/* * Alpha emulation cpu micro-operations helpers for qemu. * * Copyright (c) 2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" #include "host-utils.h" #include "softfloat.h" #include "op_helper.h" #define MEMSUFFIX _raw #include "op_helper_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _kernel #include "op_helper_mem.h" #define MEMSUFFIX _executive #include "op_helper_mem.h" #define MEMSUFFIX _supervisor #include "op_helper_mem.h" #define MEMSUFFIX _user #include "op_helper_mem.h" /* This is used for pal modes */ #define MEMSUFFIX _data #include "op_helper_mem.h" #endif void helper_tb_flush (void) { tlb_flush(env, 1); } void cpu_dump_EA (target_ulong EA); void helper_print_mem_EA (target_ulong EA) { cpu_dump_EA(EA); } /*****************************************************************************/ /* Exceptions processing helpers */ void helper_excp (int excp, int error) { env->exception_index = excp; env->error_code = error; cpu_loop_exit(); } uint64_t helper_amask (uint64_t arg) { switch (env->implver) { case IMPLVER_2106x: /* EV4, EV45, LCA, LCA45 & EV5 */ break; case IMPLVER_21164: case IMPLVER_21264: case IMPLVER_21364: arg &= ~env->amask; break; } return arg; } uint64_t helper_load_pcc (void) { /* XXX: TODO */ return 0; } uint64_t helper_load_implver (void) { return env->implver; } void helper_load_fpcr (void) { T0 = 0; #ifdef CONFIG_SOFTFLOAT T0 |= env->fp_status.float_exception_flags << 52; if (env->fp_status.float_exception_flags) T0 |= 1ULL << 63; env->ipr[IPR_EXC_SUM] &= ~0x3E: env->ipr[IPR_EXC_SUM] |= env->fp_status.float_exception_flags << 1; #endif switch (env->fp_status.float_rounding_mode) { case float_round_nearest_even: T0 |= 2ULL << 58; break; case float_round_down: T0 |= 1ULL << 58; break; case float_round_up: T0 |= 3ULL << 58; break; case float_round_to_zero: break; } } void helper_store_fpcr (void) { #ifdef CONFIG_SOFTFLOAT set_float_exception_flags((T0 >> 52) & 0x3F, &FP_STATUS); #endif switch ((T0 >> 58) & 3) { case 0: set_float_rounding_mode(float_round_to_zero, &FP_STATUS); break; case 1: set_float_rounding_mode(float_round_down, &FP_STATUS); break; case 2: set_float_rounding_mode(float_round_nearest_even, &FP_STATUS); break; case 3: set_float_rounding_mode(float_round_up, &FP_STATUS); break; } } spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED; uint64_t helper_rs(void) { uint64_t tmp; spin_lock(&intr_cpu_lock); tmp = env->intr_flag; env->intr_flag = 1; spin_unlock(&intr_cpu_lock); return tmp; } uint64_t helper_rc(void) { uint64_t tmp; spin_lock(&intr_cpu_lock); tmp = env->intr_flag; env->intr_flag = 0; spin_unlock(&intr_cpu_lock); return tmp; } uint64_t helper_addqv (uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 += op2; if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return op1; } uint64_t helper_addlv (uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 = (uint32_t)(op1 + op2); if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return op1; } uint64_t helper_subqv (uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 -= op2; if (unlikely(((~tmp) ^ op1 ^ (-1ULL)) & ((~tmp) ^ op2) & (1ULL << 63))) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return op1; } uint64_t helper_sublv (uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 = (uint32_t)(op1 - op2); if (unlikely(((~tmp) ^ op1 ^ (-1UL)) & ((~tmp) ^ op2) & (1UL << 31))) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return op1; } uint64_t helper_mullv (uint64_t op1, uint64_t op2) { int64_t