/* * qemu user cpu loop * * Copyright (c) 2003-2008 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu.h" #include "user-internals.h" #include "cpu_loop-common.h" #include "signal-common.h" #include "qemu/guest-random.h" #include "semihosting/common-semi.h" #include "target/arm/syndrome.h" #define get_user_code_u32(x, gaddr, env) \ ({ abi_long __r = get_user_u32((x), (gaddr)); \ if (!__r && bswap_code(arm_sctlr_b(env))) { \ (x) = bswap32(x); \ } \ __r; \ }) #define get_user_code_u16(x, gaddr, env) \ ({ abi_long __r = get_user_u16((x), (gaddr)); \ if (!__r && bswap_code(arm_sctlr_b(env))) { \ (x) = bswap16(x); \ } \ __r; \ }) #define get_user_data_u32(x, gaddr, env) \ ({ abi_long __r = get_user_u32((x), (gaddr)); \ if (!__r && arm_cpu_bswap_data(env)) { \ (x) = bswap32(x); \ } \ __r; \ }) #define get_user_data_u16(x, gaddr, env) \ ({ abi_long __r = get_user_u16((x), (gaddr)); \ if (!__r && arm_cpu_bswap_data(env)) { \ (x) = bswap16(x); \ } \ __r; \ }) #define put_user_data_u32(x, gaddr, env) \ ({ typeof(x) __x = (x); \ if (arm_cpu_bswap_data(env)) { \ __x = bswap32(__x); \ } \ put_user_u32(__x, (gaddr)); \ }) #define put_user_data_u16(x, gaddr, env) \ ({ typeof(x) __x = (x); \ if (arm_cpu_bswap_data(env)) { \ __x = bswap16(__x); \ } \ put_user_u16(__x, (gaddr)); \ }) /* AArch64 main loop */ void cpu_loop(CPUARMState *env) { CPUState *cs = env_cpu(env); int trapnr, ec, fsc, si_code, si_signo; abi_long ret; for (;;) { cpu_exec_start(cs); trapnr = cpu_exec(cs); cpu_exec_end(cs); process_queued_cpu_work(cs); switch (trapnr) { case EXCP_SWI: ret = do_syscall(env, env->xregs[8], env->xregs[0], env->xregs[1], env->xregs[2], env->xregs[3], env->xregs[4], env->xregs[5], 0, 0); if (ret == -TARGET_ERESTARTSYS) { env->pc -= 4; } else if (ret != -TARGET_QEMU_ESIGRETURN) { env->xregs[0] = ret; } break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_UDEF: force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN, env->pc); break; case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: ec = syn_get_ec(env->exception.syndrome); switch (ec) { case EC_DATAABORT: case EC_INSNABORT: /* Both EC have the same format for FSC, or close enough. */ fsc = extract32(env->exception.syndrome, 0, 6); switch (fsc) { case 0x04 ... 0x07: /* Translation fault, level {0-3} */ si_signo = TARGET_SIGSEGV; si_code = TARGET_SEGV_MAPERR; break; case 0x09 ... 0x0b: /* Access flag fault, level {1-3} */ case 0x0d ... 0x0f: /* Permission fault, level {1-3} */ si_signo = TARGET_SIGSEGV; si_code = TARGET_SEGV_ACCERR; break; case 0x11: /* Synchronous Tag Check Fault */ si_signo = TARGET_SIGSEGV; si_code = TARGET_SEGV_MTESERR; break; case 0x21: /* Alignment fault */ si_signo = TARGET_SIGBUS; si_code = TARGET_BUS_ADRALN; break; default: g_assert_not_reached(); } break; case EC_PCALIGNMENT: si_signo = TARGET_SIGBUS; si_code = TARGET_BUS_ADRALN; break; default: g_assert_not_reached(); } force_sig_fault(si_signo, si_code, env->exception.vaddress); break; case EXCP_DEBUG: case EXCP_BKPT: force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->pc); break; case EXCP_SEMIHOST: env->xregs[0] = do_common_semihosting(cs); env->pc += 4; break; case EXCP_YIELD: /* nothing to do here for user-mode, just resume guest code */ break; case EXCP_ATOMIC: cpu_exec_step_atomic(cs); break; default: EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); abort(); } /* Check for MTE asynchronous faults */ if (unlikely(env->cp15.tfsr_el[0])) { env->cp15.tfsr_el[0] = 0; force_sig_fault(TARGET_SIGSEGV, TARGET_SEGV_MTEAERR, 0); } process_pending_signals(env); /* Exception return on AArch64 always clears the exclusive monitor, * so any return to running guest code implies this. */ env->exclusive_addr = -1; } } void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs) { ARMCPU *cpu = env_archcpu(env); CPUState *cs = env_cpu(env); TaskState *ts = cs->opaque; struct image_info *info = ts->info; int i; if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { fprintf(stderr, "The selected ARM CPU does not support 64 bit mode\n"); exit(EXIT_FAILURE); } for (i = 0; i < 31; i++) { env->xregs[i] = regs->regs[i]; } env->pc = regs->pc; env->xregs[31] = regs->sp; #ifdef TARGET_WORDS_BIGENDIAN env->cp15.sctlr_el[1] |= SCTLR_E0E; for (i = 1; i < 4; ++i) { env->cp15.sctlr_el[i] |= SCTLR_EE; } arm_rebuild_hflags(env); #endif if (cpu_isar_feature(aa64_pauth, cpu)) { qemu_guest_getrandom_nofail(&env->keys, sizeof(env->keys)); } ts->stack_base = info->start_stack; ts->heap_base = info->brk; /* This will be filled in on the first SYS_HEAPINFO call. */ ts->heap_limit = 0; }