/* * Status and system control registers for ARM RealView/Versatile boards. * * Copyright (c) 2006-2007 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GPL. */ #include "hw/hw.h" #include "qemu/timer.h" #include "qemu/bitops.h" #include "hw/sysbus.h" #include "hw/primecell.h" #include "sysemu/sysemu.h" #define LOCK_VALUE 0xa05f typedef struct { SysBusDevice busdev; MemoryRegion iomem; qemu_irq pl110_mux_ctrl; uint32_t sys_id; uint32_t leds; uint16_t lockval; uint32_t cfgdata1; uint32_t cfgdata2; uint32_t flags; uint32_t nvflags; uint32_t resetlevel; uint32_t proc_id; uint32_t sys_mci; uint32_t sys_cfgdata; uint32_t sys_cfgctrl; uint32_t sys_cfgstat; uint32_t sys_clcd; uint32_t db_num_vsensors; uint32_t *db_voltage; } arm_sysctl_state; static const VMStateDescription vmstate_arm_sysctl = { .name = "realview_sysctl", .version_id = 3, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(leds, arm_sysctl_state), VMSTATE_UINT16(lockval, arm_sysctl_state), VMSTATE_UINT32(cfgdata1, arm_sysctl_state), VMSTATE_UINT32(cfgdata2, arm_sysctl_state), VMSTATE_UINT32(flags, arm_sysctl_state), VMSTATE_UINT32(nvflags, arm_sysctl_state), VMSTATE_UINT32(resetlevel, arm_sysctl_state), VMSTATE_UINT32_V(sys_mci, arm_sysctl_state, 2), VMSTATE_UINT32_V(sys_cfgdata, arm_sysctl_state, 2), VMSTATE_UINT32_V(sys_cfgctrl, arm_sysctl_state, 2), VMSTATE_UINT32_V(sys_cfgstat, arm_sysctl_state, 2), VMSTATE_UINT32_V(sys_clcd, arm_sysctl_state, 3), VMSTATE_END_OF_LIST() } }; /* The PB926 actually uses a different format for * its SYS_ID register. Fortunately the bits which are * board type on later boards are distinct. */ #define BOARD_ID_PB926 0x100 #define BOARD_ID_EB 0x140 #define BOARD_ID_PBA8 0x178 #define BOARD_ID_PBX 0x182 #define BOARD_ID_VEXPRESS 0x190 static int board_id(arm_sysctl_state *s) { /* Extract the board ID field from the SYS_ID register value */ return (s->sys_id >> 16) & 0xfff; } static void arm_sysctl_reset(DeviceState *d) { arm_sysctl_state *s = FROM_SYSBUS(arm_sysctl_state, SYS_BUS_DEVICE(d)); s->leds = 0; s->lockval = 0; s->cfgdata1 = 0; s->cfgdata2 = 0; s->flags = 0; s->resetlevel = 0; if (board_id(s) == BOARD_ID_VEXPRESS) { /* On VExpress this register will RAZ/WI */ s->sys_clcd = 0; } else { /* All others: CLCDID 0x1f, indicating VGA */ s->sys_clcd = 0x1f00; } } static uint64_t arm_sysctl_read(void *opaque, hwaddr offset, unsigned size) { arm_sysctl_state *s = (arm_sysctl_state *)opaque; switch (offset) { case 0x00: /* ID */ return s->sys_id; case 0x04: /* SW */ /* General purpose hardware switches. We don't have a useful way of exposing these to the user. */ return 0; case 0x08: /* LED */ return s->leds; case 0x20: /* LOCK */ return s->lockval; case 0x0c: /* OSC0 */ case 0x10: /* OSC1 */ case 0x14: /* OSC2 */ case 0x18: /* OSC3 */ case 0x1c: /* OSC4 */ case 0x24: /* 100HZ */ /* ??? Implement these. */ return 0; case 0x28: /* CFGDATA1 */ return s->cfgdata1; case 0x2c: /* CFGDATA2 */ return s->cfgdata2; case 0x30: /* FLAGS */ return s->flags; case 0x38: /* NVFLAGS */ return s->nvflags; case 0x40: /* RESETCTL */ if (board_id(s) == BOARD_ID_VEXPRESS) { /* reserved: RAZ/WI */ return 0; } return s->resetlevel; case 0x44: /* PCICTL */ return 1; case 0x48: /* MCI */ return s->sys_mci; case 0x4c: /* FLASH */ return 0; case 0x50: /* CLCD */ return s->sys_clcd; case 0x54: /* CLCDSER */ return 0; case 0x58: /* BOOTCS */ return 0; case 0x5c: /* 24MHz */ return muldiv64(qemu_get_clock_ns(vm_clock), 24000000, get_ticks_per_sec()); case 0x60: /* MISC */ return 0; case 0x84: /* PROCID0 */ return s->proc_id; case 0x88: /* PROCID1 */ return 0xff000000; case 0x64: /* DMAPSR0 */ case 0x68: /* DMAPSR1 */ case 0x6c: /* DMAPSR2 */ case 0x70: /* IOSEL */ case 0x74: /* PLDCTL */ case 0x80: /* BUSID */ case 0x8c: /* OSCRESET0 */ case 0x90: /* OSCRESET1 */ case 0x94: /* OSCRESET2 */ case 0x98: /* OSCRESET3 */ case 0x9c: /* OSCRESET4 */ case 0xc0: /* SYS_TEST_OSC0 */ case 0xc4: /* SYS_TEST_OSC1 */ case 0xc8: /* SYS_TEST_OSC2 */ case 0xcc: /* SYS_TEST_OSC3 */ case 0xd0: /* SYS_TEST_OSC4 */ return 0; case 0xa0: /* SYS_CFGDATA */ if (board_id(s) != BOARD_ID_VEXPRESS) { goto bad_reg; } return s->sys_cfgdata; case 0xa4: /* SYS_CFGCTRL */ if (board_id(s) != BOARD_ID_VEXPRESS) { goto bad_reg; } return s->sys_cfgctrl; case 0xa8: /* SYS_CFGSTAT */ if (board_id(s) != BOARD_ID_VEXPRESS) { goto bad_reg; } return s->sys_cfgstat; default: bad_reg: qemu_log_mask(LOG_GUEST_ERROR, "arm_sysctl_read: Bad register offset 0x%x\n", (int)offset); return 0; } } /* SYS_CFGCTRL functions */ #define SYS_CFG_OSC 1 #define SYS_CFG_VOLT 2 #define SYS_CFG_AMP 3 #define SYS_CFG_TEMP 4 #define SYS_CFG_RESET 5 #define SYS_CFG_SCC 6 #define SYS_CFG_MUXFPGA 7 #define SYS_CFG_SHUTDOWN 8 #define SYS_CFG_REBOOT 9 #define SYS_CFG_DVIMODE 11 #define SYS_CFG_POWER 12 #define SYS_CFG_ENERGY 13 /* SYS_CFGCTRL site field values */ #define SYS_CFG_SITE_MB 0 #define SYS_CFG_SITE_DB1 1 #define SYS_CFG_SITE_DB2 2 /** * vexpress_cfgctrl_read: * @s: arm_sysctl_state pointer * @dcc, @function, @site, @position, @device: split out values from * SYS_CFGCTRL register * @val: pointer to where to put the read data on success * * Handle a VExpress SYS_CFGCTRL register read. On success, return true and * write the read value to *val. On failure, return false (and val may * or may not be written to). */ static bool vexpress_cfgctrl_read(arm_sysctl_state *s, unsigned int dcc, unsigned int function, unsigned int site, unsigned int position, unsigned int device, uint32_t *val) { /* We don't support anything other than DCC 0, board stack position 0 * or sites other than motherboard/daughterboard: */ if (dcc != 0 || position != 0 || (site != SYS_CFG_SITE_MB && site != SYS_CFG_SITE_DB1)) { goto cfgctrl_unimp; } switch (function) { case SYS_CFG_VOLT: if (site == SYS_CFG_SITE_DB1 && device < s->db_num_vsensors) { *val = s->db_voltage[device]; return true; } if (site == SYS_CFG_SITE_MB && device == 0) { /* There is only one motherboard voltage sensor: * VIO : 3.3V : bus voltage between mother and daughterboard */ *val = 3300000; return true; } break; default: break; } cfgctrl_unimp: qemu_log_mask(LOG_UNIMP, "arm_sysctl: Unimplemented SYS_CFGCTRL read of function " "0x%x DCC 0x%x site 0x%x position 0x%x device 0x%x\n", function, dcc, site, position, device); return false; } /** * vexpress_cfgctrl_write: * @s: arm_sysctl_state pointer * @dcc, @function, @site, @position, @device: split out values from * SYS_CFGCTRL register * @val: data to write * * Handle a VExpress SYS_CFGCTRL register write. On success, return true. * On failure, return false. */ static bool vexpress_cfgctrl_write(arm_sysctl_state *s, unsigned int dcc, unsigned int function, unsigned int site, unsigned int position, unsigned int device, uint32_t val) { /* We don't support anything other than DCC 0, board stack position 0 * or sites other than motherboard/daughterboard: */ if (dcc != 0 || position != 0 || (site != SYS_CFG_SITE_MB && site != SYS_CFG_SITE_DB1)) { goto cfgctrl_unimp; } switch (function) { case