/* * Copyright (c) 2007, Intel Corporation. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Jiang Yunhong <yunhong.jiang@intel.com> * * This file implements direct PCI assignment to a HVM guest */ #include "qemu/osdep.h" #include "hw/xen/xen-legacy-backend.h" #include "xen_pt.h" #include "hw/i386/apic-msidef.h" #define XEN_PT_AUTO_ASSIGN -1 /* shift count for gflags */ #define XEN_PT_GFLAGS_SHIFT_DEST_ID 0 #define XEN_PT_GFLAGS_SHIFT_RH 8 #define XEN_PT_GFLAGS_SHIFT_DM 9 #define XEN_PT_GFLAGSSHIFT_DELIV_MODE 12 #define XEN_PT_GFLAGSSHIFT_TRG_MODE 15 #define XEN_PT_GFLAGSSHIFT_UNMASKED 16 #define latch(fld) latch[PCI_MSIX_ENTRY_##fld / sizeof(uint32_t)] /* * Helpers */ static inline uint8_t msi_vector(uint32_t data) { return (data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT; } static inline uint8_t msi_dest_id(uint32_t addr) { return (addr & MSI_ADDR_DEST_ID_MASK) >> MSI_ADDR_DEST_ID_SHIFT; } static inline uint32_t msi_ext_dest_id(uint32_t addr_hi) { return addr_hi & 0xffffff00; } static uint32_t msi_gflags(uint32_t data, uint64_t addr) { uint32_t result = 0; int rh, dm, dest_id, deliv_mode, trig_mode; rh = (addr >> MSI_ADDR_REDIRECTION_SHIFT) & 0x1; dm = (addr >> MSI_ADDR_DEST_MODE_SHIFT) & 0x1; dest_id = msi_dest_id(addr); deliv_mode = (data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 0x7; trig_mode = (data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; result = dest_id | (rh << XEN_PT_GFLAGS_SHIFT_RH) | (dm << XEN_PT_GFLAGS_SHIFT_DM) | (deliv_mode << XEN_PT_GFLAGSSHIFT_DELIV_MODE) | (trig_mode << XEN_PT_GFLAGSSHIFT_TRG_MODE); return result; } static inline uint64_t msi_addr64(XenPTMSI *msi) { return (uint64_t)msi->addr_hi << 32 | msi->addr_lo; } static int msi_msix_enable(XenPCIPassthroughState *s, uint32_t address, uint16_t flag, bool enable) { uint16_t val = 0; int rc; if (!address) { return -1; } rc = xen_host_pci_get_word(&s->real_device, address, &val); if (rc) { XEN_PT_ERR(&s->dev, "Failed to read MSI/MSI-X register (0x%x), rc:%d\n", address, rc); return rc; } if (enable) { val |= flag; } else { val &= ~flag; } rc = xen_host_pci_set_word(&s->real_device, address, val); if (rc) { XEN_PT_ERR(&s->dev, "Failed to write MSI/MSI-X register (0x%x), rc:%d\n", address, rc); } return rc; } static int msi_msix_setup(XenPCIPassthroughState *s, uint64_t addr, uint32_t data, int *ppirq, bool is_msix, int msix_entry, bool is_not_mapped) { uint8_t gvec = msi_vector(data); int rc = 0; assert((!is_msix && msix_entry == 0) || is_msix); if (xen_is_pirq_msi(data)) { *ppirq = msi_ext_dest_id(addr >> 32) | msi_dest_id(addr); if (!