/* * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit * * Copyright (c) 2020 Wind River Systems, Inc. * * Author: * Bin Meng * * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit * * 0) CLINT (Core Level Interruptor) * 1) PLIC (Platform Level Interrupt Controller) * 2) eNVM (Embedded Non-Volatile Memory) * 3) MMUARTs (Multi-Mode UART) * 4) Cadence eMMC/SDHC controller and an SD card connected to it * 5) SiFive Platform DMA (Direct Memory Access Controller) * 6) GEM (Gigabit Ethernet MAC Controller) * 7) DMC (DDR Memory Controller) * 8) IOSCB modules * * This board currently generates devicetree dynamically that indicates at least * two harts and up to five harts. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "qemu/log.h" #include "qemu/units.h" #include "qemu/cutils.h" #include "qapi/error.h" #include "hw/boards.h" #include "hw/irq.h" #include "hw/loader.h" #include "hw/sysbus.h" #include "chardev/char.h" #include "hw/cpu/cluster.h" #include "target/riscv/cpu.h" #include "hw/misc/unimp.h" #include "hw/riscv/boot.h" #include "hw/riscv/riscv_hart.h" #include "hw/riscv/microchip_pfsoc.h" #include "hw/intc/sifive_clint.h" #include "hw/intc/sifive_plic.h" #include "sysemu/sysemu.h" /* * The BIOS image used by this machine is called Hart Software Services (HSS). * See https://github.com/polarfire-soc/hart-software-services */ #define BIOS_FILENAME "hss.bin" #define RESET_VECTOR 0x20220000 /* CLINT timebase frequency */ #define CLINT_TIMEBASE_FREQ 1000000 /* GEM version */ #define GEM_REVISION 0x0107010c /* * The complete description of the whole PolarFire SoC memory map is scattered * in different documents. There are several places to look at for memory maps: * * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from * https://www.microsemi.com/document-portal/doc_download/ * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide, * describes the whole picture of the PolarFire SoC memory map. * * 2 A zip file for PolarFire soC memory map, which can be downloaded from * https://www.microsemi.com/document-portal/doc_download/ * 1244581-polarfire-soc-register-map, contains the following 2 major parts: * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm * describes the complete integrated peripherals memory map * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm * describes the complete IOSCB modules memory maps */ static const struct MemmapEntry { hwaddr base; hwaddr size; } microchip_pfsoc_memmap[] = { [MICROCHIP_PFSOC_DEBUG] = { 0x0, 0x1000 }, [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 }, [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 }, [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 }, [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 }, [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 }, [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 }, [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 }, [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 }, [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 }, [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 }, [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 }, [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 }, [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 }, [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 }, [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 }, [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 }, [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 }, [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 }, [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 }, [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 }, [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 }, [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 }, [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 }, [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 }, [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 }, [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 }, [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 }, [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 }, [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 }, [MICROCHIP_PFSOC_DRAM] = { 0x80000000, 0x0 }, }; static void microchip_pfsoc_soc_instance_init(Object *obj) { MachineState *ms = MACHINE(qdev_get_machine()); MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj); object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER); qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0); object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus, TYPE_RISCV_HART_ARRAY); qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1); qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0); qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type", TYPE_RISCV_CPU_SIFIVE_E51); qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR); object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER); qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1); object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus, TYPE_RISCV_HART_ARRAY); qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1); qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1); qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type", TYPE_RISCV_CPU_SIFIVE_U54); qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR); object_initialize_child(obj, "dma-controller", &s->dma, TYPE_SIFIVE_PDMA); object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy, TYPE_MCHP_PFSOC_DDR_SGMII_PHY); object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg, TYPE_MCHP_PFSOC_DDR_CFG); object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM); object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM); object_initialize_child(obj, "sd-controller", &s->sdhci, TYPE_CADENCE_SDHCI); object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB); } static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp) { MachineState *ms = MACHINE(qdev_get_machine()); MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev); const struct MemmapEntry *memmap = microchip_pfsoc_memmap; MemoryRegion *system_memory = get_system_memory(); MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1); MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1); MemoryRegion *envm_data = g_new(MemoryRegion, 1); char *plic_hart_config; size_t plic_hart_config_len; NICInfo *nd; int i; sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort); sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort); /* * The cluster must be realized after the RISC-V hart array container, * as the container's CPU object is only created on realize, and the * CPU must exist and have been parented into the cluster before the * cluster is realized. */ qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort); qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort); /* E51 DTIM */ memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem", memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[MICROCHIP_PFSOC_E51_DTIM].base, e51_dtim_mem); /* Bus Error Units */ create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem", memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base, memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size); create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem", memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base, memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size); create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem", memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base, memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size); create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem", memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base, memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size); create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem", memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base, memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size); /* CLINT */ sifive_clint_create(memmap[MICROCHIP_PFSOC_CLINT].base, memmap[MICROCHIP_PFSOC_CLINT].size, 0, ms->smp.cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE, CLINT_TIMEBASE_FREQ, false); /* L2 cache controller */ create_unimplemented_device("microchip.pfsoc.l2cc", memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size); /* * Add L2-LIM at reset size. * This should be reduced in size as the L2 Cache Controller WayEnable * register is incremented. Unfortunately I don't see a nice (or any) way * to handle reducing or blocking out the L2 LIM while still allowing it * be re returned to all enabled after a reset. For the time being, just * leave it enabled all the time. This won't break anything, but will be * too generous to misbehaving guests. */ memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim", memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[MICROCHIP_PFSOC_L2LIM].base, l2lim_mem); /* create PLIC hart topology configuration string */ plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) * ms->smp.cpus; plic_hart_config = g_malloc0(plic_hart_config_len); for (i = 0; i < ms->smp.cpus; i++) { if (i != 0) { strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG, plic_hart_config_len); } else { strncat(plic_hart_config, "M", plic_hart_config_len); } plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1); } /* PLIC */ s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base, plic_hart_config, 0, MICROCHIP_PFSOC_PLIC_NUM_SOURCES, MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES, MICROCHIP_PFSOC_PLIC_PRIORITY_BASE, MICROCHIP_PFSOC_PLIC_PENDING_BASE, MICROCHIP_PFSOC_PLIC_ENABLE_BASE, MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE, MICROCHIP_PFSOC_PLIC_CONTEXT_BASE, MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE, memmap[MICROCHIP_PFSOC_PLIC].size); g_free(plic_hart_config); /* DMA */ sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp); sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0, memmap[MICROCHIP_PFSOC_DMA].base); for (i = 0; i < SIFIVE_PDMA_IRQS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i, qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_DMA_IRQ0 + i)); } /* SYSREG */ create_unimplemented_device("microchip.pfsoc.sysreg", memmap[MICROCHIP_PFSOC_SYSREG].base, memmap[MICROCHIP_PFSOC_SYSREG].size); /* MPUCFG */ create_unimplemented_device("microchip.pfsoc.mpucfg", memmap[MICROCHIP_PFSOC_MPUCFG].base, memmap[MICROCHIP_PFSOC_MPUCFG].size); /* DDR SGMII PHY */ sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp); sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0, memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base); /* DDR CFG */ sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp); sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0, memmap[MICROCHIP_PFSOC_DDR_CFG].base); /* SDHCI */ sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp); sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0, memmap[MICROCHIP_PFSOC_EMMC_SD].base); sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0, qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ)); /* MMUARTs */ s->serial0 = mchp_pfsoc_mmuart_create(system_memory, memmap[MICROCHIP_PFSOC_MMUART0].base, qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ), serial_hd(0)); s->serial1 = mchp_pfsoc_mmuart_create(system_memory, memmap[MICROCHIP_PFSOC_MMUART1].base, qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ), serial_hd(1)); s->serial2 = mchp_pfsoc_mmuart_create(system_memory, memmap[MICROCHIP_PFSOC_MMUART2].base, qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ), serial_hd(2)); s->serial3 = mchp_pfsoc_mmuart_create(system_memory, memmap[MICROCHIP_PFSOC_MMUART3].base, qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ), serial_hd(3)); s->serial4 = mchp_pfsoc_mmuart_create(system_memory, memmap[MICROCHIP_PFSOC_MMUART4].base, qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ), serial_hd(4)); /* GEMs */ nd = &nd_table[0]; if (nd->used) { qemu_check_nic_model(nd, TYPE_CADENCE_GEM); qdev_set_nic_properties(DEVICE(&s->gem0), nd); } nd = &nd_table[1]; if (nd->used) { qemu_check_nic_model(nd, TYPE_CADENCE_GEM); qdev_set_nic_properties(DEVICE(&s->gem1), nd); } object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp); object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp); sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp); sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0, memmap[MICROCHIP_PFSOC_GEM0].base); sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0, qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ)); object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp); object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp); sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp); sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0, memmap[MICROCHIP_PFSOC_GEM1].base); sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0, qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ)); /* GPIOs */ create_unimplemented_device("microchip.pfsoc.gpio0", memmap[MICROCHIP_PFSOC_GPIO0].base, memmap[MICROCHIP_PFSOC_GPIO0].size); create_unimplemented_device("microchip.pfsoc.gpio1", memmap[MICROCHIP_PFSOC_GPIO1].base, memmap[MICROCHIP_PFSOC_GPIO1].size); create_unimplemented_device("microchip.pfsoc.gpio2", memmap[MICROCHIP_PFSOC_GPIO2].base, memmap[MICROCHIP_PFSOC_GPIO2].size); /* eNVM */ memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data", memmap[MICROCHIP_PFSOC_ENVM_DATA].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[MICROCHIP_PFSOC_ENVM_DATA].base, envm_data); /* IOSCB */ sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp); sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0, memmap[MICROCHIP_PFSOC_IOSCB].base); } static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); dc->realize = microchip_pfsoc_soc_realize; /* Reason: Uses serial_hds in realize function, thus can't be used twice */ dc->user_creatable = false; } static const TypeInfo microchip_pfsoc_soc_type_info = { .name = TYPE_MICROCHIP_PFSOC, .parent = TYPE_DEVICE, .instance_size = sizeof(MicrochipPFSoCState), .instance_init = microchip_pfsoc_soc_instance_init, .class_init = microchip_pfsoc_soc_class_init, }; static void microchip_pfsoc_soc_register_types(void) { type_register_static(µchip_pfsoc_soc_type_info); } type_init(microchip_pfsoc_soc_register_types) static void microchip_icicle_kit_machine_init(MachineState *machine) { MachineClass *mc = MACHINE_GET_CLASS(machine); const struct MemmapEntry *memmap = microchip_pfsoc_memmap; MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine); MemoryRegion *system_memory = get_system_memory(); MemoryRegion *main_mem = g_new(MemoryRegion, 1); DriveInfo *dinfo = drive_get_next(IF_SD); /* Sanity check on RAM size */ if (machine->ram_size < mc->default_ram_size) { char *sz = size_to_str(mc->default_ram_size); error_report("Invalid RAM size, should be bigger than %s", sz); g_free(sz); exit(EXIT_FAILURE); } /* Initialize SoC */ object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_MICROCHIP_PFSOC); qdev_realize(DEVICE(&s->soc), NULL, &error_abort); /* Register RAM */ memory_region_init_ram(main_mem, NULL, "microchip.icicle.kit.ram", machine->ram_size, &error_fatal); memory_region_add_subregion(system_memory, memmap[MICROCHIP_PFSOC_DRAM].base, main_mem); /* Load the firmware */ riscv_find_and_load_firmware(machine, BIOS_FILENAME, RESET_VECTOR, NULL); /* Attach an SD card */ if (dinfo) { CadenceSDHCIState *sdhci = &(s->soc.sdhci); DeviceState *card = qdev_new(TYPE_SD_CARD); qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo), &error_fatal); qdev_realize_and_unref(card, sdhci->bus, &error_fatal); } } static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "Microchip PolarFire SoC Icicle Kit"; mc->init = microchip_icicle_kit_machine_init; mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + MICROCHIP_PFSOC_COMPUTE_CPU_COUNT; mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1; mc->default_cpus = mc->min_cpus; mc->default_ram_size = 1 * GiB; } static const TypeInfo microchip_icicle_kit_machine_typeinfo = { .name = MACHINE_TYPE_NAME("microchip-icicle-kit"), .parent = TYPE_MACHINE, .class_init = microchip_icicle_kit_machine_class_init, .instance_size = sizeof(MicrochipIcicleKitState), }; static void microchip_icicle_kit_machine_init_register_types(void) { type_register_static(µchip_icicle_kit_machine_typeinfo); } type_init(microchip_icicle_kit_machine_init_register_types)