/* * Copyright (C) 2016 Veertu Inc, * Copyright (C) 2017 Google Inc, * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, see . */ ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 2001-2012 The Bochs Project // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA ///////////////////////////////////////////////////////////////////////// #include "qemu/osdep.h" #include "qemu-common.h" #include "x86_decode.h" #include "x86.h" #include "x86_emu.h" #include "x86_mmu.h" #include "x86_flags.h" #include "vmcs.h" #include "vmx.h" void hvf_handle_io(struct CPUState *cpu, uint16_t port, void *data, int direction, int size, uint32_t count); #define EXEC_2OP_LOGIC_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \ { \ fetch_operands(env, decode, 2, true, true, false); \ switch (decode->operand_size) { \ case 1: \ { \ uint8_t v1 = (uint8_t)decode->op[0].val; \ uint8_t v2 = (uint8_t)decode->op[1].val; \ uint8_t diff = v1 cmd v2; \ if (save_res) { \ write_val_ext(env, decode->op[0].ptr, diff, 1); \ } \ FLAGS_FUNC##_8(diff); \ break; \ } \ case 2: \ { \ uint16_t v1 = (uint16_t)decode->op[0].val; \ uint16_t v2 = (uint16_t)decode->op[1].val; \ uint16_t diff = v1 cmd v2; \ if (save_res) { \ write_val_ext(env, decode->op[0].ptr, diff, 2); \ } \ FLAGS_FUNC##_16(diff); \ break; \ } \ case 4: \ { \ uint32_t v1 = (uint32_t)decode->op[0].val; \ uint32_t v2 = (uint32_t)decode->op[1].val; \ uint32_t diff = v1 cmd v2; \ if (save_res) { \ write_val_ext(env, decode->op[0].ptr, diff, 4); \ } \ FLAGS_FUNC##_32(diff); \ break; \ } \ default: \ VM_PANIC("bad size\n"); \ } \ } \ #define EXEC_2OP_ARITH_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \ { \ fetch_operands(env, decode, 2, true, true, false); \ switch (decode->operand_size) { \ case 1: \ { \ uint8_t v1 = (uint8_t)decode->op[0].val; \ uint8_t v2 = (uint8_t)decode->op[1].val; \ uint8_t diff = v1 cmd v2; \ if (save_res) { \ write_val_ext(env, decode->op[0].ptr, diff, 1); \ } \ FLAGS_FUNC##_8(v1, v2, diff); \ break; \ } \ case 2: \ { \ uint16_t v1 = (uint16_t)decode->op[0].val; \ uint16_t v2 = (uint16_t)decode->op[1].val; \ uint16_t diff = v1 cmd v2; \ if (save_res) { \ write_val_ext(env, decode->op[0].ptr, diff, 2); \ } \ FLAGS_FUNC##_16(v1, v2, diff); \ break; \ } \ case 4: \ { \ uint32_t v1 = (uint32_t)decode->op[0].val; \ uint32_t v2 = (uint32_t)decode->op[1].val; \ uint32_t diff = v1 cmd v2; \ if (save_res) { \ write_val_ext(env, decode->op[0].ptr, diff, 4); \ } \ FLAGS_FUNC##_32(v1, v2, diff); \ break; \ } \ default: \ VM_PANIC("bad size\n"); \ } \ } addr_t read_reg(CPUX86State *env, int reg, int size) { switch (size) { case 1: return env->hvf_emul->regs[reg].lx; case 2: return env->hvf_emul->regs[reg].rx; case 4: return env->hvf_emul->regs[reg].erx; case 8: return env->hvf_emul->regs[reg].rrx; default: VM_PANIC_ON("read_reg size"); } return 0; } void write_reg(CPUX86State *env, int reg, addr_t val, int size) { switch (size) { case 1: env->hvf_emul->regs[reg].lx = val; break; case 2: env->hvf_emul->regs[reg].rx = val; break; case 4: env->hvf_emul->regs[reg].rrx = (uint32_t)val; break; case 8: env->hvf_emul->regs[reg].rrx = val; break; default: VM_PANIC_ON("write_reg size"); } } addr_t read_val_from_reg(addr_t reg_ptr, int size) { addr_t val; switch (size) { case 1: val = *(uint8_t *)reg_ptr; break; case 2: val = *(uint16_t *)reg_ptr; break; case 4: val = *(uint32_t *)reg_ptr; break; case 8: val = *(uint64_t *)reg_ptr; break; default: VM_PANIC_ON_EX(1, "read_val: Unknown size %d\n", size); break; } return val; } void write_val_to_reg(addr_t reg_ptr, addr_t val, int size) { switch (size) { case 1: *(uint8_t *)reg_ptr = val; break; case 2: *(uint16_t *)reg_ptr = val; break; case 4: *(uint64_t *)reg_ptr = (uint32_t)val; break; case 8: *(uint64_t *)reg_ptr = val; break; default: VM_PANIC("write_val: Unknown size\n"); break; } } static bool is_host_reg(struct CPUX86State *env, addr_t ptr) { return (ptr - (addr_t)&env->hvf_emul->regs[0]) < sizeof(env->hvf_emul->regs); } void write_val_ext(struct CPUX86State *env, addr_t ptr, addr_t val, int size) { if (is_host_reg(env, ptr)) { write_val_to_reg(ptr, val, size); return; } vmx_write_mem(ENV_GET_CPU(env), ptr, &val, size); } uint8_t *read_mmio(struct CPUX86State *env, addr_t ptr, int