/* * ARM helper routines * * Copyright (c) 2005-2007 CodeSourcery, LLC * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "cpu.h" #include "exec/helper-proto.h" #include "internals.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #define SIGNBIT (uint32_t)0x80000000 #define SIGNBIT64 ((uint64_t)1 << 63) static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el) { CPUState *cs = env_cpu(env); if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) { /* * Redirect NS EL1 exceptions to NS EL2. These are reported with * their original syndrome register value, with the exception of * SIMD/FP access traps, which are reported as uncategorized * (see DDI0478C.a D1.10.4) */ target_el = 2; if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) { syndrome = syn_uncategorized(); } } assert(!excp_is_internal(excp)); cs->exception_index = excp; env->exception.syndrome = syndrome; env->exception.target_el = target_el; return cs; } void raise_exception(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el) { CPUState *cs = do_raise_exception(env, excp, syndrome, target_el); cpu_loop_exit(cs); } void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el, uintptr_t ra) { CPUState *cs = do_raise_exception(env, excp, syndrome, target_el); cpu_loop_exit_restore(cs, ra); } uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn, uint32_t maxindex) { uint32_t val, shift; uint64_t *table = vn; val = 0; for (shift = 0; shift < 32; shift += 8) { uint32_t index = (ireg >> shift) & 0xff; if (index < maxindex) { uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; val |= tmp << shift; } else { val |= def & (0xff << shift); } } return val; } void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue) { /* * Perform the v8M stack limit check for SP updates from translated code, * raising an exception if the limit is breached. */ if (newvalue < v7m_sp_limit(env)) { CPUState *cs = env_cpu(env); /* * Stack limit exceptions are a rare case, so rather than syncing * PC/condbits before the call, we use cpu_restore_state() to * get them right before raising the exception. */ cpu_restore_state(cs, GETPC(), true); raise_exception(env, EXCP_STKOF, 0, 1); } } uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a + b; if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) env->QF = 1; return res; } uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a + b; if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { env->QF = 1; res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a - b; if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { env->QF = 1; res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a + b; if (res < a) { env->QF = 1; res = ~0; } return res; } uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) { uint32_t res = a - b; if (res > a) { env->QF = 1; res = 0; } return res; } /* Signed saturation. */ static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) { int32_t top; uint32_t mask; top = val >> shift; mask = (1u << shift) - 1; if (top > 0) { env->QF = 1; return mask; } else if (top < -1) { env->QF = 1; return ~mask; } return val; } /* Unsigned saturation. */ static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) { uint32_t max; max = (1u << shift) - 1; if (val < 0) { env->QF = 1; return 0; } else if (val > max) { env->QF = 1; return max; } return val; } /* Signed saturate. */ uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) { return do_ssat(env, x, shift); } /* Dual halfword signed saturate. */ uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) { uint32_t res; res = (uint16_t)do_ssat(env, (int16_t)x, shift); res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; return res; } /* Unsigned saturate. */ uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) { return do_usat(env, x, shift); } /* Dual halfword unsigned saturate. */ uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) { uint32_t res; res = (uint16_t)do_usat(env, (int16_t)x, shift); res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; return res; } void HELPER(setend)(CPUARMState *env) { env->uncached_cpsr ^= CPSR_E; } /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. * The function returns the target EL (1-3) if the instruction is to be trapped; * otherwise it returns 0 indicating it is not trapped. */ static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) { int cur_el = arm_current_el(env); uint64_t mask; if (arm_feature(env, ARM_FEATURE_M)) { /* M profile cores can never trap WFI/WFE. */ return 0; } /* If we are currently in EL0 then we need to check if SCTLR is set up for * WFx instructions being trapped to EL1. These trap bits don't exist in v7. */ if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { int target_el; mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { /* Secure EL0 and Secure PL1 is at EL3 */ target_el = 3; } else { target_el = 1; } if (!