/* * NUMA parameter parsing routines * * Copyright (c) 2014 Fujitsu Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "sysemu/hostmem.h" #include "sysemu/numa.h" #include "sysemu/sysemu.h" #include "exec/cpu-common.h" #include "exec/ramlist.h" #include "qemu/bitmap.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qapi/opts-visitor.h" #include "qapi/qapi-visit-machine.h" #include "sysemu/qtest.h" #include "hw/core/cpu.h" #include "hw/mem/pc-dimm.h" #include "migration/vmstate.h" #include "hw/boards.h" #include "hw/mem/memory-device.h" #include "qemu/option.h" #include "qemu/config-file.h" #include "qemu/cutils.h" QemuOptsList qemu_numa_opts = { .name = "numa", .implied_opt_name = "type", .head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head), .desc = { { 0 } } /* validated with OptsVisitor */ }; static int have_memdevs; bool numa_uses_legacy_mem(void) { return !have_memdevs; } static int have_mem; static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one. * For all nodes, nodeid < max_numa_nodeid */ static void parse_numa_node(MachineState *ms, NumaNodeOptions *node, Error **errp) { Error *err = NULL; uint16_t nodenr; uint16List *cpus = NULL; MachineClass *mc = MACHINE_GET_CLASS(ms); unsigned int max_cpus = ms->smp.max_cpus; NodeInfo *numa_info = ms->numa_state->nodes; if (node->has_nodeid) { nodenr = node->nodeid; } else { nodenr = ms->numa_state->num_nodes; } if (nodenr >= MAX_NODES) { error_setg(errp, "Max number of NUMA nodes reached: %" PRIu16 "", nodenr); return; } if (numa_info[nodenr].present) { error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr); return; } for (cpus = node->cpus; cpus; cpus = cpus->next) { CpuInstanceProperties props; if (cpus->value >= max_cpus) { error_setg(errp, "CPU index (%" PRIu16 ")" " should be smaller than maxcpus (%d)", cpus->value, max_cpus); return; } props = mc->cpu_index_to_instance_props(ms, cpus->value); props.node_id = nodenr; props.has_node_id = true; machine_set_cpu_numa_node(ms, &props, &err); if (err) { error_propagate(errp, err); return; } } have_memdevs = have_memdevs ? : node->has_memdev; have_mem = have_mem ? : node->has_mem; if ((node->has_mem && have_memdevs) || (node->has_memdev && have_mem)) { error_setg(errp, "numa configuration should use either mem= or memdev=," "mixing both is not allowed"); return; } if (node->has_mem) { if (!mc->numa_mem_supported) { error_setg(errp, "Parameter -numa node,mem is not supported by this" " machine type"); error_append_hint(errp, "Use -numa node,memdev instead\n"); return; } numa_info[nodenr].node_mem = node->mem; if (!qtest_enabled()) { warn_report("Parameter -numa node,mem is deprecated," " use -numa node,memdev instead"); } } if (node->has_memdev) { Object *o; o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL); if (!o) { error_setg(errp, "memdev=%s is ambiguous", node->memdev); return; } object_ref(o); numa_info[nodenr].node_mem = object_property_get_uint(o, "size", NULL); numa_info[nodenr].node_memdev = MEMORY_BACKEND(o); } /* * If not set the initiator, set it to MAX_NODES. And if * HMAT is enabled and this node has no cpus, QEMU will raise error. */ numa_info[nodenr].initiator = MAX_NODES; if (node->has_initiator) { if (!ms->numa_state->hmat_enabled) { error_setg(errp, "ACPI Heterogeneous Memory Attribute Table " "(HMAT) is disabled, enable it with -machine hmat=on " "before using any of hmat specific options"); return; } if (node->initiator >= MAX_NODES) { error_report("The initiator id %" PRIu16 " expects an integer " "between 0 and %d", node->initiator, MAX_NODES - 1); return; } numa_info[nodenr].initiator = node->initiator; } numa_info[nodenr].present = true; max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1); ms->numa_state->num_nodes++; } static void parse_numa_distance(MachineState *ms, NumaDistOptions *dist, Error **errp) { uint16_t src = dist->src; uint16_t dst = dist->dst; uint8_t val = dist->val; NodeInfo *numa_info = ms->numa_state->nodes; if (src >= MAX_NODES || dst >= MAX_NODES) { error_setg(errp, "Parameter '%s' expects an integer between 0 and %d", src >= MAX_NODES ? "src" : "dst", MAX_NODES - 1); return; } if (!numa_info[src].present || !numa_info[dst].present) { error_setg(errp, "Source/Destination NUMA node is missing. " "Please use '-numa node' option to declare it first."); return; } if (val < NUMA_DISTANCE_MIN) { error_setg(errp, "NUMA distance (%" PRIu8 ") is invalid, " "it shouldn't be less than %d.", val, NUMA_DISTANCE_MIN); return; } if (src == dst && val != NUMA_DISTANCE_MIN) { error_setg(errp, "Local distance of node %d should be %d.", src, NUMA_DISTANCE_MIN); return; } numa_info[src].distance[dst] = val; ms->numa_state->have_numa_distance = true; } void parse_numa_hmat_lb(NumaState *numa_state, NumaHmatLBOptions *node, Error **errp) { int i, first_bit, last_bit; uint64_t max_entry, temp_base, bitmap_copy; NodeInfo *numa_info = numa_state->nodes; HMAT_LB_Info *hmat_lb = numa_state->hmat_lb[node->hierarchy][node->data_type]; HMAT_LB_Data lb_data = {}; HMAT_LB_Data *lb_temp; /* Error checking */ if (node->initiator > numa_state->num_nodes) { error_setg(errp, "Invalid initiator=%d, it should be less than %d", node->initiator, numa_state->num_nodes); return; } if (node->target > numa_state->num_nodes) { error_setg(errp, "Invalid target=%d, it should be less than %d", node->target, numa_state->num_nodes); return; } if (!numa_info[node->initiator].has_cpu) { error_setg(errp, "Invalid initiator=%d, it isn't an " "initiator proximity domain", node->initiator); return; } if (!numa_info[node->target].present) { error_setg(errp, "The target=%d should point to an existing node", node->target); return; } if (!hmat_lb) { hmat_lb = g_malloc0(sizeof(*hmat_lb)); numa_state->hmat_lb[node->hierarchy][node->data_type] = hmat_lb; hmat_lb->list = g_array_new(false, true, sizeof(HMAT_LB_Data)); } hmat_lb->hierarchy = node->hierarchy; hmat_lb->data_type = node->data_type; lb_data.initiator = node->initiator; lb_data.target = node->target; if (node->data_type <= HMATLB_DATA_TYPE_WRITE_LATENCY) { /* Input latency data */ if (!node->has_latency) { error_setg(errp, "Missing 'latency' option"); return; } if (node->has_bandwidth) { error_setg(errp, "Invalid option 'bandwidth' since " "the data type is latency"); return; } /* Detect duplicate configuration */ for (i = 0; i < hmat_lb->list->len; i++) { lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i); if (node->initiator == lb_temp->initiator && node->target == lb_temp->target) { error_setg(errp, "Duplicate configuration of the latency for " "initiator=%d and target=%d", node->initiator, node->target); return; } } hmat_lb->base = hmat_lb->base ? hmat_lb->base : UINT64_MAX; if (node->latency) { /* Calculate the temporary base and compressed latency */ max_entry = node->latency; temp_base = 1; while (QEMU_IS_ALIGNED(max_entry, 10)) { max_entry /= 10; temp_base *= 10; } /* Calculate the max compressed latency */ temp_base = MIN(hmat_lb->base, temp_base); max_entry = node->latency / hmat_lb->base; max_entry = MAX(hmat_lb->range_bitmap, max_entry); /* * For latency hmat_lb->range_bitmap record the max compressed * latency which should be less than 0xFFFF (UINT16_MAX) */ if (max_entry >= UINT16_MAX) { error_setg(errp, "Latency %" PRIu64 " between initiator=%d and " "target=%d should not differ from previously entered " "min or max values on more than %d", node->latency, node->initiator, node->target, UINT16_MAX - 1); return; } else { hmat_lb->base = temp_base; hmat_lb->range_bitmap = max_entry; } /* * Set lb_info_provided bit 0 as 1, * latency information is provided */ numa_info[node->target].lb_info_provided |= BIT(0); } lb_data.data = node->latency; } else if (node->data_type >= HMATLB_DATA_TYPE_ACCESS_BANDWIDTH) { /* Input bandwidth data */ if (!node->has_bandwidth) { error_setg(errp, "Missing 'bandwidth' option"); return; } if (node->has_latency) { error_setg(errp, "Invalid