/* * IMX6 Clock Control Module * * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * To get the timer frequencies right, we need to emulate at least part of * the CCM. */ #include "qemu/osdep.h" #include "hw/misc/imx6_ccm.h" #include "migration/vmstate.h" #include "qemu/log.h" #include "qemu/module.h" #ifndef DEBUG_IMX6_CCM #define DEBUG_IMX6_CCM 0 #endif #define DPRINTF(fmt, args...) \ do { \ if (DEBUG_IMX6_CCM) { \ fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \ __func__, ##args); \ } \ } while (0) static const char *imx6_ccm_reg_name(uint32_t reg) { static char unknown[20]; switch (reg) { case CCM_CCR: return "CCR"; case CCM_CCDR: return "CCDR"; case CCM_CSR: return "CSR"; case CCM_CCSR: return "CCSR"; case CCM_CACRR: return "CACRR"; case CCM_CBCDR: return "CBCDR"; case CCM_CBCMR: return "CBCMR"; case CCM_CSCMR1: return "CSCMR1"; case CCM_CSCMR2: return "CSCMR2"; case CCM_CSCDR1: return "CSCDR1"; case CCM_CS1CDR: return "CS1CDR"; case CCM_CS2CDR: return "CS2CDR"; case CCM_CDCDR: return "CDCDR"; case CCM_CHSCCDR: return "CHSCCDR"; case CCM_CSCDR2: return "CSCDR2"; case CCM_CSCDR3: return "CSCDR3"; case CCM_CDHIPR: return "CDHIPR"; case CCM_CTOR: return "CTOR"; case CCM_CLPCR: return "CLPCR"; case CCM_CISR: return "CISR"; case CCM_CIMR: return "CIMR"; case CCM_CCOSR: return "CCOSR"; case CCM_CGPR: return "CGPR"; case CCM_CCGR0: return "CCGR0"; case CCM_CCGR1: return "CCGR1"; case CCM_CCGR2: return "CCGR2"; case CCM_CCGR3: return "CCGR3"; case CCM_CCGR4: return "CCGR4"; case CCM_CCGR5: return "CCGR5"; case CCM_CCGR6: return "CCGR6"; case CCM_CMEOR: return "CMEOR"; default: sprintf(unknown, "%d ?", reg); return unknown; } } static const char *imx6_analog_reg_name(uint32_t reg) { static char unknown[20]; switch (reg) { case CCM_ANALOG_PLL_ARM: return "PLL_ARM"; case CCM_ANALOG_PLL_ARM_SET: return "PLL_ARM_SET"; case CCM_ANALOG_PLL_ARM_CLR: return "PLL_ARM_CLR"; case CCM_ANALOG_PLL_ARM_TOG: return "PLL_ARM_TOG"; case CCM_ANALOG_PLL_USB1: return "PLL_USB1"; case CCM_ANALOG_PLL_USB1_SET: return "PLL_USB1_SET"; case CCM_ANALOG_PLL_USB1_CLR: return "PLL_USB1_CLR"; case CCM_ANALOG_PLL_USB1_TOG: return "PLL_USB1_TOG"; case CCM_ANALOG_PLL_USB2: return "PLL_USB2"; case CCM_ANALOG_PLL_USB2_SET: return "PLL_USB2_SET"; case CCM_ANALOG_PLL_USB2_CLR: return "PLL_USB2_CLR"; case CCM_ANALOG_PLL_USB2_TOG: return "PLL_USB2_TOG"; case CCM_ANALOG_PLL_SYS: return "PLL_SYS"; case CCM_ANALOG_PLL_SYS_SET: return "PLL_SYS_SET"; case CCM_ANALOG_PLL_SYS_CLR: return "PLL_SYS_CLR"; case CCM_ANALOG_PLL_SYS_TOG: return "PLL_SYS_TOG"; case CCM_ANALOG_PLL_SYS_SS: return "PLL_SYS_SS"; case CCM_ANALOG_PLL_SYS_NUM: return "PLL_SYS_NUM"; case CCM_ANALOG_PLL_SYS_DENOM: return "PLL_SYS_DENOM"; case CCM_ANALOG_PLL_AUDIO: return "PLL_AUDIO"; case CCM_ANALOG_PLL_AUDIO_SET: return "PLL_AUDIO_SET"; case CCM_ANALOG_PLL_AUDIO_CLR: return "PLL_AUDIO_CLR"; case CCM_ANALOG_PLL_AUDIO_TOG: return "PLL_AUDIO_TOG"; case CCM_ANALOG_PLL_AUDIO_NUM: return "PLL_AUDIO_NUM"; case CCM_ANALOG_PLL_AUDIO_DENOM: return "PLL_AUDIO_DENOM"; case CCM_ANALOG_PLL_VIDEO: return "PLL_VIDEO"; case CCM_ANALOG_PLL_VIDEO_SET: return "PLL_VIDEO_SET"; case CCM_ANALOG_PLL_VIDEO_CLR: return "PLL_VIDEO_CLR"; case