bytes) { vmx_read_mem(ENV_GET_CPU(env), env->hvf_emul->mmio_buf, ptr, bytes); return env->hvf_emul->mmio_buf; } addr_t read_val_ext(struct CPUX86State *env, addr_t ptr, int size) { addr_t val; uint8_t *mmio_ptr; if (is_host_reg(env, ptr)) { return read_val_from_reg(ptr, size); } mmio_ptr = read_mmio(env, ptr, size); switch (size) { case 1: val = *(uint8_t *)mmio_ptr; break; case 2: val = *(uint16_t *)mmio_ptr; break; case 4: val = *(uint32_t *)mmio_ptr; break; case 8: val = *(uint64_t *)mmio_ptr; break; default: VM_PANIC("bad size\n"); break; } return val; } static void fetch_operands(struct CPUX86State *env, struct x86_decode *decode, int n, bool val_op0, bool val_op1, bool val_op2) { int i; bool calc_val[3] = {val_op0, val_op1, val_op2}; for (i = 0; i < n; i++) { switch (decode->op[i].type) { case X86_VAR_IMMEDIATE: break; case X86_VAR_REG: VM_PANIC_ON(!decode->op[i].ptr); if (calc_val[i]) { decode->op[i].val = read_val_from_reg(decode->op[i].ptr, decode->operand_size); } break; case X86_VAR_RM: calc_modrm_operand(env, decode, &decode->op[i]); if (calc_val[i]) { decode->op[i].val = read_val_ext(env, decode->op[i].ptr, decode->operand_size); } break; case X86_VAR_OFFSET: decode->op[i].ptr = decode_linear_addr(env, decode, decode->op[i].ptr, REG_SEG_DS); if (calc_val[i]) { decode->op[i].val = read_val_ext(env, decode->op[i].ptr, decode->operand_size); } break; default: break; } } } static void exec_mov(struct CPUX86State *env, struct x86_decode *decode) { fetch_operands(env, decode, 2, false, true, false); write_val_ext(env, decode->op[0].ptr, decode->op[1].val, decode->operand_size); RIP(env) += decode->len; } static void exec_add(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_ARITH_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true); RIP(env) += decode->len; } static void exec_or(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_LOGIC_CMD(env, decode, |, SET_FLAGS_OSZAPC_LOGIC, true); RIP(env) += decode->len; } static void exec_adc(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_ARITH_CMD(env, decode, +get_CF(env)+, SET_FLAGS_OSZAPC_ADD, true); RIP(env) += decode->len; } static void exec_sbb(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_ARITH_CMD(env, decode, -get_CF(env)-, SET_FLAGS_OSZAPC_SUB, true); RIP(env) += decode->len; } static void exec_and(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_LOGIC_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, true); RIP(env) += decode->len; } static void exec_sub(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, true); RIP(env) += decode->len; } static void exec_xor(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_LOGIC_CMD(env, decode, ^, SET_FLAGS_OSZAPC_LOGIC, true); RIP(env) += decode->len; } static void exec_neg(struct CPUX86State *env, struct x86_decode *decode) { /*EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);*/ int32_t val; fetch_operands(env, decode, 2, true, true, false); val = 0 - sign(decode->op[1].val, decode->operand_size); write_val_ext(env, decode->op[1].ptr, val, decode->operand_size); if (4 == decode->operand_size) { SET_FLAGS_OSZAPC_SUB_32(0, 0 - val, val); } else if (2 == decode->operand_size) { SET_FLAGS_OSZAPC_SUB_16(0, 0 - val, val); } else if (1 == decode->operand_size) { SET_FLAGS_OSZAPC_SUB_8(0, 0 - val, val); } else { VM_PANIC("bad op size\n"); } /*lflags_to_rflags(env);*/ RIP(env) += decode->len; } static void exec_cmp(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false); RIP(env) += decode->len; } static void exec_inc(struct CPUX86State *env, struct x86_decode *decode) { decode->op[1].type = X86_VAR_IMMEDIATE; decode->op[1].val = 0; EXEC_2OP_ARITH_CMD(env, decode, +1+, SET_FLAGS_OSZAP_ADD, true); RIP(env) += decode->len; } static void exec_dec(struct CPUX86State *env, struct x86_decode *decode) { decode->op[1].type = X86_VAR_IMMEDIATE; decode->op[1].val = 0; EXEC_2OP_ARITH_CMD(env, decode, -1-, SET_FLAGS_OSZAP_SUB, true); RIP(env) += decode->len; } static void exec_tst(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_LOGIC_CMD(env, decode, &, SET_FLAGS_OSZAPC_LOGIC, false); RIP(env) += decode->len; } static void exec_not(struct CPUX86State *env, struct x86_decode *decode) { fetch_operands(env, decode, 