res = (int64_t)op1 * (int64_t)op2; if (unlikely((int32_t)res != res)) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return (int64_t)((int32_t)res); } uint64_t helper_mulqv (uint64_t op1, uint64_t op2) { uint64_t tl, th; muls64(&tl, &th, op1, op2); /* If th != 0 && th != -1, then we had an overflow */ if (unlikely((th + 1) > 1)) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return tl; } uint64_t helper_umulh (uint64_t op1, uint64_t op2) { uint64_t tl, th; mulu64(&tl, &th, op1, op2); return th; } uint64_t helper_ctpop (uint64_t arg) { return ctpop64(arg); } uint64_t helper_ctlz (uint64_t arg) { return clz64(arg); } uint64_t helper_cttz (uint64_t arg) { return ctz64(arg); } static always_inline uint64_t byte_zap (uint64_t op, uint8_t mskb) { uint64_t mask; mask = 0; mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL; mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL; mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL; mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL; mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL; mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL; mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL; mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL; return op & ~mask; } uint64_t helper_mskbl(uint64_t val, uint64_t mask) { return byte_zap(val, 0x01 << (mask & 7)); } uint64_t helper_insbl(uint64_t val, uint64_t mask) { val <<= (mask & 7) * 8; return byte_zap(val, ~(0x01 << (mask & 7))); } uint64_t helper_mskwl(uint64_t val, uint64_t mask) { return byte_zap(val, 0x03 << (mask & 7)); } uint64_t helper_inswl(uint64_t val, uint64_t mask) { val <<= (mask & 7) * 8; return byte_zap(val, ~(0x03 << (mask & 7))); } uint64_t helper_mskll(uint64_t val, uint64_t mask) { return byte_zap(val, 0x0F << (mask & 7)); } uint64_t helper_insll(uint64_t val, uint64_t mask) { val <<= (mask & 7) * 8; return byte_zap(val, ~(0x0F << (mask & 7))); } uint64_t helper_zap(uint64_t val, uint64_t mask) { return byte_zap(val, mask); } uint64_t helper_zapnot(uint64_t val, uint64_t mask) { return byte_zap(val, ~mask); } uint64_t helper_mskql(uint64_t val, uint64_t mask) { return byte_zap(val, 0xFF << (mask & 7)); } uint64_t helper_insql(uint64_t val, uint64_t mask) { val <<= (mask & 7) * 8; return byte_zap(val, ~(0xFF << (mask & 7))); } uint64_t helper_mskwh(uint64_t val, uint64_t mask) { return byte_zap(val, (0x03 << (mask & 7)) >> 8); } uint64_t helper_inswh(uint64_t val, uint64_t mask) { val >>= 64 - ((mask & 7) * 8); return byte_zap(val, ~((0x03 << (mask & 7)) >> 8)); } uint64_t helper_msklh(uint64_t val, uint64_t mask) { return byte_zap(val, (0x0F << (mask & 7)) >> 8); } uint64_t helper_inslh(uint64_t val, uint64_t mask) { val >>= 64 - ((mask & 7) * 8); return byte_zap(val, ~((0x0F << (mask & 7)) >> 8)); } uint64_t helper_mskqh(uint64_t val, uint64_t mask) { return byte_zap(val, (0xFF << (mask & 7)) >> 8); } uint64_t helper_insqh(uint64_t val, uint64_t mask) { val >>= 64 - ((mask & 7) * 8); return byte_zap(val, ~((0xFF << (mask & 7)) >> 8)); } uint64_t helper_cmpbge (uint64_t op1, uint64_t op2) { uint8_t opa, opb, res; int i; res = 0; for (i = 0; i < 7; i++) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); if (opa >= opb) res |= 1 << i; } return res; } void helper_cmov_fir (int freg) { if (FT0 != 0) env->fir[freg] = FT1; } void helper_sqrts (void) { FT0 = float32_sqrt(FT0, &FP_STATUS); } void helper_cpys (void) { union { double d; uint64_t i; } p, q, r; p.d = FT0; q.d = FT1; r.i = p.i & 0x8000000000000000ULL; r.i |= q.i & ~0x8000000000000000ULL; FT0 = r.d; } void helper_cpysn (void) { union { double d; uint64_t i; } p, q, r; p.d = FT0; q.d = FT1; r.i = (~p.i) & 0x8000000000000000ULL; r.i |= q.i & ~0x8000000000000000ULL; FT0 = r.d; } void helper_cpyse (void) { union { double d; uint64_t i; } p, q, r; p.d = FT0; q.d = FT1; r.i = p.i & 0xFFF0000000000000ULL; r.i |= q.i & ~0xFFF0000000000000ULL; FT0 = r.d; } void helper_itofs (void) { union { double d; uint64_t i; } p; p.d = FT0; FT0 = int64_to_float32(p.i, &FP_STATUS); } void helper_ftois (void) { union { double d; uint64_t i; } p; p.i = float32_to_int64(FT0, &FP_STATUS); FT0 = p.d; } void helper_sqrtt (void) { FT0 = float64_sqrt(FT0, &FP_STATUS); } void helper_cmptun (void) { union { double d; uint64_t i; } p; p.i = 0; if (float64_is_nan(FT0) || float64_is_nan(FT1)) p.i = 0x4000000000000000ULL; FT0 = p.d; } void helper_cmpteq (void) { union { double d; uint64_t i; } p; p.i = 0; if (float64_eq(FT0, FT1, &FP_STATUS)) p.i = 0x4000000000000000ULL; FT0 = p.d; } void helper_cmptle (void) { union { double d; uint64_t i; } p; p.i = 0; if (float64_le(FT0, FT1, &FP_STATUS)) p.i = 0x4000000000000000ULL; FT0 = p.d; } void helper_cmptlt (void) { union { double d; uint64_t i; } p; p.i = 0; if (float64_lt(FT0, FT1, &FP_STATUS)) p.i = 0x4000000000000000ULL; FT0 = p.d; } void helper_itoft (void) { union { double d; uint64_t i; } p; p.d = FT0; FT0 = int64_to_float64(p.i, &FP_STATUS); } void helper_ftoit (void) { union { double d; uint64_t i; } p; p.i = float64_to_int64(FT0, &FP_STATUS); FT0 = p.d; } static always_inline int vaxf_is_valid (float ff) { union { float f; uint32_t i; } p; uint32_t exp, mant; p.f = ff; exp = (p.i >> 23) & 0xFF; mant = p.i & 0x007FFFFF; if (exp == 0 && ((p.i & 0x80000000) || mant != 0)) { /* Reserved operands / Dirty zero */ return 0; } return 1; } static always_inline float vaxf_to_ieee32 (float ff) { union { float f; uint32_t i; } p; uint32_t exp; p.f = ff; exp = (p.i >> 23) & 0xFF; if (exp < 3) { /* Underflow */ p.f = 0.0; } else { p.f *= 0.25; } return p.f; } static always_inline float ieee32_to_vaxf (float fi) { union { float f; uint32_t i; } p; uint32_t exp, mant; p.f = fi; exp = (p.i >> 23) & 0xFF; mant = p.i & 0x007FFFFF; if (exp == 255) { /* NaN or infinity */ p.i = 1; } else if (exp == 0) { if (mant == 0) { /* Zero */ p.i = 0; } else { /* Denormalized */ p.f *= 2.0; } } else { if (exp >= 253) { /* Overflow */ p.i = 1; } else { p.f *= 4.0; } } return p.f; } void helper_addf (void) { float ft0, ft1, ft2; if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxf_to_ieee32(FT0); ft1 = vaxf_to_ieee32(FT1); ft2 = float32_add(ft0, ft1, &FP_STATUS); FT0 = ieee32_to_vaxf(ft2); } void helper_subf (void) { float ft0, ft1, ft2; if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxf_to_ieee32(FT0); ft1 = vaxf_to_ieee32(FT1); ft2 = float32_sub(ft0, ft1, &FP_STATUS); FT0 = ieee32_to_vaxf(ft2); } void helper_mulf (void) { float ft0, ft1, ft2; if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxf_to_ieee32(FT0); ft1 = vaxf_to_ieee32(FT1); ft2 = float32_mul(ft0, ft1, &FP_STATUS); FT0 = ieee32_to_vaxf(ft2); } void helper_divf (void) { float ft0, ft1, ft2; if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxf_to_ieee32(FT0); ft1 = vaxf_to_ieee32(FT1); ft2 = float32_div(ft0, ft1, &FP_STATUS); FT0 = ieee32_to_vaxf(ft2); } void helper_sqrtf (void) { float ft0, ft1; if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxf_to_ieee32(FT0); ft1 = float32_sqrt(ft0, &FP_STATUS); FT0 = ieee32_to_vaxf(ft1); } void helper_itoff (void) { /* XXX: TODO */ } static always_inline int vaxg_is_valid (double ff) { union { double f; uint64_t i; } p; uint64_t exp, mant; p.f = ff; exp = (p.i >> 52) & 0x7FF; mant = p.i & 0x000FFFFFFFFFFFFFULL; if (exp == 0 && ((p.i & 0x8000000000000000ULL) || mant != 0)) { /* Reserved operands / Dirty zero */ return 0; } return 1; } static always_inline double vaxg_to_ieee64 (double fg) { union { double f; uint64_t i; } p; uint32_t exp; p.f = fg; exp = (p.i >> 52) & 0x7FF; if (exp < 3) { /* Underflow */ p.f = 0.0; } else { p.f *= 0.25; } return p.f; } static always_inline double ieee64_to_vaxg (double fi) { union { double f; uint64_t i; } p; uint64_t mant; uint32_t exp; p.f = fi; exp = (p.i >> 52) & 0x7FF; mant = p.i & 0x000FFFFFFFFFFFFFULL; if (exp == 255) { /* NaN or infinity */ p.i = 1; /* VAX dirty zero */ } else if (exp == 0) { if (mant == 0) { /* Zero */ p.i = 0; } else { /* Denormalized */ p.f *= 2.0; } } else { if (exp >= 2045) { /* Overflow */ p.i = 1; /* VAX dirty zero */ } else { p.f *= 4.0; } } return p.f; } void helper_addg (void) { double ft0, ft1, ft2; if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxg_to_ieee64(FT0); ft1 = vaxg_to_ieee64(FT1); ft2 = float64_add(ft0, ft1, &FP_STATUS); FT0 = ieee64_to_vaxg(ft2); } void helper_subg (void) { double ft0, ft1, ft2; if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxg_to_ieee64(FT0); ft1 = vaxg_to_ieee64(FT1); ft2 = float64_sub(ft0, ft1, &FP_STATUS); FT0 = ieee64_to_vaxg(ft2); } void helper_mulg (void) { double ft0, ft1, ft2; if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxg_to_ieee64(FT0); ft1 = vaxg_to_ieee64(FT1); ft2 = float64_mul(ft0, ft1, &FP_STATUS); FT0 = ieee64_to_vaxg(ft2); } void helper_divg (void) { double ft0, ft1, ft2; if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxg_to_ieee64(FT0); ft1 = vaxg_to_ieee64(FT1); ft2 = float64_div(ft0, ft1, &FP_STATUS); FT0 = ieee64_to_vaxg(ft2); } void helper_sqrtg (void) { double ft0, ft1; if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxg_to_ieee64(FT0); ft1 = float64_sqrt(ft0, &FP_STATUS); FT0 = ieee64_to_vaxg(ft1); } void helper_cmpgeq (void) { union { double d; uint64_t u; } p; double ft0, ft1; if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxg_to_ieee64(FT0); ft1 = vaxg_to_ieee64(FT1); p.u = 0; if (float64_eq(ft0, ft1, &FP_STATUS)) p.u = 0x4000000000000000ULL; FT0 = p.d; } void helper_cmpglt (void) { union { double d; uint64_t u; } p; double ft0, ft1; if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxg_to_ieee64(FT0); ft1 = vaxg_to_ieee64(FT1); p.u = 0; if (float64_lt(ft0, ft1, &FP_STATUS)) p.u = 0x4000000000000000ULL; FT0 = p.d; } void helper_cmpgle (void) { union { double d; uint64_t u; } p; double ft0, ft1; if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) { /* XXX: TODO */ } ft0 = vaxg_to_ieee64(FT0); ft1 = vaxg_to_ieee64(FT1); p.u = 0; if (float64_le(ft0, ft1, &FP_STATUS)) p.u = 0x4000000000000000ULL; FT0 = p.d; } void helper_cvtqs (void) { union { double d; uint64_t u; } p; p.d = FT0; FT0 = (float)p.u; } void helper_cvttq (void) { union { double d; uint64_t u; } p; p.u = FT0; FT0 = p.d; } void helper_cvtqt (void) { union { double d; uint64_t u; } p; p.d = FT0; FT0 = p.u; } void helper_cvtqf (void) { union { double d; uint64_t u; } p; p.d = FT0; FT0 = ieee32_to_vaxf(p.u); } void helper_cvtgf (void) { double ft0; ft0 = vaxg_to_ieee64(FT0); FT0 = ieee32_to_vaxf(ft0); } void