/* * ITS emulation for a GICv3-based system * * Copyright Linaro.org 2021 * * Authors: * Shashi Mallela * * This work is licensed under the terms of the GNU GPL, version 2 or (at your * option) any later version. See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qemu/log.h" #include "trace.h" #include "hw/qdev-properties.h" #include "hw/intc/arm_gicv3_its_common.h" #include "gicv3_internal.h" #include "qom/object.h" #include "qapi/error.h" typedef struct GICv3ITSClass GICv3ITSClass; /* This is reusing the GICv3ITSState typedef from ARM_GICV3_ITS_COMMON */ DECLARE_OBJ_CHECKERS(GICv3ITSState, GICv3ITSClass, ARM_GICV3_ITS, TYPE_ARM_GICV3_ITS) struct GICv3ITSClass { GICv3ITSCommonClass parent_class; void (*parent_reset)(DeviceState *dev); }; /* * This is an internal enum used to distinguish between LPI triggered * via command queue and LPI triggered via gits_translater write. */ typedef enum ItsCmdType { NONE = 0, /* internal indication for GITS_TRANSLATER write */ CLEAR = 1, DISCARD = 2, INTERRUPT = 3, } ItsCmdType; typedef struct DTEntry { bool valid; unsigned size; uint64_t ittaddr; } DTEntry; typedef struct CTEntry { bool valid; uint32_t rdbase; } CTEntry; typedef struct ITEntry { bool valid; int inttype; uint32_t intid; uint32_t doorbell; uint32_t icid; uint32_t vpeid; } ITEntry; typedef struct VTEntry { bool valid; unsigned vptsize; uint32_t rdbase; uint64_t vptaddr; } VTEntry; /* * The ITS spec permits a range of CONSTRAINED UNPREDICTABLE options * if a command parameter is not correct. These include both "stall * processing of the command queue" and "ignore this command, and * keep processing the queue". In our implementation we choose that * memory transaction errors reading the command packet provoke a * stall, but errors in parameters cause us to ignore the command * and continue processing. * The process_* functions which handle individual ITS commands all * return an ItsCmdResult which tells process_cmdq() whether it should * stall, keep going because of an error, or keep going because the * command was a success. */ typedef enum ItsCmdResult { CMD_STALL = 0, CMD_CONTINUE = 1, CMD_CONTINUE_OK = 2, } ItsCmdResult; /* True if the ITS supports the GICv4 virtual LPI feature */ static bool its_feature_virtual(GICv3ITSState *s) { return s->typer & R_GITS_TYPER_VIRTUAL_MASK; } static inline bool intid_in_lpi_range(uint32_t id) { return id >= GICV3_LPI_INTID_START && id < (1 << (GICD_TYPER_IDBITS + 1)); } static inline bool valid_doorbell(uint32_t id) { /* Doorbell fields may be an LPI, or 1023 to mean "no doorbell" */ return id == INTID_SPURIOUS || intid_in_lpi_range(id); } static uint64_t baser_base_addr(uint64_t value, uint32_t page_sz) { uint64_t result = 0; switch (page_sz) { case GITS_PAGE_SIZE_4K: case GITS_PAGE_SIZE_16K: result = FIELD_EX64(value, GITS_BASER, PHYADDR) << 12; break; case GITS_PAGE_SIZE_64K: result = FIELD_EX64(value, GITS_BASER, PHYADDRL_64K) << 16; result |= FIELD_EX64(value, GITS_BASER, PHYADDRH_64K) << 48; break; default: break; } return result; } static uint64_t table_entry_addr(GICv3ITSState *s, TableDesc *td, uint32_t idx, MemTxResult *res) { /* * Given a TableDesc describing one of the ITS in-guest-memory * tables and an index into it, return the guest address * corresponding to that table entry. * If there was a memory error reading the L1 table of an * indirect table, *res is set accordingly, and we return -1. * If the L1 table entry is marked not valid, we return -1 with * *res set to MEMTX_OK. * * The specification defines the format of level 1 entries of a * 2-level table, but the format of level 2 entries and the format * of flat-mapped tables is IMPDEF. */ AddressSpace *as = &s->gicv3->dma_as; uint32_t l2idx; uint64_t l2; uint32_t num_l2_entries; *res = MEMTX_OK; if (!td->indirect) { /* Single level table */ return td->base_addr + idx * td->entry_sz; } /* Two level table */ l2idx = idx / (td->page_sz / L1TABLE_ENTRY_SIZE); l2 = address_space_ldq_le(as, td->base_addr + (l2idx * L1TABLE_ENTRY_SIZE), MEMTXATTRS_UNSPECIFIED, res); if (*res != MEMTX_OK) { return -1; } if (!(l2 & L2_TABLE_VALID_MASK)) { return -1; } num_l2_entries = td->page_sz / td->entry_sz; return (l2 & ((1ULL << 51) - 1)) + (idx % num_l2_entries) * td->entry_sz; } /* * Read the Collection Table entry at index @icid. On success (including * successfully determining that there is no valid CTE for this index), * we return MEMTX_OK and populate the CTEntry struct @cte accordingly. * If there is an error reading memory then we return the error code. */ static MemTxResult get_cte(GICv3ITSState *s, uint16_t icid, CTEntry *cte) { AddressSpace *as = &s->gicv3->dma_as; MemTxResult res = MEMTX_OK; uint64_t entry_addr = table_entry_addr(s, &s->ct, icid, &res); uint64_t cteval; if (entry_addr == -1) { /* No L2 table entry, i.e. no valid CTE, or a memory error */ cte->valid = false; goto out; } cteval = address_space_ldq_le(as, entry_addr, MEMTXATTRS_UNSPECIFIED, &res); if (res != MEMTX_OK) { goto out; } cte->valid = FIELD_EX64(cteval, CTE, VALID); cte->rdbase = FIELD_EX64(cteval, CTE, RDBASE); out: if (res != MEMTX_OK) { trace_gicv3_its_cte_read_fault(icid); } else { trace_gicv3_its_cte_read(icid, cte->valid, cte->rdbase); } return res; } /* * Update the Interrupt Table entry at index @evinted in the table specified * by the dte @dte. Returns true on success, false if there was a memory * access error. */ static bool update_ite(GICv3ITSState *s, uint32_t eventid, const DTEntry *dte, const ITEntry *ite) { AddressSpace *as = &s->gicv3->dma_as; MemTxResult res = MEMTX_OK; hwaddr iteaddr = dte->ittaddr + eventid * ITS_ITT_ENTRY_SIZE; uint64_t itel = 0; uint32_t iteh = 0; trace_gicv3_its_ite_write(dte->ittaddr, eventid, ite->valid, ite->inttype, ite->intid, ite->icid, ite->vpeid, ite->doorbell); if (ite->valid) { itel = FIELD_DP64(itel, ITE_L, VALID, 1); itel = FIELD_DP64(itel, ITE_L, INTTYPE, ite->inttype); itel = FIELD_DP64(itel, ITE_L, INTID, ite->intid); itel = FIELD_DP64(itel, ITE_L, ICID, ite->icid); itel = FIELD_DP64(itel, ITE_L, VPEID, ite->vpeid); iteh = FIELD_DP32(iteh, ITE_H, DOORBELL, ite->doorbell); } address_space_stq_le(as, iteaddr, itel, MEMTXATTRS_UNSPECIFIED, &res); if (res != MEMTX_OK) { return false; } address_space_stl_le(as, iteaddr + 8, iteh, MEMTXATTRS_UNSPECIFIED, &res); return res == MEMTX_OK; } /* * Read the Interrupt Table entry at index @eventid from the table specified * by the DTE @dte. On success, we return MEMTX_OK and populate the ITEntry * struct @ite accordingly. If there is an error reading memory then we return * the error code. */ static MemTxResult get_ite(GICv3ITSState *s, uint32_t eventid, const DTEntry *dte, ITEntry *ite) { AddressSpace *as = &s->gicv3->dma_as; MemTxResult res = MEMTX_OK; uint64_t itel; uint32_t iteh; hwaddr iteaddr = dte->ittaddr + eventid * ITS_ITT_ENTRY_SIZE; itel = address_space_ldq_le(as, iteaddr, MEMTXATTRS_UNSPECIFIED, &res); if (res != MEMTX_OK) { trace_gicv3_its_ite_read_fault(dte->ittaddr, eventid); return res; } iteh = address_space_ldl_le(as, iteaddr + 8, MEMTXATTRS_UNSPECIFIED, &res); if (res != MEMTX_OK) { trace_gicv3_its_ite_read_fault(dte->ittaddr, eventid); return res; } ite->valid = FIELD_EX64(itel, ITE_L, VALID); ite->inttype = FIELD_EX64(itel, ITE_L, INTTYPE); ite->intid = FIELD_EX64(itel, ITE_L, INTID); ite->icid = FIELD_EX64(itel, ITE_L, ICID); ite->vpeid = FIELD_EX64(itel, ITE_L, VPEID); ite->doorbell = FIELD_EX64(iteh, ITE_H, DOORBELL); trace_gicv3_its_ite_read(dte->ittaddr, eventid, ite->valid, ite->inttype, ite->intid, ite->icid, ite->vpeid, ite->doorbell); return MEMTX_OK; } /* * Read the Device Table entry at index @devid. On success (including * successfully determining that there is no valid DTE for this index), * we return MEMTX_OK and populate the DTEntry struct accordingly. * If there is an error reading memory then we return the error code. */ static MemTxResult get_dte(GICv3ITSState *s, uint32_t devid, DTEntry *dte) { MemTxResult res = MEMTX_OK; AddressSpace *as = &s->gicv3->dma_as; uint64_t entry_addr = table_entry_addr(s, &s->dt, devid, &res); uint64_t dteval; if (entry_addr == -1) { /* No L2 table entry, i.e. no valid DTE, or a memory error */ dte->valid = false; goto out; } dteval = address_space_ldq_le(as, entry_addr, MEMTXATTRS_UNSPECIFIED, &res); if (res != MEMTX_OK) { goto out; } dte->valid = FIELD_EX64(dteval, DTE, VALID); dte->size = FIELD_EX64(dteval, DTE, SIZE); /* DTE word field stores bits [51:8] of the ITT address */ dte->ittaddr = FIELD_EX64(dteval, DTE, ITTADDR) << ITTADDR_SHIFT; out: if (res != MEMTX_OK) { trace_gicv3_its_dte_read_fault(devid); } else { trace_gicv3_its_dte_read(devid, dte->valid, dte->size, dte->ittaddr); } return res; } /* * Read the vPE Table entry at index @vpeid. On success (including * successfully determining that there is no valid entry for this index), * we return MEMTX_OK and populate the VTEntry struct accordingly. * If there is an error reading memory then we return the error code. */ static MemTxResult get_vte(GICv3ITSState *s, uint32_t vpeid, VTEntry *vte) { MemTxResult res = MEMTX_OK; AddressSpace *as = &s->gicv3->dma_as; uint64_t entry_addr = table_entry_addr(s, &s->vpet, vpeid, &res); uint64_t vteval; if (entry_addr == -1) { /* No L2 table entry, i.e. no valid VTE, or a memory error */ vte->valid = false; goto out; } vteval = address_space_ldq_le(as, entry_addr, MEMTXATTRS_UNSPECIFIED, &res); if (res != MEMTX_OK) { goto out; } vte->valid = FIELD_EX64(vteval, VTE, VALID); vte->vptsize = FIELD_EX64(vteval, VTE, VPTSIZE); vte->vptaddr = FIELD_EX64(vteval, VTE, VPTADDR); vte->rdbase = FIELD_EX64(vteval, VTE, RDBASE); out: if (res != MEMTX_OK) { trace_gicv3_its_vte_read_fault(vpeid); } else { trace_gicv3_its_vte_read(vpeid, vte->valid, vte->vptsize, vte->vptaddr, vte->rdbase); } return res; } /* * Given a (DeviceID, EventID), look up the corresponding ITE, including * checking for the various invalid-value cases. If we find a valid ITE, * fill in @ite and @dte and return CMD_CONTINUE_OK. Otherwise return * CMD_STALL or CMD_CONTINUE as appropriate (and the contents of @ite * should not be relied on). * * The string @who is purely for the LOG_GUEST_ERROR messages, * and should indicate the name of the calling function or similar. */ static ItsCmdResult lookup_ite(GICv3ITSState *s, const char *who, uint32_t devid, uint32_t eventid, ITEntry *ite, DTEntry *dte) { uint64_t num_eventids; if (devid >= s->dt.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid command attributes: devid %d>=%d", who, devid, s->dt.num_entries); return CMD_CONTINUE; } if (get_dte(s, devid, dte) != MEMTX_OK) { return CMD_STALL; } if (!dte->valid) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid command attributes: " "invalid dte for %d\n", who, devid); return CMD_CONTINUE; } num_eventids = 1ULL << (dte->size + 1); if (eventid >= num_eventids) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid command attributes: eventid %d >= %" PRId64 "\n", who, eventid, num_eventids); return CMD_CONTINUE; } if (get_ite(s, eventid, dte, ite) != MEMTX_OK) { return CMD_STALL; } if (!ite->valid) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid command attributes: invalid ITE\n", who); return CMD_CONTINUE; } return CMD_CONTINUE_OK; } /* * Given an ICID, look up the corresponding CTE, including checking for various * invalid-value cases. If we find a valid CTE, fill in @cte and return * CMD_CONTINUE_OK; otherwise return CMD_STALL or CMD_CONTINUE (and the * contents of @cte should not be relied on). * * The string @who is purely for the LOG_GUEST_ERROR messages, * and should indicate the name of the calling function or similar. */ static ItsCmdResult lookup_cte(GICv3ITSState *s, const char *who, uint32_t icid, CTEntry *cte) { if (icid >= s->ct.