*ppirq) { /* this probably identifies an misconfiguration of the guest, * try the emulated path */ *ppirq = XEN_PT_UNASSIGNED_PIRQ; } else { XEN_PT_LOG(&s->dev, "requested pirq %d for MSI%s" " (vec: %#x, entry: %#x)\n", *ppirq, is_msix ? "-X" : "", gvec, msix_entry); } } if (is_not_mapped) { uint64_t table_base = 0; if (is_msix) { table_base = s->msix->table_base; } rc = xc_physdev_map_pirq_msi(xen_xc, xen_domid, XEN_PT_AUTO_ASSIGN, ppirq, PCI_DEVFN(s->real_device.dev, s->real_device.func), s->real_device.bus, msix_entry, table_base); if (rc) { XEN_PT_ERR(&s->dev, "Mapping of MSI%s (err: %i, vec: %#x, entry %#x)\n", is_msix ? "-X" : "", errno, gvec, msix_entry); return rc; } } return 0; } static int msi_msix_update(XenPCIPassthroughState *s, uint64_t addr, uint32_t data, int pirq, bool is_msix, int msix_entry, int *old_pirq, bool masked) { PCIDevice *d = &s->dev; uint8_t gvec = msi_vector(data); uint32_t gflags = msi_gflags(data, addr); int rc = 0; uint64_t table_addr = 0; XEN_PT_LOG(d, "Updating MSI%s with pirq %d gvec %#x gflags %#x" " (entry: %#x)\n", is_msix ? "-X" : "", pirq, gvec, gflags, msix_entry); if (is_msix) { table_addr = s->msix->mmio_base_addr; } gflags |= masked ? 0 : (1u << XEN_PT_GFLAGSSHIFT_UNMASKED); rc = xc_domain_update_msi_irq(xen_xc, xen_domid, gvec, pirq, gflags, table_addr); if (rc) { XEN_PT_ERR(d, "Updating of MSI%s failed. (err: %d)\n", is_msix ? "-X" : "", errno); if (xc_physdev_unmap_pirq(xen_xc, xen_domid, *old_pirq)) { XEN_PT_ERR(d, "Unmapping of MSI%s pirq %d failed. (err: %d)\n", is_msix ? "-X" : "", *old_pirq, errno); } *old_pirq = XEN_PT_UNASSIGNED_PIRQ; } return rc; } static int msi_msix_disable(XenPCIPassthroughState *s, uint64_t addr, uint32_t data, int pirq, bool is_msix, bool is_binded) { PCIDevice *d = &s->dev; uint8_t gvec = msi_vector(data); uint32_t gflags = msi_gflags(data, addr); int rc = 0; if (pirq == XEN_PT_UNASSIGNED_PIRQ) { return 0; } if (is_binded) { XEN_PT_LOG(d, "Unbind MSI%s with pirq %d, gvec %#x\n", is_msix ? "-X" : "", pirq, gvec); rc = xc_domain_unbind_msi_irq(xen_xc, xen_domid, gvec, pirq, gflags); if (rc) { XEN_PT_ERR(d, "Unbinding of MSI%s failed. (err: %d, pirq: %d, gvec: %#x)\n", is_msix ? "-X" : "", errno, pirq, gvec); return rc; } } XEN_PT_LOG(d, "Unmap MSI%s pirq %d\n", is_msix ? "-X" : "", pirq); rc = xc_physdev_unmap_pirq(xen_xc, xen_domid, pirq); if (rc) { XEN_PT_ERR(d, "Unmapping of MSI%s pirq %d failed. (err: %i)\n", is_msix ? "-X" : "", pirq, errno); return rc; } return 0; } /* * MSI virtualization functions */ static int xen_pt_msi_set_enable(XenPCIPassthroughState *s, bool enable) { XEN_PT_LOG(&s->dev, "%s MSI.\n", enable ? "enabling" : "disabling"); if (!s->msi) { return -1; } return msi_msix_enable(s, s->msi->ctrl_offset, PCI_MSI_FLAGS_ENABLE, enable); } /* setup physical msi, but don't enable it */ int xen_pt_msi_setup(XenPCIPassthroughState *s) { int pirq = XEN_PT_UNASSIGNED_PIRQ; int rc = 0; XenPTMSI *msi = s->msi; if (msi->initialized) { XEN_PT_ERR(&s->dev, "Setup physical MSI when it has been properly initialized.\n"); return -1; } rc = msi_msix_setup(s, msi_addr64(msi), msi->data, &pirq, false, 0, true); if (rc) { return rc; } if (pirq < 0) { XEN_PT_ERR(&s->dev, "Invalid pirq number: %d.