/* Declarations for use by board files for creating devices. */ #ifndef HW_BOARDS_H #define HW_BOARDS_H #include "sysemu/blockdev.h" #include "sysemu/accel.h" #include "hw/qdev.h" #include "qom/object.h" #include "qom/cpu.h" /** * memory_region_allocate_system_memory - Allocate a board's main memory * @mr: the #MemoryRegion to be initialized * @owner: the object that tracks the region's reference count * @name: name of the memory region * @ram_size: size of the region in bytes * * This function allocates the main memory for a board model, and * initializes @mr appropriately. It also arranges for the memory * to be migrated (by calling vmstate_register_ram_global()). * * Memory allocated via this function will be backed with the memory * backend the user provided using "-mem-path" or "-numa node,memdev=..." * if appropriate; this is typically used to cause host huge pages to be * used. This function should therefore be called by a board exactly once, * for the primary or largest RAM area it implements. * * For boards where the major RAM is split into two parts in the memory * map, you can deal with this by calling memory_region_allocate_system_memory() * once to get a MemoryRegion with enough RAM for both parts, and then * creating alias MemoryRegions via memory_region_init_alias() which * alias into different parts of the RAM MemoryRegion and can be mapped * into the memory map in the appropriate places. * * Smaller pieces of memory (display RAM, static RAMs, etc) don't need * to be backed via the -mem-path memory backend and can simply * be created via memory_region_allocate_aux_memory() or * memory_region_init_ram(). */ void memory_region_allocate_system_memory(MemoryRegion *mr, Object *owner, const char *name, uint64_t ram_size); #define TYPE_MACHINE_SUFFIX "-machine" /* Machine class name that needs to be used for class-name-based machine * type lookup to work. */ #define MACHINE_TYPE_NAME(machinename) (machinename TYPE_MACHINE_SUFFIX) #define TYPE_MACHINE "machine" #undef MACHINE /* BSD defines it and QEMU does not use it */ #define MACHINE(obj) \ OBJECT_CHECK(MachineState, (obj), TYPE_MACHINE) #define MACHINE_GET_CLASS(obj) \ OBJECT_GET_CLASS(MachineClass, (obj), TYPE_MACHINE) #define MACHINE_CLASS(klass) \ OBJECT_CLASS_CHECK(MachineClass, (klass), TYPE_MACHINE) MachineClass *find_default_machine(void); extern MachineState *current_machine; void machine_run_board_init(MachineState *machine); bool machine_usb(MachineState *machine); bool machine_kernel_irqchip_allowed(MachineState *machine); bool machine_kernel_irqchip_required(MachineState *machine); bool machine_kernel_irqchip_split(MachineState *machine); int machine_kvm_shadow_mem(MachineState *machine); int machine_phandle_start(MachineState *machine); bool machine_dump_guest_core(MachineState *machine); bool machine_mem_merge(MachineState *machine); void machine_register_compat_props(MachineState *machine); HotpluggableCPUList *machine_query_hotpluggable_cpus(MachineState *machine); void machine_set_cpu_numa_node(MachineState *machine, const CpuInstanceProperties *props, Error **errp); /** * CPUArchId: * @arch_id - architecture-dependent CPU ID of present or possible CPU * @cpu - pointer to corresponding CPU object if it's present on NULL otherwise * @props - CPU object properties, initialized by board * #vcpus_count - number of threads provided by @cpu object */ typedef struct { uint64_t arch_id; int64_t vcpus_count; CpuInstanceProperties props; Object *cpu; } CPUArchId; /** * CPUArchIdList: * @len - number of @CPUArchId items in @cpus array * @cpus - array of present or possible CPUs for current machine configuration */ typedef struct { int len; CPUArchId cpus[0]; } CPUArchIdList; /** * MachineClass: * @max_cpus: maximum number of CPUs supported. Default: 1 * @min_cpus: minimum number of CPUs supported. Default: 1 * @default_cpus: number of CPUs instantiated if none are specified. Default: 1 * @get_hotplug_handler: this function is called during bus-less * device hotplug. If defined it returns pointer to an instance * of HotplugHandler object, which handles hotplug operation * for a given @dev. It may return NULL if @dev doesn't require * any actions to be performed by hotplug handler. * @cpu_index_to_instance_props: * used to provide @cpu_index to socket/core/thread number mapping, allowing * legacy code to perform maping from cpu_index to topology properties * Returns: tuple of socket/core/thread ids given cpu_index belongs to. * used to provide @cpu_index to socket number mapping, allowing * a machine to group CPU threads belonging to the same socket/package * Returns: socket number given cpu_index belongs to. * @hw_version: * Value of QEMU_VERSION when the machine was added to QEMU. * Set only by old machines because they need to keep * compatibility on code that exposed QEMU_VERSION to guests in * the past (and now use qemu_hw_version()). * @possible_cpu_arch_ids: * Returns an array of @CPUArchId architecture-dependent CPU IDs * which includes CPU IDs for present and possible to hotplug CPUs. * Caller is responsible for freeing returned list. * @get_default_cpu_node_id: * returns default board specific node_id value for CPU slot specified by * index @idx in @ms->possible_cpus[] * @has_hotpluggable_cpus: * If true, board supports CPUs creation with -device/device_add. * @default_cpu_type: * specifies default CPU_TYPE, which will be used for parsing target * specific features and for creating CPUs if CPU name wasn't provided * explicitly at CLI * @minimum_page_bits: * If non-zero, the board promises never to create a CPU with a page size * smaller than this, so QEMU can use a more efficient larger page * size than the target architecture's minimum. (Attempting to create * such a CPU will fail.) Note that changing this is a migration * compatibility break for the machine. * @ignore_memory_transaction_failures: * If this is flag is true then the CPU will ignore memory transaction * failures which should cause the CPU to take an exception due to an * access to an unassigned physical address; the transaction will instead * return zero (for a read) or be ignored (for a write). This should be * set only by legacy board models which rely on the old RAZ/WI behaviour * for handling devices that QEMU does not yet model. New board models * should instead use "unimplemented-device" for all memory ranges where * the guest will attempt to probe for a device that QEMU doesn't * implement and a stub device is required. */ struct MachineClass { /*< private >*/ ObjectClass parent_class; /*< public >*/ const char *family; /* NULL iff @name identifies a standalone machtype */ char *name; const char *alias; const char *desc; void (*init)(MachineState *state); void (*reset)(void); void (*hot_add_cpu)(const int64_t id, Error **errp); int (*kvm_type)(const char *arg); BlockInterfaceType block_default_type; int units_per_default_bus; int max_cpus; int min_cpus; int default_cpus; unsigned int no_serial:1, no_parallel:1, use_virtcon:1, use_sclp:1, no_floppy:1, no_cdrom:1, no_sdcard:1, has_dynamic_sysbus:1, pci_allow_0_address:1, legacy_fw_cfg_order:1; int is_default; const char *default_machine_opts; const char *default_boot_order; const char *default_display; GArray *compat_props; const char *hw_version; ram_addr_t default_ram_size; const char *default_cpu_type; bool option_rom_has_mr; bool rom_file_has_mr; int minimum_page_bits; bool has_hotpluggable_cpus; bool ignore_memory_transaction_failures; int numa_mem_align_shift; const char **valid_cpu_types; void (*numa_auto_assign_ram)(MachineClass *mc, NodeInfo *nodes, int nb_nodes, ram_addr_t size); HotplugHandler *(*get_hotplug_handler)(MachineState *machine, DeviceState *dev); CpuInstanceProperties (*cpu_index_to_instance_props)(MachineState *machine, unsigned cpu_index); const CPUArchIdList *(*possible_cpu_arch_ids)(MachineState *machine); int64_t (*get_default_cpu_node_id)(const MachineState *ms, int idx); }; /** * MachineState: */ struct MachineState { /*< private >*/ Object parent_obj; Notifier sysbus_notifier; /*< public >*/ char *accel; bool kernel_irqchip_allowed; bool kernel_irqchip_required; bool kernel_irqchip_split; int kvm_shadow_mem; char *dtb; char *dumpdtb; int phandle_start; char *dt_compatible; bool dump_guest_core; bool mem_merge; bool usb; bool usb_disabled; bool igd_gfx_passthru; char *firmware; bool iommu; bool suppress_vmdesc; bool enforce_config_section; bool enable_graphics; ram_addr_t ram_size; ram_addr_t maxram_size; uint64_t ram_slots; const char *boot_order; char *kernel_filename; char *kernel_cmdline; char *initrd_filename; const char *cpu_model; const char *cpu_type; AccelState *accelerator; CPUArchIdList *possible_cpus; }; #define DEFINE_MACHINE(namestr, machine_initfn) \ static void machine_initfn##_class_init(ObjectClass *oc, void *data) \ { \ MachineClass *mc = MACHINE_CLASS(oc); \ machine_initfn(mc); \ } \ static const TypeInfo machine_initfn##_typeinfo = { \ .name = MACHINE_TYPE_NAME(namestr), \ .parent = TYPE_MACHINE, \ .class_init = machine_initfn##_class_init, \ }; \ static void machine_initfn##_register_types(void) \ { \ type_register_static(&machine_initfn##_typeinfo); \ } \ type_init(machine_initfn##_register_types) #define SET_MACHINE_COMPAT(m, COMPAT) \ do { \ int i; \ static GlobalProperty props[] = { \ COMPAT \ { /* end of list */ } \ }; \ if (!m->compat_props) { \ m->compat_props = g_array_new(false, false, sizeof(void *)); \ } \ for (i = 0; props[i].driver != NULL; i++) { \ GlobalProperty *prop = &props[i]; \ g_array_append_val(m->compat_props, prop); \ } \ } while (0) #endif