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid ICID 0x%x\n", who, icid); return CMD_CONTINUE; } if (get_cte(s, icid, cte) != MEMTX_OK) { return CMD_STALL; } if (!cte->valid) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid CTE\n", who); return CMD_CONTINUE; } if (cte->rdbase >= s->gicv3->num_cpu) { return CMD_CONTINUE; } return CMD_CONTINUE_OK; } /* * Given a VPEID, look up the corresponding VTE, including checking * for various invalid-value cases. if we find a valid VTE, fill in @vte * and return CMD_CONTINUE_OK; otherwise return CMD_STALL or CMD_CONTINUE * (and the contents of @vte should not be relied on). * * The string @who is purely for the LOG_GUEST_ERROR messages, * and should indicate the name of the calling function or similar. */ static ItsCmdResult lookup_vte(GICv3ITSState *s, const char *who, uint32_t vpeid, VTEntry *vte) { if (vpeid >= s->vpet.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid VPEID 0x%x\n", who, vpeid); return CMD_CONTINUE; } if (get_vte(s, vpeid, vte) != MEMTX_OK) { return CMD_STALL; } if (!vte->valid) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid VTE for VPEID 0x%x\n", who, vpeid); return CMD_CONTINUE; } if (vte->rdbase >= s->gicv3->num_cpu) { return CMD_CONTINUE; } return CMD_CONTINUE_OK; } static ItsCmdResult process_its_cmd_phys(GICv3ITSState *s, const ITEntry *ite, int irqlevel) { CTEntry cte; ItsCmdResult cmdres; cmdres = lookup_cte(s, __func__, ite->icid, &cte); if (cmdres != CMD_CONTINUE_OK) { return cmdres; } gicv3_redist_process_lpi(&s->gicv3->cpu[cte.rdbase], ite->intid, irqlevel); return CMD_CONTINUE_OK; } static ItsCmdResult process_its_cmd_virt(GICv3ITSState *s, const ITEntry *ite, int irqlevel) { VTEntry vte; ItsCmdResult cmdres; cmdres = lookup_vte(s, __func__, ite->vpeid, &vte); if (cmdres != CMD_CONTINUE_OK) { return cmdres; } if (!intid_in_lpi_range(ite->intid) || ite->intid >= (1ULL << (vte.vptsize + 1))) { qemu_log_mask(LOG_GUEST_ERROR, "%s: intid 0x%x out of range\n", __func__, ite->intid); return CMD_CONTINUE; } /* * For QEMU the actual pending of the vLPI is handled in the * redistributor code */ gicv3_redist_process_vlpi(&s->gicv3->cpu[vte.rdbase], ite->intid, vte.vptaddr << 16, ite->doorbell, irqlevel); return CMD_CONTINUE_OK; } /* * This function handles the processing of following commands based on * the ItsCmdType parameter passed:- * 1. triggering of lpi interrupt translation via ITS INT command * 2. triggering of lpi interrupt translation via gits_translater register * 3. handling of ITS CLEAR command * 4. handling of ITS DISCARD command */ static ItsCmdResult do_process_its_cmd(GICv3ITSState *s, uint32_t devid, uint32_t eventid, ItsCmdType cmd) { DTEntry dte; ITEntry ite; ItsCmdResult cmdres; int irqlevel; cmdres = lookup_ite(s, __func__, devid, eventid, &ite, &dte); if (cmdres != CMD_CONTINUE_OK) { return cmdres; } irqlevel = (cmd == CLEAR || cmd == DISCARD) ? 0 : 1; switch (ite.inttype) { case ITE_INTTYPE_PHYSICAL: cmdres = process_its_cmd_phys(s, &ite, irqlevel); break; case ITE_INTTYPE_VIRTUAL: if (!its_feature_virtual(s)) { /* Can't happen unless guest is illegally writing to table memory */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid type %d in ITE (table corrupted?)\n", __func__, ite.inttype); return CMD_CONTINUE; } cmdres = process_its_cmd_virt(s, &ite, irqlevel); break; default: g_assert_not_reached(); } if (cmdres == CMD_CONTINUE_OK && cmd == DISCARD) { ITEntry ite = {}; /* remove mapping from interrupt translation table */ ite.valid = false; return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL; } return CMD_CONTINUE_OK; } static ItsCmdResult process_its_cmd(GICv3ITSState *s, const uint64_t *cmdpkt, ItsCmdType cmd) { uint32_t devid, eventid; devid = (cmdpkt[0] & DEVID_MASK) >> DEVID_SHIFT; eventid = cmdpkt[1] & EVENTID_MASK; switch (cmd) { case INTERRUPT: trace_gicv3_its_cmd_int(devid, eventid); break; case CLEAR: trace_gicv3_its_cmd_clear(devid, eventid); break; case DISCARD: trace_gicv3_its_cmd_discard(devid, eventid); break; default: g_assert_not_reached(); } return do_process_its_cmd(s, devid, eventid, cmd); } static ItsCmdResult process_mapti(GICv3ITSState *s, const uint64_t *cmdpkt, bool ignore_pInt) { uint32_t devid, eventid; uint32_t pIntid = 0; uint64_t num_eventids; uint16_t icid = 0; DTEntry dte; ITEntry ite; devid = (cmdpkt[0] & DEVID_MASK) >> DEVID_SHIFT; eventid = cmdpkt[1] & EVENTID_MASK; icid = cmdpkt[2] & ICID_MASK; if (ignore_pInt) { pIntid = eventid; trace_gicv3_its_cmd_mapi(devid, eventid, icid); } else { pIntid = (cmdpkt[1] & pINTID_MASK) >> pINTID_SHIFT; trace_gicv3_its_cmd_mapti(devid, eventid, icid, pIntid); } if (devid >= s->dt.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid command attributes: devid %d>=%d", __func__, devid, s->dt.num_entries); return CMD_CONTINUE; } if (get_dte(s, devid, &dte) != MEMTX_OK) { return CMD_STALL; } num_eventids = 1ULL << (dte.size + 1); if (icid >= s->ct.