CCM_ANALOG_PLL_VIDEO_TOG: return "PLL_VIDEO_TOG"; case CCM_ANALOG_PLL_VIDEO_NUM: return "PLL_VIDEO_NUM"; case CCM_ANALOG_PLL_VIDEO_DENOM: return "PLL_VIDEO_DENOM"; case CCM_ANALOG_PLL_MLB: return "PLL_MLB"; case CCM_ANALOG_PLL_MLB_SET: return "PLL_MLB_SET"; case CCM_ANALOG_PLL_MLB_CLR: return "PLL_MLB_CLR"; case CCM_ANALOG_PLL_MLB_TOG: return "PLL_MLB_TOG"; case CCM_ANALOG_PLL_ENET: return "PLL_ENET"; case CCM_ANALOG_PLL_ENET_SET: return "PLL_ENET_SET"; case CCM_ANALOG_PLL_ENET_CLR: return "PLL_ENET_CLR"; case CCM_ANALOG_PLL_ENET_TOG: return "PLL_ENET_TOG"; case CCM_ANALOG_PFD_480: return "PFD_480"; case CCM_ANALOG_PFD_480_SET: return "PFD_480_SET"; case CCM_ANALOG_PFD_480_CLR: return "PFD_480_CLR"; case CCM_ANALOG_PFD_480_TOG: return "PFD_480_TOG"; case CCM_ANALOG_PFD_528: return "PFD_528"; case CCM_ANALOG_PFD_528_SET: return "PFD_528_SET"; case CCM_ANALOG_PFD_528_CLR: return "PFD_528_CLR"; case CCM_ANALOG_PFD_528_TOG: return "PFD_528_TOG"; case CCM_ANALOG_MISC0: return "MISC0"; case CCM_ANALOG_MISC0_SET: return "MISC0_SET"; case CCM_ANALOG_MISC0_CLR: return "MISC0_CLR"; case CCM_ANALOG_MISC0_TOG: return "MISC0_TOG"; case CCM_ANALOG_MISC2: return "MISC2"; case CCM_ANALOG_MISC2_SET: return "MISC2_SET"; case CCM_ANALOG_MISC2_CLR: return "MISC2_CLR"; case CCM_ANALOG_MISC2_TOG: return "MISC2_TOG"; case PMU_REG_1P1: return "PMU_REG_1P1"; case PMU_REG_3P0: return "PMU_REG_3P0"; case PMU_REG_2P5: return "PMU_REG_2P5"; case PMU_REG_CORE: return "PMU_REG_CORE"; case PMU_MISC1: return "PMU_MISC1"; case PMU_MISC1_SET: return "PMU_MISC1_SET"; case PMU_MISC1_CLR: return "PMU_MISC1_CLR"; case PMU_MISC1_TOG: return "PMU_MISC1_TOG"; case USB_ANALOG_DIGPROG: return "USB_ANALOG_DIGPROG"; default: sprintf(unknown, "%d ?", reg); return unknown; } } #define CKIH_FREQ 24000000 /* 24MHz crystal input */ static const VMStateDescription vmstate_imx6_ccm = { .name = TYPE_IMX6_CCM, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX), VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX), VMSTATE_END_OF_LIST() }, }; static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev) { uint64_t freq = 24000000; if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) { freq *= 22; } else { freq *= 20; } DPRINTF("freq = %d\n", (uint32_t)freq); return freq; } static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev) { uint64_t freq = 0; freq = imx6_analog_get_pll2_clk(dev) * 18 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC); DPRINTF("freq = %d\n", (uint32_t)freq); return freq; } static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev) { uint64_t freq = 0; freq = imx6_analog_get_pll2_clk(dev) * 18 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC); DPRINTF("freq = %d\n", (uint32_t)freq); return freq; } static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev) { uint64_t freq = 0; switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) { case 0: freq = imx6_analog_get_pll2_clk(dev); break; case 1: freq = imx6_analog_get_pll2_pfd2_clk(dev); break; case 2: freq = imx6_analog_get_pll2_pfd0_clk(dev); break; case 3: freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2; break; default: /* We should never get there */ g_assert_not_reached(); break; } DPRINTF("freq = %d\n", (uint32_t)freq); return freq; } static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev) { uint64_t freq = 0; freq = imx6_analog_get_periph_clk(dev) / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF)); DPRINTF("freq = %d\n", (uint32_t)freq); return freq; } static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev) { uint64_t freq = 0; freq = imx6_ccm_get_ahb_clk(dev) / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF)); DPRINTF("freq = %d\n", (uint32_t)freq); return freq; } static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev) { uint64_t freq = 0; freq = imx6_ccm_get_ipg_clk(dev) / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF)); DPRINTF("freq = %d\n", (uint32_t)freq); return freq; } static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock) { uint32_t freq = 0; IMX6CCMState *s = IMX6_CCM(dev); switch (clock) { case CLK_NONE: break; case CLK_IPG: freq = imx6_ccm_get_ipg_clk(s); break; case CLK_IPG_HIGH: freq = imx6_ccm_get_per_clk(s); break; case CLK_32k: freq = CKIL_FREQ; break; case CLK_HIGH: freq = 24000000; break; case CLK_HIGH_DIV: freq = 24000000 / 8; break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n", TYPE_IMX6_CCM, __func__, clock); break; } DPRINTF("Clock = %d) = %d\n", clock, freq); return freq; } static void imx6_ccm_reset(DeviceState *dev) { IMX6CCMState *s = IMX6_CCM(dev); DPRINTF("\n"); s->ccm[CCM_CCR] = 0x040116FF; s->ccm[CCM_CCDR] = 0x00000000; s->ccm[CCM_CSR] = 0x00000010; s->ccm[CCM_CCSR] = 0x00000100; s->ccm[CCM_CACRR] = 0x00000000; s->ccm[CCM_CBCDR] = 0x00018D40; s->ccm[CCM_CBCMR] = 0x00022324; s->ccm[CCM_CSCMR1] = 0x00F00000; s->ccm[CCM_CSCMR2] = 0x02B92F06; s->ccm[CCM_CSCDR1] = 0x00490B00; s->ccm[CCM_CS1CDR] = 0x0EC102C1; s->ccm[CCM_CS2CDR] = 0x000736C1; s->ccm[CCM_CDCDR] = 0x33F71F92; s->ccm[CCM_CHSCCDR] = 0x0002A150; s->ccm[CCM_CSCDR2] = 0x0002A150; s->ccm[CCM_CSCDR3] = 0x00014841; s->ccm[CCM_CDHIPR] = 0x00000000; s->ccm[CCM_CTOR] = 0x00000000; s->ccm[CCM_CLPCR] = 0x00000079; s->ccm[CCM_CISR] = 0x00000000; s->ccm[CCM_CIMR] = 0xFFFFFFFF; s->ccm[CCM_CCOSR] = 0x000A0001; s->ccm[CCM_CGPR] = 0x0000FE62; s->ccm[CCM_CCGR0] = 0xFFFFFFFF; s->ccm[CCM_CCGR1] = 0xFFFFFFFF; s->ccm[CCM_CCGR2] = 0xFC3FFFFF; s->ccm[CCM_CCGR3] = 0xFFFFFFFF; s->ccm[CCM_CCGR4] = 0xFFFFFFFF; s->ccm[CCM_CCGR5] = 0xFFFFFFFF; s->ccm[CCM_CCGR6] = 0xFFFFFFFF; s->ccm[CCM_CMEOR] = 0xFFFFFFFF; s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042; s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000; s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000; s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001; s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000; s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000; s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012; s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006; s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100; s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C; s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C; s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100; s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447; s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000; s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001; s->analog[CCM_ANALOG_PFD_480] = 