/* * QEMU PowerPC sPAPR XIVE interrupt controller model * * Copyright (c) 2017-2019, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "target/ppc/cpu.h" #include "sysemu/cpus.h" #include "sysemu/kvm.h" #include "sysemu/runstate.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_cpu_core.h" #include "hw/ppc/spapr_xive.h" #include "hw/ppc/xive.h" #include "kvm_ppc.h" #include <sys/ioctl.h> /* * Helpers for CPU hotplug * * TODO: make a common KVMEnabledCPU layer for XICS and XIVE */ typedef struct KVMEnabledCPU { unsigned long vcpu_id; QLIST_ENTRY(KVMEnabledCPU) node; } KVMEnabledCPU; static QLIST_HEAD(, KVMEnabledCPU) kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus); static bool kvm_cpu_is_enabled(unsigned long vcpu_id) { KVMEnabledCPU *enabled_cpu; QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) { if (enabled_cpu->vcpu_id == vcpu_id) { return true; } } return false; } static void kvm_cpu_enable(CPUState *cs) { KVMEnabledCPU *enabled_cpu; unsigned long vcpu_id = kvm_arch_vcpu_id(cs); enabled_cpu = g_malloc(sizeof(*enabled_cpu)); enabled_cpu->vcpu_id = vcpu_id; QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node); } static void kvm_cpu_disable_all(void) { KVMEnabledCPU *enabled_cpu, *next; QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) { QLIST_REMOVE(enabled_cpu, node); g_free(enabled_cpu); } } /* * XIVE Thread Interrupt Management context (KVM) */ int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp) { SpaprXive *xive = SPAPR_XIVE(tctx->xptr); uint64_t state[2]; int ret; assert(xive->fd != -1); /* word0 and word1 of the OS ring. */ state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]); ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); if (ret != 0) { error_setg_errno(errp, -ret, "XIVE: could not restore KVM state of CPU %ld", kvm_arch_vcpu_id(tctx->cs)); return ret; } return 0; } int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp) { SpaprXive *xive = SPAPR_XIVE(tctx->xptr); uint64_t state[2] = { 0 }; int ret; assert(xive->fd != -1); ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); if (ret != 0) { error_setg_errno(errp, -ret, "XIVE: could not capture KVM state of CPU %ld", kvm_arch_vcpu_id(tctx->cs)); return ret; } /* word0 and word1 of the OS ring. */ *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0]; return 0; } typedef struct { XiveTCTX *tctx; Error **errp; int ret; } XiveCpuGetState; static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu, run_on_cpu_data arg) { XiveCpuGetState *s = arg.host_ptr; s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp); } int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp) { XiveCpuGetState s = { .tctx = tctx, .errp = errp, }; /* * Kick the vCPU to make sure they are available for the KVM ioctl. */ run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state, RUN_ON_CPU_HOST_PTR(&s)); return s.ret; } /* * Allocate the vCPU IPIs from the vCPU context. This will allocate * the XIVE IPI interrupt on the chip on which the vCPU is running. * This gives a better distribution of IPIs when the guest has a lot * of vCPUs. When the vCPUs are pinned, this will make the IPI local * to the chip of the vCPU. It will reduce rerouting between interrupt * controllers and gives better performance. */ typedef struct { SpaprXive *xive; Error *err; int rc; } XiveInitIPI; static void kvmppc_xive_reset_ipi_on_cpu(CPUState *cs, run_on_cpu_data arg) { unsigned long ipi = kvm_arch_vcpu_id(cs); XiveInitIPI *s = arg.host_ptr; uint64_t state = 0; s->rc = kvm_device_access(s->xive->fd, KVM_DEV_XIVE_GRP_SOURCE, ipi, &state, true, &s->err); } static int kvmppc_xive_reset_ipi(SpaprXive *xive, CPUState *cs, Error **errp) { XiveInitIPI s = { .xive = xive, .err = NULL, .rc = 0, }; run_on_cpu(cs, kvmppc_xive_reset_ipi_on_cpu, RUN_ON_CPU_HOST_PTR(&s)); if (s.err) { error_propagate(errp, s.err); } return s.rc; } int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp) { ERRP_GUARD(); SpaprXive *xive = SPAPR_XIVE(tctx->xptr); unsigned long vcpu_id; int ret; assert(xive->fd != -1); /* Check if CPU was hot unplugged and replugged. */ if (kvm_cpu_is_enabled(kvm_arch_vcpu_id(tctx->cs))) { return 0; } vcpu_id = kvm_arch_vcpu_id(tctx->cs); ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd, vcpu_id, 0); if (ret < 0) { error_setg_errno(errp, -ret, "XIVE: unable to connect CPU%ld to KVM device", vcpu_id); if (ret == -ENOSPC) { error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n", MACHINE(qdev_get_machine())->smp.max_cpus); } return ret; } /* Create/reset the vCPU IPI */ ret = kvmppc_xive_reset_ipi(xive, tctx->cs, errp); if (ret < 0) { return ret; } kvm_cpu_enable(tctx->cs); return 0; } /* * XIVE Interrupt Source (KVM) */ int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas, Error **errp) { uint32_t end_idx; uint32_t end_blk; uint8_t priority; uint32_t server; bool masked; uint32_t eisn; uint64_t kvm_src; assert(xive_eas_is_valid(eas)); end_idx = xive_get_field64(EAS_END_INDEX, eas->w); end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); eisn = xive_get_field64(EAS_END_DATA, eas->w); masked = xive_eas_is_masked(eas); spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT & KVM_XIVE_SOURCE_PRIORITY_MASK; kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT & KVM_XIVE_SOURCE_SERVER_MASK; kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) & KVM_XIVE_SOURCE_MASKED_MASK; kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) & KVM_XIVE_SOURCE_EISN_MASK; return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn, &kvm_src, true, errp); } void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp) { kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn, NULL, true, errp); } /* * At reset, the interrupt sources are simply created and MASKED. We * only need to inform the KVM XIVE device about their type: LSI or * MSI. */ int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp) { SpaprXive *xive = SPAPR_XIVE(xsrc->xive); uint64_t state = 0; assert(xive->fd != -1); /* * The vCPU IPIs are now allocated in kvmppc_xive_cpu_connect() * and not with all sources in kvmppc_xive_source_reset() */ assert(srcno >= SPAPR_XIRQ_BASE); if (xive_source_irq_is_lsi(xsrc, srcno)) { state |= KVM_XIVE_LEVEL_SENSITIVE; if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { state |= KVM_XIVE_LEVEL_ASSERTED; } } return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state, true, errp); } /* * To be valid, a source must have been claimed by the machine (valid * entry in the EAS table) and if it is a vCPU IPI, the vCPU should * have been enabled, which means the IPI has been allocated in * kvmppc_xive_cpu_connect(). */ static bool xive_source_is_valid(SpaprXive *xive, int i) { return xive_eas_is_valid(&xive->eat[i]) && (i >= SPAPR_XIRQ_BASE || kvm_cpu_is_enabled(i)); } static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp) { SpaprXive *xive = SPAPR_XIVE(xsrc->xive); int i; /* * Skip the vCPU IPIs. These are created/reset when the vCPUs are * connected in kvmppc_xive_cpu_connect() */ for (i = SPAPR_XIRQ_BASE; i < xsrc->nr_irqs; i++) { int ret; if (!xive_eas_is_valid(&xive->eat[i])) { continue; } ret = kvmppc_xive_source_reset_one(xsrc, i, errp); if (ret < 0) { return ret; } } return 0; } /* * This is used to perform the magic loads on the ESB pages, described * in xive.h. * * Memory barriers should not be needed for loads (no store for now). */ static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, uint64_t data, bool write) { uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) + offset; if (write) { *addr = cpu_to_be64(data); return -1; } else { /* Prevent the compiler from optimizing away the load */ volatile uint64_t value = be64_to_cpu(*addr); return value; } } static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset) { return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3; } static void xive_esb_trigger(XiveSource *xsrc, int srcno) { uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno); *addr = 0x0; } uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, uint64_t data, bool write) { if (write) { return xive_esb_rw(xsrc, srcno, offset, data, 1); } /* * Special Load EOI handling for LSI sources. Q bit is never set * and the interrupt should be re-triggered if the level is still * asserted. */ if (xive_source_irq_is_lsi(xsrc, srcno) && offset == XIVE_ESB_LOAD_EOI) { xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00); if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { xive_esb_trigger(xsrc, srcno); } return 0; } else { return xive_esb_rw(xsrc, srcno, offset, 0, 0); } } static void kvmppc_xive_source_get_state(XiveSource *xsrc) { SpaprXive *xive = SPAPR_XIVE(xsrc->xive); int i; for (i = 0; i < xsrc->nr_irqs; i++) { uint8_t pq; if (!xive_source_is_valid(xive, i)) { continue; } /* Perform a load without side effect to retrieve the PQ bits */ pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); /* and save PQ locally */ xive_source_esb_set(xsrc, i, pq); } } void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val) { XiveSource *xsrc = opaque; if (!xive_source_irq_is_lsi(xsrc, srcno)) { if (!val) { return; } } else { if (val) { xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; } else { xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; } } xive_esb_trigger(xsrc, srcno); } /* * sPAPR XIVE interrupt controller (KVM) */ int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk, uint32_t end_idx, XiveEND *end, Error **errp) { struct kvm_ppc_xive_eq kvm_eq = { 0 }; uint64_t kvm_eq_idx; uint8_t priority; uint32_t server; int ret; assert(xive_end_is_valid(end)); /* Encode the tuple (server, prio) as a KVM EQ index */ spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & KVM_XIVE_EQ_PRIORITY_MASK; kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & KVM_XIVE_EQ_SERVER_MASK; ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, &kvm_eq, false, errp); if (ret < 0) { return ret; } /* * The EQ index and toggle bit are updated by HW. These are the * only fields from KVM we want to update QEMU with. The other END * fields should already be in the QEMU END table. */ end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) | xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex); return 0; } int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk, uint32_t end_idx, XiveEND *end, Error **errp) { struct kvm_ppc_xive_eq kvm_eq = { 0 }; uint64_t kvm_eq_idx; uint8_t priority; uint32_t server; /* * Build the KVM state from the local END structure. */ kvm_eq.flags = 0; if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) { kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY; } /* * If the hcall is disabling the EQ, set the size and page address * to zero. When migrating, only valid ENDs are taken into * account. */ if (xive_end_is_valid(end)) { kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12; kvm_eq.qaddr = xive_end_qaddr(end); /* * The EQ toggle bit and index should only be relevant when * restoring the EQ state */ kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1); kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); } else { kvm_eq.qshift = 0; kvm_eq.qaddr = 0; } /* Encode the tuple (server, prio) as a KVM EQ index */ spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & KVM_XIVE_EQ_PRIORITY_MASK; kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & KVM_XIVE_EQ_SERVER_MASK; return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, &kvm_eq, true, errp); } void kvmppc_xive_reset(SpaprXive *xive, Error **errp) { kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET, NULL, true, errp); } static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp) { int i; int ret; for (i = 0; i < xive->nr_ends; i++) { if (!xive_end_is_valid(&xive->endt[i])) { continue; } ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, &xive->endt[i], errp); if (ret < 0) { return ret; } } return 0; } /* * The primary goal of the XIVE VM change handler is to mark the EQ * pages dirty when all XIVE event notifications have stopped. * * Whenever the VM is stopped, the VM change handler sets the source * PQs to PENDING to stop the flow of events and to possibly catch a * triggered interrupt occuring while the VM is stopped. The previous * state is saved in anticipation of a migration. The XIVE controller * is then synced through KVM to flush any in-flight event * notification and stabilize the EQs. * * At this stage, we can mark the EQ page dirty and let a migration * sequence transfer the EQ pages to the destination, which is done * just