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid ICID 0x%x >= 0x%x\n", __func__, icid, s->ct.num_entries); return CMD_CONTINUE; } if (!dte.valid) { qemu_log_mask(LOG_GUEST_ERROR, "%s: no valid DTE for devid 0x%x\n", __func__, devid); return CMD_CONTINUE; } if (eventid >= num_eventids) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid event ID 0x%x >= 0x%" PRIx64 "\n", __func__, eventid, num_eventids); return CMD_CONTINUE; } if (!intid_in_lpi_range(pIntid)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid interrupt ID 0x%x\n", __func__, pIntid); return CMD_CONTINUE; } /* add ite entry to interrupt translation table */ ite.valid = true; ite.inttype = ITE_INTTYPE_PHYSICAL; ite.intid = pIntid; ite.icid = icid; ite.doorbell = INTID_SPURIOUS; ite.vpeid = 0; return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL; } static ItsCmdResult process_vmapti(GICv3ITSState *s, const uint64_t *cmdpkt, bool ignore_vintid) { uint32_t devid, eventid, vintid, doorbell, vpeid; uint32_t num_eventids; DTEntry dte; ITEntry ite; if (!its_feature_virtual(s)) { return CMD_CONTINUE; } devid = FIELD_EX64(cmdpkt[0], VMAPTI_0, DEVICEID); eventid = FIELD_EX64(cmdpkt[1], VMAPTI_1, EVENTID); vpeid = FIELD_EX64(cmdpkt[1], VMAPTI_1, VPEID); doorbell = FIELD_EX64(cmdpkt[2], VMAPTI_2, DOORBELL); if (ignore_vintid) { vintid = eventid; trace_gicv3_its_cmd_vmapi(devid, eventid, vpeid, doorbell); } else { vintid = FIELD_EX64(cmdpkt[2], VMAPTI_2, VINTID); trace_gicv3_its_cmd_vmapti(devid, eventid, vpeid, vintid, doorbell); } if (devid >= s->dt.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid DeviceID 0x%x (must be less than 0x%x)\n", __func__, devid, s->dt.num_entries); return CMD_CONTINUE; } if (get_dte(s, devid, &dte) != MEMTX_OK) { return CMD_STALL; } if (!dte.valid) { qemu_log_mask(LOG_GUEST_ERROR, "%s: no entry in device table for DeviceID 0x%x\n", __func__, devid); return CMD_CONTINUE; } num_eventids = 1ULL << (dte.size + 1); if (eventid >= num_eventids) { qemu_log_mask(LOG_GUEST_ERROR, "%s: EventID 0x%x too large for DeviceID 0x%x " "(must be less than 0x%x)\n", __func__, eventid, devid, num_eventids); return CMD_CONTINUE; } if (!intid_in_lpi_range(vintid)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: VIntID 0x%x not a valid LPI\n", __func__, vintid); return CMD_CONTINUE; } if (!valid_doorbell(doorbell)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Doorbell %d not 1023 and not a valid LPI\n", __func__, doorbell); return CMD_CONTINUE; } if (vpeid >= s->vpet.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: VPEID 0x%x out of range (must be less than 0x%x)\n", __func__, vpeid, s->vpet.num_entries); return CMD_CONTINUE; } /* add ite entry to interrupt translation table */ ite.valid = true; ite.inttype = ITE_INTTYPE_VIRTUAL; ite.intid = vintid; ite.icid = 0; ite.doorbell = doorbell; ite.vpeid = vpeid; return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL; } /* * Update the Collection Table entry for @icid to @cte. Returns true * on success, false if there was a memory access error. */ static bool update_cte(GICv3ITSState *s, uint16_t icid, const CTEntry *cte) { AddressSpace *as = &s->gicv3->dma_as; uint64_t entry_addr; uint64_t cteval = 0; MemTxResult res = MEMTX_OK; trace_gicv3_its_cte_write(icid, cte->valid, cte->rdbase); if (cte->valid) { /* add mapping entry to collection table */ cteval = FIELD_DP64(cteval, CTE, VALID, 1); cteval = FIELD_DP64(cteval, CTE, RDBASE, cte->rdbase); } entry_addr = table_entry_addr(s, &s->ct, icid, &res); if (res != MEMTX_OK) { /* memory access error: stall */ return false; } if (entry_addr == -1) { /* No L2 table for this index: discard write and continue */ return true; } address_space_stq_le(as, entry_addr, cteval, MEMTXATTRS_UNSPECIFIED, &res); return res == MEMTX_OK; } static ItsCmdResult process_mapc(GICv3ITSState *s, const uint64_t *cmdpkt) { uint16_t icid; CTEntry cte; icid = cmdpkt[2] & ICID_MASK; cte.valid = cmdpkt[2] & CMD_FIELD_VALID_MASK; if (cte.valid) { cte.rdbase = (cmdpkt[2] & R_MAPC_RDBASE_MASK) >> R_MAPC_RDBASE_SHIFT; cte.rdbase &= RDBASE_PROCNUM_MASK; } else { cte.rdbase = 0; } trace_gicv3_its_cmd_mapc(icid, cte.rdbase, cte.valid); if (icid >= s->ct.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "ITS MAPC: invalid ICID 0x%x\n", icid); return CMD_CONTINUE; } if (cte.valid && cte.rdbase >= s->gicv3->num_cpu) { qemu_log_mask(LOG_GUEST_ERROR, "ITS MAPC: invalid RDBASE %u\n", cte.rdbase); return CMD_CONTINUE; } return update_cte(s, icid, &cte) ? CMD_CONTINUE_OK : CMD_STALL; } /* * Update the Device Table entry for @devid to @dte. Returns true * on success, false if there was a memory access error. */ static bool update_dte(GICv3ITSState *s, uint32_t devid, const DTEntry *dte) { AddressSpace *as = &s->gicv3->dma_as; uint64_t entry_addr; uint64_t dteval = 0; MemTxResult res = MEMTX_OK; trace_gicv3_its_dte_write(devid, dte->valid, dte->size, dte->ittaddr); if (dte->valid) { /* add mapping entry to device table */ dteval = FIELD_DP64(dteval, DTE, VALID, 1); dteval = FIELD_DP64(dteval, DTE, SIZE, dte->size); dteval = FIELD_DP64(dteval, DTE, ITTADDR, dte->ittaddr); } entry_addr = table_entry_addr(s, &s->dt, devid, &res); if (res != MEMTX_OK) { /* memory access error: stall */ return false; } if (entry_addr == -1) { /* No L2 table for this index: discard write and continue */ return true; } address_space_stq_le(as, entry_addr, dteval, MEMTXATTRS_UNSPECIFIED, &res); return res == MEMTX_OK; } static ItsCmdResult process_mapd(GICv3ITSState *s, const uint64_t *cmdpkt) { uint32_t devid; DTEntry dte; devid = (cmdpkt[0] & DEVID_MASK) >> DEVID_SHIFT; dte.size = cmdpkt[1] & SIZE_MASK; dte.ittaddr = (cmdpkt[2] & ITTADDR_MASK) >> ITTADDR_SHIFT; dte.valid = cmdpkt[2] & CMD_FIELD_VALID_MASK; trace_gicv3_its_cmd_mapd(devid, dte.size, dte.ittaddr, dte.valid); if (devid >= s->dt.