helper_cvtgd (void) { /* XXX: TODO */ } void helper_cvtgq (void) { union { double d; uint64_t u; } p; p.u = vaxg_to_ieee64(FT0); FT0 = p.d; } void helper_cvtqg (void) { union { double d; uint64_t u; } p; p.d = FT0; FT0 = ieee64_to_vaxg(p.u); } void helper_cvtdg (void) { /* XXX: TODO */ } void helper_cvtlq (void) { union { double d; uint64_t u; } p, q; p.d = FT0; q.u = (p.u >> 29) & 0x3FFFFFFF; q.u |= (p.u >> 32); q.u = (int64_t)((int32_t)q.u); FT0 = q.d; } static always_inline void __helper_cvtql (int s, int v) { union { double d; uint64_t u; } p, q; p.d = FT0; q.u = ((uint64_t)(p.u & 0xC0000000)) << 32; q.u |= ((uint64_t)(p.u & 0x7FFFFFFF)) << 29; FT0 = q.d; if (v && (int64_t)((int32_t)p.u) != (int64_t)p.u) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } if (s) { /* TODO */ } } void helper_cvtql (void) { __helper_cvtql(0, 0); } void helper_cvtqlv (void) { __helper_cvtql(0, 1); } void helper_cvtqlsv (void) { __helper_cvtql(1, 1); } void helper_cmpfeq (void) { if (float64_eq(FT0, FT1, &FP_STATUS)) T0 = 1; else T0 = 0; } void helper_cmpfne (void) { if (float64_eq(FT0, FT1, &FP_STATUS)) T0 = 0; else T0 = 1; } void helper_cmpflt (void) { if (float64_lt(FT0, FT1, &FP_STATUS)) T0 = 1; else T0 = 0; } void helper_cmpfle (void) { if (float64_lt(FT0, FT1, &FP_STATUS)) T0 = 1; else T0 = 0; } void helper_cmpfgt (void) { if (float64_le(FT0, FT1, &FP_STATUS)) T0 = 0; else T0 = 1; } void helper_cmpfge (void) { if (float64_lt(FT0, FT1, &FP_STATUS)) T0 = 0; else T0 = 1; } #if !defined (CONFIG_USER_ONLY) void helper_mfpr (int iprn) { uint64_t val; if (cpu_alpha_mfpr(env, iprn, &val) == 0) T0 = val; } void helper_mtpr (int iprn) { cpu_alpha_mtpr(env, iprn, T0, NULL); } #endif #if defined(HOST_SPARC) || defined(HOST_SPARC64) void helper_reset_FT0 (void) { FT0 = 0; } void helper_reset_FT1 (void) { FT1 = 0; } void helper_reset_FT2 (void) { FT2 = 0; } #endif /*****************************************************************************/ /* Softmmu support */ #if !defined (CONFIG_USER_ONLY) /* XXX: the two following helpers are pure hacks. * Hopefully, we emulate the PALcode, then we should never see * HW_LD / HW_ST instructions. */ void helper_ld_phys_to_virt (void) { uint64_t tlb_addr, physaddr; int index, mmu_idx; void *retaddr; mmu_idx = cpu_mmu_index(env); index = (T0 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].addr_read; if ((T0 & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { physaddr = T0 + env->tlb_table[mmu_idx][index].addend; } else { /* the page is not in the TLB : fill it */ retaddr = GETPC(); tlb_fill(T0, 0, mmu_idx, retaddr); goto redo; } T0 = physaddr; } void helper_st_phys_to_virt (void) { uint64_t tlb_addr, physaddr; int index, mmu_idx; void *retaddr; mmu_idx = cpu_mmu_index(env); index = (T0 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].addr_write; if ((T0 & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { physaddr = T0 + env->tlb_table[mmu_idx][index].addend; } else { /* the page is not in the TLB : fill it */ retaddr = GETPC(); tlb_fill(T0, 1, mmu_idx, retaddr); goto redo; } T0 = physaddr; } #define MMUSUFFIX _mmu #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; unsigned long pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (!likely(ret == 0)) { if (likely(retaddr)) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (likely(tb)) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } /* Exception index and error code are already set */ cpu_loop_exit(); } env = saved_env; } #endif