0x1311100C; s->analog[CCM_ANALOG_PFD_528] = 0x1018101B; s->analog[PMU_REG_1P1] = 0x00001073; s->analog[PMU_REG_3P0] = 0x00000F74; s->analog[PMU_REG_2P5] = 0x00005071; s->analog[PMU_REG_CORE] = 0x00402010; s->analog[PMU_MISC0] = 0x04000000; s->analog[PMU_MISC1] = 0x00000000; s->analog[PMU_MISC2] = 0x00272727; s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004; s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000; s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000; s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000; s->analog[USB_ANALOG_USB1_MISC] = 0x00000002; s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004; s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000; s->analog[USB_ANALOG_USB2_MISC] = 0x00000002; s->analog[USB_ANALOG_DIGPROG] = 0x00000000; /* all PLLs need to be locked */ s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK; s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK; s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK; s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK; s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK; s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK; s->analog[CCM_ANALOG_PLL_MLB] |= CCM_ANALOG_PLL_LOCK; s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK; } static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size) { uint32_t value = 0; uint32_t index = offset >> 2; IMX6CCMState *s = (IMX6CCMState *)opaque; value = s->ccm[index]; DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value); return (uint64_t)value; } static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { uint32_t index = offset >> 2; IMX6CCMState *s = (IMX6CCMState *)opaque; DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), (uint32_t)value); /* * We will do a better implementation later. In particular some bits * cannot be written to. */ s->ccm[index] = (uint32_t)value; } static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size) { uint32_t value; uint32_t index = offset >> 2; IMX6CCMState *s = (IMX6CCMState *)opaque; switch (index) { case CCM_ANALOG_PLL_ARM_SET: case CCM_ANALOG_PLL_USB1_SET: case CCM_ANALOG_PLL_USB2_SET: case CCM_ANALOG_PLL_SYS_SET: case CCM_ANALOG_PLL_AUDIO_SET: case CCM_ANALOG_PLL_VIDEO_SET: case CCM_ANALOG_PLL_MLB_SET: case CCM_ANALOG_PLL_ENET_SET: case CCM_ANALOG_PFD_480_SET: case CCM_ANALOG_PFD_528_SET: case CCM_ANALOG_MISC0_SET: case PMU_MISC1_SET: case CCM_ANALOG_MISC2_SET: case USB_ANALOG_USB1_VBUS_DETECT_SET: case USB_ANALOG_USB1_CHRG_DETECT_SET: case USB_ANALOG_USB1_MISC_SET: case USB_ANALOG_USB2_VBUS_DETECT_SET: case USB_ANALOG_USB2_CHRG_DETECT_SET: case USB_ANALOG_USB2_MISC_SET: /* * All REG_NAME_SET register access are in fact targeting the * the REG_NAME register. */ value = s->analog[index - 1]; break; case CCM_ANALOG_PLL_ARM_CLR: case CCM_ANALOG_PLL_USB1_CLR: case CCM_ANALOG_PLL_USB2_CLR: case CCM_ANALOG_PLL_SYS_CLR: case CCM_ANALOG_PLL_AUDIO_CLR: case CCM_ANALOG_PLL_VIDEO_CLR: case CCM_ANALOG_PLL_MLB_CLR: case CCM_ANALOG_PLL_ENET_CLR: case CCM_ANALOG_PFD_480_CLR: case