(env->cp15.sctlr_el[target_el] & mask)) { return target_el; } } /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the * bits will be zero indicating no trap. */ if (cur_el < 2) { mask = is_wfe ? HCR_TWE : HCR_TWI; if (arm_hcr_el2_eff(env) & mask) { return 2; } } /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ if (cur_el < 3) { mask = (is_wfe) ? SCR_TWE : SCR_TWI; if (env->cp15.scr_el3 & mask) { return 3; } } return 0; } void HELPER(wfi)(CPUARMState *env, uint32_t insn_len) { CPUState *cs = env_cpu(env); int target_el = check_wfx_trap(env, false); if (cpu_has_work(cs)) { /* Don't bother to go into our "low power state" if * we would just wake up immediately. */ return; } if (target_el) { env->pc -= insn_len; raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2), target_el); } cs->exception_index = EXCP_HLT; cs->halted = 1; cpu_loop_exit(cs); } void HELPER(wfe)(CPUARMState *env) { /* This is a hint instruction that is semantically different * from YIELD even though we currently implement it identically. * Don't actually halt the CPU, just yield back to top * level loop. This is not going into a "low power state" * (ie halting until some event occurs), so we never take * a configurable trap to a different exception level. */ HELPER(yield)(env); } void HELPER(yield)(CPUARMState *env) { CPUState *cs = env_cpu(env); /* This is a non-trappable hint instruction that generally indicates * that the guest is currently busy-looping. Yield control back to the * top level loop so that a more deserving VCPU has a chance to run. */ cs->exception_index = EXCP_YIELD; cpu_loop_exit(cs); } /* Raise an internal-to-QEMU exception. This is limited to only * those EXCP values which are special cases for QEMU to interrupt * execution and not to be used for exceptions which are passed to * the guest (those must all have syndrome information and thus should * use exception_with_syndrome). */ void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) { CPUState *cs = env_cpu(env); assert(excp_is_internal(excp)); cs->exception_index = excp; cpu_loop_exit(cs); } /* Raise an exception with the specified syndrome register value */ void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, uint32_t syndrome, uint32_t target_el) { raise_exception(env, excp, syndrome, target_el); } /* Raise an EXCP_BKPT with the specified syndrome register value, * targeting the correct exception level for debug exceptions. */ void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome) { int debug_el = arm_debug_target_el(env); int cur_el = arm_current_el(env); /* FSR will only be used if the debug target EL is AArch32. */ env->exception.fsr = arm_debug_exception_fsr(env); /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing * values to the guest that it shouldn't be able to see at its * exception/security level. */ env->exception.vaddress = 0; /* * Other kinds of architectural debug exception are ignored if * they target an exception level below the current one (in QEMU * this is checked by arm_generate_debug_exceptions()). Breakpoint * instructions are special because they always generate an exception * to somewhere: if they can't go to the configured debug exception * level they are taken to the current exception level. */ if (debug_el < cur_el) { debug_el = cur_el; } raise_exception(env, EXCP_BKPT, syndrome, debug_el); } uint32_t HELPER(cpsr_read)(CPUARMState *env) { return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED); } void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) { cpsr_write(env, val, mask, CPSRWriteByInstr); } /* Write the CPSR for a 32-bit exception return */ void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val) { qemu_mutex_lock_iothread(); arm_call_pre_el_change_hook(env_archcpu(env)); qemu_mutex_unlock_iothread(); cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn); /* Generated code has already stored the new PC value, but * without masking out its low bits, because which bits need * masking depends on whether we're returning to Thumb or ARM * state. Do the masking now. */ env->regs[15] &= (env->thumb ? ~1 : ~3); qemu_mutex_lock_iothread(); arm_call_el_change_hook(env_archcpu(env)); qemu_mutex_unlock_iothread(); } /* Access to user mode registers from privileged modes. */ uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) { uint32_t val; if (regno == 13) { val = env->banked_r13[BANK_USRSYS]; } else if (regno == 14) { val = env->banked_r14[BANK_USRSYS]; } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { val = env->usr_regs[regno - 8]; } else { val = env->regs[regno]; } return val; } void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) { if (regno == 13) { env->banked_r13[BANK_USRSYS] = val; } else if (regno == 14) { env->banked_r14[BANK_USRSYS] = val; } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { env->usr_regs[regno - 8] = val; } else { env->regs[regno] = val; } } void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) { if ((env->uncached_cpsr & CPSR_M) == mode) { env->regs[13] = val; } else { env->banked_r13[bank_number(mode)] = val; } } uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) { if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) { /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF. * Other UNPREDICTABLE and UNDEF cases were caught at translate time. */ raise_exception(env, EXCP_UDEF, syn_uncategorized(), exception_target_el(env)); } if ((env->uncached_cpsr & CPSR_M) == mode) { return env->regs[13]; } else { return env->banked_r13[bank_number(mode)]; } } static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode, uint32_t regno) { /* Raise an exception if the requested access is one of the UNPREDICTABLE * cases; otherwise return. This broadly corresponds to the pseudocode * BankedRegisterAccessValid() and SPSRAccessValid(), * except that we have already handled some cases at translate time. */ int curmode = env->uncached_cpsr & CPSR_M; if (regno == 17) { /* ELR_Hyp: a special case because access from tgtmode is OK */ if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) { goto undef; } return; } if (curmode == tgtmode) { goto undef; } if (tgtmode == ARM_CPU_MODE_USR) { switch (regno) { case 8 ... 12: if (curmode != ARM_CPU_MODE_FIQ) { goto undef; } break; case 13: if (curmode == ARM_CPU_MODE_SYS) { goto undef; } break; case 14: if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) { goto undef; } break; default: break; } } if (tgtmode == ARM_CPU_MODE_HYP) { /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */ if (curmode != ARM_CPU_MODE_MON) { goto undef; } } return; undef: raise_exception(env, EXCP_UDEF, syn_uncategorized(), exception_target_el(env)); } void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode, uint32_t regno) { msr_mrs_banked_exc_checks(env, tgtmode, regno); switch (regno) { case 16: /* SPSRs */ env->banked_spsr[bank_number(tgtmode)] = value; break; case 17: /* ELR_Hyp */ env->elr_el[2] = value; break; case 13: env->banked_r13[bank_number(tgtmode)] = value; break; case 14: env->banked_r14[r14_bank_number(tgtmode)] = value; break; case 8 ... 12: switch (tgtmode) { case ARM_CPU_MODE_USR: env->usr_regs[regno - 8] = value; break; case ARM_CPU_MODE_FIQ: env->fiq_regs[regno - 8] = value; break; default: g_assert_not_reached(); } break; default: g_assert_not_reached(); } } uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno) { msr_mrs_banked_exc_checks(env, tgtmode, regno); switch (regno) { case 16: /* SPSRs */ return env->banked_spsr[bank_number(tgtmode)]; case 17: /* ELR_Hyp */ return env->elr_el[2]; case 13: return env->banked_r13[bank_number(tgtmode)]; case 14: return env->banked_r14[r14_bank_number(tgtmode)]; case 8 ... 12: switch (tgtmode) { case ARM_CPU_MODE_USR: return env->usr_regs[regno - 8]; case ARM_CPU_MODE_FIQ: return env->fiq_regs[regno - 8]; default: g_assert_not_reached(); } default: g_assert_not_reached(); } } void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome, uint32_t isread) { const ARMCPRegInfo *ri = rip; int target_el; if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); } if (!ri->accessfn) { return; } switch (ri->accessfn(env, ri, isread)) { case CP_ACCESS_OK: return; case CP_ACCESS_TRAP: target_el = exception_target_el(env); break; case CP_ACCESS_TRAP_EL2: /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is * a bug in the access function. */ assert(!arm_is_secure(env) && arm_current_el(env) != 3); target_el = 2; break; case CP_ACCESS_TRAP_EL3: target_el = 3; break; case CP_ACCESS_TRAP_UNCATEGORIZED: target_el = exception_target_el(env); syndrome = syn_uncategorized(); break; case CP_ACCESS_TRAP_UNCATEGORIZED_EL2: target_el = 2; syndrome = syn_uncategorized(); break; case CP_ACCESS_TRAP_UNCATEGORIZED_EL3: target_el = 3; syndrome = syn_uncategorized(); break; case CP_ACCESS_TRAP_FP_EL2: target_el = 2; /* Since we are an implementation that takes exceptions on a trapped * conditional insn only if the insn has passed its condition code * check, we take the IMPDEF choice to always report