/* * QEMU TX packets abstractions * * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com) * * Developed by Daynix Computing LTD (http://www.daynix.com) * * Authors: * Dmitry Fleytman <dmitry@daynix.com> * Tamir Shomer <tamirs@daynix.com> * Yan Vugenfirer <yan@daynix.com> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "net_tx_pkt.h" #include "net/eth.h" #include "net/checksum.h" #include "net/tap.h" #include "net/net.h" #include "hw/pci/pci.h" enum { NET_TX_PKT_VHDR_FRAG = 0, NET_TX_PKT_L2HDR_FRAG, NET_TX_PKT_L3HDR_FRAG, NET_TX_PKT_PL_START_FRAG }; /* TX packet private context */ struct NetTxPkt { PCIDevice *pci_dev; struct virtio_net_hdr virt_hdr; bool has_virt_hdr; struct iovec *raw; uint32_t raw_frags; uint32_t max_raw_frags; struct iovec *vec; uint8_t l2_hdr[ETH_MAX_L2_HDR_LEN]; uint8_t l3_hdr[ETH_MAX_IP_DGRAM_LEN]; uint32_t payload_len; uint32_t payload_frags; uint32_t max_payload_frags; uint16_t hdr_len; eth_pkt_types_e packet_type; uint8_t l4proto; bool is_loopback; }; void net_tx_pkt_init(struct NetTxPkt **pkt, PCIDevice *pci_dev, uint32_t max_frags, bool has_virt_hdr) { struct NetTxPkt *p = g_malloc0(sizeof *p); p->pci_dev = pci_dev; p->vec = g_new(struct iovec, max_frags + NET_TX_PKT_PL_START_FRAG); p->raw = g_new(struct iovec, max_frags); p->max_payload_frags = max_frags; p->max_raw_frags = max_frags; p->has_virt_hdr = has_virt_hdr; p->vec[NET_TX_PKT_VHDR_FRAG].iov_base = &p->virt_hdr; p->vec[NET_TX_PKT_VHDR_FRAG].iov_len = p->has_virt_hdr ? sizeof p->virt_hdr : 0; p->vec[NET_TX_PKT_L2HDR_FRAG].iov_base = &p->l2_hdr; p->vec[NET_TX_PKT_L3HDR_FRAG].iov_base = &p->l3_hdr; *pkt = p; } void net_tx_pkt_uninit(struct NetTxPkt *pkt) { if (pkt) { g_free(pkt->vec); g_free(pkt->raw); g_free(pkt); } } void net_tx_pkt_update_ip_hdr_checksum(struct NetTxPkt *pkt) { uint16_t csum; assert(pkt); struct ip_header *ip_hdr; ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base; ip_hdr->ip_len = cpu_to_be16(pkt->payload_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len); ip_hdr->ip_sum = 0; csum = net_raw_checksum((uint8_t *)ip_hdr, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len); ip_hdr->ip_sum = cpu_to_be16(csum); } void net_tx_pkt_update_ip_checksums(struct NetTxPkt *pkt) { uint16_t csum; uint32_t cntr, cso; assert(pkt); uint8_t gso_type = pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN; void *ip_hdr = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base; if (pkt->payload_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len > ETH_MAX_IP_DGRAM_LEN) { return; } if (gso_type == VIRTIO_NET_HDR_GSO_TCPV4 || gso_type == VIRTIO_NET_HDR_GSO_UDP) { /* Calculate IP header checksum */ net_tx_pkt_update_ip_hdr_checksum(pkt); /* Calculate IP pseudo header checksum */ cntr = eth_calc_ip4_pseudo_hdr_csum(ip_hdr, pkt->payload_len, &cso); csum = cpu_to_be16(~net_checksum_finish(cntr)); } else if (gso_type == VIRTIO_NET_HDR_GSO_TCPV6) { /* Calculate IP pseudo header checksum */ cntr = eth_calc_ip6_pseudo_hdr_csum(ip_hdr, pkt->payload_len, IP_PROTO_TCP, &cso); csum = cpu_to_be16(~net_checksum_finish(cntr)); } else { return; } iov_from_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags, pkt->virt_hdr.csum_offset, &csum, sizeof(csum)); } static void net_tx_pkt_calculate_hdr_len(struct NetTxPkt *pkt) { pkt->hdr_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len + pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len; } static bool net_tx_pkt_parse_headers(struct NetTxPkt *pkt) { struct iovec *l2_hdr, *l3_hdr; size_t bytes_read; size_t full_ip6hdr_len; uint16_t l3_proto; assert(pkt); l2_hdr = &pkt->vec[NET_TX_PKT_L2HDR_FRAG]; l3_hdr = &pkt->vec[NET_TX_PKT_L3HDR_FRAG]; bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, 0, l2_hdr->iov_base, ETH_MAX_L2_HDR_LEN); if (bytes_read < sizeof(struct eth_header)) { l2_hdr->iov_len = 0; return false; } l2_hdr->iov_len = sizeof(struct eth_header); switch (be16_to_cpu(PKT_GET_ETH_HDR(l2_hdr->iov_base)->h_proto)) { case ETH_P_VLAN: l2_hdr->iov_len += sizeof(struct vlan_header); break; case ETH_P_DVLAN: l2_hdr->iov_len += 2 * sizeof(struct vlan_header); break; } if (bytes_read < l2_hdr->iov_len) { l2_hdr->iov_len = 0; l3_hdr->iov_len = 0; pkt->packet_type = ETH_PKT_UCAST; return false; } else { l2_hdr->iov_len = ETH_MAX_L2_HDR_LEN; l2_hdr->iov_len = eth_get_l2_hdr_length(l2_hdr->iov_base); pkt->packet_type = get_eth_packet_type(l2_hdr->iov_base); } l3_proto = eth_get_l3_proto(l2_hdr, 1, l2_hdr->iov_len); switch (l3_proto) { case ETH_P_IP: bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len, l3_hdr->iov_base, sizeof(struct ip_header)); if (bytes_read < sizeof(struct ip_header)) { l3_hdr->iov_len = 0; return false; } l3_hdr->iov_len = IP_HDR_GET_LEN(l3_hdr->iov_base); if (l3_hdr->iov_len < sizeof(struct ip_header)) { l3_hdr->iov_len = 0; return false; } pkt->l4proto = IP_HDR_GET_P(l3_hdr->iov_base); if (IP_HDR_GET_LEN(l3_hdr->iov_base) != sizeof(struct ip_header)) { /* copy optional IPv4 header data if any*/ bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len + sizeof(struct ip_header), l3_hdr->iov_base + sizeof(struct ip_header), l3_hdr->iov_len - sizeof(struct ip_header)); if (bytes_read < l3_hdr->iov_len - sizeof(struct ip_header)) { l3_hdr->iov_len = 0; return false; } } break; case ETH_P_IPV6: { eth_ip6_hdr_info hdrinfo; if (!eth_parse_ipv6_hdr(pkt->raw, pkt->raw_frags, l2_hdr->iov_len, &hdrinfo)) { l3_hdr->iov_len = 0; return false; } pkt->l4proto = hdrinfo.l4proto; full_ip6hdr_len = hdrinfo.full_hdr_len; if (full_ip6hdr_len > ETH_MAX_IP_DGRAM_LEN) { l3_hdr->iov_len = 0; return false; } bytes_read = iov_to_buf(pkt->raw, pkt->raw_frags, l2_hdr->iov_len, l3_hdr->iov_base, full_ip6hdr_len); if (bytes_read < full_ip6hdr_len) { l3_hdr->iov_len = 0; return false; } else { l3_hdr->iov_len = full_ip6hdr_len; } break; } default: l3_hdr->iov_len = 0; break; } net_tx_pkt_calculate_hdr_len(pkt); return true; } static void net_tx_pkt_rebuild_payload(struct NetTxPkt *pkt) { pkt->payload_len = iov_size(pkt->raw, pkt->raw_frags) - pkt->hdr_len; pkt->payload_frags = iov_copy(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->max_payload_frags, pkt->raw, pkt->raw_frags, pkt->hdr_len, pkt->payload_len); } bool net_tx_pkt_parse(struct NetTxPkt *pkt) { if (net_tx_pkt_parse_headers(pkt)) { net_tx_pkt_rebuild_payload(pkt); return