1, true, false, false); write_val_ext(env, decode->op[0].ptr, ~decode->op[0].val, decode->operand_size); RIP(env) += decode->len; } void exec_movzx(struct CPUX86State *env, struct x86_decode *decode) { int src_op_size; int op_size = decode->operand_size; fetch_operands(env, decode, 1, false, false, false); if (0xb6 == decode->opcode[1]) { src_op_size = 1; } else { src_op_size = 2; } decode->operand_size = src_op_size; calc_modrm_operand(env, decode, &decode->op[1]); decode->op[1].val = read_val_ext(env, decode->op[1].ptr, src_op_size); write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size); RIP(env) += decode->len; } static void exec_out(struct CPUX86State *env, struct x86_decode *decode) { switch (decode->opcode[0]) { case 0xe6: hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &AL(env), 1, 1, 1); break; case 0xe7: hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &RAX(env), 1, decode->operand_size, 1); break; case 0xee: hvf_handle_io(ENV_GET_CPU(env), DX(env), &AL(env), 1, 1, 1); break; case 0xef: hvf_handle_io(ENV_GET_CPU(env), DX(env), &RAX(env), 1, decode->operand_size, 1); break; default: VM_PANIC("Bad out opcode\n"); break; } RIP(env) += decode->len; } static void exec_in(struct CPUX86State *env, struct x86_decode *decode) { addr_t val = 0; switch (decode->opcode[0]) { case 0xe4: hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &AL(env), 0, 1, 1); break; case 0xe5: hvf_handle_io(ENV_GET_CPU(env), decode->op[0].val, &val, 0, decode->operand_size, 1); if (decode->operand_size == 2) { AX(env) = val; } else { RAX(env) = (uint32_t)val; } break; case 0xec: hvf_handle_io(ENV_GET_CPU(env), DX(env), &AL(env), 0, 1, 1); break; case 0xed: hvf_handle_io(ENV_GET_CPU(env), DX(env), &val, 0, decode->operand_size, 1); if (decode->operand_size == 2) { AX(env) = val; } else { RAX(env) = (uint32_t)val; } break; default: VM_PANIC("Bad in opcode\n"); break; } RIP(env) += decode->len; } static inline void string_increment_reg(struct CPUX86State *env, int reg, struct x86_decode *decode) { addr_t val = read_reg(env, reg, decode->addressing_size); if (env->hvf_emul->rflags.df) { val -= decode->operand_size; } else { val += decode->operand_size; } write_reg(env, reg, val, decode->addressing_size); } static inline void string_rep(struct CPUX86State *env, struct x86_decode *decode, void (*func)(struct CPUX86State *env, struct x86_decode *ins), int rep) { addr_t rcx = read_reg(env, REG_RCX, decode->addressing_size); while (rcx--) { func(env, decode); write_reg(env, REG_RCX, rcx, decode->addressing_size); if ((PREFIX_REP == rep) && !get_ZF(env)) { break; } if ((PREFIX_REPN == rep) && get_ZF(env)) { break; } } } static void exec_ins_single(struct CPUX86State *env, struct x86_decode *decode) { addr_t addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, REG_SEG_ES); hvf_handle_io(ENV_GET_CPU(env), DX(env), env->hvf_emul->mmio_buf, 0, decode->operand_size, 1); vmx_write_mem(ENV_GET_CPU(env), addr, env->hvf_emul->mmio_buf, decode->operand_size); string_increment_reg(env, REG_RDI, decode); } static void exec_ins(struct CPUX86State *env, struct x86_decode *decode) { if (decode->rep) { string_rep(env, decode, exec_ins_single, 0); } else { exec_ins_single(env, decode); } RIP(env) += decode->len; } static void exec_outs_single(struct CPUX86State *env, struct x86_decode *decode) { addr_t addr = decode_linear_addr(env, decode, RSI(env), REG_SEG_DS); vmx_read_mem(ENV_GET_CPU(env), env->hvf_emul->mmio_buf, addr, decode->operand_size); hvf_handle_io(ENV_GET_CPU(env), DX(env), env->hvf_emul->mmio_buf, 1, decode->operand_size, 1); string_increment_reg(env, REG_RSI, decode); } static void exec_outs(struct CPUX86State *env, struct x86_decode *decode) { if (decode->rep) { string_rep(env, decode, exec_outs_single, 0); } else { exec_outs_single(env, decode); } RIP(env) += decode->len; } static void exec_movs_single(struct CPUX86State *env, struct x86_decode *decode) { addr_t src_addr; addr_t dst_addr; addr_t val; src_addr = decode_linear_addr(env, decode, RSI(env), REG_SEG_DS); dst_addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, REG_SEG_ES); val = read_val_ext(env, src_addr, decode->operand_size); write_val_ext(env, dst_addr, val, decode->operand_size); string_increment_reg(env, REG_RSI, decode); string_increment_reg(env, REG_RDI, decode); } static