/* * NVMe block driver based on vfio * * Copyright 2016 - 2018 Red Hat, Inc. * * Authors: * Fam Zheng * Paolo Bonzini * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include #include "qapi/error.h" #include "qapi/qmp/qdict.h" #include "qapi/qmp/qstring.h" #include "qemu/error-report.h" #include "qemu/module.h" #include "qemu/cutils.h" #include "qemu/option.h" #include "qemu/vfio-helpers.h" #include "block/block_int.h" #include "trace.h" #include "block/nvme.h" #define NVME_SQ_ENTRY_BYTES 64 #define NVME_CQ_ENTRY_BYTES 16 #define NVME_QUEUE_SIZE 128 #define NVME_BAR_SIZE 8192 typedef struct { int32_t head, tail; uint8_t *queue; uint64_t iova; /* Hardware MMIO register */ volatile uint32_t *doorbell; } NVMeQueue; typedef struct { BlockCompletionFunc *cb; void *opaque; int cid; void *prp_list_page; uint64_t prp_list_iova; bool busy; } NVMeRequest; typedef struct { CoQueue free_req_queue; QemuMutex lock; /* Fields protected by BQL */ int index; uint8_t *prp_list_pages; /* Fields protected by @lock */ NVMeQueue sq, cq; int cq_phase; NVMeRequest reqs[NVME_QUEUE_SIZE]; bool busy; int need_kick; int inflight; } NVMeQueuePair; /* Memory mapped registers */ typedef volatile struct { uint64_t cap; uint32_t vs; uint32_t intms; uint32_t intmc; uint32_t cc; uint32_t reserved0; uint32_t csts; uint32_t nssr; uint32_t aqa; uint64_t asq; uint64_t acq; uint32_t cmbloc; uint32_t cmbsz; uint8_t reserved1[0xec0]; uint8_t cmd_set_specfic[0x100]; uint32_t doorbells[]; } NVMeRegs; QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); typedef struct { AioContext *aio_context; QEMUVFIOState *vfio; NVMeRegs *regs; /* The submission/completion queue pairs. * [0]: admin queue. * [1..]: io queues. */ NVMeQueuePair **queues; int nr_queues; size_t page_size; /* How many uint32_t elements does each doorbell entry take. */ size_t doorbell_scale; bool write_cache_supported; EventNotifier irq_notifier; uint64_t nsze; /* Namespace size reported by identify command */ int nsid; /* The namespace id to read/write data. */ int blkshift; uint64_t max_transfer; bool plugged; CoMutex dma_map_lock; CoQueue dma_flush_queue; /* Total size of mapped qiov, accessed under dma_map_lock */ int dma_map_count; /* PCI address (required for nvme_refresh_filename()) */ char *device; } BDRVNVMeState; #define NVME_BLOCK_OPT_DEVICE "device" #define NVME_BLOCK_OPT_NAMESPACE "namespace" static QemuOptsList runtime_opts = { .name = "nvme", .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), .desc = { { .name = NVME_BLOCK_OPT_DEVICE, .type = QEMU_OPT_STRING, .help = "NVMe PCI device address", }, { .name = NVME_BLOCK_OPT_NAMESPACE, .type = QEMU_OPT_NUMBER, .help = "NVMe namespace", }, { /* end of list */ } }, }; static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, int nentries, int entry_bytes, Error **errp) { BDRVNVMeState *s = bs->opaque; size_t bytes; int r; bytes = ROUND_UP(nentries * entry_bytes, s->page_size); q->head = q->tail = 0; q->queue = qemu_try_blockalign0(bs, bytes); if (!q->queue) { error_setg(errp, "Cannot allocate queue"); return; } r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); if (r) { error_setg(errp, "Cannot map queue"); } } static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) { qemu_vfree(q->prp_list_pages); qemu_vfree(q->sq.queue); qemu_vfree(q->cq.queue); qemu_mutex_destroy(&q->lock); g_free(q); } static void nvme_free_req_queue_cb(void *opaque) { NVMeQueuePair *q = opaque; qemu_mutex_lock(&q->lock); while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { /* Retry all pending requests */ } qemu_mutex_unlock(&q->lock); } static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, int idx, int size, Error **errp) { int i, r; BDRVNVMeState *s = bs->opaque; Error *local_err = NULL; NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); uint64_t