CCM_ANALOG_PFD_528_CLR: case CCM_ANALOG_MISC0_CLR: case PMU_MISC1_CLR: case CCM_ANALOG_MISC2_CLR: case USB_ANALOG_USB1_VBUS_DETECT_CLR: case USB_ANALOG_USB1_CHRG_DETECT_CLR: case USB_ANALOG_USB1_MISC_CLR: case USB_ANALOG_USB2_VBUS_DETECT_CLR: case USB_ANALOG_USB2_CHRG_DETECT_CLR: case USB_ANALOG_USB2_MISC_CLR: /* * All REG_NAME_CLR register access are in fact targeting the * the REG_NAME register. */ value = s->analog[index - 2]; break; case CCM_ANALOG_PLL_ARM_TOG: case CCM_ANALOG_PLL_USB1_TOG: case CCM_ANALOG_PLL_USB2_TOG: case CCM_ANALOG_PLL_SYS_TOG: case CCM_ANALOG_PLL_AUDIO_TOG: case CCM_ANALOG_PLL_VIDEO_TOG: case CCM_ANALOG_PLL_MLB_TOG: case CCM_ANALOG_PLL_ENET_TOG: case CCM_ANALOG_PFD_480_TOG: case CCM_ANALOG_PFD_528_TOG: case CCM_ANALOG_MISC0_TOG: case PMU_MISC1_TOG: case CCM_ANALOG_MISC2_TOG: case USB_ANALOG_USB1_VBUS_DETECT_TOG: case USB_ANALOG_USB1_CHRG_DETECT_TOG: case USB_ANALOG_USB1_MISC_TOG: case USB_ANALOG_USB2_VBUS_DETECT_TOG: case USB_ANALOG_USB2_CHRG_DETECT_TOG: case USB_ANALOG_USB2_MISC_TOG: /* * All REG_NAME_TOG register access are in fact targeting the * the REG_NAME register. */ value = s->analog[index - 3]; break; default: value = s->analog[index]; break; } DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value); return (uint64_t)value; } static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { uint32_t index = offset >> 2; IMX6CCMState *s = (IMX6CCMState *)opaque; DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index), (uint32_t)value); switch (index) { case CCM_ANALOG_PLL_ARM_SET: case CCM_ANALOG_PLL_USB1_SET: case CCM_ANALOG_PLL_USB2_SET: case CCM_ANALOG_PLL_SYS_SET: case CCM_ANALOG_PLL_AUDIO_SET: case CCM_ANALOG_PLL_VIDEO_SET: case CCM_ANALOG_PLL_MLB_SET: case CCM_ANALOG_PLL_ENET_SET: case CCM_ANALOG_PFD_480_SET: case CCM_ANALOG_PFD_528_SET: case CCM_ANALOG_MISC0_SET: case PMU_MISC1_SET: case CCM_ANALOG_MISC2_SET: case USB_ANALOG_USB1_VBUS_DETECT_SET: case USB_ANALOG_USB1_CHRG_DETECT_SET: case USB_ANALOG_USB1_MISC_SET: case USB_ANALOG_USB2_VBUS_DETECT_SET: case USB_ANALOG_USB2_CHRG_DETECT_SET: case USB_ANALOG_USB2_MISC_SET: /* * All REG_NAME_SET register access are in fact targeting the * the REG_NAME register. So we change the value of the * REG_NAME register, setting bits passed in the value. */ s->analog[index - 1] |= value; break; case CCM_ANALOG_PLL_ARM_CLR: case CCM_ANALOG_PLL_USB1_CLR: case CCM_ANALOG_PLL_USB2_CLR: case CCM_ANALOG_PLL_SYS_CLR: case CCM_ANALOG_PLL_AUDIO_CLR: case CCM_ANALOG_PLL_VIDEO_CLR: case CCM_ANALOG_PLL_MLB_CLR: case CCM_ANALOG_PLL_ENET_CLR: case CCM_ANALOG_PFD_480_CLR: case CCM_ANALOG_PFD_528_CLR: case CCM_ANALOG_MISC0_CLR: case PMU_MISC1_CLR: case CCM_ANALOG_MISC2_CLR: case USB_ANALOG_USB1_VBUS_DETECT_CLR: case USB_ANALOG_USB1_CHRG_DETECT_CLR: case USB_ANALOG_USB1_MISC_CLR: case USB_ANALOG_USB2_VBUS_DETECT_CLR: case USB_ANALOG_USB2_CHRG_DETECT_CLR: case USB_ANALOG_USB2_MISC_CLR: /* * All REG_NAME_CLR register access are in fact targeting the * the REG_NAME register. So we change the value of the * REG_NAME register, unsetting bits passed in the value. */ s->analog[index - 2] &= ~value; break; case CCM_ANALOG_PLL_ARM_TOG: case CCM_ANALOG_PLL_USB1_TOG: case CCM_ANALOG_PLL_USB2_TOG: case CCM_ANALOG_PLL_SYS_TOG: case CCM_ANALOG_PLL_AUDIO_TOG: case CCM_ANALOG_PLL_VIDEO_TOG: case CCM_ANALOG_PLL_MLB_TOG: case CCM_ANALOG_PLL_ENET_TOG: case CCM_ANALOG_PFD_480_TOG: case CCM_ANALOG_PFD_528_TOG: case CCM_ANALOG_MISC0_TOG: case PMU_MISC1_TOG: case CCM_ANALOG_MISC2_TOG: case USB_ANALOG_USB1_VBUS_DETECT_TOG: case USB_ANALOG_USB1_CHRG_DETECT_TOG: case USB_ANALOG_USB1_MISC_TOG: case USB_ANALOG_USB2_VBUS_DETECT_TOG: case USB_ANALOG_USB2_CHRG_DETECT_TOG: case USB_ANALOG_USB2_MISC_TOG: /* * All REG_NAME_TOG register access are in fact targeting the * the REG_NAME register. So we change the value of the * REG_NAME register, toggling bits passed in the value. */ s->analog[index - 3] ^= value; break; default: /* * We will do a better implementation later. In particular some bits * cannot be written to. */ s->analog[index] = value; break; } } static const struct MemoryRegionOps imx6_ccm_ops = { .read = imx6_ccm_read, .write = imx6_ccm_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { /* * Our device would not work correctly if the guest was doing * unaligned access. This might not be a limitation on the real * device but in practice there is no reason for a guest to access * this device unaligned. */ .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, }; static const struct MemoryRegionOps imx6_analog_ops = { .read = imx6_analog_read, .write = imx6_analog_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { /* * Our device would not work correctly if the guest was doing * unaligned access. This might not be a limitation on the real * device but in practice there is no reason for a guest to access * this device unaligned. */ .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, }; static void imx6_ccm_init(Object *obj) { DeviceState *dev = DEVICE(obj); SysBusDevice *sd = SYS_BUS_DEVICE(obj); IMX6CCMState *s = IMX6_CCM(obj); /* initialize a container for the all memory range */ memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000); /* We initialize an IO memory region for the CCM part */ memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s, TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t)); /* Add the CCM as a subregion at offset 0 */ memory_region_add_subregion(&s->container, 0, &s->ioccm); /* We initialize an IO memory region for the ANALOG part */ memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s, TYPE_IMX6_CCM ".analog", CCM_ANALOG_MAX * sizeof(uint32_t)); /* Add the ANALOG as a subregion at offset 0x4000 */ memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog); sysbus_init_mmio(sd, &s->container); } static void imx6_ccm_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); IMXCCMClass *ccm = IMX_CCM_CLASS(klass); dc->reset = imx6_ccm_reset; dc->vmsd = &vmstate_imx6_ccm; dc->desc = "i.MX6 Clock Control Module"; ccm->get_clock_frequency = imx6_ccm_get_clock_frequency; } static const TypeInfo imx6_ccm_info = { .name = TYPE_IMX6_CCM, .parent = TYPE_IMX_CCM, .instance_size = sizeof(IMX6CCMState), .instance_init = imx6_ccm_init, .class_init = imx6_ccm_class_init, }; static void imx6_ccm_register_types(void) { type_register_static(&imx6_ccm_info); } type_init(imx6_ccm_register_types)