void exec_movs(struct CPUX86State *env, struct x86_decode *decode) { if (decode->rep) { string_rep(env, decode, exec_movs_single, 0); } else { exec_movs_single(env, decode); } RIP(env) += decode->len; } static void exec_cmps_single(struct CPUX86State *env, struct x86_decode *decode) { addr_t src_addr; addr_t dst_addr; src_addr = decode_linear_addr(env, decode, RSI(env), REG_SEG_DS); dst_addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, REG_SEG_ES); decode->op[0].type = X86_VAR_IMMEDIATE; decode->op[0].val = read_val_ext(env, src_addr, decode->operand_size); decode->op[1].type = X86_VAR_IMMEDIATE; decode->op[1].val = read_val_ext(env, dst_addr, decode->operand_size); EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false); string_increment_reg(env, REG_RSI, decode); string_increment_reg(env, REG_RDI, decode); } static void exec_cmps(struct CPUX86State *env, struct x86_decode *decode) { if (decode->rep) { string_rep(env, decode, exec_cmps_single, decode->rep); } else { exec_cmps_single(env, decode); } RIP(env) += decode->len; } static void exec_stos_single(struct CPUX86State *env, struct x86_decode *decode) { addr_t addr; addr_t val; addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, REG_SEG_ES); val = read_reg(env, REG_RAX, decode->operand_size); vmx_write_mem(ENV_GET_CPU(env), addr, &val, decode->operand_size); string_increment_reg(env, REG_RDI, decode); } static void exec_stos(struct CPUX86State *env, struct x86_decode *decode) { if (decode->rep) { string_rep(env, decode, exec_stos_single, 0); } else { exec_stos_single(env, decode); } RIP(env) += decode->len; } static void exec_scas_single(struct CPUX86State *env, struct x86_decode *decode) { addr_t addr; addr = linear_addr_size(ENV_GET_CPU(env), RDI(env), decode->addressing_size, REG_SEG_ES); decode->op[1].type = X86_VAR_IMMEDIATE; vmx_read_mem(ENV_GET_CPU(env), &decode->op[1].val, addr, decode->operand_size); EXEC_2OP_ARITH_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false); string_increment_reg(env, REG_RDI, decode); } static void exec_scas(struct CPUX86State *env, struct x86_decode *decode) { decode->op[0].type = X86_VAR_REG; decode->op[0].reg = REG_RAX; if (decode->rep) { string_rep(env, decode, exec_scas_single, decode->rep); } else { exec_scas_single(env, decode); } RIP(env) += decode->len; } static void exec_lods_single(struct CPUX86State *env, struct x86_decode *decode) { addr_t addr; addr_t val = 0; addr = decode_linear_addr(env, decode, RSI(env), REG_SEG_DS); vmx_read_mem(ENV_GET_CPU(env), &val, addr, decode->operand_size); write_reg(env, REG_RAX, val, decode->operand_size); string_increment_reg(env, REG_RSI, decode); } static void exec_lods(struct CPUX86State *env, struct x86_decode *decode) { if (decode->rep) { string_rep(env, decode, exec_lods_single, 0); } else { exec_lods_single(env, decode); } RIP(env) += decode->len; } #define MSR_IA32_UCODE_REV 0x00000017 void simulate_rdmsr(struct CPUState *cpu) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; uint32_t msr = ECX(env); uint64_t val = 0; switch (msr) { case MSR_IA32_TSC: val = rdtscp() + rvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET); break; case MSR_IA32_APICBASE: val = cpu_get_apic_base(X86_CPU(cpu)->apic_state); break; case MSR_IA32_UCODE_REV: val = (0x100000000ULL << 32) | 0x100000000ULL; break; case MSR_EFER: val = rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER); break; case MSR_FSBASE: val = rvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE); break; case MSR_GSBASE: val = rvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE); break; case MSR_KERNELGSBASE: val = rvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE); break; case MSR_STAR: abort(); break; case MSR_LSTAR: abort(); break; case MSR_CSTAR: abort(); break; case MSR_IA32_MISC_ENABLE: val = env->msr_ia32_misc_enable; break; case MSR_MTRRphysBase(0): case MSR_MTRRphysBase(1): case MSR_MTRRphysBase(2): case MSR_MTRRphysBase(3): case MSR_MTRRphysBase(4): case MSR_MTRRphysBase(5): case MSR_MTRRphysBase(6): case MSR_MTRRphysBase(7): val = env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base; break; case MSR_MTRRphysMask(0): case MSR_MTRRphysMask(1): case MSR_MTRRphysMask(2): case