true; } else { return false; } } struct virtio_net_hdr *net_tx_pkt_get_vhdr(struct NetTxPkt *pkt) { assert(pkt); return &pkt->virt_hdr; } static uint8_t net_tx_pkt_get_gso_type(struct NetTxPkt *pkt, bool tso_enable) { uint8_t rc = VIRTIO_NET_HDR_GSO_NONE; uint16_t l3_proto; l3_proto = eth_get_l3_proto(&pkt->vec[NET_TX_PKT_L2HDR_FRAG], 1, pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len); if (!tso_enable) { goto func_exit; } rc = eth_get_gso_type(l3_proto, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base, pkt->l4proto); func_exit: return rc; } void net_tx_pkt_build_vheader(struct NetTxPkt *pkt, bool tso_enable, bool csum_enable, uint32_t gso_size) { struct tcp_hdr l4hdr; assert(pkt); /* csum has to be enabled if tso is. */ assert(csum_enable || !tso_enable); pkt->virt_hdr.gso_type = net_tx_pkt_get_gso_type(pkt, tso_enable); switch (pkt->virt_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_NONE: pkt->virt_hdr.hdr_len = 0; pkt->virt_hdr.gso_size = 0; break; case VIRTIO_NET_HDR_GSO_UDP: pkt->virt_hdr.gso_size = gso_size; pkt->virt_hdr.hdr_len = pkt->hdr_len + sizeof(struct udp_header); break; case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_TCPV6: iov_to_buf(&pkt->vec[NET_TX_PKT_PL_START_FRAG], pkt->payload_frags, 0, &l4hdr, sizeof(l4hdr)); pkt->virt_hdr.hdr_len = pkt->hdr_len + l4hdr.th_off * sizeof(uint32_t); pkt->virt_hdr.gso_size = gso_size; break; default: g_assert_not_reached(); } if (csum_enable) { switch (pkt->l4proto) { case IP_PROTO_TCP: pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; pkt->virt_hdr.csum_start = pkt->hdr_len; pkt->virt_hdr.csum_offset = offsetof(struct tcp_hdr, th_sum); break; case IP_PROTO_UDP: pkt->virt_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; pkt->virt_hdr.csum_start = pkt->hdr_len; pkt->virt_hdr.csum_offset = offsetof(struct udp_hdr, uh_sum); break; default: break; } } } void net_tx_pkt_setup_vlan_header_ex(struct NetTxPkt *pkt, uint16_t vlan, uint16_t vlan_ethtype) { bool is_new; assert(pkt); eth_setup_vlan_headers_ex(pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base, vlan, vlan_ethtype, &is_new); /* update l2hdrlen */ if (is_new) { pkt->hdr_len += sizeof(struct vlan_header); pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len += sizeof(struct vlan_header); } } bool net_tx_pkt_add_raw_fragment(struct NetTxPkt *pkt, hwaddr pa, size_t len) { hwaddr mapped_len = 0; struct iovec *ventry; assert(pkt); if (pkt->raw_frags >= pkt->max_raw_frags) { return false; } if (!len) { return true; } ventry = &pkt->raw[pkt->raw_frags]; mapped_len = len; ventry->iov_base = pci_dma_map(pkt->pci_dev, pa, &mapped_len, DMA_DIRECTION_TO_DEVICE); if ((ventry->iov_base != NULL) && (len == mapped_len)) { ventry->iov_len = mapped_len; pkt->raw_frags++; return true; } else { return false; } } bool net_tx_pkt_has_fragments(struct NetTxPkt *pkt) { return pkt->raw_frags > 0; } eth_pkt_types_e net_tx_pkt_get_packet_type(struct NetTxPkt *pkt) { assert(pkt); return pkt->packet_type; } size_t net_tx_pkt_get_total_len(struct NetTxPkt *pkt) { assert(pkt); return pkt->hdr_len + pkt->payload_len; } void net_tx_pkt_dump(struct