CV=1 COND=0xe * (which is also the required value for AArch64 traps). */ syndrome = syn_fp_access_trap(1, 0xe, false); break; case CP_ACCESS_TRAP_FP_EL3: target_el = 3; syndrome = syn_fp_access_trap(1, 0xe, false); break; default: g_assert_not_reached(); } raise_exception(env, EXCP_UDEF, syndrome, target_el); } void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value) { const ARMCPRegInfo *ri = rip; if (ri->type & ARM_CP_IO) { qemu_mutex_lock_iothread(); ri->writefn(env, ri, value); qemu_mutex_unlock_iothread(); } else { ri->writefn(env, ri, value); } } uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip) { const ARMCPRegInfo *ri = rip; uint32_t res; if (ri->type & ARM_CP_IO) { qemu_mutex_lock_iothread(); res = ri->readfn(env, ri); qemu_mutex_unlock_iothread(); } else { res = ri->readfn(env, ri); } return res; } void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value) { const ARMCPRegInfo *ri = rip; if (ri->type & ARM_CP_IO) { qemu_mutex_lock_iothread(); ri->writefn(env, ri, value); qemu_mutex_unlock_iothread(); } else { ri->writefn(env, ri, value); } } uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip) { const ARMCPRegInfo *ri = rip; uint64_t res; if (ri->type & ARM_CP_IO) { qemu_mutex_lock_iothread(); res = ri->readfn(env, ri); qemu_mutex_unlock_iothread(); } else { res = ri->readfn(env, ri); } return res; } void HELPER(pre_hvc)(CPUARMState *env) { ARMCPU *cpu = env_archcpu(env); int cur_el = arm_current_el(env); /* FIXME: Use actual secure state. */ bool secure = false; bool undef; if (arm_is_psci_call(cpu, EXCP_HVC)) { /* If PSCI is enabled and this looks like a valid PSCI call then * that overrides the architecturally mandated HVC behaviour. */ return; } if (!arm_feature(env, ARM_FEATURE_EL2)) { /* If EL2 doesn't exist, HVC always UNDEFs */ undef = true; } else if (arm_feature(env, ARM_FEATURE_EL3)) { /* EL3.HCE has priority over EL2.HCD. */ undef = !(env->cp15.scr_el3 & SCR_HCE); } else { undef = env->cp15.hcr_el2 & HCR_HCD; } /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. * For ARMv8/AArch64, HVC is allowed in EL3. * Note that we've already trapped HVC from EL0 at translation * time. */ if (secure && (!is_a64(env) || cur_el == 1)) { undef = true; } if (undef) { raise_exception(env, EXCP_UDEF, syn_uncategorized(), exception_target_el(env)); } } void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) { ARMCPU *cpu = env_archcpu(env); int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); bool smd_flag = env->cp15.scr_el3 & SCR_SMD; /* * SMC behaviour is summarized in the following table. * This helper handles the "Trap to EL2" and "Undef insn" cases. * The "Trap to EL3" and "PSCI call" cases are handled in the exception * helper. * * -> ARM_FEATURE_EL3 and !SMD * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 * * Conduit SMC, valid call Trap to EL2 PSCI Call * Conduit SMC, inval call Trap to EL2 Trap to EL3 * Conduit not SMC Trap to EL2 Trap to EL3 * * * -> ARM_FEATURE_EL3 and SMD * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 * * Conduit SMC, valid call Trap to EL2 PSCI Call * Conduit SMC, inval call Trap to EL2 Undef insn * Conduit not SMC Trap to EL2 Undef insn * * * -> !ARM_FEATURE_EL3 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 * * Conduit SMC, valid call Trap to EL2 PSCI Call * Conduit SMC, inval call Trap to EL2 Undef insn * Conduit not SMC Undef insn Undef insn */ /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state. * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization * extensions, SMD only applies to NS state. * On ARMv7 without the Virtualization extensions, the SMD bit * doesn't exist, but we forbid the guest to set it to 1 in scr_write(), * so we need not special case this here. */ bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag : smd_flag && !secure; if (!arm_feature(env, ARM_FEATURE_EL3) && cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { /* If we have no EL3 then SMC always UNDEFs and can't be * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3 * firmware within QEMU, and we want an EL2 guest to be able * to forbid its EL1 from making PSCI calls into QEMU's * "firmware" via HCR.TSC, so for these purposes treat * PSCI-via-SMC as implying an EL3. * This handles the very last line of the previous table. */ raise_exception(env, EXCP_UDEF, syn_uncategorized(), exception_target_el(env)); } if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) { /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. * We also want an EL2 guest to be able to forbid its EL1 from * making PSCI calls into QEMU's "firmware" via HCR.TSC. * This