option 'latency' since " "the data type is bandwidth"); return; } if (!QEMU_IS_ALIGNED(node->bandwidth, MiB)) { error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d and " "target=%d should be 1MB aligned", node->bandwidth, node->initiator, node->target); return; } /* Detect duplicate configuration */ for (i = 0; i < hmat_lb->list->len; i++) { lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i); if (node->initiator == lb_temp->initiator && node->target == lb_temp->target) { error_setg(errp, "Duplicate configuration of the bandwidth for " "initiator=%d and target=%d", node->initiator, node->target); return; } } hmat_lb->base = hmat_lb->base ? hmat_lb->base : 1; if (node->bandwidth) { /* Keep bitmap unchanged when bandwidth out of range */ bitmap_copy = hmat_lb->range_bitmap; bitmap_copy |= node->bandwidth; first_bit = ctz64(bitmap_copy); temp_base = UINT64_C(1) << first_bit; max_entry = node->bandwidth / temp_base; last_bit = 64 - clz64(bitmap_copy); /* * For bandwidth, first_bit record the base unit of bandwidth bits, * last_bit record the last bit of the max bandwidth. The max * compressed bandwidth should be less than 0xFFFF (UINT16_MAX) */ if ((last_bit - first_bit) > UINT16_BITS || max_entry >= UINT16_MAX) { error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d " "and target=%d should not differ from previously " "entered values on more than %d", node->bandwidth, node->initiator, node->target, UINT16_MAX - 1); return; } else { hmat_lb->base = temp_base; hmat_lb->range_bitmap = bitmap_copy; } /* * Set lb_info_provided bit 1 as 1, * bandwidth information is provided */ numa_info[node->target].lb_info_provided |= BIT(1); } lb_data.data = node->bandwidth; } else { assert(0); } g_array_append_val(hmat_lb->list, lb_data); } void parse_numa_hmat_cache(MachineState *ms, NumaHmatCacheOptions *node, Error **errp) { int nb_numa_nodes = ms->numa_state->num_nodes; NodeInfo *numa_info = ms->numa_state->nodes; NumaHmatCacheOptions *hmat_cache = NULL; if (node->node_id >= nb_numa_nodes) { error_setg(errp, "Invalid node-id=%" PRIu32 ", it should be less " "than %d", node->node_id, nb_numa_nodes); return; } if (numa_info[node->node_id].lb_info_provided != (BIT(0) | BIT(1))) { error_setg(errp, "The latency and bandwidth information of " "node-id=%" PRIu32 " should be provided before memory side " "cache attributes", node->node_id); return; } if (node->level < 1 || node->level >= HMAT_LB_LEVELS) { error_setg(errp, "Invalid level=%" PRIu8 ", it should be larger than 0 " "and less than or equal to %d", node->level, HMAT_LB_LEVELS - 1); return; } assert(node->associativity < HMAT_CACHE_ASSOCIATIVITY__MAX); assert(node->policy < HMAT_CACHE_WRITE_POLICY__MAX); if (ms->numa_state->hmat_cache[node->node_id][node->level]) { error_setg(errp, "Duplicate configuration of the side cache for " "node-id=%" PRIu32 " and level=%" PRIu8, node->node_id, node->level); return; } if ((node->level > 1) && ms->numa_state->hmat_cache[node->node_id][node->level - 1] && (node->size >= ms->numa_state->hmat_cache[node->node_id][node->level - 1]->size)) { error_setg(errp, "Invalid size=%" PRIu64 ", the size of level=%" PRIu8 " should be less than the size(%" PRIu64 ") of " "level=%u", node->size, node->level, ms->numa_state->hmat_cache[node->node_id] [node->level - 1]->size, node->level - 1); return; } if ((node->level < HMAT_LB_LEVELS - 1) && ms->numa_state->hmat_cache[node->node_id][node->level + 1] && (node->size <= ms->numa_state->hmat_cache[node->node_id][node->level + 1]->size)) { error_setg(errp, "Invalid size=%" PRIu64 ", the size of level=%" PRIu8 " should be larger than the size(%" PRIu64 ") of " "level=%u", node->size, node->level, ms->numa_state->hmat_cache[node->node_id] [node->level + 1]->size, node->level + 1); return; } hmat_cache = g_malloc0(sizeof(*hmat_cache)); memcpy(hmat_cache, node, sizeof(*hmat_cache)); ms->numa_state->hmat_cache[node->node_id][node->level] = hmat_cache; } void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp) { Error *err = NULL; if (!ms->numa_state) { error_setg(errp, "NUMA is not supported by this machine-type"); goto end; } switch (object->type) { case NUMA_OPTIONS_TYPE_NODE: parse_numa_node(ms, &object->u.node, &err); if (err) { goto end; } break; case NUMA_OPTIONS_TYPE_DIST: parse_numa_distance(ms, &object->u.dist, &err); if (err) { goto end; } break; case NUMA_OPTIONS_TYPE_CPU: if (!object->u.cpu.has_node_id) { error_setg(&err, "Missing mandatory node-id property"); goto end; } if (!ms->numa_state->nodes[object->u.cpu.node_id].present) { error_setg(&err, "Invalid node-id=%" PRId64 ", NUMA node must be " "defined with -numa node,nodeid=ID before it's used with " "-numa cpu,node-id=ID", object->u.cpu.node_id); goto end; } machine_set_cpu_numa_node(ms, qapi_NumaCpuOptions_base(&object->u.cpu), &err); break; case NUMA_OPTIONS_TYPE_HMAT_LB: if (!ms->numa_state->hmat_enabled) { error_setg(errp, "ACPI Heterogeneous Memory Attribute Table " "(HMAT) is disabled, enable it with -machine hmat=on " "before using any of hmat specific options"); return; } parse_numa_hmat_lb(ms->numa_state, &object->u.hmat_lb, &err); if (err) { goto end; } break; case NUMA_OPTIONS_TYPE_HMAT_CACHE: if (!ms->numa_state->hmat_enabled) { error_setg(errp, "ACPI Heterogeneous Memory Attribute Table " "(HMAT) is disabled, enable it with -machine hmat=on " "before using any of hmat specific options"); return; } parse_numa_hmat_cache(ms, &object->u.hmat_cache, &err); if (err) { goto end; } break; default: abort(); } end: error_propagate(errp, err); } static int parse_numa(void *opaque, QemuOpts *opts, Error **errp) { NumaOptions *object = NULL; MachineState *ms = MACHINE(opaque); Error *err = NULL; Visitor *v = opts_visitor_new(opts); visit_type_NumaOptions(v, NULL, &object, &err); visit_free(v); if (err) { goto end; } /* Fix up legacy suffix-less format */ if ((object->type == NUMA_OPTIONS_TYPE_NODE) && object->u.node.has_mem) { const char *mem_str = qemu_opt_get(opts, "mem"); qemu_strtosz_MiB(mem_str, NULL, &object->u.node.mem); } set_numa_options(ms, object, &err); end: qapi_free_NumaOptions(object); if (err) { error_propagate(errp, err); return -1; } return 0; } /* If all node pair distances are symmetric, then only distances * in one direction are enough. If there is even one asymmetric * pair, though, then all distances must be provided. The * distance from a node to itself is always NUMA_DISTANCE_MIN, * so providing it is never necessary. */ static void validate_numa_distance(MachineState *ms) { int src, dst; bool is_asymmetrical = false; int nb_numa_nodes = ms->numa_state->num_nodes; NodeInfo *numa_info = ms->numa_state->nodes; for (src = 0; src < nb_numa_nodes; src++) { for (dst = src; dst < nb_numa_nodes; dst++) { if (numa_info[src].distance[dst] == 0 && numa_info[dst].distance[src] == 0) { if (src != dst) { error_report("The distance between node %d and %d is " "missing, at least one distance value " "between each nodes should be provided.", src, dst); exit(EXIT_FAILURE); } } if (numa_info[src].distance[dst] != 0 && numa_info[dst].distance[src] != 0 && numa_info[src].distance[dst] != numa_info[dst].distance[src]) { is_asymmetrical = true; } } } if (is_asymmetrical) { for (src = 0; src < nb_numa_nodes; src++) { for (dst = 0; dst < nb_numa_nodes; dst++) { if (src != dst && numa_info[src].distance[dst] == 0) { error_report("At least one asymmetrical pair of " "distances is given, please provide distances " "for both directions of all node pairs."); exit(EXIT_FAILURE); } } } } } static void complete_init_numa_distance(MachineState *ms) { int src, dst; NodeInfo *numa_info = ms->numa_state->nodes; /* Fixup NUMA distance by symmetric policy because if it is an * asymmetric distance table, it should be a complete table and * there would not be any missing distance except local node, which * is verified by validate_numa_distance above. */ for (src = 0; src < ms->numa_state->num_nodes; src++) { for (dst = 0; dst < ms->numa_state->num_nodes; dst++) { if (numa_info[src].distance[dst] == 0) { if (src == dst) { numa_info[src].distance[dst] = NUMA_DISTANCE_MIN; } else { numa_info[src].distance[dst] = numa_info[dst].distance[src]; } } } } } void numa_legacy_auto_assign_ram(MachineClass *mc, NodeInfo *nodes, int nb_nodes, ram_addr_t size) { int i; uint64_t usedmem = 0; /* Align each node according to the alignment * requirements of the machine class */ for (i = 0; i < nb_nodes - 1; i++) { nodes[i].node_mem = (size / nb_nodes) & ~((1 << mc->numa_mem_align_shift) - 1); usedmem += nodes[i].node_mem; } nodes[i].node_mem = size - usedmem; } void numa_default_auto_assign_ram(MachineClass *mc, NodeInfo *nodes, int nb_nodes, ram_addr_t size) { int i; uint64_t usedmem = 0, node_mem; uint64_t granularity = size / nb_nodes; uint64_t propagate = 0; for (i = 0; i < nb_nodes - 1; i++) { node_mem = (granularity + propagate) & ~((1 << mc->numa_mem_align_shift) - 1); propagate = granularity + propagate - node_mem; nodes[i].node_mem = node_mem; usedmem += node_mem; } nodes[i].node_mem = size - usedmem; } static void numa_init_memdev_container(MachineState *ms, MemoryRegion *ram) { int i; uint64_t addr = 0; for (i = 0; i < ms->numa_state->num_nodes; i++) { uint64_t size = ms->numa_state->nodes[i].node_mem; HostMemoryBackend *backend = ms->numa_state->nodes[i].node_memdev; if (!backend) { continue; } MemoryRegion *seg = machine_consume_memdev(ms, backend); memory_region_add_subregion(ram, addr, seg); addr += size; } } void numa_complete_configuration(MachineState *ms) { int i; MachineClass *mc = MACHINE_GET_CLASS(ms); NodeInfo *numa_info = ms->numa_state->nodes; /* * If memory hotplug is enabled (slot > 0) or memory devices are enabled * (ms->maxram_size > ram_size) but without '-numa' options explicitly on * CLI, guests will break. * * Windows: won't enable memory hotplug without SRAT table at all * * Linux: if QEMU is started with initial memory all below 4Gb * and no SRAT table present, guest kernel will use nommu DMA ops, * which breaks 32bit hw drivers when memory is hotplugged and * guest tries to use it with that drivers. * * Enable NUMA implicitly by adding a new NUMA node automatically. * * Or if MachineClass::auto_enable_numa is true and no NUMA nodes, * assume there is just one node with whole RAM. */ if (ms->numa_state->num_nodes == 0 && ((ms->ram_slots && mc->auto_enable_numa_with_memhp) || (ms->maxram_size > ms->ram_size && mc->auto_enable_numa_with_memdev) || mc->auto_enable_numa)) { NumaNodeOptions node = { }; parse_numa_node(ms, &node, &error_abort); numa_info[0].node_mem = ram_size; } assert(max_numa_nodeid <= MAX_NODES); /* No support for sparse NUMA node IDs yet: */ for (i = max_numa_nodeid - 1; i >= 0; i--) { /* Report large node IDs first, to make mistakes easier to spot */ if (!numa_info[i].present) { error_report("numa: Node ID missing: %d", i); exit(1); } } /* This must be always true if all nodes are present: */ assert(ms->numa_state->num_nodes == max_numa_nodeid); if (ms->numa_state->num_nodes > 0) { uint64_t numa_total; if (ms->numa_state->num_nodes > MAX_NODES) { ms->numa_state->num_nodes = MAX_NODES; } /* If no memory size is given for any node, assume the default case * and distribute the available memory equally across all nodes */ for (i = 0; i < ms->numa_state->num_nodes; i++) { if (numa_info[i].node_mem != 0) { break; } } if (i == ms->numa_state->num_nodes) { assert(mc->numa_auto_assign_ram); mc->numa_auto_assign_ram(mc, numa_info, ms->numa_state->num_nodes, ram_size); if (!qtest_enabled()) { warn_report("Default splitting of RAM between nodes is deprecated," " Use '-numa node,memdev' to explictly define RAM" " allocation per node"); } } numa_total = 0; for (i = 0; i < ms->numa_state->num_nodes; i++) { numa_total += numa_info[i].node_mem; } if (numa_total != ram_size) { error_report("total memory for NUMA nodes (0x%" PRIx64 ")" " should equal RAM size (0x" RAM_ADDR_FMT ")", numa_total, ram_size); exit(1); } if (!numa_uses_legacy_mem() && mc->default_ram_id) { if (ms->ram_memdev_id) { error_report("'-machine memory-backend' and '-numa memdev'" " properties are mutually exclusive"); exit(1); } ms->ram = g_new(MemoryRegion, 1); memory_region_init(ms->ram, OBJECT(ms), mc->default_ram_id, ram_size); numa_init_memdev_container(ms, ms->ram); } /* QEMU needs at least all unique node pair distances to build * the whole NUMA distance table. QEMU treats the distance table * as symmetric by default, i.e. distance A->B == distance B->A. * Thus, QEMU is able to complete the distance table * initialization even though only distance A->B is provided and * distance B->A is not. QEMU knows the distance of a node to * itself is always 10, so A->A distances may be omitted. When * the distances of two nodes of a pair differ, i.e. distance * A->B != distance B->A, then that means the distance table is * asymmetric. In this case, the distances for both directions * of all node pairs are required. */ if (ms->numa_state->have_numa_distance) { /* Validate enough NUMA distance information was provided. */ validate_numa_distance(ms); /* Validation succeeded, now fill in any missing distances. */ complete_init_numa_distance(ms); } } } void parse_numa_opts(MachineState *ms) { qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, ms, &error_fatal); } void numa_cpu_pre_plug(const CPUArchId *slot, DeviceState *dev, Error **errp) { int node_id = object_property_get_int(OBJECT(dev), "node-id", &error_abort); if (node_id == CPU_UNSET_NUMA_NODE_ID) { /* due to bug in libvirt, it doesn't pass node-id from props on * device_add as expected, so we have to fix it up here */ if (slot->props.has_node_id) { object_property_set_int(OBJECT(dev), slot->props.node_id, "node-id", errp); } } else if (node_id != slot->props.node_id) { error_setg(errp, "invalid node-id, must be %"PRId64, slot->props.node_id); } } static void numa_stat_memory_devices(NumaNodeMem node_mem[]) { MemoryDeviceInfoList *info_list = qmp_memory_device_list(); MemoryDeviceInfoList *info; PCDIMMDeviceInfo *pcdimm_info; VirtioPMEMDeviceInfo *vpi; VirtioMEMDeviceInfo *vmi; for (info = info_list; info; info = info->next) { MemoryDeviceInfo *value = info->value; if (value) { switch (value->type) { case MEMORY_DEVICE_INFO_KIND_DIMM: case MEMORY_DEVICE_INFO_KIND_NVDIMM: pcdimm_info = value->type == MEMORY_DEVICE_INFO_KIND_DIMM ? value->u.dimm.data : value->u.nvdimm.data; node_mem[pcdimm_info->node].node_mem += pcdimm_info->size; node_mem[pcdimm_info->node].node_plugged_mem += pcdimm_info->size; break; case MEMORY_DEVICE_INFO_KIND_VIRTIO_PMEM: vpi = value->u.virtio_pmem.data; /* TODO: once we support numa, assign to right node */ node_mem[0].node_mem += vpi->size; node_mem[0].node_plugged_mem += vpi->size; break; case MEMORY_DEVICE_INFO_KIND_VIRTIO_MEM: vmi = value->u.virtio_mem.data; node_mem[vmi->node].node_mem += vmi->size; node_mem[vmi->node].node_plugged_mem += vmi->size; break; default: g_assert_not_reached(); } } } qapi_free_MemoryDeviceInfoList(info_list); } void query_numa_node_mem(NumaNodeMem node_mem[], MachineState *ms) { int i; if (ms->numa_state == NULL || ms->numa_state->num_nodes <= 0) { return; } numa_stat_memory_devices(node_mem); for (i = 0; i < ms->numa_state->num_nodes; i++) { node_mem[i].node_mem += ms->numa_state->nodes[i].node_mem; } } void ram_block_notifier_add(RAMBlockNotifier *n) { QLIST_INSERT_HEAD(&ram_list.ramblock_notifiers, n, next); } void ram_block_notifier_remove(RAMBlockNotifier *n) { QLIST_REMOVE(n, next); } void ram_block_notify_add(void *host, size_t size) { RAMBlockNotifier *notifier; QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { notifier->ram_block_added(notifier, host, size); } } void ram_block_notify_remove(void *host, size_t size) { RAMBlockNotifier *notifier; QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { notifier->ram_block_removed(notifier, host, size); } }