NetTxPkt *pkt) { #ifdef NET_TX_PKT_DEBUG assert(pkt); printf("TX PKT: hdr_len: %d, pkt_type: 0x%X, l2hdr_len: %lu, " "l3hdr_len: %lu, payload_len: %u\n", pkt->hdr_len, pkt->packet_type, pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len, pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len, pkt->payload_len); #endif } void net_tx_pkt_reset(struct NetTxPkt *pkt) { int i; /* no assert, as reset can be called before tx_pkt_init */ if (!pkt) { return; } memset(&pkt->virt_hdr, 0, sizeof(pkt->virt_hdr)); assert(pkt->vec); pkt->payload_len = 0; pkt->payload_frags = 0; assert(pkt->raw); for (i = 0; i < pkt->raw_frags; i++) { assert(pkt->raw[i].iov_base); pci_dma_unmap(pkt->pci_dev, pkt->raw[i].iov_base, pkt->raw[i].iov_len, DMA_DIRECTION_TO_DEVICE, 0); } pkt->raw_frags = 0; pkt->hdr_len = 0; pkt->l4proto = 0; } static void net_tx_pkt_do_sw_csum(struct NetTxPkt *pkt) { struct iovec *iov = &pkt->vec[NET_TX_PKT_L2HDR_FRAG]; uint32_t csum_cntr; uint16_t csum = 0; uint32_t cso; /* num of iovec without vhdr */ uint32_t iov_len = pkt->payload_frags + NET_TX_PKT_PL_START_FRAG - 1; uint16_t csl; size_t csum_offset = pkt->virt_hdr.csum_start + pkt->virt_hdr.csum_offset; uint16_t l3_proto = eth_get_l3_proto(iov, 1, iov->iov_len); /* Put zero to checksum field */ iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum); /* Calculate L4 TCP/UDP checksum */ csl = pkt->payload_len; csum_cntr = 0; cso = 0; /* add pseudo header to csum */ if (l3_proto == ETH_P_IP) { csum_cntr = eth_calc_ip4_pseudo_hdr_csum( pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base, csl, &cso); } else if (l3_proto == ETH_P_IPV6) { csum_cntr = eth_calc_ip6_pseudo_hdr_csum( pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base, csl, pkt->l4proto, &cso); } /* data checksum */ csum_cntr += net_checksum_add_iov(iov, iov_len, pkt->virt_hdr.csum_start, csl, cso); /* Put the checksum obtained into the packet */ csum = cpu_to_be16(net_checksum_finish_nozero(csum_cntr)); iov_from_buf(iov, iov_len, csum_offset, &csum, sizeof csum); } enum { NET_TX_PKT_FRAGMENT_L2_HDR_POS = 0, NET_TX_PKT_FRAGMENT_L3_HDR_POS, NET_TX_PKT_FRAGMENT_HEADER_NUM }; #define NET_MAX_FRAG_SG_LIST (64) static size_t net_tx_pkt_fetch_fragment(struct NetTxPkt *pkt, int *src_idx, size_t *src_offset, struct iovec *dst, int *dst_idx) { size_t fetched = 0; struct iovec *src = pkt->vec; *dst_idx = NET_TX_PKT_FRAGMENT_HEADER_NUM; while (fetched < IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size)) { /* no more place in fragment iov */ if (*dst_idx == NET_MAX_FRAG_SG_LIST) { break; } /* no more data in iovec */ if (*src_idx == (pkt->payload_frags + NET_TX_PKT_PL_START_FRAG)) { break; } dst[*dst_idx].iov_base = src[*src_idx].iov_base + *src_offset; dst[*dst_idx].iov_len = MIN(src[*src_idx].iov_len - *src_offset, IP_FRAG_ALIGN_SIZE(pkt->virt_hdr.gso_size) - fetched); *src_offset += dst[*dst_idx].iov_len; fetched += dst[*dst_idx].iov_len; if (*src_offset == src[*src_idx].iov_len) { *src_offset = 0; (*src_idx)++; } (*dst_idx)++; } return fetched; } static inline void net_tx_pkt_sendv(struct NetTxPkt *pkt, NetClientState *nc, const struct iovec *iov, int