prp_list_iova; qemu_mutex_init(&q->lock); q->index = idx; qemu_co_queue_init(&q->free_req_queue); q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, s->page_size * NVME_QUEUE_SIZE, false, &prp_list_iova); if (r) { goto fail; } for (i = 0; i < NVME_QUEUE_SIZE; i++) { NVMeRequest *req = &q->reqs[i]; req->cid = i + 1; req->prp_list_page = q->prp_list_pages + i * s->page_size; req->prp_list_iova = prp_list_iova + i * s->page_size; } nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); if (local_err) { error_propagate(errp, local_err); goto fail; } q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); if (local_err) { error_propagate(errp, local_err); goto fail; } q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale]; return q; fail: nvme_free_queue_pair(bs, q); return NULL; } /* With q->lock */ static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) { if (s->plugged || !q->need_kick) { return; } trace_nvme_kick(s, q->index); assert(!(q->sq.tail & 0xFF00)); /* Fence the write to submission queue entry before notifying the device. */ smp_wmb(); *q->sq.doorbell = cpu_to_le32(q->sq.tail); q->inflight += q->need_kick; q->need_kick = 0; } /* Find a free request element if any, otherwise: * a) if in coroutine context, try to wait for one to become available; * b) if not in coroutine, return NULL; */ static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) { int i; NVMeRequest *req = NULL; qemu_mutex_lock(&q->lock); while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { /* We have to leave one slot empty as that is the full queue case (head * == tail + 1). */ if (qemu_in_coroutine()) { trace_nvme_free_req_queue_wait(q); qemu_co_queue_wait(&q->free_req_queue, &q->lock); } else { qemu_mutex_unlock(&q->lock); return NULL; } } for (i = 0; i < NVME_QUEUE_SIZE; i++) { if (!q->reqs[i].busy) { q->reqs[i].busy = true; req = &q->reqs[i]; break; } } /* We have checked inflight and need_kick while holding q->lock, so one * free req must be available. */ assert(req); qemu_mutex_unlock(&q->lock); return req; } static inline int nvme_translate_error(const NvmeCqe *c) { uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; if (status) { trace_nvme_error(le32_to_cpu(c->result), le16_to_cpu(c->sq_head), le16_to_cpu(c->sq_id), le16_to_cpu(c->cid), le16_to_cpu(status)); } switch (status) { case 0: return 0; case 1: return -ENOSYS; case 2: return -EINVAL; default: return -EIO; } } /* With q->lock */ static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) { bool progress = false; NVMeRequest *preq; NVMeRequest req; NvmeCqe *c; trace_nvme_process_completion(s, q->index, q->inflight); if (q->busy || s->plugged) { trace_nvme_process_completion_queue_busy(s, q->index); return false; } q->busy = true; assert(q->inflight >= 0); while (q->inflight) { int16_t cid; c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) { break; } q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; if (!q->cq.head) { q->cq_phase = !q->cq_phase; } cid = le16_to_cpu(c->cid); if (cid == 0 || cid > NVME_QUEUE_SIZE) { fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", cid); continue; } assert(cid <= NVME_QUEUE_SIZE); trace_nvme_complete_command(s, q->index, cid); preq = &q->reqs[cid - 1]; req = *preq; assert(req.cid == cid); assert(req.cb); preq->busy = false; preq->cb = preq->opaque = NULL; qemu_mutex_unlock(&q->lock); req.cb(req.opaque, nvme_translate_error(c)); qemu_mutex_lock(&q->lock); q->inflight--; progress = true; } if (progress) { /* Notify the device so it can post more completions. */ smp_mb_release(); *q->cq.doorbell = cpu_to_le32(q->cq.head); if (!qemu_co_queue_empty(&q->free_req_queue)) { aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); } } q->busy = false; return progress; } static void nvme_trace_command(const NvmeCmd *cmd) { int i; for (i = 0; i < 8; ++i) { uint8_t *cmdp = (uint8_t *)cmd + i * 8; trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], cmdp[4], cmdp[5], cmdp[6], cmdp[7]); } } static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, NVMeRequest *req, NvmeCmd *cmd, BlockCompletionFunc cb, void *opaque) { assert(!req->cb); req->cb = cb; req->opaque = opaque; cmd->cid = cpu_to_le32(req->cid); trace_nvme_submit_command(s, q->index, req->cid); nvme_trace_command(cmd); qemu_mutex_lock(&q->lock); memcpy((uint8_t *)q->sq.queue + q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; q->need_kick++; nvme_kick(s, q); nvme_process_completion(s, q); qemu_mutex_unlock(&q->lock); } static void nvme_cmd_sync_cb(void *opaque, int ret) { int *pret = opaque; *pret = ret; aio_wait_kick(); } static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, NvmeCmd *cmd) { NVMeRequest *req; BDRVNVMeState *s = bs->opaque; int ret = -EINPROGRESS; req = nvme_get_free_req(q); if (!req) { return -EBUSY; } nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); return ret; } static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) { BDRVNVMeState *s = bs->opaque; NvmeIdCtrl *idctrl; NvmeIdNs *idns; NvmeLBAF *lbaf; uint8_t *resp; int r; uint64_t iova; NvmeCmd cmd = { .opcode = NVME_ADM_CMD_IDENTIFY, .cdw10 = cpu_to_le32(0x1), }; resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); if (!resp) { error_setg(errp, "Cannot allocate buffer for identify response"); goto out; } idctrl = (NvmeIdCtrl *)resp; idns = (NvmeIdNs *)resp; r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); if (r) { error_setg(errp, "Cannot map buffer for DMA"); goto out; } cmd.prp1 = cpu_to_le64(iova); if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { error_setg(errp, "Failed to identify controller"); goto out; } if (le32_to_cpu(idctrl->nn) < namespace) { error_setg(errp, "Invalid namespace"); goto out; } s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; /* For now the page list buffer per command is one page, to hold at most * s->page_size / sizeof(uint64_t) entries. */ s->max_transfer = MIN_NON_ZERO(s->max_transfer, s->page_size / sizeof(uint64_t) * s->page_size); memset(resp, 0, 4096); cmd.cdw10 = 0; cmd.nsid = cpu_to_le32(namespace); if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { error_setg(errp, "Failed to identify namespace"); goto out; } s->nsze = le64_to_cpu(idns->nsze); lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)]; if (lbaf->ms) { error_setg(errp, "Namespaces with metadata are not yet supported"); goto out; } if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 || (1 << lbaf->ds) > s->page_size) { error_setg(errp, "Namespace has unsupported block size (2^%d)", lbaf->ds); goto out; } s->blkshift = lbaf->ds; out: qemu_vfio_dma_unmap(s->vfio, resp); qemu_vfree(resp); } static bool nvme_poll_queues(BDRVNVMeState *s) { bool progress = false; int i; for (i = 0; i < s->nr_queues; i++) { NVMeQueuePair *q = s->queues[i]; qemu_mutex_lock(&q->lock); while (nvme_process_completion(s, q)) { /* Keep polling */ progress = true; } qemu_mutex_unlock(&q->lock); } return progress; } static void nvme_handle_event(EventNotifier *n) { BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); trace_nvme_handle_event(s); event_notifier_test_and_clear(n); nvme_poll_queues(s); } static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) { BDRVNVMeState *s = bs->opaque; int n = s->nr_queues; NVMeQueuePair *q; NvmeCmd cmd; int queue_size = NVME_QUEUE_SIZE; q = nvme_create_queue_pair(bs, n, queue_size, errp); if (!q) { return false; } cmd = (NvmeCmd) { .opcode = NVME_ADM_CMD_CREATE_CQ, .prp1 = cpu_to_le64(q->cq.iova), .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), .cdw11 = cpu_to_le32(0x3), }; if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { error_setg(errp, "Failed to create io queue [%d]", n); nvme_free_queue_pair(bs, q); return false; } cmd = (NvmeCmd) { .opcode = NVME_ADM_CMD_CREATE_SQ, .prp1 = cpu_to_le64(q->sq.iova), .