/* * QEMU PREP PCI host * * Copyright (c) 2006 Fabrice Bellard * Copyright (c) 2011-2013 Andreas Färber * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu/units.h" #include "qapi/error.h" #include "hw/pci/pci.h" #include "hw/pci/pci_bus.h" #include "hw/pci/pci_host.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "hw/intc/i8259.h" #include "hw/irq.h" #include "hw/loader.h" #include "hw/or-irq.h" #include "exec/address-spaces.h" #include "elf.h" #define TYPE_RAVEN_PCI_DEVICE "raven" #define TYPE_RAVEN_PCI_HOST_BRIDGE "raven-pcihost" #define RAVEN_PCI_DEVICE(obj) \ OBJECT_CHECK(RavenPCIState, (obj), TYPE_RAVEN_PCI_DEVICE) typedef struct RavenPCIState { PCIDevice dev; uint32_t elf_machine; char *bios_name; MemoryRegion bios; } RavenPCIState; #define RAVEN_PCI_HOST_BRIDGE(obj) \ OBJECT_CHECK(PREPPCIState, (obj), TYPE_RAVEN_PCI_HOST_BRIDGE) typedef struct PRePPCIState { PCIHostState parent_obj; qemu_or_irq *or_irq; qemu_irq pci_irqs[PCI_NUM_PINS]; PCIBus pci_bus; AddressSpace pci_io_as; MemoryRegion pci_io; MemoryRegion pci_io_non_contiguous; MemoryRegion pci_memory; MemoryRegion pci_intack; MemoryRegion bm; MemoryRegion bm_ram_alias; MemoryRegion bm_pci_memory_alias; AddressSpace bm_as; RavenPCIState pci_dev; int contiguous_map; bool is_legacy_prep; } PREPPCIState; #define BIOS_SIZE (1 * MiB) static inline uint32_t raven_pci_io_config(hwaddr addr) { int i; for (i = 0; i < 11; i++) { if ((addr & (1 << (11 + i))) != 0) { break; } } return (addr & 0x7ff) | (i << 11); } static void raven_pci_io_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { PREPPCIState *s = opaque; PCIHostState *phb = PCI_HOST_BRIDGE(s); pci_data_write(phb->bus, raven_pci_io_config(addr), val, size); } static uint64_t raven_pci_io_read(void *opaque, hwaddr addr, unsigned int size) { PREPPCIState *s = opaque; PCIHostState *phb = PCI_HOST_BRIDGE(s); return pci_data_read(phb->bus, raven_pci_io_config(addr), size); } static const MemoryRegionOps raven_pci_io_ops = { .read = raven_pci_io_read, .write = raven_pci_io_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static uint64_t raven_intack_read(void *opaque, hwaddr addr, unsigned int size) { return pic_read_irq(isa_pic); } static const MemoryRegionOps raven_intack_ops = { .read = raven_intack_read, .valid = { .max_access_size = 1, }, }; static inline hwaddr raven_io_address(PREPPCIState *s, hwaddr addr) { if (s->contiguous_map == 0) { /* 64 KB contiguous space for IOs */ addr &= 0xFFFF; } else { /* 8 MB non-contiguous space for IOs */ addr = (addr & 0x1F) | ((addr & 0x007FFF000) >> 7); } /* FIXME: handle endianness switch */ return addr; } static uint64_t raven_io_read(void *opaque, hwaddr addr, unsigned int size) { PREPPCIState *s = opaque; uint8_t buf[4]; addr = raven_io_address(s, addr); address_space_read(&s->pci_io_as, addr + 0x80000000, MEMTXATTRS_UNSPECIFIED, buf, size); if (size == 1) { return buf[0]; } else if (size == 2) { return lduw_le_p(buf); } else if (size == 4) { return ldl_le_p(buf); } else { g_assert_not_reached(); } } static void raven_io_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { PREPPCIState *s = opaque; uint8_t buf[4]; addr = raven_io_address(s, addr); if (size == 1) { buf[0] = val; } else if (size == 2) { stw_le_p(buf, val); } else if (size == 4) { stl_le_p(buf, val); } else { g_assert_not_reached(); } address_space_write(&s->pci_io_as, addr + 0x80000000, MEMTXATTRS_UNSPECIFIED, buf, size); } static const MemoryRegionOps raven_io_ops = { .read = raven_io_read, .write = raven_io_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl.max_access_size = 4, .valid.unaligned = true, }; static int raven_map_irq(PCIDevice *pci_dev, int irq_num) { return (irq_num + (pci_dev->devfn >> 3)) & 1; } static void raven_set_irq(void *opaque, int irq_num, int level) { PREPPCIState *s = opaque; qemu_set_irq(s->pci_irqs[irq_num], level); } static AddressSpace *raven_pcihost_set_iommu(PCIBus *bus, void *opaque, int devfn) { PREPPCIState *s = opaque; return &s->bm_as; } static void raven_change_gpio(void *opaque, int n, int level) { PREPPCIState *s = opaque; s->contiguous_map = level; } static void raven_pcihost_realizefn(DeviceState *d, Error **errp) { SysBusDevice *dev = SYS_BUS_DEVICE(d); PCIHostState *h = PCI_HOST_BRIDGE(dev); PREPPCIState *s = RAVEN_PCI_HOST_BRIDGE(dev); MemoryRegion *address_space_mem = get_system_memory(); int i; if (s->is_legacy_prep) { for (i = 0; i < PCI_NUM_PINS; i++) { sysbus_init_irq(dev, &s->pci_irqs[i]); } } else { /* According to PReP specification section 6.1.6 "System Interrupt * Assignments", all PCI interrupts are routed via IRQ 15 */ s->or_irq = OR_IRQ(object_new(TYPE_OR_IRQ)); object_property_set_int(OBJECT(s->or_irq), PCI_NUM_PINS, "num-lines", &error_fatal); object_property_set_bool(OBJECT(s->or_irq), true, "realized", &error_fatal); sysbus_init_irq(dev, &s->or_irq->out_irq); for (i = 0; i < PCI_NUM_PINS; i++) { s->pci_irqs[i] = qdev_get_gpio_in(DEVICE(s->or_irq), i); } } qdev_init_gpio_in(d, raven_change_gpio, 1); pci_bus_irqs(&s->pci_bus, raven_set_irq, raven_map_irq, s, PCI_NUM_PINS); memory_region_init_io(&h->conf_mem, OBJECT(h), &pci_host_conf_le_ops, s, "pci-conf-idx", 4); memory_region_add_subregion(&s->pci_io, 0xcf8, &h->conf_mem); memory_region_init_io(&h->data_mem, OBJECT(h), &pci_host_data_le_ops, s, "pci-conf-data", 4); memory_region_add_subregion(&s->pci_io, 0xcfc, &h->data_mem); memory_region_init_io(&h->mmcfg, OBJECT(s), &raven_pci_io_ops, s, "pciio", 0x00400000); memory_region_add_subregion(address_space_mem, 0x80800000, &h->mmcfg); memory_region_init_io(&s->pci_intack, OBJECT(s), &raven_intack_ops, s, "pci-intack", 1); memory_region_add_subregion(address_space_mem, 0xbffffff0, &s->pci_intack); /* TODO Remove once realize propagates to child devices. */ object_property_set_bool(OBJECT(&s->pci_bus), true, "realized", errp); object_property_set_bool(OBJECT(&s->pci_dev), true, "realized", errp); } static void raven_pcihost_initfn(Object *obj) { PCIHostState *h = PCI_HOST_BRIDGE(obj); PREPPCIState *s = RAVEN_PCI_HOST_BRIDGE(obj); MemoryRegion *address_space_mem = get_system_memory(); DeviceState *pci_dev; memory_region_init(&s->pci_io, obj, "pci-io", 0x3f800000); memory_region_init_io(&s->pci_io_non_contiguous, obj, &raven_io_ops, s, "pci-io-non-contiguous", 0x00800000); memory_region_init(&s->pci_memory, obj, "pci-memory", 0x3f000000); address_space_init(&s->pci_io_as, &s->pci_io, "raven-io"); /* CPU address space */ memory_region_add_subregion(address_space_mem, 0x80000000, &s->pci_io); memory_region_add_subregion_overlap(address_space_mem, 0x80000000, &s->pci_io_non_contiguous, 1); memory_region_add_subregion(address_space_mem, 0xc0000000, &s->pci_memory); pci_root_bus_new_inplace(&s->pci_bus, sizeof(s->pci_bus), DEVICE(obj), NULL, &s->pci_memory, &s->pci_io, 0, TYPE_PCI_BUS); /* Bus master address space */ memory_region_init(&s->bm, obj, "bm-raven", 4 * GiB); memory_region_init_alias(&s->bm_pci_memory_alias, obj, "bm-pci-memory", &s->pci_memory, 0, memory_region_size(&s->pci_memory)); memory_region_init_alias(&s->bm_ram_alias, obj, "bm-system", get_system_memory(), 0, 0x80000000); memory_region_add_subregion(&s->bm, 0 , &s->bm_pci_memory_alias); memory_region_add_subregion(&s->bm, 0x80000000, &s->bm_ram_alias); address_space_init(&s->bm_as, &s->bm, "raven-bm"); pci_setup_iommu(&s->pci_bus, raven_pcihost_set_iommu, s); h->bus = &s->pci_bus; object_initialize(&s->pci_dev, sizeof(s->pci_dev), TYPE_RAVEN_PCI_DEVICE); pci_dev = DEVICE(&s->pci_dev); qdev_set_parent_bus(pci_dev, BUS(&s->pci_bus)); object_property_set_int(OBJECT(&s->pci_dev), PCI_DEVFN(0, 0), "addr", NULL); qdev_prop_set_bit(pci_dev, "multifunction", false); } static void raven_realize(PCIDevice *d, Error **errp) { RavenPCIState *s = RAVEN_PCI_DEVICE(d); char *filename; int bios_size = -1; d->config[0x0C] = 0x08; // cache_line_size d->config[0x0D] = 0x10; // latency_timer d->config[0x34] = 0x00; // capabilities_pointer memory_region_init_rom_nomigrate(&s->bios, OBJECT(s), "bios", BIOS_SIZE, &error_fatal); memory_region_add_subregion(get_system_memory(), (uint32_t)(-BIOS_SIZE), &s->bios); if (s->bios_name) { filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, s->bios_name); if (filename) { if (s->elf_machine != EM_NONE) { bios_size = load_elf(filename, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 1, s->elf_machine, 0, 0); } if (bios_size < 0) { bios_size = get_image_size(filename); if (bios_size > 0 && bios_size <= BIOS_SIZE) { hwaddr bios_addr; bios_size = (bios_size + 0xfff) & ~0xfff; bios_addr = (uint32_t)(-BIOS_SIZE); bios_size = load_image_targphys(filename, bios_addr, bios_size); } } } g_free(filename); if (bios_size < 0 || bios_size > BIOS_SIZE) { memory_region_del_subregion(get_system_memory(), &s->bios); error_setg(errp, "Could not load bios image '%s'", s->bios_name); return; } } vmstate_register_ram_global(&s->bios); } static const VMStateDescription vmstate_raven = { .name = "raven", .version_id = 0, .minimum_version_id = 0, .fields = (VMStateField[]) { VMSTATE_PCI_DEVICE(dev, RavenPCIState), VMSTATE_END_OF_LIST() }, }; static void raven_class_init(ObjectClass *klass, void *data) { PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); k->realize = raven_realize; k->vendor_id = PCI_VENDOR_ID_MOTOROLA; k->device_id = PCI_DEVICE_ID_MOTOROLA_RAVEN; k->revision = 0x00; k->class_id = PCI_CLASS_BRIDGE_HOST; dc->desc = "PReP Host Bridge - Motorola Raven"; dc->vmsd = &vmstate_raven; /* * Reason: PCI-facing part of the host bridge, not usable without * the host-facing part, which can't be device_add'ed, yet. */ dc->user_creatable = false; } static const TypeInfo raven_info = { .name = TYPE_RAVEN_PCI_DEVICE, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(RavenPCIState), .class_init = raven_class_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { }, }, }; static Property raven_pcihost_properties[] = { DEFINE_PROP_UINT32("elf-machine", PREPPCIState, pci_dev.elf_machine, EM_NONE), DEFINE_PROP_STRING("bios-name", PREPPCIState, pci_dev.bios_name), /* Temporary workaround until legacy prep machine is removed */ DEFINE_PROP_BOOL("is-legacy-prep", PREPPCIState, is_legacy_prep, false), DEFINE_PROP_END_OF_LIST() }; static void raven_pcihost_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); dc->realize = raven_pcihost_realizefn; device_class_set_props(dc, raven_pcihost_properties); dc->fw_name = "pci"; } static const TypeInfo raven_pcihost_info = { .name = TYPE_RAVEN_PCI_HOST_BRIDGE, .parent = TYPE_PCI_HOST_BRIDGE, .instance_size = sizeof(PREPPCIState), .instance_init = raven_pcihost_initfn, .class_init = raven_pcihost_class_init, }; static void raven_register_types(void) { type_register_static(&raven_pcihost_info); type_register_static(&raven_info); } type_init(raven_register_types)