/* * Copyright (C) 2016 Veertu Inc, * Copyright (C) 2017 Google Inc, * Based on Veertu vddh/vmm/vmx.h * * Interfaces to Hypervisor.framework to read/write X86 registers and VMCS. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ #ifndef VMX_H #define VMX_H #include #include #include #include "vmcs.h" #include "cpu.h" #include "x86.h" #include "exec/address-spaces.h" static inline uint64_t rreg(hv_vcpuid_t vcpu, hv_x86_reg_t reg) { uint64_t v; if (hv_vcpu_read_register(vcpu, reg, &v)) { abort(); } return v; } /* write GPR */ static inline void wreg(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t v) { if (hv_vcpu_write_register(vcpu, reg, v)) { abort(); } } /* read VMCS field */ static inline uint64_t rvmcs(hv_vcpuid_t vcpu, uint32_t field) { uint64_t v; hv_vmx_vcpu_read_vmcs(vcpu, field, &v); return v; } /* write VMCS field */ static inline void wvmcs(hv_vcpuid_t vcpu, uint32_t field, uint64_t v) { hv_vmx_vcpu_write_vmcs(vcpu, field, v); } /* desired control word constrained by hardware/hypervisor capabilities */ static inline uint64_t cap2ctrl(uint64_t cap, uint64_t ctrl) { return (ctrl | (cap & 0xffffffff)) & (cap >> 32); } #define VM_ENTRY_GUEST_LMA (1LL << 9) #define AR_TYPE_ACCESSES_MASK 1 #define AR_TYPE_READABLE_MASK (1 << 1) #define AR_TYPE_WRITEABLE_MASK (1 << 2) #define AR_TYPE_CODE_MASK (1 << 3) #define AR_TYPE_MASK 0x0f #define AR_TYPE_BUSY_64_TSS 11 #define AR_TYPE_BUSY_32_TSS 11 #define AR_TYPE_BUSY_16_TSS 3 #define AR_TYPE_LDT 2 static void enter_long_mode(hv_vcpuid_t vcpu, uint64_t cr0, uint64_t efer) { uint64_t entry_ctls; efer |= MSR_EFER_LMA; wvmcs(vcpu, VMCS_GUEST_IA32_EFER, efer); entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS); wvmcs(vcpu, VMCS_ENTRY_CTLS, rvmcs(vcpu, VMCS_ENTRY_CTLS) | VM_ENTRY_GUEST_LMA); uint64_t guest_tr_ar = rvmcs(vcpu, VMCS_GUEST_TR_ACCESS_RIGHTS); if ((efer & MSR_EFER_LME) && (guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { wvmcs(vcpu, VMCS_GUEST_TR_ACCESS_RIGHTS, (guest_tr_ar & ~AR_TYPE_MASK) | AR_TYPE_BUSY_64_TSS); } } static void exit_long_mode(hv_vcpuid_t vcpu, uint64_t cr0, uint64_t efer) { uint64_t entry_ctls; entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS); wvmcs(vcpu, VMCS_ENTRY_CTLS, entry_ctls & ~VM_ENTRY_GUEST_LMA); efer &= ~MSR_EFER_LMA; wvmcs(vcpu, VMCS_GUEST_IA32_EFER, efer); } static inline void macvm_set_cr0(hv_vcpuid_t vcpu, uint64_t cr0) { int i; uint64_t pdpte[4] = {0, 0, 0, 0}; uint64_t efer = rvmcs(vcpu, VMCS_GUEST_IA32_EFER); uint64_t old_cr0 = rvmcs(vcpu, VMCS_GUEST_CR0); if ((cr0 & CR0_PG) && (rvmcs(vcpu, VMCS_GUEST_CR4) & CR4_PAE) && !(efer & MSR_EFER_LME)) { address_space_rw(&address_space_memory, rvmcs(vcpu, VMCS_GUEST_CR3) & ~0x1f, MEMTXATTRS_UNSPECIFIED, (uint8_t *)pdpte, 32, 0); } for (i = 0; i < 4; i++) { wvmcs(vcpu, VMCS_GUEST_PDPTE0 + i * 2, pdpte[i]); } wvmcs(vcpu, VMCS_CR0_MASK, CR0_CD | CR0_NE | CR0_PG); wvmcs(vcpu, VMCS_CR0_SHADOW, cr0); cr0 &= ~CR0_CD; wvmcs(vcpu, VMCS_GUEST_CR0, cr0 | CR0_NE | CR0_ET); if (efer & MSR_EFER_LME) { if (!(old_cr0 & CR0_PG) && (cr0 & CR0_PG)) { enter_long_mode(vcpu, cr0, efer); } if (/*(old_cr0 & CR0_PG) &&*/ !(cr0 & CR0_PG)) { exit_long_mode(vcpu, cr0, efer); } } hv_vcpu_invalidate_tlb(vcpu); hv_vcpu_flush(vcpu); } static inline void macvm_set_cr4(hv_vcpuid_t vcpu, uint64_t cr4) { uint64_t guest_cr4 = cr4 | CR4_VMXE; wvmcs(vcpu, VMCS_GUEST_CR4, guest_cr4); wvmcs(vcpu, VMCS_CR4_SHADOW, cr4); hv_vcpu_invalidate_tlb(vcpu); hv_vcpu_flush(vcpu); } static inline void macvm_set_rip(CPUState *cpu, uint64_t rip) { uint64_t val; /* BUG, should take considering overlap.. */ wreg(cpu->hvf_fd, HV_X86_RIP, rip); /* after moving forward in rip, we need to clean INTERRUPTABILITY */ val = rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY); if (val & (VMCS_INTERRUPTIBILITY_STI_BLOCKING | VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) { wvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY, val & ~(VMCS_INTERRUPTIBILITY_STI_BLOCKING | VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)); } } static inline void vmx_clear_nmi_blocking(CPUState *cpu) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; env->hflags2 &= ~HF2_NMI_MASK; uint32_t gi = (uint32_t) rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY); gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; wvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY, gi); } static inline void vmx_set_nmi_blocking(CPUState *cpu) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; env->hflags2 |= HF2_NMI_MASK; uint32_t gi = (uint32_t)rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY); gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; wvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY, gi); } static inline void vmx_set_nmi_window_exiting(CPUState *cpu) { uint64_t val; val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS); wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val | VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING); } static inline void vmx_clear_nmi_window_exiting(CPUState *cpu) { uint64_t val; val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS); wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val & ~VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING); } #endif