\n", pirq); return -1; } msi->pirq = pirq; XEN_PT_LOG(&s->dev, "MSI mapped with pirq %d.\n", pirq); return 0; } int xen_pt_msi_update(XenPCIPassthroughState *s) { XenPTMSI *msi = s->msi; /* Current MSI emulation in QEMU only supports 1 vector */ return msi_msix_update(s, msi_addr64(msi), msi->data, msi->pirq, false, 0, &msi->pirq, msi->mask & 1); } void xen_pt_msi_disable(XenPCIPassthroughState *s) { XenPTMSI *msi = s->msi; if (!msi) { return; } (void)xen_pt_msi_set_enable(s, false); msi_msix_disable(s, msi_addr64(msi), msi->data, msi->pirq, false, msi->initialized); /* clear msi info */ msi->flags &= ~PCI_MSI_FLAGS_ENABLE; msi->initialized = false; msi->mapped = false; msi->pirq = XEN_PT_UNASSIGNED_PIRQ; } /* * MSI-X virtualization functions */ static int msix_set_enable(XenPCIPassthroughState *s, bool enabled) { XEN_PT_LOG(&s->dev, "%s MSI-X.\n", enabled ? "enabling" : "disabling"); if (!s->msix) { return -1; } return msi_msix_enable(s, s->msix->ctrl_offset, PCI_MSIX_FLAGS_ENABLE, enabled); } static int xen_pt_msix_update_one(XenPCIPassthroughState *s, int entry_nr, uint32_t vec_ctrl) { XenPTMSIXEntry *entry = NULL; int pirq; int rc; if (entry_nr < 0 || entry_nr >= s->msix->total_entries) { return -EINVAL; } entry = &s->msix->msix_entry[entry_nr]; if (!entry->updated) { return 0; } pirq = entry->pirq; /* * Update the entry addr and data to the latest values only when the * entry is masked or they are all masked, as required by the spec. * Addr and data changes while the MSI-X entry is unmasked get deferred * until the next masked -> unmasked transition. */ if (pirq == XEN_PT_UNASSIGNED_PIRQ || s->msix->maskall || (vec_ctrl & PCI_MSIX_ENTRY_CTRL_MASKBIT)) { entry->addr = entry->latch(LOWER_ADDR) | ((uint64_t)entry->latch(UPPER_ADDR) << 32); entry->data = entry->latch(DATA); } rc = msi_msix_setup(s, entry->addr, entry->data, &pirq, true, entry_nr, entry->pirq == XEN_PT_UNASSIGNED_PIRQ); if (rc) { return rc; } if (entry->pirq == XEN_PT_UNASSIGNED_PIRQ) { entry->pirq = pirq; } rc = msi_msix_update(s, entry->addr, entry->data, pirq, true, entry_nr, &entry->pirq, vec_ctrl & PCI_MSIX_ENTRY_CTRL_MASKBIT); if (!rc) { entry->updated = false; } return rc; } int xen_pt_msix_update(XenPCIPassthroughState *s) { XenPTMSIX *msix = s->msix; int i; for (i = 0; i < msix->total_entries; i++) { xen_pt_msix_update_one(s, i, msix->msix_entry[i].latch(VECTOR_CTRL)); } return 0; } void xen_pt_msix_disable(XenPCIPassthroughState *s) { int i = 0; msix_set_enable(s, false); for (i = 0; i < s->msix->total_entries; i++) { XenPTMSIXEntry *entry = &s->msix->msix_entry[i]; msi_msix_disable(s, entry->addr, entry->data, entry->pirq, true, true); /* clear MSI-X info */ entry->pirq = XEN_PT_UNASSIGNED_PIRQ; entry->updated = false; } } int xen_pt_msix_update_remap(XenPCIPassthroughState *s, int bar_index) { XenPTMSIXEntry *entry; int i, ret; if (!