/* * Device model for Cadence UART * * Reference: Xilinx Zynq 7000 reference manual * - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf * - Chapter 19 UART Controller * - Appendix B for Register details * * Copyright (c) 2010 Xilinx Inc. * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com) * Copyright (c) 2012 PetaLogix Pty Ltd. * Written by Haibing Ma * M.Habib * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "chardev/char-fe.h" #include "chardev/char-serial.h" #include "qemu/timer.h" #include "qemu/log.h" #include "qemu/module.h" #include "hw/char/cadence_uart.h" #include "hw/irq.h" #include "hw/qdev-clock.h" #include "hw/qdev-properties-system.h" #include "trace.h" #ifdef CADENCE_UART_ERR_DEBUG #define DB_PRINT(...) do { \ fprintf(stderr, ": %s: ", __func__); \ fprintf(stderr, ## __VA_ARGS__); \ } while (0) #else #define DB_PRINT(...) #endif #define UART_SR_INTR_RTRIG 0x00000001 #define UART_SR_INTR_REMPTY 0x00000002 #define UART_SR_INTR_RFUL 0x00000004 #define UART_SR_INTR_TEMPTY 0x00000008 #define UART_SR_INTR_TFUL 0x00000010 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */ #define UART_SR_TTRIG 0x00002000 #define UART_INTR_TTRIG 0x00000400 /* bits fields in CSR that correlate to CISR. If any of these bits are set in * SR, then the same bit in CISR is set high too */ #define UART_SR_TO_CISR_MASK 0x0000001F #define UART_INTR_ROVR 0x00000020 #define UART_INTR_FRAME 0x00000040 #define UART_INTR_PARE 0x00000080 #define UART_INTR_TIMEOUT 0x00000100 #define UART_INTR_DMSI 0x00000200 #define UART_INTR_TOVR 0x00001000 #define UART_SR_RACTIVE 0x00000400 #define UART_SR_TACTIVE 0x00000800 #define UART_SR_FDELT 0x00001000 #define UART_CR_RXRST 0x00000001 #define UART_CR_TXRST 0x00000002 #define UART_CR_RX_EN 0x00000004 #define UART_CR_RX_DIS 0x00000008 #define UART_CR_TX_EN 0x00000010 #define UART_CR_TX_DIS 0x00000020 #define UART_CR_RST_TO 0x00000040 #define UART_CR_STARTBRK 0x00000080 #define UART_CR_STOPBRK 0x00000100 #define UART_MR_CLKS 0x00000001 #define UART_MR_CHRL 0x00000006 #define UART_MR_CHRL_SH 1 #define UART_MR_PAR 0x00000038 #define UART_MR_PAR_SH 3 #define UART_MR_NBSTOP 0x000000C0 #define UART_MR_NBSTOP_SH 6 #define UART_MR_CHMODE 0x00000300 #define UART_MR_CHMODE_SH 8 #define UART_MR_UCLKEN 0x00000400 #define UART_MR_IRMODE 0x00000800 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH) #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH) #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH) #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH) #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH) #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH) #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH) #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH) #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH) #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH) #define UART_DEFAULT_REF_CLK (50 * 1000 * 1000) #define R_CR (0x00/4) #define R_MR (0x04/4) #define R_IER (0x08/4) #define R_IDR (0x0C/4) #define R_IMR (0x10/4) #define R_CISR (0x14/4) #define R_BRGR (0x18/4) #define R_RTOR (0x1C/4) #define R_RTRIG (0x20/4) #define R_MCR (0x24/4) #define R_MSR (0x28/4) #define R_SR (0x2C/4) #define R_TX_RX (0x30/4) #define R_BDIV (0x34/4) #define R_FDEL (0x38/4) #define R_PMIN (0x3C/4) #define R_PWID (0x40/4) #define R_TTRIG (0x44/4) static void uart_update_status(CadenceUARTState *s) { s->r[R_SR] = 0; s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL : 0; s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0; s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0; s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL : 0; s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0; s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0; s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK; s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0; qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR])); } static void fifo_trigger_update(void *opaque) { CadenceUARTState *s = opaque; if (s->r[R_RTOR]) { s->r[R_CISR] |= UART_INTR_TIMEOUT; uart_update_status(s); } } static void uart_rx_reset(CadenceUARTState *s) { s->rx_wpos = 0; s->rx_count = 0; qemu_chr_fe_accept_input(&s->chr); } static void uart_tx_reset(CadenceUARTState *s) { s->tx_count = 0; } static void uart_send_breaks(CadenceUARTState *s) { int break_enabled = 1; qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK, &break_enabled); } static void uart_parameters_setup(CadenceUARTState *s) { QEMUSerialSetParams ssp; unsigned int baud_rate, packet_size, input_clk; input_clk = clock_get_hz(s->refclk); baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk; baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1)); trace_cadence_uart_baudrate(baud_rate); ssp.speed = baud_rate; packet_size = 1; switch (s->r[R_MR] & UART_MR_PAR) { case UART_PARITY_EVEN: ssp.parity = 'E'; packet_size++; break; case UART_PARITY_ODD: ssp.parity = 'O'; packet_size++; break; default: ssp.parity = 'N'; break; } switch (s->r[R_MR] & UART_MR_CHRL) { case UART_DATA_BITS_6: ssp.data_bits = 6; break; case UART_DATA_BITS_7: ssp.data_bits = 7; break; default: ssp.data_bits = 8; break; } switch (s->r[R_MR] & UART_MR_NBSTOP) { case UART_STOP_BITS_1: ssp.stop_bits = 1; break; default: ssp.stop_bits = 2; break; } packet_size += ssp.data_bits + ssp.stop_bits; if (ssp.speed == 0) { /* * Avoid division-by-zero below. * TODO: find something better */ ssp.speed = 1; } s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size; qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); } static int uart_can_receive(void *opaque) { CadenceUARTState *s = opaque; int ret; uint32_t ch_mode; /* ignore characters when unclocked or in reset */ if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) { qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n", __func__); return 0; } ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE); ch_mode = s->r[R_MR] & UART_MR_CHMODE; if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) { ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count); } if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) { ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count); } return ret; } static void uart_ctrl_update(CadenceUARTState *s) { if (s->r[R_CR] & UART_CR_TXRST) { uart_tx_reset(s); } if (s->r[R_CR] & UART_CR_RXRST) { uart_rx_reset(s); } s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST); if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) { uart_send_breaks(s); } } static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size) { CadenceUARTState *s = opaque; uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); int i; if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) { return; } if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) { s->r[R_CISR] |= UART_INTR_ROVR; } else { for (i = 0; i < size; i++) { s->rx_fifo[s->rx_wpos] = buf[i]; s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE; s->rx_count++; } timer_mod(s->fifo_trigger_handle, new_rx_time + (s->char_tx_time * 4)); } uart_update_status(s); } static gboolean cadence_uart_xmit(void *do_not_use, GIOCondition cond, void *opaque) { CadenceUARTState *s = opaque; int ret; /* instant drain the fifo when there's no back-end */ if (!qemu_chr_fe_backend_connected(&s->chr)) { s->tx_count = 0; return FALSE; } if (!s->tx_count) { return FALSE; } ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count); if (ret >= 0) { s->tx_count -= ret; memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count); } if (s->tx_count) { guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, cadence_uart_xmit, s); if (!r) { s->tx_count = 0; return FALSE; } } uart_update_status(s); return FALSE; } static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf, int size) { if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) { return; } if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) { size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count; /* * This can only be a guest error via a bad tx fifo register push, * as can_receive() should stop remote loop and echo modes ever getting * us to here. */ qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow"); s->r[R_CISR] |= UART_INTR_ROVR; } memcpy(s->tx_fifo + s->tx_count, buf, size); s->tx_count += size; cadence_uart_xmit(NULL, G_IO_OUT, s); } static void uart_receive(void *opaque, const uint8_t *buf, int size) { CadenceUARTState *s = opaque; uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE; if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) { uart_write_rx_fifo(opaque, buf, size); } if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) { uart_write_tx_fifo(s, buf, size); } } static void uart_event(void *opaque, QEMUChrEvent event) { CadenceUARTState *s = opaque; uint8_t buf = '\0'; /* ignore characters when unclocked or in reset */ if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) { qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n", __func__); return; } if (event == CHR_EVENT_BREAK) { uart_write_rx_fifo(opaque, &buf, 1); } uart_update_status(s); } static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c) { if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) { return; } if (s->rx_count) { uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % CADENCE_UART_RX_FIFO_SIZE; *c = s->rx_fifo[rx_rpos]; s->rx_count--; qemu_chr_fe_accept_input(&s->chr); } else { *c = 0; } uart_update_status(s); } static MemTxResult uart_write(void *opaque, hwaddr offset, uint64_t value, unsigned size, MemTxAttrs attrs) { CadenceUARTState *s = opaque; /* ignore access when unclocked or in reset */ if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) { qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n", __func__); return MEMTX_ERROR; } DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value); offset >>= 2; if (offset >= CADENCE_UART_R_MAX) { return MEMTX_DECODE_ERROR; } switch (offset) { case R_IER: /* ier (wts imr) */ s->r[R_IMR] |= value; break; case R_IDR: /* idr (wtc imr) */ s->r[R_IMR] &= ~value; break; case R_IMR: /* imr (read only) */ break; case R_CISR: /* cisr (wtc) */ s->r[R_CISR] &= ~value; break; case R_TX_RX: /* UARTDR */ switch (s->r[R_MR] & UART_MR_CHMODE) { case NORMAL_MODE: uart_write_tx_fifo(s, (uint8_t *) &value, 1); break; case LOCAL_LOOPBACK: uart_write_rx_fifo(opaque, (uint8_t *) &value, 1); break; } break; case R_BRGR: /* Baud rate generator */ if (value >= 0x01) { s->r[offset] = value & 0xFFFF; } break; case R_BDIV: /* Baud rate divider */ if (value >= 0x04) { s->r[offset] = value & 0xFF; } break; default: s->r[offset] = value; } switch (offset) { case R_CR: uart_ctrl_update(s); break; case R_MR: uart_parameters_setup(s); break; } uart_update_status(s); return MEMTX_OK; } static MemTxResult uart_read(void *opaque, hwaddr offset, uint64_t *value, unsigned size, MemTxAttrs attrs) { CadenceUARTState *s = opaque; uint32_t c = 0; /* ignore access when unclocked or in reset */ if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) { qemu_log_mask(LOG_GUEST_ERROR, "%s: uart is unclocked or in reset\n", __func__); return MEMTX_ERROR; } offset >>= 2; if (offset >= CADENCE_UART_R_MAX) { return MEMTX_DECODE_ERROR; } if (offset == R_TX_RX) { uart_read_rx_fifo(s, &c); } else { c = s->r[offset]; } DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c); *value = c; return MEMTX_OK; } static const MemoryRegionOps uart_ops = { .read_with_attrs = uart_read, .write_with_attrs = uart_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void cadence_uart_reset_init(Object *obj, ResetType type) { CadenceUARTState *s = CADENCE_UART(obj); s->r[R_CR] = 0x00000128; s->r[R_IMR] = 0; s->r[R_CISR] = 0; s->r[R_RTRIG] = 0x00000020; s->r[R_BRGR] = 0x0000028B; s->r[R_BDIV] = 0x0000000F; s->r[R_TTRIG] = 0x00000020; } static void cadence_uart_reset_hold(Object *obj) { CadenceUARTState *s = CADENCE_UART(obj); uart_rx_reset(s); uart_tx_reset(s); uart_update_status(s); } static void cadence_uart_realize(DeviceState *dev, Error **errp) { CadenceUARTState *s = CADENCE_UART(dev); s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL, fifo_trigger_update, s); qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive, uart_event, NULL, s, NULL, true); } static void cadence_uart_refclk_update(void *opaque, ClockEvent event) { CadenceUARTState *s = opaque; /* recompute uart's speed on clock change */ uart_parameters_setup(s); } static void cadence_uart_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); CadenceUARTState *s = CADENCE_UART(obj); memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq); s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", cadence_uart_refclk_update, s, ClockUpdate); /* initialize the frequency in case the clock remains unconnected */ clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK); s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10; } static int cadence_uart_pre_load(void *opaque) { CadenceUARTState *s = opaque; /* the frequency will be overriden if the refclk field is present */ clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK); return 0; } static int cadence_uart_post_load(void *opaque, int version_id) { CadenceUARTState *s = opaque; /* Ensure these two aren't invalid numbers */ if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF || s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) { /* Value is invalid, abort */ return 1; } uart_parameters_setup(s); uart_update_status(s); return 0; } static const VMStateDescription vmstate_cadence_uart = { .name = "cadence_uart", .version_id = 3, .minimum_version_id = 2, .pre_load = cadence_uart_pre_load, .post_load = cadence_uart_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX), VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState, CADENCE_UART_RX_FIFO_SIZE), VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState, CADENCE_UART_TX_FIFO_SIZE), VMSTATE_UINT32(rx_count, CadenceUARTState), VMSTATE_UINT32(tx_count, CadenceUARTState), VMSTATE_UINT32(rx_wpos, CadenceUARTState), VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState), VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3), VMSTATE_END_OF_LIST() }, }; static Property cadence_uart_properties[] = { DEFINE_PROP_CHR("chardev", CadenceUARTState, chr), DEFINE_PROP_END_OF_LIST(), }; static void cadence_uart_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); dc->realize = cadence_uart_realize; dc->vmsd = &vmstate_cadence_uart; rc->phases.enter = cadence_uart_reset_init; rc->phases.hold = cadence_uart_reset_hold; device_class_set_props(dc, cadence_uart_properties); } static const TypeInfo cadence_uart_info = { .name = TYPE_CADENCE_UART, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(CadenceUARTState), .instance_init = cadence_uart_init, .class_init = cadence_uart_class_init, }; static void cadence_uart_register_types(void) { type_register_static(&cadence_uart_info); } type_init(cadence_uart_register_types)