/* * NVDIMM ACPI Implementation * * Copyright(C) 2015 Intel Corporation. * * Author: * Xiao Guangrong <guangrong.xiao@linux.intel.com> * * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) * and the DSM specification can be found at: * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf * * Currently, it only supports PMEM Virtualization. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/> */ #include "qemu/osdep.h" #include "qemu/uuid.h" #include "qapi/error.h" #include "hw/acpi/acpi.h" #include "hw/acpi/aml-build.h" #include "hw/acpi/bios-linker-loader.h" #include "hw/nvram/fw_cfg.h" #include "hw/mem/nvdimm.h" #include "qemu/nvdimm-utils.h" /* * define Byte Addressable Persistent Memory (PM) Region according to * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. */ static const uint8_t nvdimm_nfit_spa_uuid[] = UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, 0x18, 0xb7, 0x8c, 0xdb); /* * NVDIMM Firmware Interface Table * @signature: "NFIT" * * It provides information that allows OSPM to enumerate NVDIMM present in * the platform and associate system physical address ranges created by the * NVDIMMs. * * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) */ struct NvdimmNfitHeader { ACPI_TABLE_HEADER_DEF uint32_t reserved; } QEMU_PACKED; typedef struct NvdimmNfitHeader NvdimmNfitHeader; /* * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware * Interface Table (NFIT). */ /* * System Physical Address Range Structure * * It describes the system physical address ranges occupied by NVDIMMs and * the types of the regions. */ struct NvdimmNfitSpa { uint16_t type; uint16_t length; uint16_t spa_index; uint16_t flags; uint32_t reserved; uint32_t proximity_domain; uint8_t type_guid[16]; uint64_t spa_base; uint64_t spa_length; uint64_t mem_attr; } QEMU_PACKED; typedef struct NvdimmNfitSpa NvdimmNfitSpa; /* * Memory Device to System Physical Address Range Mapping Structure * * It enables identifying each NVDIMM region and the corresponding SPA * describing the memory interleave */ struct NvdimmNfitMemDev { uint16_t type; uint16_t length; uint32_t nfit_handle; uint16_t phys_id; uint16_t region_id; uint16_t spa_index; uint16_t dcr_index; uint64_t region_len; uint64_t region_offset; uint64_t region_dpa; uint16_t interleave_index; uint16_t interleave_ways; uint16_t flags; uint16_t reserved; } QEMU_PACKED; typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3) /* * NVDIMM Control Region Structure * * It describes the NVDIMM and if applicable, Block Control Window. */ struct NvdimmNfitControlRegion { uint16_t type; uint16_t length; uint16_t dcr_index; uint16_t vendor_id; uint16_t device_id; uint16_t revision_id; uint16_t sub_vendor_id; uint16_t sub_device_id; uint16_t sub_revision_id; uint8_t reserved[6]; uint32_t serial_number; uint16_t fic; uint16_t num_bcw; uint64_t bcw_size; uint64_t cmd_offset; uint64_t cmd_size; uint64_t status_offset; uint64_t status_size; uint16_t flags; uint8_t reserved2[6]; } QEMU_PACKED; typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; /* * NVDIMM Platform Capabilities Structure * * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017 */ struct NvdimmNfitPlatformCaps { uint16_t type; uint16_t length; uint8_t highest_cap; uint8_t reserved[3]; uint32_t capabilities; uint8_t reserved2[4]; } QEMU_PACKED; typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps; /* * Module serial number is a unique number for each device. We use the * slot id of NVDIMM device to generate this number so that each device * associates with a different number. * * 0x123456 is a magic number we arbitrarily chose. */ static uint32_t nvdimm_slot_to_sn(int slot) { return 0x123456 + slot; } /* * handle is used to uniquely associate nfit_memdev structure with NVDIMM * ACPI device - nfit_memdev.nfit_handle matches with the value returned * by ACPI device _ADR method. * * We generate the handle with the slot id of NVDIMM device and reserve * 0 for NVDIMM root device. */ static uint32_t nvdimm_slot_to_handle(int slot) { return slot + 1; } /* * index uniquely identifies the structure, 0 is reserved which indicates * that the structure is not valid or the associated structure is not * present. * * Each NVDIMM device needs two indexes, one for nfit_spa and another for * nfit_dc which are generated by the slot id of NVDIMM device. */ static uint16_t nvdimm_slot_to_spa_index(int slot) { return (slot + 1) << 1; } /* See the comments of nvdimm_slot_to_spa_index(). */ static uint32_t nvdimm_slot_to_dcr_index(int slot) { return nvdimm_slot_to_spa_index(slot) + 1; } static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) { NVDIMMDevice *nvdimm = NULL; GSList *list, *device_list = nvdimm_get_device_list(); for (list = device_list; list; list = list->next) { NVDIMMDevice *nvd = list->data; int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, NULL); if (nvdimm_slot_to_handle(slot) == handle) { nvdimm = nvd; break; } } g_slist_free(device_list); return nvdimm; } /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ static void nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) { NvdimmNfitSpa *nfit_spa; uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, NULL); uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, NULL); uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, NULL); int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, NULL); nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range Structure */); nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); /* * Control region is strict as all the device info, such as SN, index, * is associated with slot id. */ nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for management during hot add/online operation */ | 2 /* Data in Proximity Domain field is valid*/); /* NUMA node. */ nfit_spa->proximity_domain = cpu_to_le32(node); /* the region reported as PMEM. */ memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, sizeof(nvdimm_nfit_spa_uuid)); nfit_spa->spa_base = cpu_to_le64(addr); nfit_spa->spa_length = cpu_to_le64(size); /* It is the PMEM and can be cached as writeback. */ nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | 0x8000ULL /* EFI_MEMORY_NV */); } /* * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping * Structure */ static void nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) { NvdimmNfitMemDev *nfit_memdev; NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev)); uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, NULL); int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, NULL); uint32_t handle = nvdimm_slot_to_handle(slot); nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address Range Map Structure*/); nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); nfit_memdev->nfit_handle = cpu_to_le32(handle); /* * associate memory device with System Physical Address Range * Structure. */ nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); /* associate memory device with Control Region Structure. */ nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); /* The memory region on the device. */ nfit_memdev->region_len = cpu_to_le64(size); /* The device address starts from 0. */ nfit_memdev->region_dpa = cpu_to_le64(0); /* Only one interleave for PMEM. */ nfit_memdev->interleave_ways = cpu_to_le16(1); if (nvdimm->unarmed) { nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED); } } /* * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. */ static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) { NvdimmNfitControlRegion *nfit_dcr; int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, NULL); uint32_t sn = nvdimm_slot_to_sn(slot); nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); /* vendor: Intel. */ nfit_dcr->vendor_id = cpu_to_le16(0x8086); nfit_dcr->device_id = cpu_to_le16(1); /* The _DSM method is following Intel's DSM specification. */ nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported in ACPI 6.0 is 1. */); nfit_dcr->serial_number = cpu_to_le32(sn); nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: Byte addressable, no energy backed. See ACPI 6.2, sect 5.2.25.6 and JEDEC Annex L Release 3. */); } /* * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure */ static void nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities) { NvdimmNfitPlatformCaps *nfit_caps; nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps)); nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */); nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps)); nfit_caps->highest_cap = 31 - clz32(capabilities); nfit_caps->capabilities = cpu_to_le32(capabilities); } static GArray *nvdimm_build_device_structure(NVDIMMState *state) { GSList *device_list = nvdimm_get_device_list(); GArray *structures = g_array_new(false, true /* clear */, 1); for (; device_list; device_list = device_list->next) { DeviceState *dev = device_list->data; /* build System Physical Address Range Structure. */ nvdimm_build_structure_spa(structures, dev); /* * build Memory Device to System Physical Address Range Mapping * Structure. */ nvdimm_build_structure_memdev(structures, dev); /* build NVDIMM Control Region Structure. */ nvdimm_build_structure_dcr(structures, dev); } g_slist_free(device_list); if (state->persistence) { nvdimm_build_structure_caps(structures, state->persistence); } return structures; } static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) { fit_buf->fit = g_array_new(false, true /* clear */, 1); } static void nvdimm_build_fit_buffer(NVDIMMState *state) { NvdimmFitBuffer *fit_buf = &state->fit_buf; g_array_free(fit_buf->fit, true); fit_buf->fit = nvdimm_build_device_structure(state); fit_buf->dirty = true; } void nvdimm_plug(NVDIMMState *state) { nvdimm_build_fit_buffer(state); } static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets, GArray *table_data, BIOSLinker *linker) { NvdimmFitBuffer *fit_buf = &state->fit_buf; unsigned int header; acpi_add_table(table_offsets, table_data); /* NFIT header. */ header = table_data->len; acpi_data_push(table_data, sizeof(NvdimmNfitHeader)); /* NVDIMM device structures. */ g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); build_header(linker, table_data, (void *)(table_data->data + header), "NFIT", sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL); } #define NVDIMM_DSM_MEMORY_SIZE 4096 struct NvdimmDsmIn { uint32_t handle; uint32_t revision; uint32_t function; /* the remaining size in the page is used by arg3. */ union { uint8_t arg3[4084]; }; } QEMU_PACKED; typedef struct NvdimmDsmIn NvdimmDsmIn; QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); struct NvdimmDsmOut { /* the size of buffer filled by QEMU. */ uint32_t len; uint8_t data[4092]; } QEMU_PACKED; typedef struct NvdimmDsmOut NvdimmDsmOut; QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); struct NvdimmDsmFunc0Out { /* the size of buffer filled by QEMU. */ uint32_t len; uint32_t supported_func; } QEMU_PACKED; typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; struct NvdimmDsmFuncNoPayloadOut { /* the size of buffer filled by QEMU. */ uint32_t len; uint32_t func_ret_status; } QEMU_PACKED; typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; struct NvdimmFuncGetLabelSizeOut { /* the size of buffer filled by QEMU. */ uint32_t len; uint32_t func_ret_status; /* return status code. */ uint32_t label_size; /* the size of label data area. */ /* * Maximum size of the namespace label data length supported by * the platform in Get/Set Namespace Label Data functions. */ uint32_t max_xfer; } QEMU_PACKED; typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); struct NvdimmFuncGetLabelDataIn { uint32_t offset; /* the offset in the namespace label data area. */ uint32_t length; /* the size of data is to be read via the function. */ } QEMU_PACKED; typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); struct NvdimmFuncGetLabelDataOut { /* the size of buffer filled by QEMU. */ uint32_t len; uint32_t func_ret_status; /* return status code. */ uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */ } QEMU_PACKED; typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); struct NvdimmFuncSetLabelDataIn { uint32_t offset; /* the offset in the namespace label data area. */ uint32_t length; /* the size of data is to be written via the function. */ uint8_t in_buf[]; /* the data written to label data area. */ } QEMU_PACKED; typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); struct NvdimmFuncReadFITIn { uint32_t offset; /* the offset into FIT buffer. */ } QEMU_PACKED; typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); struct NvdimmFuncReadFITOut { /* the size of buffer filled by QEMU. */ uint32_t len; uint32_t func_ret_status; /* return status code. */ uint8_t fit[]; /* the FIT data. */ } QEMU_PACKED; typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); static void nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) { NvdimmDsmFunc0Out func0 = { .len = cpu_to_le32(sizeof(func0)), .supported_func = cpu_to_le32(supported_func), }; cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); } static void nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) { NvdimmDsmFuncNoPayloadOut out = { .len = cpu_to_le32(sizeof(out)), .func_ret_status = cpu_to_le32(func_ret_status), }; cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); } #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */ #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */ #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */ #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */ #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */ #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in, hwaddr dsm_mem_addr) { NvdimmFitBuffer *fit_buf = &state->fit_buf; NvdimmFuncReadFITIn *read_fit; NvdimmFuncReadFITOut *read_fit_out; GArray *fit; uint32_t read_len = 0, func_ret_status; int size; read_fit = (NvdimmFuncReadFITIn *)in->arg3; read_fit->offset = le32_to_cpu(read_fit->offset); fit = fit_buf->fit; nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n", read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No"); if (read_fit->offset > fit->len) { func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; goto exit; } /* It is the first time to read FIT. */ if (!read_fit->offset) { fit_buf->dirty = false; } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; goto exit; } func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; read_len = MIN(fit->len - read_fit->offset, NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); exit: size = sizeof(NvdimmFuncReadFITOut) + read_len; read_fit_out = g_malloc(size); read_fit_out->len = cpu_to_le32(size); read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); g_free(read_fit_out); } static void nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state, NvdimmDsmIn *in, hwaddr dsm_mem_addr) { switch (in->function) { case 0x0: nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); return; case 0x1 /* Read FIT */: nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); return; } nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); } static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) { /* * function 0 is called to inquire which functions are supported by * OSPM */ if (!in->function) { nvdimm_dsm_function0(0 /* No function supported other than function 0 */, dsm_mem_addr); return; } /* No function except function 0 is supported yet. */ nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); } /* * the max transfer size is the max size transferred by both a * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' * function. */ static uint32_t nvdimm_get_max_xfer_label_size(void) { uint32_t max_get_size, max_set_size, dsm_memory_size; dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; /* * the max data ACPI can read one time which is transferred by * the response of 'Get Namespace Label Data' function. */ max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); /* * the max data ACPI can write one time which is transferred by * 'Set Namespace Label Data' function. */ max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - sizeof(NvdimmFuncSetLabelDataIn); return MIN(max_get_size, max_set_size); } /* * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). * * It gets the size of Namespace Label data area and the max data size * that Get/Set Namespace Label Data functions can transfer. */ static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) { NvdimmFuncGetLabelSizeOut label_size_out = { .len = cpu_to_le32(sizeof(label_size_out)), }; uint32_t label_size, mxfer; label_size = nvdimm->label_size; mxfer = nvdimm_get_max_xfer_label_size(); nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer); label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); label_size_out.label_size = cpu_to_le32(label_size); label_size_out.max_xfer = cpu_to_le32(mxfer); cpu_physical_memory_write(dsm_mem_addr, &label_size_out, sizeof(label_size_out)); } static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, uint32_t offset, uint32_t length) { uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; if (offset + length < offset) { nvdimm_debug("offset %#x + length %#x is overflow.\n", offset, length); return ret; } if (nvdimm->label_size < offset + length) { nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n", offset + length, nvdimm->label_size); return ret; } if (length > nvdimm_get_max_xfer_label_size()) { nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n", length, nvdimm_get_max_xfer_label_size()); return ret; } return NVDIMM_DSM_RET_STATUS_SUCCESS; } /* * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). */ static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, hwaddr dsm_mem_addr) { NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); NvdimmFuncGetLabelDataIn *get_label_data; NvdimmFuncGetLabelDataOut *get_label_data_out; uint32_t status; int size; get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; get_label_data->offset = le32_to_cpu(get_label_data->offset); get_label_data->length = le32_to_cpu(get_label_data->length); nvdimm_debug("Read Label Data: offset %#x length %#x.\n", get_label_data->offset, get_label_data->length); status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, get_label_data->length); if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { nvdimm_dsm_no_payload(status, dsm_mem_addr); return; } size = sizeof(*get_label_data_out) + get_label_data->length; assert(size <= NVDIMM_DSM_MEMORY_SIZE); get_label_data_out = g_malloc(size); get_label_data_out->len = cpu_to_le32(size); get_label_data_out->func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); nvc->read_label_data(nvdimm, get_label_data_out->out_buf, get_label_data->length, get_label_data->offset); cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); g_free(get_label_data_out); } /* * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). */ static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, hwaddr dsm_mem_addr) { NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); NvdimmFuncSetLabelDataIn *set_label_data; uint32_t status; set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; set_label_data->offset = le32_to_cpu(set_label_data->offset); set_label_data->length = le32_to_cpu(set_label_data->length); nvdimm_debug("Write Label Data: offset %#x length %#x.\n", set_label_data->offset, set_label_data->length); status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, set_label_data->length); if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { nvdimm_dsm_no_payload(status, dsm_mem_addr); return; } assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); nvc->write_label_data(nvdimm, set_label_data->in_buf, set_label_data->length, set_label_data->offset); nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); } static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) { NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); /* See the comments in nvdimm_dsm_root(). */ if (!in->function) { uint32_t supported_func = 0; if (nvdimm && nvdimm->label_size) { supported_func |= 0x1 /* Bit 0 indicates whether there is support for any functions other than function 0. */ | 1 << 4 /* Get Namespace Label Size */ | 1 << 5 /* Get Namespace Label Data */ | 1 << 6 /* Set Namespace Label Data */; } nvdimm_dsm_function0(supported_func, dsm_mem_addr); return; } if (!nvdimm) { nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, dsm_mem_addr); return; } /* Encode DSM function according to DSM Spec Rev1. */ switch (in->function) { case 4 /* Get Namespace Label Size */: if (nvdimm->label_size) { nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); return; } break; case 5 /* Get Namespace Label Data */: if (nvdimm->label_size) { nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); return; } break; case 0x6 /* Set Namespace Label Data */: if (nvdimm->label_size) { nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); return; } break; } nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); } static uint64_t nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) { nvdimm_debug("BUG: we never read _DSM IO Port.\n"); return 0; } static void nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { NVDIMMState *state = opaque; NvdimmDsmIn *in; hwaddr dsm_mem_addr = val; nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr); /* * The DSM memory is mapped to guest address space so an evil guest * can change its content while we are doing DSM emulation. Avoid * this by copying DSM memory to QEMU local memory. */ in = g_new(NvdimmDsmIn, 1); cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); in->revision = le32_to_cpu(in->revision); in->function = le32_to_cpu(in->function); in->handle = le32_to_cpu(in->handle); nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision, in->handle, in->function); if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { nvdimm_debug("Revision %#x is not supported, expect %#x.\n", in->revision, 0x1); nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); goto exit; } if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); goto exit; } /* Handle 0 is reserved for NVDIMM Root Device. */ if (!in->handle) { nvdimm_dsm_root(in, dsm_mem_addr); goto exit; } nvdimm_dsm_device(in, dsm_mem_addr); exit: g_free(in); } static const MemoryRegionOps nvdimm_dsm_ops = { .read = nvdimm_dsm_read, .write = nvdimm_dsm_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) { if (dev->hotplugged) { acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); } } void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io, struct AcpiGenericAddress dsm_io, FWCfgState *fw_cfg, Object *owner) { state->dsm_io = dsm_io; memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, "nvdimm-acpi-io", dsm_io.bit_width >> 3); memory_region_add_subregion(io, dsm_io.address, &state->io_mr); state->dsm_mem = g_array_new(false, true /* clear */, 1); acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, state->dsm_mem->len); nvdimm_init_fit_buffer(&state->fit_buf); } #define NVDIMM_COMMON_DSM "NCAL" #define NVDIMM_ACPI_MEM_ADDR "MEMA" #define NVDIMM_DSM_MEMORY "NRAM" #define NVDIMM_DSM_IOPORT "NPIO" #define NVDIMM_DSM_NOTIFY "NTFI" #define NVDIMM_DSM_HANDLE "HDLE" #define NVDIMM_DSM_REVISION "REVS" #define NVDIMM_DSM_FUNCTION "FUNC" #define NVDIMM_DSM_ARG3 "FARG" #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" #define NVDIMM_DSM_OUT_BUF "ODAT" #define NVDIMM_DSM_RFIT_STATUS "RSTA" #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" static void nvdimm_build_common_dsm(Aml *dev, NVDIMMState *nvdimm_state) { Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; Aml *whilectx, *offset; uint8_t byte_list[1]; AmlRegionSpace rs; method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); uuid = aml_arg(0); function = aml_arg(2); handle = aml_arg(4); dsm_mem = aml_local(6); dsm_out_buf = aml_local(7); aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) { rs = AML_SYSTEM_IO; } else { rs = AML_SYSTEM_MEMORY; } /* map DSM memory and IO into ACPI namespace. */ aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs, aml_int(nvdimm_state->dsm_io.address), nvdimm_state->dsm_io.bit_width >> 3)); aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); /* * DSM notifier: * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to * emulate the access. * * It is the IO port so that accessing them will cause VM-exit, the * control will be transferred to QEMU. */ field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE); aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, nvdimm_state->dsm_io.bit_width)); aml_append(method, field); /* * DSM input: * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call * happens on NVDIMM Root Device. * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package * containing function-specific arguments. * * They are RAM mapping on host so that these accesses never cause * VM-EXIT. */ field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE); aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); aml_append(method, field); /* * DSM output: * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. * * Since the page is reused by both input and out, the input data * will be lost after storing new result into ODAT so we should fetch * all the input data before writing the result. */ field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE); aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); aml_append(method, field); /* * do not support any method if DSM memory address has not been * patched. */ unpatched = aml_equal(dsm_mem, aml_int(0x0)); expected_uuid = aml_local(0); ifctx = aml_if(aml_equal(handle, aml_int(0x0))); aml_append(ifctx, aml_store( aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") /* UUID for NVDIMM Root Device */, expected_uuid)); aml_append(method, ifctx); elsectx = aml_else(); ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID /* UUID for QEMU internal use */), expected_uuid)); aml_append(elsectx, ifctx); elsectx2 = aml_else(); aml_append(elsectx2, aml_store( aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66") /* UUID for NVDIMM Devices */, expected_uuid)); aml_append(elsectx, elsectx2); aml_append(method, elsectx); uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL)); /* * function 0 is called to inquire what functions are supported by * OSPM */ ifctx = aml_if(aml_equal(function, aml_int(0))); byte_list[0] = 0 /* No function Supported */; aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); aml_append(unsupport, ifctx); /* No function is supported yet. */ byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); aml_append(method, unsupport); /* * The HDLE indicates the DSM function is issued from which device, * it reserves 0 for root device and is the handle for NVDIMM devices. * See the comments in nvdimm_slot_to_handle(). */ aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION))); /* * The fourth parameter (Arg3) of _DSM is a package which contains * a buffer, the layout of the buffer is specified by UUID (Arg0), * Revision ID (Arg1) and Function Index (Arg2) which are documented * in the DSM Spec. */ pckg = aml_arg(3); ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg), aml_int(4 /* Package */)) /* It is a Package? */, aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */, NULL)); pckg_index = aml_local(2); pckg_buf = aml_local(3); aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); aml_append(method, ifctx); /* * tell QEMU about the real address of DSM memory, then QEMU * gets the control and fills the result in DSM memory. */ aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); dsm_out_buf_size = aml_local(1); /* RLEN is not included in the payload returned to guest. */ aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), aml_int(4), dsm_out_buf_size)); /* * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if * the Buffer Field <= to the size of an Integer (in bits), it will * be treated as an integer. Moreover, the integer size depends on * DSDT tables revision number. If revision number is < 2, integer * size is 32 bits, otherwise it is 64 bits. * Because of this CreateField() canot be used if RLEN < Integer Size. * * Also please note that APCI ASL operator SizeOf() doesn't support * Integer and there isn't any other way to figure out the Integer * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes, * build dsm_out_buf byte by byte. */ ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8))); offset = aml_local(2); aml_append(ifctx, aml_store(aml_int(0), offset)); aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL))); aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf)); whilectx = aml_while(aml_lless(offset, dsm_out_buf_size)); /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */ aml_append(whilectx, aml_store(aml_derefof(aml_index( aml_name(NVDIMM_DSM_OUT_BUF), offset)), aml_index(aml_name("TBUF"), aml_int(0)))); aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"), dsm_out_buf)); aml_append(whilectx, aml_increment(offset)); aml_append(ifctx, whilectx); aml_append(ifctx, aml_return(dsm_out_buf)); aml_append(method, ifctx); /* If RLEN >= Integer size, just use CreateField() operator */ aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), dsm_out_buf_size)); aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), aml_int(0), dsm_out_buf_size, "OBUF")); aml_append(method, aml_return(aml_name("OBUF"))); aml_append(dev, method); } static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) { Aml *method; method = aml_method("_DSM", 4, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), aml_arg(1), aml_arg(2), aml_arg(3), aml_int(handle)))); aml_append(dev, method); } static void nvdimm_build_fit(Aml *dev) { Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; buf = aml_local(0); buf_size = aml_local(1); fit = aml_local(2); aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); /* build helper function, RFIT. */ method = aml_method("RFIT", 1, AML_SERIALIZED); aml_append(method, aml_name_decl("OFST", aml_int(0))); /* prepare input package. */ pkg = aml_package(1); aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); aml_append(pkg, aml_name("OFST")); /* call Read_FIT function. */ call_result = aml_call5(NVDIMM_COMMON_DSM, aml_touuid(NVDIMM_QEMU_RSVD_UUID), aml_int(1) /* Revision 1 */, aml_int(0x1) /* Read FIT */, pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); aml_append(method, aml_store(call_result, buf)); /* handle _DSM result. */ aml_append(method, aml_create_dword_field(buf, aml_int(0) /* offset at byte 0 */, "STAU")); aml_append(method, aml_store(aml_name("STAU"), aml_name(NVDIMM_DSM_RFIT_STATUS))); /* if something is wrong during _DSM. */ ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), aml_name("STAU")); ifctx = aml_if(aml_lnot(ifcond)); aml_append(ifctx, aml_return(aml_buffer(0, NULL))); aml_append(method, ifctx); aml_append(method, aml_store(aml_sizeof(buf), buf_size)); aml_append(method, aml_subtract(buf_size, aml_int(4) /* the size of "STAU" */, buf_size)); /* if we read the end of fit. */ ifctx = aml_if(aml_equal(buf_size, aml_int(0))); aml_append(ifctx, aml_return(aml_buffer(0, NULL))); aml_append(method, ifctx); aml_append(method, aml_create_field(buf, aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ aml_shiftleft(buf_size, aml_int(3)), "BUFF")); aml_append(method, aml_return(aml_name("BUFF"))); aml_append(dev, method); /* build _FIT. */ method = aml_method("_FIT", 0, AML_SERIALIZED); offset = aml_local(3); aml_append(method, aml_store(aml_buffer(0, NULL), fit)); aml_append(method, aml_store(aml_int(0), offset)); whilectx = aml_while(aml_int(1)); aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); /* * if fit buffer was changed during RFIT, read from the beginning * again. */ ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); aml_append(ifctx, aml_store(aml_int(0), offset)); aml_append(whilectx, ifctx); elsectx = aml_else(); /* finish fit read if no data is read out. */ ifctx = aml_if(aml_equal(buf_size, aml_int(0))); aml_append(ifctx, aml_return(fit)); aml_append(elsectx, ifctx); /* update the offset. */ aml_append(elsectx, aml_add(offset, buf_size, offset)); /* append the data we read out to the fit buffer. */ aml_append(elsectx, aml_concatenate(fit, buf, fit)); aml_append(whilectx, elsectx); aml_append(method, whilectx); aml_append(dev, method); } static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) { uint32_t slot; for (slot = 0; slot < ram_slots; slot++) { uint32_t handle = nvdimm_slot_to_handle(slot); Aml *nvdimm_dev; nvdimm_dev = aml_device("NV%02X", slot); /* * ACPI 6.0: 9.20 NVDIMM Devices: * * _ADR object that is used to supply OSPM with unique address * of the NVDIMM device. This is done by returning the NFIT Device * handle that is used to identify the associated entries in ACPI * table NFIT or _FIT. */ aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); nvdimm_build_device_dsm(nvdimm_dev, handle); aml_append(root_dev, nvdimm_dev); } } static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, BIOSLinker *linker, NVDIMMState *nvdimm_state, uint32_t ram_slots) { Aml *ssdt, *sb_scope, *dev; int mem_addr_offset, nvdimm_ssdt; acpi_add_table(table_offsets, table_data); ssdt = init_aml_allocator(); acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader)); sb_scope = aml_scope("\\_SB"); dev = aml_device("NVDR"); /* * ACPI 6.0: 9.20 NVDIMM Devices: * * The ACPI Name Space device uses _HID of ACPI0012 to identify the root * NVDIMM interface device. Platform firmware is required to contain one * such device in _SB scope if NVDIMMs support is exposed by platform to * OSPM. * For each NVDIMM present or intended to be supported by platform, * platform firmware also exposes an ACPI Namespace Device under the * root device. */ aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); nvdimm_build_common_dsm(dev, nvdimm_state); /* 0 is reserved for root device. */ nvdimm_build_device_dsm(dev, 0); nvdimm_build_fit(dev); nvdimm_build_nvdimm_devices(dev, ram_slots); aml_append(sb_scope, dev); aml_append(ssdt, sb_scope); nvdimm_ssdt = table_data->len; /* copy AML table into ACPI tables blob and patch header there */ g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); mem_addr_offset = build_append_named_dword(table_data, NVDIMM_ACPI_MEM_ADDR); bios_linker_loader_alloc(linker, NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem, sizeof(NvdimmDsmIn), false /* high memory */); bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), NVDIMM_DSM_MEM_FILE, 0); build_header(linker, table_data, (void *)(table_data->data + nvdimm_ssdt), "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM"); free_aml_allocator(); } void nvdimm_build_srat(GArray *table_data) { GSList *device_list = nvdimm_get_device_list(); for (; device_list; device_list = device_list->next) { AcpiSratMemoryAffinity *numamem = NULL; DeviceState *dev = device_list->data; Object *obj = OBJECT(dev); uint64_t addr, size; int node; node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort); addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort); size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort); numamem = acpi_data_push(table_data, sizeof *numamem); build_srat_memory(numamem, addr, size, node, MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE); } g_slist_free(device_list); } void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, BIOSLinker *linker, NVDIMMState *state, uint32_t ram_slots) { GSList *device_list; /* no nvdimm device can be plugged. */ if (!ram_slots) { return; } nvdimm_build_ssdt(table_offsets, table_data, linker, state, ram_slots); device_list = nvdimm_get_device_list(); /* no NVDIMM device is plugged. */ if (!device_list) { return; } nvdimm_build_nfit(state, table_offsets, table_data, linker); g_slist_free(device_list); }