(s->msix && s->msix->bar_index == bar_index)) { return 0; } for (i = 0; i < s->msix->total_entries; i++) { entry = &s->msix->msix_entry[i]; if (entry->pirq != XEN_PT_UNASSIGNED_PIRQ) { ret = xc_domain_unbind_pt_irq(xen_xc, xen_domid, entry->pirq, PT_IRQ_TYPE_MSI, 0, 0, 0, 0); if (ret) { XEN_PT_ERR(&s->dev, "unbind MSI-X entry %d failed (err: %d)\n", entry->pirq, errno); } entry->updated = true; } } return xen_pt_msix_update(s); } static uint32_t get_entry_value(XenPTMSIXEntry *e, int offset) { assert(!(offset % sizeof(*e->latch))); return e->latch[offset / sizeof(*e->latch)]; } static void set_entry_value(XenPTMSIXEntry *e, int offset, uint32_t val) { assert(!(offset % sizeof(*e->latch))); e->latch[offset / sizeof(*e->latch)] = val; } static void pci_msix_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { XenPCIPassthroughState *s = opaque; XenPTMSIX *msix = s->msix; XenPTMSIXEntry *entry; unsigned int entry_nr, offset; entry_nr = addr / PCI_MSIX_ENTRY_SIZE; if (entry_nr >= msix->total_entries) { return; } entry = &msix->msix_entry[entry_nr]; offset = addr % PCI_MSIX_ENTRY_SIZE; if (offset != PCI_MSIX_ENTRY_VECTOR_CTRL) { if (get_entry_value(entry, offset) == val && entry->pirq != XEN_PT_UNASSIGNED_PIRQ) { return; } entry->updated = true; } else if (msix->enabled && entry->updated && !(val & PCI_MSIX_ENTRY_CTRL_MASKBIT)) { const volatile uint32_t *vec_ctrl; /* * If Xen intercepts the mask bit access, entry->vec_ctrl may not be * up-to-date. Read from hardware directly. */ vec_ctrl = s->msix->phys_iomem_base + entry_nr * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL; xen_pt_msix_update_one(s, entry_nr, *vec_ctrl); } set_entry_value(entry, offset, val); } static uint64_t pci_msix_read(void *opaque, hwaddr addr, unsigned size) { XenPCIPassthroughState *s = opaque; XenPTMSIX *msix = s->msix; int entry_nr, offset; entry_nr = addr / PCI_MSIX_ENTRY_SIZE; if (entry_nr < 0) { XEN_PT_ERR(&s->dev, "asked MSI-X entry '%i' invalid!\n", entry_nr); return 0; } offset = addr % PCI_MSIX_ENTRY_SIZE; if (addr < msix->total_entries * PCI_MSIX_ENTRY_SIZE) { return get_entry_value(&msix->msix_entry[entry_nr], offset); } else { /* Pending Bit Array (PBA) */ return *(uint32_t *)(msix->phys_iomem_base + addr); } } static bool pci_msix_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { return !(addr & (size - 1)); } static const MemoryRegionOps pci_msix_ops = { .read = pci_msix_read, .write = pci_msix_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, .unaligned = false, .accepts = pci_msix_accepts }, .impl = { .min_access_size = 4, .max_access_size = 4, .unaligned = false } }; int xen_pt_msix_init(XenPCIPassthroughState *s, uint32_t base) { uint8_t id = 0; uint16_t control = 0; uint32_t table_off = 0; int i, total_entries, bar_index; XenHostPCIDevice *hd = &s->real_device; PCIDevice *d = &s->dev; int fd = -1; XenPTMSIX *msix = NULL; int rc = 0; rc = xen_host_pci_get_byte(hd, base + PCI_CAP_LIST_ID, &id); if (rc) { return rc; } if (id != PCI_CAP_ID_MSIX) { XEN_PT_ERR(d, "Invalid id %#x base %#x\n", id, base); return -1; } rc = xen_host_pci_get_word(hd, base + PCI_MSIX_FLAGS, &control); if (rc) { XEN_PT_ERR(d, "Failed to read PCI_MSIX_FLAGS field\n"); return rc; } total_entries = control & PCI_MSIX_FLAGS_QSIZE; total_entries += 1; s->msix = g_malloc0(sizeof (XenPTMSIX) + total_entries * sizeof (XenPTMSIXEntry)); msix = s->msix; msix->total_entries = total_entries; for (i = 0; i < total_entries; i++) { msix->msix_entry[i].pirq = XEN_PT_UNASSIGNED_PIRQ; } memory_region_init_io(&msix->mmio, OBJECT(s), &pci_msix_ops, s, "xen-pci-pt-msix", (total_entries * PCI_MSIX_ENTRY_SIZE + XC_PAGE_SIZE - 1) & XC_PAGE_MASK); rc = xen_host_pci_get_long(hd, base + PCI_MSIX_TABLE, &table_off); if (rc) { XEN_PT_ERR(d, "Failed to read PCI_MSIX_TABLE field\n"); goto error_out; } bar_index = msix->bar_index = table_off & PCI_MSIX_FLAGS_BIRMASK; table_off = table_off & ~PCI_MSIX_FLAGS_BIRMASK; msix->table_base = s->real_device.io_regions[bar_index].base_addr; XEN_PT_LOG(d, "get MSI-X table BAR base 0x%"PRIx64"\n", msix->table_base); fd = open("/dev/mem", O_RDWR); if (fd == -1) { rc = -errno; XEN_PT_ERR(d, "Can't open /dev/mem: %s\n", strerror(errno)); goto error_out; } XEN_PT_LOG(d, "table_off = %#x, total_entries = %d\n", table_off, total_entries); msix->table_offset_adjust = table_off & 0x0fff; msix->phys_iomem_base = mmap(NULL, total_entries * PCI_MSIX_ENTRY_SIZE + msix->table_offset_adjust, PROT_READ, MAP_SHARED | MAP_LOCKED, fd, msix->table_base + table_off - msix->table_offset_adjust); close(fd); if (msix->phys_iomem_base == MAP_FAILED) { rc = -errno; XEN_PT_ERR(d, "Can't map physical MSI-X table: %s\n", strerror(errno)); goto error_out; } msix->phys_iomem_base = (char *)msix->phys_iomem_base + msix->table_offset_adjust; XEN_PT_LOG(d, "mapping physical MSI-X table to %p\n", msix->phys_iomem_base); memory_region_add_subregion_overlap(&s->bar[bar_index], table_off, &msix->mmio, 2); /* Priority: pci default + 1 */ return 0; error_out: g_free(s->msix); s->msix = NULL; return rc; } void xen_pt_msix_unmap(XenPCIPassthroughState *s) { XenPTMSIX *msix = s->msix; if (!msix) { return; } /* unmap the MSI-X memory mapped register area */ if (msix->phys_iomem_base) { XEN_PT_LOG(&s->dev, "unmapping physical MSI-X table from %p\n", msix->phys_iomem_base); munmap(msix->phys_iomem_base, msix->total_entries * PCI_MSIX_ENTRY_SIZE + msix->table_offset_adjust); } memory_region_del_subregion(&s->bar[msix->bar_index], &msix->mmio); } void xen_pt_msix_delete(XenPCIPassthroughState *s) { XenPTMSIX *msix = s->msix; if (!msix) { return; } object_unparent(OBJECT(&msix->mmio)); g_free(s->msix); s->msix = NULL; }