iov_cnt) { if (pkt->is_loopback) { nc->info->receive_iov(nc, iov, iov_cnt); } else { qemu_sendv_packet(nc, iov, iov_cnt); } } static bool net_tx_pkt_do_sw_fragmentation(struct NetTxPkt *pkt, NetClientState *nc) { struct iovec fragment[NET_MAX_FRAG_SG_LIST]; size_t fragment_len = 0; bool more_frags = false; /* some pointers for shorter code */ void *l2_iov_base, *l3_iov_base; size_t l2_iov_len, l3_iov_len; int src_idx = NET_TX_PKT_PL_START_FRAG, dst_idx; size_t src_offset = 0; size_t fragment_offset = 0; l2_iov_base = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_base; l2_iov_len = pkt->vec[NET_TX_PKT_L2HDR_FRAG].iov_len; l3_iov_base = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_base; l3_iov_len = pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len; /* Copy headers */ fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_base = l2_iov_base; fragment[NET_TX_PKT_FRAGMENT_L2_HDR_POS].iov_len = l2_iov_len; fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_base = l3_iov_base; fragment[NET_TX_PKT_FRAGMENT_L3_HDR_POS].iov_len = l3_iov_len; /* Put as much data as possible and send */ do { fragment_len = net_tx_pkt_fetch_fragment(pkt, &src_idx, &src_offset, fragment, &dst_idx); more_frags = (fragment_offset + fragment_len < pkt->payload_len); eth_setup_ip4_fragmentation(l2_iov_base, l2_iov_len, l3_iov_base, l3_iov_len, fragment_len, fragment_offset, more_frags); eth_fix_ip4_checksum(l3_iov_base, l3_iov_len); net_tx_pkt_sendv(pkt, nc, fragment, dst_idx); fragment_offset += fragment_len; } while (fragment_len && more_frags); return true; } bool net_tx_pkt_send(struct NetTxPkt *pkt, NetClientState *nc) { assert(pkt); if (!pkt->has_virt_hdr && pkt->virt_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { net_tx_pkt_do_sw_csum(pkt); } /* * Since underlying infrastructure does not support IP datagrams longer * than 64K we should drop such packets and don't even try to send */ if (VIRTIO_NET_HDR_GSO_NONE != pkt->virt_hdr.gso_type) { if (pkt->payload_len > ETH_MAX_IP_DGRAM_LEN - pkt->vec[NET_TX_PKT_L3HDR_FRAG].iov_len) { return false; } } if (pkt->has_virt_hdr || pkt->virt_hdr.gso_type == VIRTIO_NET_HDR_GSO_NONE) { net_tx_pkt_fix_ip6_payload_len(pkt); net_tx_pkt_sendv(pkt, nc, pkt->vec, pkt->payload_frags + NET_TX_PKT_PL_START_FRAG); return true; } return net_tx_pkt_do_sw_fragmentation(pkt, nc); } bool net_tx_pkt_send_loopback(struct NetTxPkt *pkt, NetClientState *nc) { bool res; pkt->is_loopback = true; res = net_tx_pkt_send(pkt, nc); pkt->is_loopback = false; return res; } void net_tx_pkt_fix_ip6_payload_len(struct NetTxPkt *pkt) { struct iovec *l2 = &pkt->vec[NET_TX_PKT_L2HDR_FRAG]; if (eth_get_l3_proto(l2, 1, l2->iov_len) == ETH_P_IPV6) { struct ip6_header *ip6 = (struct ip6_header *) pkt->l3_hdr; /* * TODO: if qemu would support >64K packets - add jumbo option check * something like that: * 'if (ip6->ip6_plen == 0 && !has_jumbo_option(ip6)) {' */ if (ip6->ip6_plen == 0) { if (pkt->payload_len <= ETH_MAX_IP_DGRAM_LEN) { ip6->ip6_plen = htons(pkt->payload_len); } /* * TODO: if qemu would support >64K packets * add jumbo option for packets greater then 65,535 bytes */ } } }