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "ITS MAPD: invalid device ID field 0x%x >= 0x%x\n", devid, s->dt.num_entries); return CMD_CONTINUE; } if (dte.size > FIELD_EX64(s->typer, GITS_TYPER, IDBITS)) { qemu_log_mask(LOG_GUEST_ERROR, "ITS MAPD: invalid size %d\n", dte.size); return CMD_CONTINUE; } return update_dte(s, devid, &dte) ? CMD_CONTINUE_OK : CMD_STALL; } static ItsCmdResult process_movall(GICv3ITSState *s, const uint64_t *cmdpkt) { uint64_t rd1, rd2; rd1 = FIELD_EX64(cmdpkt[2], MOVALL_2, RDBASE1); rd2 = FIELD_EX64(cmdpkt[3], MOVALL_3, RDBASE2); trace_gicv3_its_cmd_movall(rd1, rd2); if (rd1 >= s->gicv3->num_cpu) { qemu_log_mask(LOG_GUEST_ERROR, "%s: RDBASE1 %" PRId64 " out of range (must be less than %d)\n", __func__, rd1, s->gicv3->num_cpu); return CMD_CONTINUE; } if (rd2 >= s->gicv3->num_cpu) { qemu_log_mask(LOG_GUEST_ERROR, "%s: RDBASE2 %" PRId64 " out of range (must be less than %d)\n", __func__, rd2, s->gicv3->num_cpu); return CMD_CONTINUE; } if (rd1 == rd2) { /* Move to same target must succeed as a no-op */ return CMD_CONTINUE_OK; } /* Move all pending LPIs from redistributor 1 to redistributor 2 */ gicv3_redist_movall_lpis(&s->gicv3->cpu[rd1], &s->gicv3->cpu[rd2]); return CMD_CONTINUE_OK; } static ItsCmdResult process_movi(GICv3ITSState *s, const uint64_t *cmdpkt) { uint32_t devid, eventid; uint16_t new_icid; DTEntry dte; CTEntry old_cte, new_cte; ITEntry old_ite; ItsCmdResult cmdres; devid = FIELD_EX64(cmdpkt[0], MOVI_0, DEVICEID); eventid = FIELD_EX64(cmdpkt[1], MOVI_1, EVENTID); new_icid = FIELD_EX64(cmdpkt[2], MOVI_2, ICID); trace_gicv3_its_cmd_movi(devid, eventid, new_icid); cmdres = lookup_ite(s, __func__, devid, eventid, &old_ite, &dte); if (cmdres != CMD_CONTINUE_OK) { return cmdres; } if (old_ite.inttype != ITE_INTTYPE_PHYSICAL) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid command attributes: invalid ITE\n", __func__); return CMD_CONTINUE; } cmdres = lookup_cte(s, __func__, old_ite.icid, &old_cte); if (cmdres != CMD_CONTINUE_OK) { return cmdres; } cmdres = lookup_cte(s, __func__, new_icid, &new_cte); if (cmdres != CMD_CONTINUE_OK) { return cmdres; } if (old_cte.rdbase != new_cte.rdbase) { /* Move the LPI from the old redistributor to the new one */ gicv3_redist_mov_lpi(&s->gicv3->cpu[old_cte.rdbase], &s->gicv3->cpu[new_cte.rdbase], old_ite.intid); } /* Update the ICID field in the interrupt translation table entry */ old_ite.icid = new_icid; return update_ite(s, eventid, &dte, &old_ite) ? CMD_CONTINUE_OK : CMD_STALL; } /* * Update the vPE Table entry at index @vpeid with the entry @vte. * Returns true on success, false if there was a memory access error. */ static bool update_vte(GICv3ITSState *s, uint32_t vpeid, const VTEntry *vte) { AddressSpace *as = &s->gicv3->dma_as; uint64_t entry_addr; uint64_t vteval = 0; MemTxResult res = MEMTX_OK; trace_gicv3_its_vte_write(vpeid, vte->valid, vte->vptsize, vte->vptaddr, vte->rdbase); if (vte->valid) { vteval = FIELD_DP64(vteval, VTE, VALID, 1); vteval = FIELD_DP64(vteval, VTE, VPTSIZE, vte->vptsize); vteval = FIELD_DP64(vteval, VTE, VPTADDR, vte->vptaddr); vteval = FIELD_DP64(vteval, VTE, RDBASE, vte->rdbase); } entry_addr = table_entry_addr(s, &s->vpet, vpeid, &res); if (res != MEMTX_OK) { return false; } if (entry_addr == -1) { /* No L2 table for this index: discard write and continue */ return true; } address_space_stq_le(as, entry_addr, vteval, MEMTXATTRS_UNSPECIFIED, &res); return res == MEMTX_OK; } static ItsCmdResult process_vmapp(GICv3ITSState *s, const uint64_t *cmdpkt) { VTEntry vte; uint32_t vpeid; if (!its_feature_virtual(s)) { return CMD_CONTINUE; } vpeid = FIELD_EX64(cmdpkt[1], VMAPP_1, VPEID); vte.rdbase = FIELD_EX64(cmdpkt[2], VMAPP_2, RDBASE); vte.valid = FIELD_EX64(cmdpkt[2], VMAPP_2, V); vte.vptsize = FIELD_EX64(cmdpkt[3], VMAPP_3, VPTSIZE); vte.vptaddr = FIELD_EX64(cmdpkt[3], VMAPP_3, VPTADDR); trace_gicv3_its_cmd_vmapp(vpeid, vte.rdbase, vte.valid, vte.vptaddr, vte.vptsize); /* * For GICv4.0 the VPT_size field is only 5 bits, whereas we * define our field macros to include the full GICv4.1 8 bits. * The range check on VPT_size will catch the cases where * the guest set the RES0-in-GICv4.0 bits [7:6]. */ if (vte.vptsize > FIELD_EX64(s->typer, GITS_TYPER, IDBITS)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid VPT_size 0x%x\n", __func__, vte.vptsize); return CMD_CONTINUE; } if (vte.valid && vte.rdbase >= s->gicv3->num_cpu) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid rdbase 0x%x\n", __func__, vte.rdbase); return CMD_CONTINUE; } if (vpeid >= s->vpet.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: VPEID 0x%x out of range (must be less than 0x%x)\n", __func__, vpeid, s->vpet.num_entries); return CMD_CONTINUE; } return update_vte(s, vpeid, &vte) ? CMD_CONTINUE_OK : CMD_STALL; } /* * Current implementation blocks until all * commands are processed */ static void process_cmdq(GICv3ITSState *s) { uint32_t wr_offset = 0; uint32_t rd_offset = 0; uint32_t cq_offset = 0; AddressSpace *as = &s->gicv3->dma_as; uint8_t cmd; int i; if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) { return; } wr_offset = FIELD_EX64(s->cwriter, GITS_CWRITER, OFFSET); if (wr_offset >= s->cq.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid write offset " "%d\n", __func__, wr_offset); return; } rd_offset = FIELD_EX64(s->creadr, GITS_CREADR, OFFSET); if (rd_offset >= s->cq.num_entries) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid read offset " "%d\n", __func__, rd_offset); return; } while (wr_offset != rd_offset) { ItsCmdResult result = CMD_CONTINUE_OK; void *hostmem; hwaddr buflen; uint64_t cmdpkt[GITS_CMDQ_ENTRY_WORDS]; cq_offset = (rd_offset * GITS_CMDQ_ENTRY_SIZE); buflen = GITS_CMDQ_ENTRY_SIZE; hostmem = address_space_map(as, s->cq.base_addr + cq_offset, &buflen, false, MEMTXATTRS_UNSPECIFIED); if (!hostmem || buflen != GITS_CMDQ_ENTRY_SIZE) { if (hostmem) { address_space_unmap(as, hostmem, buflen, false, 0); } s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, STALLED, 1); qemu_log_mask(LOG_GUEST_ERROR, "%s: could not read command at 0x%" PRIx64 "\n", __func__, s->cq.base_addr + cq_offset); break; } for (i = 0; i < ARRAY_SIZE(cmdpkt); i++) { cmdpkt[i] = ldq_le_p(hostmem + i * sizeof(uint64_t)); } address_space_unmap(as, hostmem, buflen, false, 0); cmd = cmdpkt[0] & CMD_MASK; trace_gicv3_its_process_command(rd_offset, cmd); switch (cmd) { case GITS_CMD_INT: result = process_its_cmd(s, cmdpkt, INTERRUPT); break; case GITS_CMD_CLEAR: result = process_its_cmd(s, cmdpkt, CLEAR); break; case GITS_CMD_SYNC: /* * Current implementation makes a blocking synchronous call * for every command issued earlier, hence the internal state * is already consistent by the time SYNC command is executed. * Hence no further processing is required for SYNC command. */ trace_gicv3_its_cmd_sync(); break; case GITS_CMD_MAPD: result = process_mapd(s, cmdpkt); break; case GITS_CMD_MAPC: result = process_mapc(s, cmdpkt); break; case GITS_CMD_MAPTI: result = process_mapti(s, cmdpkt, false); break; case GITS_CMD_MAPI: result = process_mapti(s, cmdpkt, true); break; case GITS_CMD_DISCARD: result = process_its_cmd(s, cmdpkt, DISCARD); break; case GITS_CMD_INV: case GITS_CMD_INVALL: /* * Current implementation doesn't cache any ITS tables, * but the calculated lpi priority information. We only * need to trigger lpi priority re-calculation to be in * sync with LPI config table or pending table changes. */ trace_gicv3_its_cmd_inv(); for (i = 0; i < s->gicv3->num_cpu; i++) { gicv3_redist_update_lpi(&s->gicv3->cpu[i]); } break; case GITS_CMD_MOVI: result = process_movi(s, cmdpkt); break; case GITS_CMD_MOVALL: result = process_movall(s, cmdpkt); break; case GITS_CMD_VMAPTI: result = process_vmapti(s, cmdpkt, false); break; case GITS_CMD_VMAPI: result = process_vmapti(s, cmdpkt, true); break; case GITS_CMD_VMAPP: result = process_vmapp(s, cmdpkt); break; default: trace_gicv3_its_cmd_unknown(cmd); break; } if (result != CMD_STALL) { /* CMD_CONTINUE or CMD_CONTINUE_OK */ rd_offset++; rd_offset %= s->cq.num_entries; s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, OFFSET, rd_offset); } else { /* CMD_STALL */ s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, STALLED, 1); qemu_log_mask(LOG_GUEST_ERROR, "%s: 0x%x cmd processing failed, stalling\n", __func__, cmd); break; } } } /* * This function extracts the ITS Device and Collection table specific * parameters (like base_addr, size etc) from GITS_BASER register. * It is called during ITS enable and also during post_load migration */ static void extract_table_params(GICv3ITSState *s) { uint16_t num_pages = 0; uint8_t page_sz_type; uint8_t type; uint32_t page_sz = 0; uint64_t value; for (int i = 0; i < 8; i++) { TableDesc *td; int idbits; value = s->baser[i]; if (!value) { continue; } page_sz_type = FIELD_EX64(value, GITS_BASER, PAGESIZE); switch (page_sz_type) { case 0: page_sz = GITS_PAGE_SIZE_4K; break; case 1: page_sz = GITS_PAGE_SIZE_16K; break; case 2: case 3: page_sz = GITS_PAGE_SIZE_64K; break; default: g_assert_not_reached(); } num_pages = FIELD_EX64(value, GITS_BASER, SIZE) + 1; type = FIELD_EX64(value, GITS_BASER, TYPE); switch (type) { case GITS_BASER_TYPE_DEVICE: td = &s->dt; idbits = FIELD_EX64(s->typer, GITS_TYPER, DEVBITS) + 1; break; case GITS_BASER_TYPE_COLLECTION: td = &s->ct; if (FIELD_EX64(s->typer, GITS_TYPER, CIL)) { idbits = FIELD_EX64(s->typer, GITS_TYPER, CIDBITS) + 1; } else { /* 16-bit CollectionId supported when CIL == 0 */ idbits = 16; } break; case GITS_BASER_TYPE_VPE: td = &s->vpet; /* * For QEMU vPEIDs are always 16 bits. (GICv4.1 allows an * implementation to implement fewer bits and report this * via GICD_TYPER2.) */ idbits = 16; break; default: /* * GITS_BASER.TYPE is read-only, so GITS_BASER_RO_MASK * ensures we will only see type values corresponding to * the values set up in gicv3_its_reset(). */ g_assert_not_reached(); } memset(td, 0, sizeof(*td)); /* * If GITS_BASER.Valid is 0 for any then we will not process * interrupts. (GITS_TYPER.HCC is 0 for this implementation, so we * do not have a special case where the GITS_BASER.Valid bit is 0 * for the register corresponding to the Collection table but we * still have to process interrupts using non-memory-backed * Collection table entries.) * The specification makes it UNPREDICTABLE to enable the ITS without * marking each BASER as valid. We choose to handle these as if * the table was zero-sized, so commands using the table will fail * and interrupts requested via GITS_TRANSLATER writes will be ignored. * This happens automatically by leaving the num_entries field at * zero, which will be caught by the bounds checks we have before * every table lookup anyway. */ if (!FIELD_EX64(value, GITS_BASER, VALID)) { continue; } td->page_sz = page_sz; td->indirect = FIELD_EX64(value, GITS_BASER, INDIRECT); td->entry_sz = FIELD_EX64(value, GITS_BASER, ENTRYSIZE) + 1; td->base_addr = baser_base_addr(value, page_sz); if (!td->indirect) { td->num_entries = (num_pages * page_sz) / td->entry_sz; } else { td->num_entries = (((num_pages * page_sz) / L1TABLE_ENTRY_SIZE) * (page_sz / td->entry_sz)); } td->num_entries = MIN(td->num_entries, 1ULL << idbits); } } static void extract_cmdq_params(GICv3ITSState *s) { uint16_t num_pages = 0; uint64_t value = s->cbaser; num_pages = FIELD_EX64(value, GITS_CBASER, SIZE) + 1; memset(&s->cq, 0 , sizeof(s->cq)); if (FIELD_EX64(value, GITS_CBASER, VALID)) { s->cq.num_entries = (num_pages * GITS_PAGE_SIZE_4K) / GITS_CMDQ_ENTRY_SIZE; s->cq.base_addr = FIELD_EX64(value, GITS_CBASER, PHYADDR); s->cq.base_addr <<= R_GITS_CBASER_PHYADDR_SHIFT; } } static MemTxResult gicv3_its_translation_read(void *opaque, hwaddr offset, uint64_t *data, unsigned size, MemTxAttrs attrs) { /* * GITS_TRANSLATER is write-only, and all other addresses * in the interrupt translation space frame are RES0. */ *data = 0; return MEMTX_OK; } static MemTxResult gicv3_its_translation_write(void *opaque, hwaddr offset, uint64_t data, unsigned size, MemTxAttrs attrs) { GICv3ITSState *s = (GICv3ITSState *)opaque; bool result = true; trace_gicv3_its_translation_write(offset, data, size, attrs.requester_id); switch (offset) { case GITS_TRANSLATER: if (s->ctlr & R_GITS_CTLR_ENABLED_MASK) { result = do_process_its_cmd(s, attrs.requester_id, data, NONE); } break; default: break; } if (result) { return MEMTX_OK; } else { return MEMTX_ERROR; } } static bool its_writel(GICv3ITSState *s, hwaddr offset, uint64_t value, MemTxAttrs attrs) { bool result = true; int index; switch (offset) { case GITS_CTLR: if (value & R_GITS_CTLR_ENABLED_MASK) { s->ctlr |= R_GITS_CTLR_ENABLED_MASK; extract_table_params(s); extract_cmdq_params(s); process_cmdq(s); } else { s->ctlr &= ~R_GITS_CTLR_ENABLED_MASK; } break; case GITS_CBASER: /* * IMPDEF choice:- GITS_CBASER register becomes RO if ITS is * already enabled */ if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) { s->cbaser = deposit64(s->cbaser, 0, 32, value); s->creadr = 0; } break; case GITS_CBASER + 4: /* * IMPDEF choice:- GITS_CBASER register becomes RO if ITS is * already enabled */ if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) { s->cbaser = deposit64(s->cbaser, 32, 32, value); s->creadr = 0; } break; case GITS_CWRITER: s->cwriter = deposit64(s->cwriter, 0, 32, (value & ~R_GITS_CWRITER_RETRY_MASK)); if (s->cwriter != s->creadr) { process_cmdq(s); } break; case GITS_CWRITER + 4: s->cwriter = deposit64(s->cwriter, 32, 32, value); break; case GITS_CREADR: if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) { s->creadr = deposit64(s->creadr, 0, 32, (value & ~R_GITS_CREADR_STALLED_MASK)); } else { /* RO register, ignore the write */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write to RO register at offset " TARGET_FMT_plx "\n", __func__, offset); } break; case GITS_CREADR + 4: if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) { s->creadr = deposit64(s->creadr, 32, 32, value); } else { /* RO register, ignore the write */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write to RO register at offset " TARGET_FMT_plx "\n", __func__, offset); } break; case GITS_BASER ... GITS_BASER + 0x3f: /* * IMPDEF choice:- GITS_BASERn register becomes RO if ITS is * already enabled */ if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) { index = (offset - GITS_BASER) / 8; if (s->baser[index] == 0) { /* Unimplemented GITS_BASERn: RAZ/WI */ break; } if (offset & 7) { value <<= 32; value &= ~GITS_BASER_RO_MASK; s->baser[index] &= GITS_BASER_RO_MASK | MAKE_64BIT_MASK(0, 32); s->baser[index] |= value; } else { value &= ~GITS_BASER_RO_MASK; s->baser[index] &= GITS_BASER_RO_MASK | MAKE_64BIT_MASK(32, 32); s->baser[index] |= value; } } break; case GITS_IIDR: case GITS_IDREGS ... GITS_IDREGS + 0x2f: /* RO registers, ignore the write */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write to RO register at offset " TARGET_FMT_plx "\n", __func__, offset); break; default: result = false; break; } return result; } static bool its_readl(GICv3ITSState *s, hwaddr offset, uint64_t *data, MemTxAttrs attrs) { bool result = true; int index; switch (offset) { case GITS_CTLR: *data = s->ctlr; break; case GITS_IIDR: *data = gicv3_iidr(); break; case GITS_IDREGS ... GITS_IDREGS + 0x2f: /* ID registers */ *data = gicv3_idreg(offset - GITS_IDREGS, GICV3_PIDR0_ITS); break; case GITS_TYPER: *data = extract64(s->typer, 0, 32); break; case GITS_TYPER + 4: *data = extract64(s->typer, 32, 32); break; case GITS_CBASER: *data = extract64(s->cbaser, 0, 32); break; case GITS_CBASER + 4: *data = extract64(s->cbaser, 32, 32); break; case GITS_CREADR: *data = extract64(s->creadr, 0, 32); break; case GITS_CREADR + 4: *data = extract64(s->creadr, 32, 32); break; case GITS_CWRITER: *data = extract64(s->cwriter, 0, 32); break; case GITS_CWRITER + 4: *data = extract64(s->cwriter, 32, 32); break; case GITS_BASER ... GITS_BASER + 0x3f: index = (offset - GITS_BASER) / 8; if (offset & 7) { *data = extract64(s->baser[index], 32, 32); } else { *data = extract64(s->baser[index], 0, 32); } break; default: result = false; break; } return result; } static bool its_writell(GICv3ITSState *s, hwaddr offset, uint64_t value, MemTxAttrs attrs) { bool result = true; int index; switch (offset) { case GITS_BASER ... GITS_BASER + 0x3f: /* * IMPDEF choice:- GITS_BASERn register becomes RO if ITS is * already enabled */ if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) { index = (offset - GITS_BASER) / 8; if (s->baser[index] == 0) { /* Unimplemented GITS_BASERn: RAZ/WI */ break; } s->baser[index] &= GITS_BASER_RO_MASK; s->baser[index] |= (value & ~GITS_BASER_RO_MASK); } break; case GITS_CBASER: /* * IMPDEF choice:- GITS_CBASER register becomes RO if ITS is * already enabled */ if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) { s->cbaser = value; s->creadr = 0; } break; case GITS_CWRITER: s->cwriter = value & ~R_GITS_CWRITER_RETRY_MASK; if (s->cwriter != s->creadr) { process_cmdq(s); } break; case GITS_CREADR: if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) { s->creadr = value & ~R_GITS_CREADR_STALLED_MASK; } else { /* RO register, ignore the write */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write to RO register at offset " TARGET_FMT_plx "\n", __func__, offset); } break; case GITS_TYPER: /* RO registers, ignore the write */ qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write to RO register at offset " TARGET_FMT_plx "\n", __func__, offset); break; default: result = false; break; } return result; } static bool its_readll(GICv3ITSState *s, hwaddr offset, uint64_t *data, MemTxAttrs attrs) { bool result = true; int index; switch (offset) { case GITS_TYPER: *data = s->typer; break; case