MSR_MTRRphysMask(3): case MSR_MTRRphysMask(4): case MSR_MTRRphysMask(5): case MSR_MTRRphysMask(6): case MSR_MTRRphysMask(7): val = env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask; break; case MSR_MTRRfix64K_00000: val = env->mtrr_fixed[0]; break; case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1]; break; case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3]; break; case MSR_MTRRdefType: val = env->mtrr_deftype; break; default: /* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */ val = 0; break; } RAX(env) = (uint32_t)val; RDX(env) = (uint32_t)(val >> 32); } static void exec_rdmsr(struct CPUX86State *env, struct x86_decode *decode) { simulate_rdmsr(ENV_GET_CPU(env)); RIP(env) += decode->len; } void simulate_wrmsr(struct CPUState *cpu) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; uint32_t msr = ECX(env); uint64_t data = ((uint64_t)EDX(env) << 32) | EAX(env); switch (msr) { case MSR_IA32_TSC: /* if (!osx_is_sierra()) wvmcs(cpu->hvf_fd, VMCS_TSC_OFFSET, data - rdtscp()); hv_vm_sync_tsc(data);*/ break; case MSR_IA32_APICBASE: cpu_set_apic_base(X86_CPU(cpu)->apic_state, data); break; case MSR_FSBASE: wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, data); break; case MSR_GSBASE: wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, data); break; case MSR_KERNELGSBASE: wvmcs(cpu->hvf_fd, VMCS_HOST_FS_BASE, data); break; case MSR_STAR: abort(); break; case MSR_LSTAR: abort(); break; case MSR_CSTAR: abort(); break; case MSR_EFER: env->hvf_emul->efer.efer = data; /*printf("new efer %llx\n", EFER(cpu));*/ wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, data); if (data & EFER_NXE) { hv_vcpu_invalidate_tlb(cpu->hvf_fd); } break; case MSR_MTRRphysBase(0): case MSR_MTRRphysBase(1): case MSR_MTRRphysBase(2): case MSR_MTRRphysBase(3): case MSR_MTRRphysBase(4): case MSR_MTRRphysBase(5): case MSR_MTRRphysBase(6): case MSR_MTRRphysBase(7): env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base = data; break; case MSR_MTRRphysMask(0): case MSR_MTRRphysMask(1): case MSR_MTRRphysMask(2): case MSR_MTRRphysMask(3): case MSR_MTRRphysMask(4): case MSR_MTRRphysMask(5): case MSR_MTRRphysMask(6): case MSR_MTRRphysMask(7): env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask = data; break; case MSR_MTRRfix64K_00000: env->mtrr_fixed[ECX(env) - MSR_MTRRfix64K_00000] = data; break; case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1] = data; break; case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3] = data; break; case MSR_MTRRdefType: env->mtrr_deftype = data; break; default: break; } /* Related to support known hypervisor interface */ /* if (g_hypervisor_iface) g_hypervisor_iface->wrmsr_handler(cpu, msr, data); printf("write msr %llx\n", RCX(cpu));*/ } static void exec_wrmsr(struct CPUX86State *env, struct x86_decode *decode) { simulate_wrmsr(ENV_GET_CPU(env)); RIP(env) += decode->len; } /* * flag: * 0 - bt, 1 - btc, 2 - bts, 3 - btr */ static void do_bt(struct CPUX86State *env, struct x86_decode *decode, int flag) { int32_t displacement; uint8_t index; bool cf; int mask = (4 == decode->operand_size) ? 0x1f : 0xf; VM_PANIC_ON(decode->rex.rex); fetch_operands(env, decode, 2, false, true, false); index = decode->op[1].val & mask; if (decode->op[0].type != X86_VAR_REG) { if (4 == decode->operand_size) { displacement = ((int32_t) (decode->op[1].val & 0xffffffe0)) / 32; decode->op[0].ptr += 4 * displacement; } else if (2 == decode->operand_size) { displacement = ((int16_t) (decode->op[1].val & 0xfff0)) / 16; decode->op[0].ptr += 2 * displacement; } else { VM_PANIC("bt 64bit\n"); } } decode->op[0].val = read_val_ext(env, decode->op[0].ptr, decode->operand_size); cf = (decode->op[0].val >> index) & 0x01; switch (flag) { case 0: set_CF(env, cf); return; case 1: decode->op[0].val ^= (1u << index); break; case 2: decode->op[0].val |= (1u << index); break; case 3: decode->op[0].val &= ~(1u << index); break; } write_val_ext(env, decode->op[0].ptr, decode->op[0].val, decode->operand_size); set_CF(env, cf); } static void exec_bt(struct CPUX86State *env, struct x86_decode *decode) { do_bt(env, decode, 0); RIP(env) += decode->len; } static void exec_btc(struct CPUX86State *env, struct x86_decode *decode) { do_bt(env, decode, 