXTDMA_SCSI(NEXTDMA_NEXT):
        next_state->dma[NEXTDMA_SCSI].next = value;
        break;

    case NEXTDMA_SCSI(NEXTDMA_LIMIT):
        next_state->dma[NEXTDMA_SCSI].limit = value;
        break;

    case NEXTDMA_SCSI(NEXTDMA_START):
        next_state->dma[NEXTDMA_SCSI].start = value;
        break;

    case NEXTDMA_SCSI(NEXTDMA_STOP):
        next_state->dma[NEXTDMA_SCSI].stop = value;
        break;

    case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
        next_state->dma[NEXTDMA_SCSI].next_initbuf = value;
        break;

    default:
        DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value);
    }
}

static uint64_t dma_readl(void *opaque, hwaddr addr, unsigned int size)
{
    NeXTState *next_state = NEXT_MACHINE(opaque);

    switch (addr) {
    case NEXTDMA_SCSI(NEXTDMA_CSR):
        DPRINTF("SCSI DMA CSR READ\n");
        return next_state->dma[NEXTDMA_SCSI].csr;
    case NEXTDMA_ENRX(NEXTDMA_CSR):
        return next_state->dma[NEXTDMA_ENRX].csr;
    case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
        return next_state->dma[NEXTDMA_ENRX].next_initbuf;
    case NEXTDMA_ENRX(NEXTDMA_NEXT):
        return next_state->dma[NEXTDMA_ENRX].next;
    case NEXTDMA_ENRX(NEXTDMA_LIMIT):
        return next_state->dma[NEXTDMA_ENRX].limit;

    case NEXTDMA_SCSI(NEXTDMA_NEXT):
        return next_state->dma[NEXTDMA_SCSI].next;
    case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
        return next_state->dma[NEXTDMA_SCSI].next_initbuf;
    case NEXTDMA_SCSI(NEXTDMA_LIMIT):
        return next_state->dma[NEXTDMA_SCSI].limit;
    case NEXTDMA_SCSI(NEXTDMA_START):
        return next_state->dma[NEXTDMA_SCSI].start;
    case NEXTDMA_SCSI(NEXTDMA_STOP):
        return next_state->dma[NEXTDMA_SCSI].stop;

    default: