/* * Xilinx Zynq MPSoC emulation * * Copyright (C) 2015 Xilinx Inc * Written by Peter Crosthwaite <peter.crosthwaite@xilinx.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/module.h" #include "cpu.h" #include "hw/arm/xlnx-zynqmp.h" #include "hw/intc/arm_gic_common.h" #include "hw/boards.h" #include "exec/address-spaces.h" #include "sysemu/kvm.h" #include "sysemu/sysemu.h" #include "kvm_arm.h" #define GIC_NUM_SPI_INTR 160 #define ARM_PHYS_TIMER_PPI 30 #define ARM_VIRT_TIMER_PPI 27 #define ARM_HYP_TIMER_PPI 26 #define ARM_SEC_TIMER_PPI 29 #define GIC_MAINTENANCE_PPI 25 #define GEM_REVISION 0x40070106 #define GIC_BASE_ADDR 0xf9000000 #define GIC_DIST_ADDR 0xf9010000 #define GIC_CPU_ADDR 0xf9020000 #define GIC_VIFACE_ADDR 0xf9040000 #define GIC_VCPU_ADDR 0xf9060000 #define SATA_INTR 133 #define SATA_ADDR 0xFD0C0000 #define SATA_NUM_PORTS 2 #define QSPI_ADDR 0xff0f0000 #define LQSPI_ADDR 0xc0000000 #define QSPI_IRQ 15 #define DP_ADDR 0xfd4a0000 #define DP_IRQ 113 #define DPDMA_ADDR 0xfd4c0000 #define DPDMA_IRQ 116 #define IPI_ADDR 0xFF300000 #define IPI_IRQ 64 #define RTC_ADDR 0xffa60000 #define RTC_IRQ 26 #define SDHCI_CAPABILITIES 0x280737ec6481 /* Datasheet: UG1085 (v1.7) */ static const uint64_t gem_addr[XLNX_ZYNQMP_NUM_GEMS] = { 0xFF0B0000, 0xFF0C0000, 0xFF0D0000, 0xFF0E0000, }; static const int gem_intr[XLNX_ZYNQMP_NUM_GEMS] = { 57, 59, 61, 63, }; static const uint64_t uart_addr[XLNX_ZYNQMP_NUM_UARTS] = { 0xFF000000, 0xFF010000, }; static const int uart_intr[XLNX_ZYNQMP_NUM_UARTS] = { 21, 22, }; static const uint64_t sdhci_addr[XLNX_ZYNQMP_NUM_SDHCI] = { 0xFF160000, 0xFF170000, }; static const int sdhci_intr[XLNX_ZYNQMP_NUM_SDHCI] = { 48, 49, }; static const uint64_t spi_addr[XLNX_ZYNQMP_NUM_SPIS] = { 0xFF040000, 0xFF050000, }; static const int spi_intr[XLNX_ZYNQMP_NUM_SPIS] = { 19, 20, }; static const uint64_t gdma_ch_addr[XLNX_ZYNQMP_NUM_GDMA_CH] = { 0xFD500000, 0xFD510000, 0xFD520000, 0xFD530000, 0xFD540000, 0xFD550000, 0xFD560000, 0xFD570000 }; static const int gdma_ch_intr[XLNX_ZYNQMP_NUM_GDMA_CH] = { 124, 125, 126, 127, 128, 129, 130, 131 }; static const uint64_t adma_ch_addr[XLNX_ZYNQMP_NUM_ADMA_CH] = { 0xFFA80000, 0xFFA90000, 0xFFAA0000, 0xFFAB0000, 0xFFAC0000, 0xFFAD0000, 0xFFAE0000, 0xFFAF0000 }; static const int adma_ch_intr[XLNX_ZYNQMP_NUM_ADMA_CH] = { 77, 78, 79, 80, 81, 82, 83, 84 }; typedef struct XlnxZynqMPGICRegion { int region_index; uint32_t address; uint32_t offset; bool virt; } XlnxZynqMPGICRegion; static const XlnxZynqMPGICRegion xlnx_zynqmp_gic_regions[] = { /* Distributor */ { .region_index = 0, .address = GIC_DIST_ADDR, .offset = 0, .virt = false }, /* CPU interface */ { .region_index = 1, .address = GIC_CPU_ADDR, .offset = 0, .virt = false }, { .region_index = 1, .address = GIC_CPU_ADDR + 0x10000, .offset = 0x1000, .virt = false }, /* Virtual interface */ { .region_index = 2, .address = GIC_VIFACE_ADDR, .offset = 0, .virt = true }, /* Virtual CPU interface */ { .region_index = 3, .address = GIC_VCPU_ADDR, .offset = 0, .virt = true }, { .region_index = 3, .address = GIC_VCPU_ADDR + 0x10000, .offset = 0x1000, .virt = true }, }; static inline int arm_gic_ppi_index(int cpu_nr, int ppi_index) { return GIC_NUM_SPI_INTR + cpu_nr * GIC_INTERNAL + ppi_index; } static void xlnx_zynqmp_create_rpu(MachineState *ms, XlnxZynqMPState *s, const char *boot_cpu, Error **errp) { int i; int num_rpus = MIN(ms->smp.cpus - XLNX_ZYNQMP_NUM_APU_CPUS, XLNX_ZYNQMP_NUM_RPU_CPUS); if (num_rpus <= 0) { /* Don't create rpu-cluster object if there's nothing to put in it */ return; } object_initialize_child(OBJECT(s), "rpu-cluster", &s->rpu_cluster, TYPE_CPU_CLUSTER); qdev_prop_set_uint32(DEVICE(&s->rpu_cluster), "cluster-id", 1); for (i = 0; i < num_rpus; i++) { const char *name; object_initialize_child(OBJECT(&s->rpu_cluster), "rpu-cpu[*]", &s->rpu_cpu[i], ARM_CPU_TYPE_NAME("cortex-r5f")); name = object_get_canonical_path_component(OBJECT(&s->rpu_cpu[i])); if (strcmp(name, boot_cpu)) { /* Secondary CPUs start in PSCI powered-down state */ object_property_set_bool(OBJECT(&s->rpu_cpu[i]), "start-powered-off", true, &error_abort); } else { s->boot_cpu_ptr = &s->rpu_cpu[i]; } object_property_set_bool(OBJECT(&s->rpu_cpu[i]), "reset-hivecs", true, &error_abort); if (!qdev_realize(DEVICE(&s->rpu_cpu[i]), NULL, errp)) { return; } } qdev_realize(DEVICE(&s->rpu_cluster), NULL, &error_fatal); } static void xlnx_zynqmp_init(Object *obj) { MachineState *ms = MACHINE(qdev_get_machine()); XlnxZynqMPState *s = XLNX_ZYNQMP(obj); int i; int num_apus = MIN(ms->smp.cpus, XLNX_ZYNQMP_NUM_APU_CPUS); object_initialize_child(obj, "apu-cluster", &s->apu_cluster, TYPE_CPU_CLUSTER); qdev_prop_set_uint32(DEVICE(&s->apu_cluster), "cluster-id", 0); for (i = 0; i < num_apus; i++) { object_initialize_child(OBJECT(&s->apu_cluster), "apu-cpu[*]", &s->apu_cpu[i], ARM_CPU_TYPE_NAME("cortex-a53")); } object_initialize_child(obj, "gic", &s->gic, gic_class_name()); for (i = 0; i < XLNX_ZYNQMP_NUM_GEMS; i++) { object_initialize_child(obj, "gem[*]", &s->gem[i], TYPE_CADENCE_GEM); } for (i = 0; i < XLNX_ZYNQMP_NUM_UARTS; i++) { object_initialize_child(obj, "uart[*]", &s->uart[i], TYPE_CADENCE_UART); } object_initialize_child(obj, "sata", &s->sata, TYPE_SYSBUS_AHCI); for (i = 0; i < XLNX_ZYNQMP_NUM_SDHCI; i++) { object_initialize_child(obj, "sdhci[*]", &s->sdhci[i], TYPE_SYSBUS_SDHCI); } for (i = 0; i < XLNX_ZYNQMP_NUM_SPIS; i++) { object_initialize_child(obj, "spi[*]", &s->spi[i], TYPE_XILINX_SPIPS); } object_initialize_child(obj, "qspi", &s->qspi, TYPE_XLNX_ZYNQMP_QSPIPS); object_initialize_child(obj, "xxxdp", &s->dp, TYPE_XLNX_DP); object_initialize_child(obj, "dp-dma", &s->dpdma, TYPE_XLNX_DPDMA); object_initialize_child(obj, "ipi", &s->ipi, TYPE_XLNX_ZYNQMP_IPI); object_initialize_child(obj, "rtc", &s->rtc, TYPE_XLNX_ZYNQMP_RTC); for (i = 0; i < XLNX_ZYNQMP_NUM_GDMA_CH; i++) { object_initialize_child(obj, "gdma[*]", &s->gdma[i], TYPE_XLNX_ZDMA); } for (i = 0; i < XLNX_ZYNQMP_NUM_ADMA_CH; i++) { object_initialize_child(obj, "adma[*]", &s->adma[i], TYPE_XLNX_ZDMA); } } static void xlnx_zynqmp_realize(DeviceState *dev, Error **errp) { MachineState *ms = MACHINE(qdev_get_machine()); XlnxZynqMPState *s = XLNX_ZYNQMP(dev); MemoryRegion *system_memory = get_system_memory(); uint8_t i; uint64_t ram_size; int num_apus = MIN(ms->smp.cpus, XLNX_ZYNQMP_NUM_APU_CPUS); const char *boot_cpu = s->boot_cpu ? s->boot_cpu : "apu-cpu[0]"; ram_addr_t ddr_low_size, ddr_high_size; qemu_irq gic_spi[GIC_NUM_SPI_INTR]; Error *err = NULL; ram_size = memory_region_size(s->ddr_ram); /* Create the DDR Memory Regions. User friendly checks should happen at * the board level */ if (ram_size > XLNX_ZYNQMP_MAX_LOW_RAM_SIZE) { /* The RAM size is above the maximum available for the low DDR. * Create the high DDR memory region as well. */ assert(ram_size <= XLNX_ZYNQMP_MAX_RAM_SIZE); ddr_low_size = XLNX_ZYNQMP_MAX_LOW_RAM_SIZE; ddr_high_size = ram_size - XLNX_ZYNQMP_MAX_LOW_RAM_SIZE; memory_region_init_alias(&s->ddr_ram_high, OBJECT(dev), "ddr-ram-high", s->ddr_ram, ddr_low_size, ddr_high_size); memory_region_add_subregion(get_system_memory(), XLNX_ZYNQMP_HIGH_RAM_START, &s->ddr_ram_high); } else { /* RAM must be non-zero */ assert(ram_size); ddr_low_size = ram_size; } memory_region_init_alias(&s->ddr_ram_low, OBJECT(dev), "ddr-ram-low", s->ddr_ram, 0, ddr_low_size); memory_region_add_subregion(get_system_memory(), 0, &s->ddr_ram_low); /* Create the four OCM banks */ for (i = 0; i < XLNX_ZYNQMP_NUM_OCM_BANKS; i++) { char *ocm_name = g_strdup_printf("zynqmp.ocm_ram_bank_%d", i); memory_region_init_ram(&s->ocm_ram[i], NULL, ocm_name, XLNX_ZYNQMP_OCM_RAM_SIZE, &error_fatal); memory_region_add_subregion(get_system_memory(), XLNX_ZYNQMP_OCM_RAM_0_ADDRESS + i * XLNX_ZYNQMP_OCM_RAM_SIZE, &s->ocm_ram[i]); g_free(ocm_name); } qdev_prop_set_uint32(DEVICE(&s->gic), "num-irq", GIC_NUM_SPI_INTR + 32); qdev_prop_set_uint32(DEVICE(&s->gic), "revision", 2); qdev_prop_set_uint32(DEVICE(&s->gic), "num-cpu", num_apus); qdev_prop_set_bit(DEVICE(&s->gic), "has-security-extensions", s->secure); qdev_prop_set_bit(DEVICE(&s->gic), "has-virtualization-extensions", s->virt); qdev_realize(DEVICE(&s->apu_cluster), NULL, &error_fatal); /* Realize APUs before realizing the GIC. KVM requires this. */ for (i = 0; i < num_apus; i++) { const char *name; object_property_set_int(OBJECT(&s->apu_cpu[i]), "psci-conduit", QEMU_PSCI_CONDUIT_SMC, &error_abort); name = object_get_canonical_path_component(OBJECT(&s->apu_cpu[i])); if (strcmp(name, boot_cpu)) { /* Secondary CPUs start in PSCI powered-down state */ object_property_set_bool(OBJECT(&s->apu_cpu[i]), "start-powered-off", true, &error_abort); } else { s->boot_cpu_ptr = &s->apu_cpu[i]; } object_property_set_bool(OBJECT(&s->apu_cpu[i]), "has_el3", s->secure, NULL); object_property_set_bool(OBJECT(&s->apu_cpu[i]), "has_el2", s->virt, NULL); object_property_set_int(OBJECT(&s->apu_cpu[i]), "reset-cbar", GIC_BASE_ADDR, &error_abort); object_property_set_int(OBJECT(&s->apu_cpu[i]), "core-count", num_apus, &error_abort); if (!qdev_realize(DEVICE(&s->apu_cpu[i]), NULL, errp)) { return; } } if (!sysbus_realize(SYS_BUS_DEVICE(&s->gic), errp)) { return; } assert(ARRAY_SIZE(xlnx_zynqmp_gic_regions) == XLNX_ZYNQMP_GIC_REGIONS); for (i = 0; i < XLNX_ZYNQMP_GIC_REGIONS; i++) { SysBusDevice *gic = SYS_BUS_DEVICE(&s->gic); const XlnxZynqMPGICRegion *r = &xlnx_zynqmp_gic_regions[i]; MemoryRegion *mr; uint32_t addr = r->address; int j; if (r->virt && !s->virt) { continue; } mr = sysbus_mmio_get_region(gic, r->region_index); for (j = 0; j < XLNX_ZYNQMP_GIC_ALIASES; j++) { MemoryRegion *alias = &s->gic_mr[i][j]; memory_region_init_alias(alias, OBJECT(s), "zynqmp-gic-alias", mr, r->offset, XLNX_ZYNQMP_GIC_REGION_SIZE); memory_region_add_subregion(system_memory, addr, alias); addr += XLNX_ZYNQMP_GIC_REGION_SIZE; } } for (i = 0; i < num_apus; i++) { qemu_irq irq; sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i, qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]), ARM_CPU_IRQ)); sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus, qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]), ARM_CPU_FIQ)); sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus * 2, qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]), ARM_CPU_VIRQ)); sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus * 3, qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]), ARM_CPU_VFIQ)); irq = qdev_get_gpio_in(DEVICE(&s->gic), arm_gic_ppi_index(i, ARM_PHYS_TIMER_PPI)); qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_PHYS, irq); irq = qdev_get_gpio_in(DEVICE(&s->gic), arm_gic_ppi_index(i, ARM_VIRT_TIMER_PPI)); qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_VIRT, irq); irq = qdev_get_gpio_in(DEVICE(&s->gic), arm_gic_ppi_index(i, ARM_HYP_TIMER_PPI)); qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_HYP, irq); irq = qdev_get_gpio_in(DEVICE(&s->gic), arm_gic_ppi_index(i, ARM_SEC_TIMER_PPI)); qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_SEC, irq); if (s->virt) { irq = qdev_get_gpio_in(DEVICE(&s->gic), arm_gic_ppi_index(i, GIC_MAINTENANCE_PPI)); sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus * 4, irq); } } if (s->has_rpu) { info_report("The 'has_rpu' property is no longer required, to use the " "RPUs just use -smp 6."); } xlnx_zynqmp_create_rpu(ms, s, boot_cpu, &err); if (err) { error_propagate(errp, err); return; } if (!s->boot_cpu_ptr) { error_setg(errp, "ZynqMP Boot cpu %s not found", boot_cpu); return; } for (i = 0; i < GIC_NUM_SPI_INTR; i++) { gic_spi[i] = qdev_get_gpio_in(DEVICE(&s->gic), i); } for (i = 0; i < XLNX_ZYNQMP_NUM_GEMS; i++) { NICInfo *nd = &nd_table[i]; /* FIXME use qdev NIC properties instead of nd_table[] */ if (nd->used) { qemu_check_nic_model(nd, TYPE_CADENCE_GEM); qdev_set_nic_properties(DEVICE(&s->gem[i]), nd); } object_property_set_int(OBJECT(&s->gem[i]), "revision", GEM_REVISION, &error_abort); object_property_set_int(OBJECT(&s->gem[i]), "phy-addr", 23, &error_abort); object_property_set_int(OBJECT(&s->gem[i]), "num-priority-queues", 2, &error_abort); if (!sysbus_realize(SYS_BUS_DEVICE(&s->gem[i]), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem[i]), 0, gem_addr[i]); sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem[i]), 0, gic_spi[gem_intr[i]]); } for (i = 0; i < XLNX_ZYNQMP_NUM_UARTS; i++) { qdev_prop_set_chr(DEVICE(&s->uart[i]), "chardev", serial_hd(i)); if (!sysbus_realize(SYS_BUS_DEVICE(&s->uart[i]), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->uart[i]), 0, uart_addr[i]); sysbus_connect_irq(SYS_BUS_DEVICE(&s->uart[i]), 0, gic_spi[uart_intr[i]]); } object_property_set_int(OBJECT(&s->sata), "num-ports", SATA_NUM_PORTS, &error_abort); if (!sysbus_realize(SYS_BUS_DEVICE(&s->sata), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->sata), 0, SATA_ADDR); sysbus_connect_irq(SYS_BUS_DEVICE(&s->sata), 0, gic_spi[SATA_INTR]); for (i = 0; i < XLNX_ZYNQMP_NUM_SDHCI; i++) { char *bus_name; SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sdhci[i]); Object *sdhci = OBJECT(&s->sdhci[i]); /* Compatible with: * - SD Host Controller Specification Version 3.00 * - SDIO Specification Version 3.0 * - eMMC Specification Version 4.51 */ if (!object_property_set_uint(sdhci, "sd-spec-version", 3, errp)) { return; } if (!object_property_set_uint(sdhci, "capareg", SDHCI_CAPABILITIES, errp)) { return; } if (!object_property_set_uint(sdhci, "uhs", UHS_I, errp)) { return; } if (!sysbus_realize(SYS_BUS_DEVICE(sdhci), errp)) { return; } sysbus_mmio_map(sbd, 0, sdhci_addr[i]); sysbus_connect_irq(sbd, 0, gic_spi[sdhci_intr[i]]); /* Alias controller SD bus to the SoC itself */ bus_name = g_strdup_printf("sd-bus%d", i); object_property_add_alias(OBJECT(s), bus_name, sdhci, "sd-bus"); g_free(bus_name); } for (i = 0; i < XLNX_ZYNQMP_NUM_SPIS; i++) { gchar *bus_name; if (!sysbus_realize(SYS_BUS_DEVICE(&s->spi[i]), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->spi[i]), 0, spi_addr[i]); sysbus_connect_irq(SYS_BUS_DEVICE(&s->spi[i]), 0, gic_spi[spi_intr[i]]); /* Alias controller SPI bus to the SoC itself */ bus_name = g_strdup_printf("spi%d", i); object_property_add_alias(OBJECT(s), bus_name, OBJECT(&s->spi[i]), "spi0"); g_free(bus_name); } if (!sysbus_realize(SYS_BUS_DEVICE(&s->qspi), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->qspi), 0, QSPI_ADDR); sysbus_mmio_map(SYS_BUS_DEVICE(&s->qspi), 1, LQSPI_ADDR); sysbus_connect_irq(SYS_BUS_DEVICE(&s->qspi), 0, gic_spi[QSPI_IRQ]); for (i = 0; i < XLNX_ZYNQMP_NUM_QSPI_BUS; i++) { gchar *bus_name; gchar *target_bus; /* Alias controller SPI bus to the SoC itself */ bus_name = g_strdup_printf("qspi%d", i); target_bus = g_strdup_printf("spi%d", i); object_property_add_alias(OBJECT(s), bus_name, OBJECT(&s->qspi), target_bus); g_free(bus_name); g_free(target_bus); } if (!sysbus_realize(SYS_BUS_DEVICE(&s->dp), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->dp), 0, DP_ADDR); sysbus_connect_irq(SYS_BUS_DEVICE(&s->dp), 0, gic_spi[DP_IRQ]); if (!sysbus_realize(SYS_BUS_DEVICE(&s->dpdma), errp)) { return; } object_property_set_link(OBJECT(&s->dp), "dpdma", OBJECT(&s->dpdma), &error_abort); sysbus_mmio_map(SYS_BUS_DEVICE(&s->dpdma), 0, DPDMA_ADDR); sysbus_connect_irq(SYS_BUS_DEVICE(&s->dpdma), 0, gic_spi[DPDMA_IRQ]); if (!sysbus_realize(SYS_BUS_DEVICE(&s->ipi), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->ipi), 0, IPI_ADDR); sysbus_connect_irq(SYS_BUS_DEVICE(&s->ipi), 0, gic_spi[IPI_IRQ]); if (!sysbus_realize(SYS_BUS_DEVICE(&s->rtc), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->rtc), 0, RTC_ADDR); sysbus_connect_irq(SYS_BUS_DEVICE(&s->rtc), 0, gic_spi[RTC_IRQ]); for (i = 0; i < XLNX_ZYNQMP_NUM_GDMA_CH; i++) { if (!object_property_set_uint(OBJECT(&s->gdma[i]), "bus-width", 128, errp)) { return; } if (!sysbus_realize(SYS_BUS_DEVICE(&s->gdma[i]), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->gdma[i]), 0, gdma_ch_addr[i]); sysbus_connect_irq(SYS_BUS_DEVICE(&s->gdma[i]), 0, gic_spi[gdma_ch_intr[i]]); } for (i = 0; i < XLNX_ZYNQMP_NUM_ADMA_CH; i++) { if (!sysbus_realize(SYS_BUS_DEVICE(&s->adma[i]), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->adma[i]), 0, adma_ch_addr[i]); sysbus_connect_irq(SYS_BUS_DEVICE(&s->adma[i]), 0, gic_spi[adma_ch_intr[i]]); } } static Property xlnx_zynqmp_props[] = { DEFINE_PROP_STRING("boot-cpu", XlnxZynqMPState, boot_cpu), DEFINE_PROP_BOOL("secure", XlnxZynqMPState, secure, false), DEFINE_PROP_BOOL("virtualization", XlnxZynqMPState, virt, false), DEFINE_PROP_BOOL("has_rpu", XlnxZynqMPState, has_rpu, false), DEFINE_PROP_LINK("ddr-ram", XlnxZynqMPState, ddr_ram, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_END_OF_LIST() }; static void xlnx_zynqmp_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); device_class_set_props(dc, xlnx_zynqmp_props); dc->realize = xlnx_zynqmp_realize; /* Reason: Uses serial_hds in realize function, thus can't be used twice */ dc->user_creatable = false; } static const TypeInfo xlnx_zynqmp_type_info = { .name = TYPE_XLNX_ZYNQMP, .parent = TYPE_DEVICE, .instance_size = sizeof(XlnxZynqMPState), .instance_init = xlnx_zynqmp_init, .class_init = xlnx_zynqmp_class_init, }; static void xlnx_zynqmp_register_types(void) { type_register_static(&xlnx_zynqmp_type_info); } type_init(xlnx_zynqmp_register_types)