1); RIP(env) += decode->len; } static void exec_btr(struct CPUX86State *env, struct x86_decode *decode) { do_bt(env, decode, 3); RIP(env) += decode->len; } static void exec_bts(struct CPUX86State *env, struct x86_decode *decode) { do_bt(env, decode, 2); RIP(env) += decode->len; } void exec_shl(struct CPUX86State *env, struct x86_decode *decode) { uint8_t count; int of = 0, cf = 0; fetch_operands(env, decode, 2, true, true, false); count = decode->op[1].val; count &= 0x1f; /* count is masked to 5 bits*/ if (!count) { goto exit; } switch (decode->operand_size) { case 1: { uint8_t res = 0; if (count <= 8) { res = (decode->op[0].val << count); cf = (decode->op[0].val >> (8 - count)) & 0x1; of = cf ^ (res >> 7); } write_val_ext(env, decode->op[0].ptr, res, 1); SET_FLAGS_OSZAPC_LOGIC_8(res); SET_FLAGS_OxxxxC(env, of, cf); break; } case 2: { uint16_t res = 0; /* from bochs */ if (count <= 16) { res = (decode->op[0].val << count); cf = (decode->op[0].val >> (16 - count)) & 0x1; of = cf ^ (res >> 15); /* of = cf ^ result15 */ } write_val_ext(env, decode->op[0].ptr, res, 2); SET_FLAGS_OSZAPC_LOGIC_16(res); SET_FLAGS_OxxxxC(env, of, cf); break; } case 4: { uint32_t res = decode->op[0].val << count; write_val_ext(env, decode->op[0].ptr, res, 4); SET_FLAGS_OSZAPC_LOGIC_32(res); cf = (decode->op[0].val >> (32 - count)) & 0x1; of = cf ^ (res >> 31); /* of = cf ^ result31 */ SET_FLAGS_OxxxxC(env, of, cf); break; } default: abort(); } exit: /* lflags_to_rflags(env); */ RIP(env) += decode->len; } void exec_movsx(CPUX86State *env, struct x86_decode *decode) { int src_op_size; int op_size = decode->operand_size; fetch_operands(env, decode, 2, false, false, false); if (0xbe == decode->opcode[1]) { src_op_size = 1; } else { src_op_size = 2; } decode->operand_size = src_op_size; calc_modrm_operand(env, decode, &decode->op[1]); decode->op[1].val = sign(read_val_ext(env, decode->op[1].ptr, src_op_size), src_op_size); write_val_ext(env, decode->op[0].ptr, decode->op[1].val, op_size); RIP(env) += decode->len; } void exec_ror(struct CPUX86State *env, struct x86_decode *decode) { uint8_t count; fetch_operands(env, decode, 2, true, true, false); count = decode->op[1].val; switch (decode->operand_size) { case 1: { uint32_t bit6, bit7; uint8_t res; if ((count & 0x07) == 0) { if (count & 0x18) { bit6 = ((uint8_t)decode->op[0].val >> 6) & 1; bit7 = ((uint8_t)decode->op[0].val >> 7) & 1; SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7); } } else { count &= 0x7; /* use only bottom 3 bits */ res = ((uint8_t)decode->op[0].val >> count) | ((uint8_t)decode->op[0].val << (8 - count)); write_val_ext(env, decode->op[0].ptr, res, 1); bit6 = (res >> 6) & 1; bit7 = (res >> 7) & 1; /* set eflags: ROR count affects the following flags: C, O */ SET_FLAGS_OxxxxC(env, bit6 ^ bit7, bit7); } break; } case 2: { uint32_t bit14, bit15; uint16_t res; if ((count & 0x0f) == 0) { if (count & 0x10) { bit14 = ((uint16_t)decode->op[0].val >> 14) & 1; bit15 = ((uint16_t)decode->op[0].val >> 15) & 1; /* of = result14 ^ result15 */ SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15); } } else { count &= 0x0f; /* use only 4 LSB's */ res = ((uint16_t)decode->op[0].val >> count) | ((uint16_t)decode->op[0].val << (16 - count)); write_val_ext(env, decode->op[0].ptr, res, 2); bit14 = (res >> 14) & 1; bit15 = (res >> 15) & 1; /* of = result14 ^ result15 */ SET_FLAGS_OxxxxC(env, bit14 ^ bit15, bit15); } break; } case 4: { uint32_t bit31, bit30; uint32_t res; count &= 0x1f; if (count) { res = ((uint32_t)decode->op[0].val >> count) | ((uint32_t)decode->op[0].val << (32 - count)); write_val_ext(env, decode->op[0].ptr, res, 4); bit31 = (res >> 31) & 1; bit30 = (res >> 30) & 1; /* of = result30 ^ result31 */ SET_FLAGS_OxxxxC(env, bit30 ^ bit31, bit31); } break; } } RIP(env) += decode->len; } void exec_rol(struct CPUX86State *env, struct x86_decode *decode) { uint8_t count; fetch_operands(env, decode, 2, true, true, false); count = decode->op[1].val; switch (decode->operand_size) { case 1: { uint32_t bit0, bit7; uint8_t res; if ((count & 0x07) == 0) { if (count & 0x18) { bit0 = ((uint8_t)decode->op[0].val & 1); bit7 = ((uint8_t)decode->op[0].val >> 7); SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0); } } else { count &= 0x7; /* use only