GITS_BASER ... GITS_BASER + 0x3f: index = (offset - GITS_BASER) / 8; *data = s->baser[index]; break; case GITS_CBASER: *data = s->cbaser; break; case GITS_CREADR: *data = s->creadr; break; case GITS_CWRITER: *data = s->cwriter; break; default: result = false; break; } return result; } static MemTxResult gicv3_its_read(void *opaque, hwaddr offset, uint64_t *data, unsigned size, MemTxAttrs attrs) { GICv3ITSState *s = (GICv3ITSState *)opaque; bool result; switch (size) { case 4: result = its_readl(s, offset, data, attrs); break; case 8: result = its_readll(s, offset, data, attrs); break; default: result = false; break; } if (!result) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest read at offset " TARGET_FMT_plx " size %u\n", __func__, offset, size); trace_gicv3_its_badread(offset, size); /* * The spec requires that reserved registers are RAZ/WI; * so use false returns from leaf functions as a way to * trigger the guest-error logging but don't return it to * the caller, or we'll cause a spurious guest data abort. */ *data = 0; } else { trace_gicv3_its_read(offset, *data, size); } return MEMTX_OK; } static MemTxResult gicv3_its_write(void *opaque, hwaddr offset, uint64_t data, unsigned size, MemTxAttrs attrs) { GICv3ITSState *s = (GICv3ITSState *)opaque; bool result; switch (size) { case 4: result = its_writel(s, offset, data, attrs); break; case 8: result = its_writell(s, offset, data, attrs); break; default: result = false; break; } if (!result) { qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid guest write at offset " TARGET_FMT_plx " size %u\n", __func__, offset, size); trace_gicv3_its_badwrite(offset, data, size); /* * The spec requires that reserved registers are RAZ/WI; * so use false returns from leaf functions as a way to * trigger the guest-error logging but don't return it to * the caller, or we'll cause a spurious guest data abort. */ } else { trace_gicv3_its_write(offset, data, size); } return MEMTX_OK; } static const MemoryRegionOps gicv3_its_control_ops = { .read_with_attrs = gicv3_its_read, .write_with_attrs = gicv3_its_write, .valid.min_access_size = 4, .valid.max_access_size = 8, .impl.min_access_size = 4, .impl.max_access_size = 8, .endianness = DEVICE_NATIVE_ENDIAN, }; static const MemoryRegionOps gicv3_its_translation_ops = { .read_with_attrs = gicv3_its_translation_read, .write_with_attrs = gicv3_its_translation_write, .valid.min_access_size = 2, .valid.max_access_size = 4, .impl.min_access_size = 2, .impl.max_access_size = 4, .endianness = DEVICE_NATIVE_ENDIAN, }; static void gicv3_arm_its_realize(DeviceState *dev, Error **errp) { GICv3ITSState *s = ARM_GICV3_ITS_COMMON(dev); int i; for (i = 0; i < s->gicv3->num_cpu; i++) { if (!(s->gicv3->cpu[i].gicr_typer & GICR_TYPER_PLPIS)) { error_setg(errp, "Physical LPI not supported by CPU %d", i); return; } } gicv3_its_init_mmio(s, &gicv3_its_control_ops, &gicv3_its_translation_ops); /* set the ITS default features supported */ s->typer = FIELD_DP64(s->typer, GITS_TYPER, PHYSICAL, 1); s->typer = FIELD_DP64(s->typer, GITS_TYPER, ITT_ENTRY_SIZE, ITS_ITT_ENTRY_SIZE - 1); s->typer = FIELD_DP64(s->typer, GITS_TYPER, IDBITS, ITS_IDBITS); s->typer = FIELD_DP64(s->typer, GITS_TYPER, DEVBITS, ITS_DEVBITS); s->typer = FIELD_DP64(s->typer, GITS_TYPER, CIL, 1); s->typer = FIELD_DP64(s->typer, GITS_TYPER, CIDBITS, ITS_CIDBITS); } static void gicv3_its_reset(DeviceState *dev) { GICv3ITSState *s = ARM_GICV3_ITS_COMMON(dev); GICv3ITSClass *c = ARM_GICV3_ITS_GET_CLASS(s); c->parent_reset(dev); /* Quiescent bit reset to 1 */ s->ctlr = FIELD_DP32(s->ctlr, GITS_CTLR, QUIESCENT, 1); /* * setting GITS_BASER0.Type = 0b001 (Device) * GITS_BASER1.Type = 0b100 (Collection Table) * GITS_BASER2.Type = 0b010 (vPE) for GICv4 and later * GITS_BASER.Type,where n = 3 to 7 are 0b00 (Unimplemented) * GITS_BASER<0,1>.Page_Size = 64KB * and default translation table entry size to 16 bytes */ s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, TYPE, GITS_BASER_TYPE_DEVICE); s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, PAGESIZE, GITS_BASER_PAGESIZE_64K); s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, ENTRYSIZE, GITS_DTE_SIZE - 1); s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, TYPE, GITS_BASER_TYPE_COLLECTION); s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, PAGESIZE, GITS_BASER_PAGESIZE_64K); s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, ENTRYSIZE, GITS_CTE_SIZE - 1); if (its_feature_virtual(s)) { s->baser[2] = FIELD_DP64(s->baser[2], GITS_BASER, TYPE, GITS_BASER_TYPE_VPE); s->baser[2] = FIELD_DP64(s->baser[2], GITS_BASER, PAGESIZE, GITS_BASER_PAGESIZE_64K); s->baser[2] = FIELD_DP64(s->baser[2], GITS_BASER, ENTRYSIZE, GITS_VPE_SIZE - 1); } } static void gicv3_its_post_load(GICv3ITSState *s) { if (s->ctlr & R_GITS_CTLR_ENABLED_MASK) { extract_table_params(s); extract_cmdq_params(s); } } static Property gicv3_its_props[] = { DEFINE_PROP_LINK("parent-gicv3", GICv3ITSState, gicv3, "arm-gicv3", GICv3State *), DEFINE_PROP_END_OF_LIST(), }; static void gicv3_its_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); GICv3ITSClass *ic = ARM_GICV3_ITS_CLASS(klass); GICv3ITSCommonClass *icc = ARM_GICV3_ITS_COMMON_CLASS(klass); dc->realize = gicv3_arm_its_realize; device_class_set_props(dc, gicv3_its_props); device_class_set_parent_reset(dc, gicv3_its_reset, &ic->parent_reset); icc->post_load = gicv3_its_post_load; } static const TypeInfo gicv3_its_info = { .name = TYPE_ARM_GICV3_ITS, .parent = TYPE_ARM_GICV3_ITS_COMMON, .instance_size = sizeof(GICv3ITSState), .class_init = gicv3_its_class_init, .class_size = sizeof(GICv3ITSClass), }; static void gicv3_its_register_types(void) { type_register_static(&gicv3_its_info); } type_init(gicv3_its_register_types)