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), .cdw11 = cpu_to_le32(0x1 | (n << 16)), }; if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { error_setg(errp, "Failed to create io queue [%d]", n); nvme_free_queue_pair(bs, q); return false; } s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); s->queues[n] = q; s->nr_queues++; return true; } static bool nvme_poll_cb(void *opaque) { EventNotifier *e = opaque; BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); bool progress = false; trace_nvme_poll_cb(s); progress = nvme_poll_queues(s); return progress; } static int nvme_init(BlockDriverState *bs, const char *device, int namespace, Error **errp) { BDRVNVMeState *s = bs->opaque; int ret; uint64_t cap; uint64_t timeout_ms; uint64_t deadline, now; Error *local_err = NULL; qemu_co_mutex_init(&s->dma_map_lock); qemu_co_queue_init(&s->dma_flush_queue); s->device = g_strdup(device); s->nsid = namespace; s->aio_context = bdrv_get_aio_context(bs); ret = event_notifier_init(&s->irq_notifier, 0); if (ret) { error_setg(errp, "Failed to init event notifier"); return ret; } s->vfio = qemu_vfio_open_pci(device, errp); if (!s->vfio) { ret = -EINVAL; goto out; } s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); if (!s->regs) { ret = -EINVAL; goto out; } /* Perform initialize sequence as described in NVMe spec "7.6.1 * Initialization". */ cap = le64_to_cpu(s->regs->cap); if (!(cap & (1ULL << 37))) { error_setg(errp, "Device doesn't support NVMe command set"); ret = -EINVAL; goto out; } s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); bs->bl.opt_mem_alignment = s->page_size; timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); /* Reset device to get a clean state. */ s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); /* Wait for CSTS.RDY = 0. */ deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; while (le32_to_cpu(s->regs->csts) & 0x1) { if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { error_setg(errp, "Timeout while waiting for device to reset (%" PRId64 " ms)", timeout_ms); ret = -ETIMEDOUT; goto out; } } /* Set up admin queue. */ s->queues = g_new(NVMeQueuePair *, 1); s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); if (!s->queues[0]) { ret = -EINVAL; goto out; } s->nr_queues = 1; QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); /* After setting up all control registers we can enable device now. */ s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | 0x1); /* Wait for CSTS.RDY = 1. */ now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); deadline = now + timeout_ms * 1000000; while (!(le32_to_cpu(s->regs->csts) & 0x1)) { if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { error_setg(errp, "Timeout while waiting for device to start (%" PRId64 " ms)", timeout_ms); ret = -ETIMEDOUT; goto out; } } ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, VFIO_PCI_MSIX_IRQ_INDEX, errp); if (ret) { goto out; } aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, false, nvme_handle_event, nvme_poll_cb); nvme_identify(bs, namespace, &local_err); if (local_err) { error_propagate(errp, local_err); ret = -EIO; goto out; } /* Set up command queues. */ if (!nvme_add_io_queue(bs, errp)) { ret = -EIO; } out: /* Cleaning up is done in nvme_file_open() upon error. */ return ret; } /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: * * nvme://0000:44:00.0/1 * * where the "nvme://" is a fixed form of the protocol prefix, the middle part * is the PCI address, and the last part is the namespace number starting from * 1 according to the NVMe spec. */ static void nvme_parse_filename(const char *filename, QDict *options, Error **errp) { int pref = strlen("nvme://"); if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { const char *tmp = filename + pref; char *device; const char *namespace; unsigned long ns; const char *slash = strchr(tmp, '/'); if (!slash) { qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); return; } device = g_strndup(tmp, slash - tmp); qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); g_free(device); namespace = slash + 1; if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { error_setg(errp, "Invalid namespace '%s', positive number expected", namespace); return; } qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, *namespace ? namespace : "1"); } } static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, Error **errp) { int ret; BDRVNVMeState *s = bs->opaque; NvmeCmd cmd = { .opcode = NVME_ADM_CMD_SET_FEATURES, .nsid = cpu_to_le32(s->nsid), .cdw10 = cpu_to_le32(0x06), .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), }; ret = nvme_cmd_sync(bs, s->queues[0], &cmd); if (ret) { error_setg(errp, "Failed to configure NVMe write cache"); } return ret; } static void nvme_close(BlockDriverState *bs) { int i; BDRVNVMeState *s = bs->opaque; for (i = 0; i < s->nr_queues; ++i) { nvme_free_queue_pair(bs, s->queues[i]); } g_free(s->queues); aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, false, NULL, NULL); event_notifier_cleanup(&s->irq_notifier); qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); qemu_vfio_close(s->vfio); g_free(s->device); } static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { const char *device; QemuOpts *opts; int namespace; int ret; BDRVNVMeState *s = bs->opaque; opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); qemu_opts_absorb_qdict(opts, options, &error_abort); device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); if (!device) { error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); qemu_opts_del(opts); return -EINVAL; } namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); ret = nvme_init(bs, device, namespace, errp); qemu_opts_del(opts); if (ret) { goto fail; } if (flags & BDRV_O_NOCACHE) { if (!s->write_cache_supported) { error_setg(errp, "NVMe controller doesn't support write cache configuration"); ret = -EINVAL; } else { ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), errp); } if (ret) { goto fail; } } bs->supported_write_flags = BDRV_REQ_FUA; return 0; fail: nvme_close(bs); return ret; } static int64_t nvme_getlength(BlockDriverState *bs) { BDRVNVMeState *s = bs->opaque; return s->nsze << s->blkshift; } static uint32_t nvme_get_blocksize(BlockDriverState *bs) { BDRVNVMeState *s = bs->opaque; assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12); return UINT32_C(1) << s->blkshift; } static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz) { uint32_t blocksize = nvme_get_blocksize(bs); bsz->phys = blocksize; bsz->log = blocksize; return 0; } /* Called with s->dma_map_lock */ static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, QEMUIOVector *qiov) { int r = 0; BDRVNVMeState *s = bs->opaque; s->dma_map_count -= qiov->size; if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { r = qemu_vfio_dma_reset_temporary(s->vfio); if (!r) { qemu_co_queue_restart_all(&s->dma_flush_queue); } } return r; } /* Called with s->dma_map_lock */ static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, NVMeRequest *req, QEMUIOVector *qiov) { BDRVNVMeState *s = bs->opaque; uint64_t *pagelist = req->prp_list_page; int i, j, r; int entries = 0; assert(qiov->size); assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); for (i = 0; i < qiov->niov; ++i) { bool retry = true; uint64_t iova; try_map: r = qemu_vfio_dma_map(s->vfio, qiov->iov[i].iov_base, qiov->iov[i].iov_len, true, &iova); if (r == -ENOMEM && retry) { retry = false; trace_nvme_dma_flush_queue_wait(s); if (s->dma_map_count) { trace_nvme_dma_map_flush(s); qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); } else { r = qemu_vfio_dma_reset_temporary(s->vfio); if (r) { goto fail; } } goto try_map; } if (r) { goto fail; } for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); } trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, qiov->iov[i].iov_len / s->page_size); } s->dma_map_count += qiov->size; assert(entries <= s->page_size / sizeof(uint64_t)); switch (entries) { case 0: abort(); case 1: cmd->prp1 = pagelist[0]; cmd->prp2 = 0; break; case 2: cmd->prp1 = pagelist[0]; cmd->prp2 = pagelist[1]; break; default: cmd->prp1 = pagelist[0]; cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); break; } trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); for (i = 0; i < entries; ++i) { trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); } return 0; fail: /* No need to unmap [0 - i) iovs even if we've failed, since we don't * increment s->dma_map_count. This is okay for fixed mapping memory areas * because they are already mapped before calling this function; for * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by * calling qemu_vfio_dma_reset_temporary when necessary. */ return r; } typedef struct { Coroutine *co; int ret; AioContext *ctx; } NVMeCoData; static void nvme_rw_cb_bh(void *opaque) { NVMeCoData *data = opaque; qemu_coroutine_enter(data->co); } static void nvme_rw_cb(void *opaque, int ret) { NVMeCoData *data = opaque; data->ret = ret; if (!data->co) { /* The rw coroutine hasn't yielded, don't try to enter. */ return; } aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); } static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, bool is_write, int flags) { int r; BDRVNVMeState *s = bs->opaque; NVMeQueuePair *ioq = s->queues[1]; NVMeRequest *req; uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) | (flags & BDRV_REQ_FUA ? 1 << 30 : 0); NvmeCmd cmd = { .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, .nsid = cpu_to_le32(s->nsid), .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF), .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF), .cdw12 = cpu_to_le32(cdw12), }; NVMeCoData data = { .ctx = bdrv_get_aio_context(bs), .ret = -EINPROGRESS, }; trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); assert(s->nr_queues > 1); req = nvme_get_free_req(ioq); assert(req); qemu_co_mutex_lock(&s->dma_map_lock); r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); qemu_co_mutex_unlock(&s->dma_map_lock); if (r) { req->busy = false; return r; } nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); data.co = qemu_coroutine_self(); while (data.ret == -EINPROGRESS) { qemu_coroutine_yield(); } qemu_co_mutex_lock(&s->dma_map_lock); r = nvme_cmd_unmap_qiov(bs, qiov); qemu_co_mutex_unlock(&s->dma_map_lock); if (r) { return r; } trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); return data.ret; } static inline bool nvme_qiov_aligned(BlockDriverState *bs, const QEMUIOVector *qiov) { int i; BDRVNVMeState *s = bs->opaque; for (i = 0; i < qiov->niov; ++i) { if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, qiov->iov[i].iov_len, s->page_size); return false; } } return true; } static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, bool is_write, int flags) { BDRVNVMeState *s = bs->opaque; int r; uint8_t *buf = NULL; QEMUIOVector local_qiov; assert(QEMU_IS_ALIGNED(offset, s->page_size)); assert(QEMU_IS_ALIGNED(bytes, s->page_size)); assert(bytes <= s->max_transfer); if (nvme_qiov_aligned(bs, qiov)) { return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); } trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); buf = qemu_try_blockalign(bs, bytes); if (!buf) { return -ENOMEM; } qemu_iovec_init(&local_qiov, 1); if (is_write) { qemu_iovec_to_buf(qiov, 0, buf, bytes); } qemu_iovec_add(&local_qiov, buf, bytes); r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); qemu_iovec_destroy(&local_qiov); if (!r && !is_write) { qemu_iovec_from_buf(qiov, 0, buf, bytes); } qemu_vfree(buf); return r; } static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, int flags) { return nvme_co_prw(bs, offset, bytes, qiov, false, flags); } static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, int flags) { return nvme_co_prw(bs, offset, bytes, qiov, true, flags); } static coroutine_fn int nvme_co_flush(BlockDriverState *bs) { BDRVNVMeState *s = bs->opaque; NVMeQueuePair *ioq = s->queues[1]; NVMeRequest *req; NvmeCmd cmd = { .opcode = NVME_CMD_FLUSH, .nsid = cpu_to_le32(s->nsid), }; NVMeCoData data = { .ctx = bdrv_get_aio_context(bs), .ret = -EINPROGRESS, }; assert(s->nr_queues > 1); req = nvme_get_free_req(ioq); assert(req); nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); data.co = qemu_coroutine_self(); if (data.ret == -EINPROGRESS) { qemu_coroutine_yield(); } return data.ret; } static int nvme_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue, Error **errp) { return 0; } static void nvme_refresh_filename(BlockDriverState *bs) { BDRVNVMeState *s = bs->opaque; snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i", s->device, s->nsid); } static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) { BDRVNVMeState *s = bs->opaque; bs->bl.opt_mem_alignment = s->page_size; bs->bl.request_alignment = s->page_size; bs->bl.max_transfer = s->max_transfer; } static void nvme_detach_aio_context(BlockDriverState *bs) { BDRVNVMeState *s = bs->opaque; aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, false, NULL, NULL); } static void nvme_attach_aio_context(BlockDriverState *bs, AioContext *new_context) { BDRVNVMeState *s = bs->opaque; s->aio_context = new_context; aio_set_event_notifier(new_context, &s->irq_notifier, false, nvme_handle_event, nvme_poll_cb); } static void nvme_aio_plug(BlockDriverState *bs) { BDRVNVMeState *s = bs->opaque; assert(!s->plugged); s->plugged = true; } static void nvme_aio_unplug(BlockDriverState *bs) { int i; BDRVNVMeState *s = bs->opaque; assert(s->plugged); s->plugged = false; for (i = 1; i < s->nr_queues; i++) { NVMeQueuePair *q = s->queues[i]; qemu_mutex_lock(&q->lock); nvme_kick(s, q); nvme_process_completion(s, q); qemu_mutex_unlock(&q->lock); } } static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) { int ret; BDRVNVMeState *s = bs->opaque; ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); if (ret) { /* FIXME: we may run out of IOVA addresses after repeated * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap * doesn't reclaim addresses for fixed mappings. */ error_report("nvme_register_buf failed: %s", strerror(-ret)); } } static void nvme_unregister_buf(BlockDriverState *bs, void *host) { BDRVNVMeState *s = bs->opaque; qemu_vfio_dma_unmap(s->vfio, host); } static const char *const nvme_strong_runtime_opts[] = { NVME_BLOCK_OPT_DEVICE, NVME_BLOCK_OPT_NAMESPACE, NULL }; static BlockDriver bdrv_nvme = { .format_name = "nvme", .protocol_name = "nvme", .instance_size = sizeof(BDRVNVMeState), .bdrv_parse_filename = nvme_parse_filename, .bdrv_file_open = nvme_file_open, .bdrv_close = nvme_close, .bdrv_getlength = nvme_getlength, .bdrv_probe_blocksizes = nvme_probe_blocksizes, .bdrv_co_preadv = nvme_co_preadv, .bdrv_co_pwritev = nvme_co_pwritev, .bdrv_co_flush_to_disk = nvme_co_flush, .bdrv_reopen_prepare = nvme_reopen_prepare, .bdrv_refresh_filename = nvme_refresh_filename, .bdrv_refresh_limits = nvme_refresh_limits, .strong_runtime_opts = nvme_strong_runtime_opts, .bdrv_detach_aio_context = nvme_detach_aio_context, .bdrv_attach_aio_context = nvme_attach_aio_context, .bdrv_io_plug = nvme_aio_plug, .bdrv_io_unplug = nvme_aio_unplug, .bdrv_register_buf = nvme_register_buf, .bdrv_unregister_buf = nvme_unregister_buf, }; static void bdrv_nvme_init(void) { bdrv_register(&bdrv_nvme); } block_init(bdrv_nvme_init);