lowest 3 bits */ res = ((uint8_t)decode->op[0].val << count) | ((uint8_t)decode->op[0].val >> (8 - count)); write_val_ext(env, decode->op[0].ptr, res, 1); /* set eflags: * ROL count affects the following flags: C, O */ bit0 = (res & 1); bit7 = (res >> 7); SET_FLAGS_OxxxxC(env, bit0 ^ bit7, bit0); } break; } case 2: { uint32_t bit0, bit15; uint16_t res; if ((count & 0x0f) == 0) { if (count & 0x10) { bit0 = ((uint16_t)decode->op[0].val & 0x1); bit15 = ((uint16_t)decode->op[0].val >> 15); /* of = cf ^ result15 */ SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0); } } else { count &= 0x0f; /* only use bottom 4 bits */ res = ((uint16_t)decode->op[0].val << count) | ((uint16_t)decode->op[0].val >> (16 - count)); write_val_ext(env, decode->op[0].ptr, res, 2); bit0 = (res & 0x1); bit15 = (res >> 15); /* of = cf ^ result15 */ SET_FLAGS_OxxxxC(env, bit0 ^ bit15, bit0); } break; } case 4: { uint32_t bit0, bit31; uint32_t res; count &= 0x1f; if (count) { res = ((uint32_t)decode->op[0].val << count) | ((uint32_t)decode->op[0].val >> (32 - count)); write_val_ext(env, decode->op[0].ptr, res, 4); bit0 = (res & 0x1); bit31 = (res >> 31); /* of = cf ^ result31 */ SET_FLAGS_OxxxxC(env, bit0 ^ bit31, bit0); } break; } } RIP(env) += decode->len; } void exec_rcl(struct CPUX86State *env, struct x86_decode *decode) { uint8_t count; int of = 0, cf = 0; fetch_operands(env, decode, 2, true, true, false); count = decode->op[1].val & 0x1f; switch (decode->operand_size) { case 1: { uint8_t op1_8 = decode->op[0].val; uint8_t res; count %= 9; if (!count) { break; } if (1 == count) { res = (op1_8 << 1) | get_CF(env); } else { res = (op1_8 << count) | (get_CF(env) << (count - 1)) | (op1_8 >> (9 - count)); } write_val_ext(env, decode->op[0].ptr, res, 1); cf = (op1_8 >> (8 - count)) & 0x01; of = cf ^ (res >> 7); /* of = cf ^ result7 */ SET_FLAGS_OxxxxC(env, of, cf); break; } case 2: { uint16_t res; uint16_t op1_16 = decode->op[0].val; count %= 17; if (!count) { break; } if (1 == count) { res = (op1_16 << 1) | get_CF(env); } else if (count == 16) { res = (get_CF(env) << 15) | (op1_16 >> 1); } else { /* 2..15 */ res = (op1_16 << count) | (get_CF(env) << (count - 1)) | (op1_16 >> (17 - count)); } write_val_ext(env, decode->op[0].ptr, res, 2); cf = (op1_16 >> (16 - count)) & 0x1; of = cf ^ (res >> 15); /* of = cf ^ result15 */ SET_FLAGS_OxxxxC(env, of, cf); break; } case 4: { uint32_t res; uint32_t op1_32 = decode->op[0].val; if (!count) { break; } if (1 == count) { res = (op1_32 << 1) | get_CF(env); } else { res = (op1_32 << count) | (get_CF(env) << (count - 1)) | (op1_32 >> (33 - count)); } write_val_ext(env, decode->op[0].ptr, res, 4); cf = (op1_32 >> (32 - count)) & 0x1; of = cf ^ (res >> 31); /* of = cf ^ result31 */ SET_FLAGS_OxxxxC(env, of, cf); break; } } RIP(env) += decode->len; } void exec_rcr(struct CPUX86State *env, struct x86_decode *decode) { uint8_t count; int of = 0, cf = 0; fetch_operands(env, decode, 2, true, true, false); count = decode->op[1].val & 0x1f; switch (decode->operand_size) { case 1: { uint8_t op1_8 = decode->op[0].val; uint8_t res; count %= 9; if (!count) { break; } res = (op1_8 >> count) | (get_CF(env) << (8 - count)) | (op1_8 << (9 - count)); write_val_ext(env, decode->op[0].ptr, res, 1); cf = (op1_8 >> (count - 1)) & 0x1; of = (((res << 1) ^ res) >> 7) & 0x1; /* of = result6 ^ result7 */ SET_FLAGS_OxxxxC(env, of, cf); break; } case 2: { uint16_t op1_16 = decode->op[0].val; uint16_t res; count %= 17; if (!count) { break; } res = (op1_16 >> count) | (get_CF(env) << (16 - count)) | (op1_16 << (17 - count)); write_val_ext(env, decode->op[0].ptr, res, 2); cf = (op1_16 >> (count - 1)) & 0x1; of = ((uint16_t)((res << 1) ^ res) >> 15) & 0x1; /* of = result15 ^ result14 */ SET_FLAGS_OxxxxC(env, of, cf); break; } case 4: { uint32_t res; uint32_t op1_32 = decode->op[0].val; if (!count) { break; } if (1 == count) { res = (op1_32 >> 1) | (get_CF(env) << 31); } else { res = (op1_32 >> count) | (get_CF(env) << (32 - count)) | (op1_32 << (33 - count)); } write_val_ext(env, decode->op[0].ptr, res, 4); cf = (op1_32 >> (count - 1)) & 0x1; of = ((res << 1) ^ res) >> 31; /* of = result30 ^ result31 */ SET_FLAGS_OxxxxC(env, of, cf); break; } } RIP(env) += decode->len; } static void exec_xchg(struct