after the stop state. * * The previous configuration of the sources is restored when the VM * runs again. If an interrupt was queued while the VM was stopped, * simply generate a trigger. */ static void kvmppc_xive_change_state_handler(void *opaque, int running, RunState state) { SpaprXive *xive = opaque; XiveSource *xsrc = &xive->source; Error *local_err = NULL; int i; /* * Restore the sources to their initial state. This is called when * the VM resumes after a stop or a migration. */ if (running) { for (i = 0; i < xsrc->nr_irqs; i++) { uint8_t pq; uint8_t old_pq; if (!xive_source_is_valid(xive, i)) { continue; } pq = xive_source_esb_get(xsrc, i); old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8)); /* * An interrupt was queued while the VM was stopped, * generate a trigger. */ if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) { xive_esb_trigger(xsrc, i); } } return; } /* * Mask the sources, to stop the flow of event notifications, and * save the PQs locally in the XiveSource object. The XiveSource * state will be collected later on by its vmstate handler if a * migration is in progress. */ for (i = 0; i < xsrc->nr_irqs; i++) { uint8_t pq; if (!xive_source_is_valid(xive, i)) { continue; } pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); /* * PQ is set to PENDING to possibly catch a triggered * interrupt occuring while the VM is stopped (hotplug event * for instance) . */ if (pq != XIVE_ESB_OFF) { pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10); } xive_source_esb_set(xsrc, i, pq); } /* * Sync the XIVE controller in KVM, to flush in-flight event * notification that should be enqueued in the EQs and mark the * XIVE EQ pages dirty to collect all updates. */ kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err); if (local_err) { error_report_err(local_err); return; } } void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp) { assert(xive->fd != -1); /* * When the VM is stopped, the sources are masked and the previous * state is saved in anticipation of a migration. We should not * synchronize the source state in that case else we will override * the saved state. */ if (runstate_is_running()) { kvmppc_xive_source_get_state(&xive->source); } /* EAT: there is no extra state to query from KVM */ /* ENDT */ kvmppc_xive_get_queues(xive, errp); } /* * The SpaprXive 'pre_save' method is called by the vmstate handler of * the SpaprXive model, after the XIVE controller is synced in the VM * change handler. */ int kvmppc_xive_pre_save(SpaprXive *xive) { Error *local_err = NULL; int ret; assert(xive->fd != -1); /* EAT: there is no extra state to query from KVM */ /* ENDT */ ret = kvmppc_xive_get_queues(xive, &local_err); if (ret < 0) { error_report_err(local_err); return ret; } return 0; } /* * The SpaprXive 'post_load' method is not called by a vmstate * handler. It is called at the sPAPR machine level at the end of the * migration sequence by the sPAPR IRQ backend 'post_load' method, * when all XIVE states have been transferred and loaded. */ int kvmppc_xive_post_load(SpaprXive *xive, int version_id) { Error *local_err = NULL; CPUState *cs; int i; int ret; /* The KVM XIVE device should be in use */ assert(xive->fd != -1); /* Restore the ENDT first. The targetting depends on it. */ for (i = 0; i < xive->nr_ends; i++) { if (!xive_end_is_valid(&xive->endt[i])) { continue; } ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, &xive->endt[i], &local_err); if (ret < 0) { goto fail; } } /* * We can only restore the source config if the source has been * previously set in KVM. Since we don't do that at reset time * when restoring a VM, let's do it now. */ ret = kvmppc_xive_source_reset(&xive->source, &local_err); if (ret < 0) { goto fail; } /* Restore the EAT */ for (i = 0; i < xive->nr_irqs; i++) { if (!xive_source_is_valid(xive, i)) { continue; } ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err); if (ret < 0) { goto fail; } } /* * Restore the thread interrupt contexts of initial CPUs. * * The context of hotplugged CPUs is restored later, by the * 'post_load' handler of the XiveTCTX model because they are not * available at the time the SpaprXive 'post_load' method is * called. We can not restore the context of all CPUs in the * 'post_load' handler of XiveTCTX because the machine is not * necessarily connected to the KVM device at that time. */ CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err); if (ret < 0) { goto fail; } } /* The source states will be restored when the machine starts running */ return 0; fail: error_report_err(local_err); return ret; } /* Returns MAP_FAILED on error and sets errno */ static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len, Error **errp) { void *addr; uint32_t page_shift = 16; /* TODO: fix page_shift */ addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd, pgoff << page_shift); if (addr == MAP_FAILED) { error_setg_errno(errp, errno, "XIVE: unable to set memory mapping"); } return addr; } /* * All the XIVE memory regions are now backed by mappings from the KVM * XIVE device. */ int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers, Error **errp) { SpaprXive *xive = SPAPR_XIVE(intc); XiveSource *xsrc = &xive->source; size_t esb_len = xive_source_esb_len(xsrc); size_t tima_len = 4ull << TM_SHIFT; CPUState *cs; int fd; void *addr; int ret; /* * The KVM XIVE device already in use. This is the case when * rebooting under the XIVE-only interrupt mode. */ if (xive->fd != -1) { return 0; } if (!kvmppc_has_cap_xive()) { error_setg(errp, "IRQ_XIVE capability must be present for KVM"); return -1; } /* First, create the KVM XIVE device */ fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false); if (fd < 0) { error_setg_errno(errp, -fd, "XIVE: error creating KVM device"); return -1; } xive->fd = fd; /* Tell KVM about the # of VCPUs we may have */ if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_NR_SERVERS)) { ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true, errp); if (ret < 0) { goto fail; } } /* * 1. Source ESB pages - KVM mapping */ addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp); if (addr == MAP_FAILED) { goto fail; } xsrc->esb_mmap = addr; memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc), "xive.esb-kvm", esb_len, xsrc->esb_mmap); memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_kvm, 1); /* * 2. END ESB pages (No KVM support yet) */ /* * 3. TIMA pages - KVM mapping */ addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp); if (addr == MAP_FAILED) { goto fail; } xive->tm_mmap = addr; memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive), "xive.tima", tima_len, xive->tm_mmap); memory_region_add_subregion_overlap(&xive->tm_mmio, 0, &xive->tm_mmio_kvm, 1); xive->change = qemu_add_vm_change_state_handler( kvmppc_xive_change_state_handler, xive); /* Connect the presenters to the initial VCPUs of the machine */ CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp); if (ret < 0) { goto fail; } } /* Update the KVM sources */ ret = kvmppc_xive_source_reset(xsrc, errp); if (ret < 0) { goto fail; } kvm_kernel_irqchip = true; kvm_msi_via_irqfd_allowed = true; kvm_gsi_direct_mapping = true; return 0; fail: kvmppc_xive_disconnect(intc); return -1; } void kvmppc_xive_disconnect(SpaprInterruptController *intc) { SpaprXive *xive = SPAPR_XIVE(intc); XiveSource *xsrc; size_t esb_len; assert(xive->fd != -1); /* Clear the KVM mapping */ xsrc = &xive->source; esb_len = xive_source_esb_len(xsrc); if (xsrc->esb_mmap) { memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm); object_unparent(OBJECT(&xsrc->esb_mmio_kvm)); munmap(xsrc->esb_mmap, esb_len); xsrc->esb_mmap = NULL; } if (xive->tm_mmap) { memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm); object_unparent(OBJECT(&xive->tm_mmio_kvm)); munmap(xive->tm_mmap, 4ull << TM_SHIFT); xive->tm_mmap = NULL; } /* * When the KVM device fd is closed, the KVM device is destroyed * and removed from the list of devices of the VM. The VCPU * presenters are also detached from the device. */ close(xive->fd); xive->fd = -1; kvm_kernel_irqchip = false; kvm_msi_via_irqfd_allowed = false; kvm_gsi_direct_mapping = false; /* Clear the local list of presenter (hotplug) */ kvm_cpu_disable_all(); /* VM Change state handler is not needed anymore */ if (xive->change) { qemu_del_vm_change_state_handler(xive->change); xive->change = NULL; } }