handles all the "Trap to EL2" cases of the previous table. */ raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); } /* Catch the two remaining "Undef insn" cases of the previous table: * - PSCI conduit is SMC but we don't have a valid PCSI call, * - We don't have EL3 or SMD is set. */ if (!arm_is_psci_call(cpu, EXCP_SMC) && (smd || !arm_feature(env, ARM_FEATURE_EL3))) { raise_exception(env, EXCP_UDEF, syn_uncategorized(), exception_target_el(env)); } } /* ??? Flag setting arithmetic is awkward because we need to do comparisons. The only way to do that in TCG is a conditional branch, which clobbers all our temporaries. For now implement these as helper functions. */ /* Similarly for variable shift instructions. */ uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) { if (shift == 32) env->CF = x & 1; else env->CF = 0; return 0; } else if (shift != 0) { env->CF = (x >> (32 - shift)) & 1; return x << shift; } return x; } uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) { if (shift == 32) env->CF = (x >> 31) & 1; else env->CF = 0; return 0; } else if (shift != 0) { env->CF = (x >> (shift - 1)) & 1; return x >> shift; } return x; } uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) { env->CF = (x >> 31) & 1; return (int32_t)x >> 31; } else if (shift != 0) { env->CF = (x >> (shift - 1)) & 1; return (int32_t)x >> shift; } return x; } uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) { int shift1, shift; shift1 = i & 0xff; shift = shift1 & 0x1f; if (shift == 0) { if (shift1 != 0) env->CF = (x >> 31) & 1; return x; } else { env->CF = (x >> (shift - 1)) & 1; return ((uint32_t)x >> shift) | (x << (32 - shift)); } } void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) { /* * Implement DC ZVA, which zeroes a fixed-length block of memory. * Note that we do not implement the (architecturally mandated) * alignment fault for attempts to use this on Device memory * (which matches the usual QEMU behaviour of not implementing either * alignment faults or any memory attribute handling). */ ARMCPU *cpu = env_archcpu(env); uint64_t blocklen = 4 << cpu->dcz_blocksize; uint64_t vaddr = vaddr_in & ~(blocklen - 1); #ifndef CONFIG_USER_ONLY { /* * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than * the block size so we might have to do more than one TLB lookup. * We know that in fact for any v8 CPU the page size is at least 4K * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only * 1K as an artefact of legacy v5 subpage support being present in the * same QEMU executable. So in practice the hostaddr[] array has * two entries, given the current setting of TARGET_PAGE_BITS_MIN. */ int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)]; int try, i; unsigned mmu_idx = cpu_mmu_index(env, false); TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); assert(maxidx <= ARRAY_SIZE(hostaddr)); for (try = 0; try < 2; try++) { for (i = 0; i < maxidx; i++) { hostaddr[i] = tlb_vaddr_to_host(env, vaddr + TARGET_PAGE_SIZE * i, 1, mmu_idx); if (!hostaddr[i]) { break; } } if (i == maxidx) { /* * If it's all in the TLB it's fair game for just writing to; * we know we don't need to update dirty status, etc. */ for (i = 0; i < maxidx - 1; i++) { memset(hostaddr[i], 0, TARGET_PAGE_SIZE); } memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); return; } /* * OK, try a store and see if we can populate the tlb. This * might cause an exception if the memory isn't writable, * in which case we will longjmp out of here. We must for * this purpose use the actual register value passed to us * so that we get the fault address right. */ helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); /* Now we can populate the other TLB entries, if any */ for (i = 0; i < maxidx; i++) { uint64_t va = vaddr + TARGET_PAGE_SIZE * i; if (va != (vaddr_in & TARGET_PAGE_MASK)) { helper_ret_stb_mmu(env, va, 0, oi, GETPC()); } } } /* * Slow path (probably attempt to do this to an I/O device or * similar, or clearing of a block of code we have translations * cached for). Just do a series of byte writes as the architecture * demands. It's not worth trying to use a cpu_physical_memory_map(), * memset(), unmap() sequence here because: * + we'd need to account for the blocksize being larger than a page * + the direct-RAM access case is almost always going to be dealt * with in the fastpath code above, so there's no speed benefit * + we would have to deal with the map returning NULL because the * bounce buffer was in use */ for (i = 0; i < blocklen; i++) { helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); } } #else memset(g2h(vaddr), 0, blocklen); #endif }