CPUX86State *env, struct x86_decode *decode) { fetch_operands(env, decode, 2, true, true, false); write_val_ext(env, decode->op[0].ptr, decode->op[1].val, decode->operand_size); write_val_ext(env, decode->op[1].ptr, decode->op[0].val, decode->operand_size); RIP(env) += decode->len; } static void exec_xadd(struct CPUX86State *env, struct x86_decode *decode) { EXEC_2OP_ARITH_CMD(env, decode, +, SET_FLAGS_OSZAPC_ADD, true); write_val_ext(env, decode->op[1].ptr, decode->op[0].val, decode->operand_size); RIP(env) += decode->len; } static struct cmd_handler { enum x86_decode_cmd cmd; void (*handler)(struct CPUX86State *env, struct x86_decode *ins); } handlers[] = { {X86_DECODE_CMD_INVL, NULL,}, {X86_DECODE_CMD_MOV, exec_mov}, {X86_DECODE_CMD_ADD, exec_add}, {X86_DECODE_CMD_OR, exec_or}, {X86_DECODE_CMD_ADC, exec_adc}, {X86_DECODE_CMD_SBB, exec_sbb}, {X86_DECODE_CMD_AND, exec_and}, {X86_DECODE_CMD_SUB, exec_sub}, {X86_DECODE_CMD_NEG, exec_neg}, {X86_DECODE_CMD_XOR, exec_xor}, {X86_DECODE_CMD_CMP, exec_cmp}, {X86_DECODE_CMD_INC, exec_inc}, {X86_DECODE_CMD_DEC, exec_dec}, {X86_DECODE_CMD_TST, exec_tst}, {X86_DECODE_CMD_NOT, exec_not}, {X86_DECODE_CMD_MOVZX, exec_movzx}, {X86_DECODE_CMD_OUT, exec_out}, {X86_DECODE_CMD_IN, exec_in}, {X86_DECODE_CMD_INS, exec_ins}, {X86_DECODE_CMD_OUTS, exec_outs}, {X86_DECODE_CMD_RDMSR, exec_rdmsr}, {X86_DECODE_CMD_WRMSR, exec_wrmsr}, {X86_DECODE_CMD_BT, exec_bt}, {X86_DECODE_CMD_BTR, exec_btr}, {X86_DECODE_CMD_BTC, exec_btc}, {X86_DECODE_CMD_BTS, exec_bts}, {X86_DECODE_CMD_SHL, exec_shl}, {X86_DECODE_CMD_ROL, exec_rol}, {X86_DECODE_CMD_ROR, exec_ror}, {X86_DECODE_CMD_RCR, exec_rcr}, {X86_DECODE_CMD_RCL, exec_rcl}, /*{X86_DECODE_CMD_CPUID, exec_cpuid},*/ {X86_DECODE_CMD_MOVS, exec_movs}, {X86_DECODE_CMD_CMPS, exec_cmps}, {X86_DECODE_CMD_STOS, exec_stos}, {X86_DECODE_CMD_SCAS, exec_scas}, {X86_DECODE_CMD_LODS, exec_lods}, {X86_DECODE_CMD_MOVSX, exec_movsx}, {X86_DECODE_CMD_XCHG, exec_xchg}, {X86_DECODE_CMD_XADD, exec_xadd}, }; static struct cmd_handler _cmd_handler[X86_DECODE_CMD_LAST]; static void init_cmd_handler() { int i; for (i = 0; i < ARRAY_SIZE(handlers); i++) { _cmd_handler[handlers[i].cmd] = handlers[i]; } } void load_regs(struct CPUState *cpu) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; int i = 0; RRX(env, REG_RAX) = rreg(cpu->hvf_fd, HV_X86_RAX); RRX(env, REG_RBX) = rreg(cpu->hvf_fd, HV_X86_RBX); RRX(env, REG_RCX) = rreg(cpu->hvf_fd, HV_X86_RCX); RRX(env, REG_RDX) = rreg(cpu->hvf_fd, HV_X86_RDX); RRX(env, REG_RSI) = rreg(cpu->hvf_fd, HV_X86_RSI); RRX(env, REG_RDI) = rreg(cpu->hvf_fd, HV_X86_RDI); RRX(env, REG_RSP) = rreg(cpu->hvf_fd, HV_X86_RSP); RRX(env, REG_RBP) = rreg(cpu->hvf_fd, HV_X86_RBP); for (i = 8; i < 16; i++) { RRX(env, i) = rreg(cpu->hvf_fd, HV_X86_RAX + i); } RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS); rflags_to_lflags(env); RIP(env) = rreg(cpu->hvf_fd, HV_X86_RIP); } void store_regs(struct CPUState *cpu) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; int i = 0; wreg(cpu->hvf_fd, HV_X86_RAX, RAX(env)); wreg(cpu->hvf_fd, HV_X86_RBX, RBX(env)); wreg(cpu->hvf_fd, HV_X86_RCX, RCX(env)); wreg(cpu->hvf_fd, HV_X86_RDX, RDX(env)); wreg(cpu->hvf_fd, HV_X86_RSI, RSI(env)); wreg(cpu->hvf_fd, HV_X86_RDI, RDI(env)); wreg(cpu->hvf_fd, HV_X86_RBP, RBP(env)); wreg(cpu->hvf_fd, HV_X86_RSP, RSP(env)); for (i = 8; i < 16; i++) { wreg(cpu->hvf_fd, HV_X86_RAX + i, RRX(env, i)); } lflags_to_rflags(env); wreg(cpu->hvf_fd, HV_X86_RFLAGS, RFLAGS(env)); macvm_set_rip(cpu, RIP(env)); } bool exec_instruction(struct CPUX86State *env, struct x86_decode *ins) { /*if (hvf_vcpu_id(cpu)) printf("%d, %llx: exec_instruction %s\n", hvf_vcpu_id(cpu), RIP(cpu), decode_cmd_to_string(ins->cmd));*/ if (0 && ins->is_fpu) { VM_PANIC("emulate fpu\n"); } else { if (!_cmd_handler[ins->cmd].handler) { printf("Unimplemented handler (%llx) for %d (%x %x) \n", RIP(env), ins->cmd, ins->opcode[0], ins->opcode_len > 1 ? ins->opcode[1] : 0); RIP(env) += ins->len; return true; } VM_PANIC_ON_EX(!_cmd_handler[ins->cmd].handler, "Unimplemented handler (%llx) for %d (%x %x) \n", RIP(env), ins->cmd, ins->opcode[0], ins->opcode_len > 1 ? ins->opcode[1] : 0); _cmd_handler[ins->cmd].handler(env, ins); } return true; } void init_emu() { init_cmd_handler(); }