SYS_CFG_MUXFPGA: if (site == SYS_CFG_SITE_MB && device == 0) { /* Select whether video output comes from motherboard * or daughterboard: log and ignore as QEMU doesn't * support this. */ qemu_log_mask(LOG_UNIMP, "arm_sysctl: selection of video output " "not supported, ignoring\n"); return true; } break; case SYS_CFG_SHUTDOWN: if (site == SYS_CFG_SITE_MB && device == 0) { qemu_system_shutdown_request(); return true; } break; case SYS_CFG_REBOOT: if (site == SYS_CFG_SITE_MB && device == 0) { qemu_system_reset_request(); return true; } break; case SYS_CFG_DVIMODE: if (site == SYS_CFG_SITE_MB && device == 0) { /* Selecting DVI mode is meaningless for QEMU: we will * always display the output correctly according to the * pixel height/width programmed into the CLCD controller. */ return true; } default: break; } cfgctrl_unimp: qemu_log_mask(LOG_UNIMP, "arm_sysctl: Unimplemented SYS_CFGCTRL write of function " "0x%x DCC 0x%x site 0x%x position 0x%x device 0x%x\n", function, dcc, site, position, device); return false; } static void arm_sysctl_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { arm_sysctl_state *s = (arm_sysctl_state *)opaque; switch (offset) { case 0x08: /* LED */ s->leds = val; break; case 0x0c: /* OSC0 */ case 0x10: /* OSC1 */ case 0x14: /* OSC2 */ case 0x18: /* OSC3 */ case 0x1c: /* OSC4 */ /* ??? */ break; case 0x20: /* LOCK */ if (val == LOCK_VALUE) s->lockval = val; else s->lockval = val & 0x7fff; break; case 0x28: /* CFGDATA1 */ /* ??? Need to implement this. */ s->cfgdata1 = val; break; case 0x2c: /* CFGDATA2 */ /* ??? Need to implement this. */ s->cfgdata2 = val; break; case 0x30: /* FLAGSSET */ s->flags |= val; break; case 0x34: /* FLAGSCLR */ s->flags &= ~val; break; case 0x38: /* NVFLAGSSET */ s->nvflags |= val; break; case 0x3c: /* NVFLAGSCLR */ s->nvflags &= ~val; break; case 0x40: /* RESETCTL */ switch (board_id(s)) { case BOARD_ID_PB926: if (s->lockval == LOCK_VALUE) { s->resetlevel = val; if (val & 0x100) { qemu_system_reset_request(); } } break; case BOARD_ID_PBX: case BOARD_ID_PBA8: if (s->lockval == LOCK_VALUE) { s->resetlevel = val; if (val & 0x04) { qemu_system_reset_request(); } } break; case BOARD_ID_VEXPRESS: case BOARD_ID_EB: default: /* reserved: RAZ/WI */ break; } break; case 0x44: /* PCICTL */ /* nothing to do. */ break; case 0x4c: /* FLASH */ break; case 0x50: /* CLCD */ switch (board_id(s)) { case BOARD_ID_PB926: /* On 926 bits 13:8 are R/O, bits 1:0 control * the mux that defines how to interpret the PL110 * graphics format, and other bits are r/w but we * don't implement them to do anything. */ s->sys_clcd &= 0x3f00; s->sys_clcd |= val & ~0x3f00; qemu_set_irq(s->pl110_mux_ctrl, val & 3); break; case BOARD_ID_EB: /* The EB is the same except that there is no mux since * the EB has a PL111. */ s->sys_clcd &= 0x3f00; s->sys_clcd |= val & ~0x3f00; break; case BOARD_ID_PBA8: case BOARD_ID_PBX: /* On PBA8 and PBX bit 7 is r/w and all other bits * are either r/o or RAZ/WI. */ s->sys_clcd &= (1 << 7); s->sys_clcd |= val & ~(1 << 7); break; case BOARD_ID_VEXPRESS: default: /* On VExpress this register is unimplemented and will RAZ/WI */ break; } break; case 0x54: /* CLCDSER */ case 0x64: /* DMAPSR0 */ case 0x68: /* DMAPSR1 */ case 0x6c: /* DMAPSR2 */ case 0x70: /* IOSEL */ case 0x74: /* PLDCTL */ case 0x80: /* BUSID */ case 0x84: /* PROCID0 */ case 0x88: /* PROCID1 */ case 0x8c: /* OSCRESET0 */ case 0x90: /* OSCRESET1 */ case 0x94: /* OSCRESET2 */ case 0x98: /* OSCRESET3 */ case 0x9c: /* OSCRESET4 */ break; case 0xa0: /* SYS_CFGDATA */ if (board_id(s) != BOARD_ID_VEXPRESS) { goto bad_reg; } s->sys_cfgdata = val; return; case 0xa4: /* SYS_CFGCTRL */ if (board_id(s) != BOARD_ID_VEXPRESS) { goto bad_reg; } /* Undefined bits [19:18] are RAZ/WI, and writing to * the start bit just triggers the action; it always reads * as zero. */ s->sys_cfgctrl = val & ~((3 << 18) | (1 << 31)); if (val & (1 << 31)) { /* Start bit set -- actually do something */ unsigned int dcc = extract32(s->sys_cfgctrl, 26, 4); unsigned int function = extract32(s->sys_cfgctrl, 20, 6); unsigned int site = extract32(s->sys_cfgctrl, 16, 2); unsigned int position = extract32(s->sys_cfgctrl, 12, 4); unsigned int device = extract32(s->sys_cfgctrl, 0, 12); s->sys_cfgstat = 1; /* complete */ if (s->sys_cfgctrl & (1 << 30)) { if (!vexpress_cfgctrl_write(s, dcc, function, site, position, device, s->sys_cfgdata)) { s->sys_cfgstat |= 2; /* error */ } } else { uint32_t val; if (!vexpress_cfgctrl_read(s, dcc, function, site, position, device, &val)) { s->sys_cfgstat |= 2; /* error */ } else { s->sys_cfgdata = val; } } } s->sys_cfgctrl &= ~(1 << 31); return; case 0xa8: /* SYS_CFGSTAT */ if (board_id(s) != BOARD_ID_VEXPRESS) { goto bad_reg; } s->sys_cfgstat = val & 3; return; default: bad_reg: qemu_log_mask(LOG_GUEST_ERROR, "arm_sysctl_write: Bad register offset 0x%x\n", (int)offset); return; } } static const MemoryRegionOps arm_sysctl_ops = { .read = arm_sysctl_read, .write = arm_sysctl_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void arm_sysctl_gpio_set(void *opaque, int line, int level) { arm_sysctl_state *s = (arm_sysctl_state *)opaque; switch (line) { case ARM_SYSCTL_GPIO_MMC_WPROT: { /* For PB926 and EB write-protect is bit 2 of SYS_MCI; * for all later boards it is bit 1. */ int bit = 2; if ((board_id(s) == BOARD_ID_PB926) || (board_id(s) == BOARD_ID_EB)) { bit = 4; } s->sys_mci &= ~bit; if (level) { s->sys_mci |= bit; } break; } case ARM_SYSCTL_GPIO_MMC_CARDIN: s->sys_mci &= ~1; if (level) { s->sys_mci |= 1; } break; } } static void arm_sysctl_init(Object *obj) { DeviceState *dev = DEVICE(obj); SysBusDevice *sd = SYS_BUS_DEVICE(obj); arm_sysctl_state *s = FROM_SYSBUS(arm_sysctl_state, sd); memory_region_init_io(&s->iomem, &arm_sysctl_ops, s, "arm-sysctl", 0x1000); sysbus_init_mmio(sd, &s->iomem); qdev_init_gpio_in(dev, arm_sysctl_gpio_set, 2); qdev_init_gpio_out(dev, &s->pl110_mux_ctrl, 1); } static void arm_sysctl_finalize(Object *obj) { SysBusDevice *dev = SYS_BUS_DEVICE(obj); arm_sysctl_state *s = FROM_SYSBUS(arm_sysctl_state, dev); g_free(s->db_voltage); } static Property arm_sysctl_properties[] = { DEFINE_PROP_UINT32("sys_id", arm_sysctl_state, sys_id, 0), DEFINE_PROP_UINT32("proc_id", arm_sysctl_state, proc_id, 0), /* Daughterboard power supply voltages (as reported via SYS_CFG) */ DEFINE_PROP_ARRAY("db-voltage", arm_sysctl_state, db_num_vsensors, db_voltage, qdev_prop_uint32, uint32_t), DEFINE_PROP_END_OF_LIST(), }; static void arm_sysctl_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->reset = arm_sysctl_reset; dc->vmsd = &vmstate_arm_sysctl; dc->props = arm_sysctl_properties; } static const TypeInfo arm_sysctl_info = { .name = "realview_sysctl", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(arm_sysctl_state), .instance_init = arm_sysctl_init, .instance_finalize = arm_sysctl_finalize, .class_init = arm_sysctl_class_init, }; static void arm_sysctl_register_types(void) { type_register_static(&arm_sysctl_info); } type_init(arm_sysctl_register_types)