/* * QEMU 64-bit address ranges * * Copyright (c) 2015-2016 Red Hat, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see <http://www.gnu.org/licenses/>. */ #ifndef QEMU_RANGE_H #define QEMU_RANGE_H /* * Operations on 64 bit address ranges. * Notes: * - Ranges must not wrap around 0, but can include UINT64_MAX. */ struct Range { /* * Do not access members directly, use the functions! * A non-empty range has @lob <= @upb. * An empty range has @lob == @upb + 1. */ uint64_t lob; /* inclusive lower bound */ uint64_t upb; /* inclusive upper bound */ }; static inline void range_invariant(const Range *range) { assert(range->lob <= range->upb || range->lob == range->upb + 1); } /* Compound literal encoding the empty range */ #define range_empty ((Range){ .lob = 1, .upb = 0 }) /* Is @range empty? */ static inline bool range_is_empty(const Range *range) { range_invariant(range); return range->lob > range->upb; } /* Does @range contain @val? */ static inline bool range_contains(const Range *range, uint64_t val) { return val >= range->lob && val <= range->upb; } /* Initialize @range to the empty range */ static inline void range_make_empty(Range *range) { *range = range_empty; assert(range_is_empty(range)); } /* * Initialize @range to span the interval [@lob,@upb]. * Both bounds are inclusive. * The interval must not be empty, i.e. @lob must be less than or * equal @upb. */ static inline void range_set_bounds(Range *range, uint64_t lob, uint64_t upb) { range->lob = lob; range->upb = upb; assert(!range_is_empty(range)); } /* * Initialize @range to span the interval [@lob,@upb_plus1). * The lower bound is inclusive, the upper bound is exclusive. * Zero @upb_plus1 is special: if @lob is also zero, set @range to the * empty range. Else, set @range to [@lob,UINT64_MAX]. */ static inline void range_set_bounds1(Range *range, uint64_t lob, uint64_t upb_plus1) { if (!lob && !upb_plus1) { *range = range_empty; } else { range->lob = lob; range->upb = upb_plus1 - 1; } range_invariant(range); } /* Return @range's lower bound. @range must not be empty. */ static inline uint64_t range_lob(Range *range) { assert(!range_is_empty(range)); return range->lob; } /* Return @range's upper bound. @range must not be empty. */ static inline uint64_t range_upb(Range *range) { assert(!range_is_empty(range)); return range->upb; } /* * Initialize @range to span the interval [@lob,@lob + @size - 1]. * @size may be 0. If the range would overflow, returns -ERANGE, otherwise * 0. */ static inline int QEMU_WARN_UNUSED_RESULT range_init(Range *range, uint64_t lob, uint64_t size) { if (lob + size < lob) { return -ERANGE; } range->lob = lob; range->upb = lob + size - 1; range_invariant(range); return 0; } /* * Initialize @range to span the interval [@lob,@lob + @size - 1]. * @size may be 0. Range must not overflow. */ static inline void range_init_nofail(Range *range, uint64_t lob, uint64_t size) { range->lob = lob; range->upb = lob + size - 1; range_invariant(range); } /* * Get the size of @range. */ static inline uint64_t range_size(const Range *range) { return range->upb - range->lob + 1; } /* * Check if @range1 overlaps with @range2. If one of the ranges is empty, * the result is always "false". */ static inline bool range_overlaps_range(const Range *range1, const Range *range2) { if (range_is_empty(range1) || range_is_empty(range2)) { return false; } return !(range2->upb < range1->lob || range1->upb < range2->lob); } /* * Check if @range1 contains @range2. If one of the ranges is empty, * the result is always "false". */ static inline bool range_contains_range(const Range *range1, const Range *range2) { if (range_is_empty(range1) || range_is_empty(range2)) { return false; } return range1->lob <= range2->lob && range1->upb >= range2->upb; } /* * Extend @range to the smallest interval that includes @extend_by, too. */ static inline void range_extend(Range *range, Range *extend_by) { if (range_is_empty(extend_by)) { return; } if (range_is_empty(range)) { *range = *extend_by; return; } if (range->lob > extend_by->lob) { range->lob = extend_by->lob; } if (range->upb < extend_by->upb) { range->upb = extend_by->upb; } range_invariant(range); } /* Get last byte of a range from offset + length. * Undefined for ranges that wrap around 0. */ static inline uint64_t range_get_last(uint64_t offset, uint64_t len) { return offset + len - 1; } /* Check whether a given range covers a given byte. */ static inline int range_covers_byte(uint64_t offset, uint64_t len, uint64_t byte) { return offset <= byte && byte <= range_get_last(offset, len); } /* Check whether 2 given ranges overlap. * Undefined if ranges that wrap around 0. */ static inline int ranges_overlap(uint64_t first1, uint64_t len1, uint64_t first2, uint64_t len2) { uint64_t last1 = range_get_last(first1, len1); uint64_t last2 = range_get_last(first2, len2); return !(last2 < first1 || last1 < first2); } GList *range_list_insert(GList *list, Range *data); #endif