/* * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support * * Copyright (c) 2005 Fabrice Bellard * Copyright (c) 2008 Intel Corporation * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "crypto/aes.h" #if SHIFT == 0 #define Reg MMXReg #define XMM_ONLY(...) #define B(n) MMX_B(n) #define W(n) MMX_W(n) #define L(n) MMX_L(n) #define Q(n) MMX_Q(n) #define SUFFIX _mmx #else #define Reg ZMMReg #define XMM_ONLY(...) __VA_ARGS__ #define B(n) ZMM_B(n) #define W(n) ZMM_W(n) #define L(n) ZMM_L(n) #define Q(n) ZMM_Q(n) #define SUFFIX _xmm #endif #define LANE_WIDTH (SHIFT ? 16 : 8) #define PACK_WIDTH (LANE_WIDTH / 2) #if SHIFT == 0 #define FPSRL(x, c) ((x) >> shift) #define FPSRAW(x, c) ((int16_t)(x) >> shift) #define FPSRAL(x, c) ((int32_t)(x) >> shift) #define FPSLL(x, c) ((x) << shift) #endif void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift; if (c->Q(0) > 15) { for (int i = 0; i < 1 << SHIFT; i++) { d->Q(i) = 0; } } else { shift = c->B(0); for (int i = 0; i < 4 << SHIFT; i++) { d->W(i) = FPSRL(s->W(i), shift); } } } void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift; if (c->Q(0) > 15) { for (int i = 0; i < 1 << SHIFT; i++) { d->Q(i) = 0; } } else { shift = c->B(0); for (int i = 0; i < 4 << SHIFT; i++) { d->W(i) = FPSLL(s->W(i), shift); } } } void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift; if (c->Q(0) > 15) { shift = 15; } else { shift = c->B(0); } for (int i = 0; i < 4 << SHIFT; i++) { d->W(i) = FPSRAW(s->W(i), shift); } } void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift; if (c->Q(0) > 31) { for (int i = 0; i < 1 << SHIFT; i++) { d->Q(i) = 0; } } else { shift = c->B(0); for (int i = 0; i < 2 << SHIFT; i++) { d->L(i) = FPSRL(s->L(i), shift); } } } void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift; if (c->Q(0) > 31) { for (int i = 0; i < 1 << SHIFT; i++) { d->Q(i) = 0; } } else { shift = c->B(0); for (int i = 0; i < 2 << SHIFT; i++) { d->L(i) = FPSLL(s->L(i), shift); } } } void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift; if (c->Q(0) > 31) { shift = 31; } else { shift = c->B(0); } for (int i = 0; i < 2 << SHIFT; i++) { d->L(i) = FPSRAL(s->L(i), shift); } } void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift; if (c->Q(0) > 63) { for (int i = 0; i < 1 << SHIFT; i++) { d->Q(i) = 0; } } else { shift = c->B(0); for (int i = 0; i < 1 << SHIFT; i++) { d->Q(i) = FPSRL(s->Q(i), shift); } } } void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift; if (c->Q(0) > 63) { for (int i = 0; i < 1 << SHIFT; i++) { d->Q(i) = 0; } } else { shift = c->B(0); for (int i = 0; i < 1 << SHIFT; i++) { d->Q(i) = FPSLL(s->Q(i), shift); } } } #if SHIFT >= 1 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift, i, j; shift = c->L(0); if (shift > 16) { shift = 16; } for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) { for (i = 0; i < 16 - shift; i++) { d->B(j + i) = s->B(j + i + shift); } for (i = 16 - shift; i < 16; i++) { d->B(j + i) = 0; } } } void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *c) { Reg *s = d; int shift, i, j; shift = c->L(0); if (shift > 16) { shift = 16; } for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) { for (i = 15; i >= shift; i--) { d->B(j + i) = s->B(j + i - shift); } for (i = 0; i < shift; i++) { d->B(j + i) = 0; } } } #endif #define SSE_HELPER_1(name, elem, num, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ int n = num; \ for (int i = 0; i < n; i++) { \ d->elem(i) = F(s->elem(i)); \ } \ } #define SSE_HELPER_2(name, elem, num, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ Reg *v = d; \ int n = num; \ for (int i = 0; i < n; i++) { \ d->elem(i) = F(v->elem(i), s->elem(i)); \ } \ } #define SSE_HELPER_B(name, F) \ SSE_HELPER_2(name, B, 8 << SHIFT, F) #define SSE_HELPER_W(name, F) \ SSE_HELPER_2(name, W, 4 << SHIFT, F) #define SSE_HELPER_L(name, F) \ SSE_HELPER_2(name, L, 2 << SHIFT, F) #define SSE_HELPER_Q(name, F) \ SSE_HELPER_2(name, Q, 1 << SHIFT, F) #if SHIFT == 0 static inline int satub(int x) { if (x < 0) { return 0; } else if (x > 255) { return 255; } else { return x; } } static inline int satuw(int x) { if (x < 0) { return 0; } else if (x > 65535) { return 65535; } else { return x; } } static inline int satsb(int x) { if (x < -128) { return -128; } else if (x > 127) { return 127; } else { return x; } } static inline int satsw(int x) { if (x < -32768) { return -32768; } else if (x > 32767) { return 32767; } else { return x; } } #define FADD(a, b) ((a) + (b)) #define FADDUB(a, b) satub((a) + (b)) #define FADDUW(a, b) satuw((a) + (b)) #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) #define FSUB(a, b) ((a) - (b)) #define FSUBUB(a, b) satub((a) - (b)) #define FSUBUW(a, b) satuw((a) - (b)) #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) #define FAND(a, b) ((a) & (b)) #define FANDN(a, b) ((~(a)) & (b)) #define FOR(a, b) ((a) | (b)) #define FXOR(a, b) ((a) ^ (b)) #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0) #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0) #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0) #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0) #define FMULLW(a, b) ((a) * (b)) #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16) #define FMULHUW(a, b) ((a) * (b) >> 16) #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16) #define FAVG(a, b) (((a) + (b) + 1) >> 1) #endif SSE_HELPER_B(helper_paddb, FADD) SSE_HELPER_W(helper_paddw, FADD) SSE_HELPER_L(helper_paddl, FADD) SSE_HELPER_Q(helper_paddq, FADD) SSE_HELPER_B(helper_psubb, FSUB) SSE_HELPER_W(helper_psubw, FSUB) SSE_HELPER_L(helper_psubl, FSUB) SSE_HELPER_Q(helper_psubq, FSUB) SSE_HELPER_B(helper_paddusb, FADDUB) SSE_HELPER_B(helper_paddsb, FADDSB) SSE_HELPER_B(helper_psubusb, FSUBUB) SSE_HELPER_B(helper_psubsb, FSUBSB) SSE_HELPER_W(helper_paddusw, FADDUW) SSE_HELPER_W(helper_paddsw, FADDSW) SSE_HELPER_W(helper_psubusw, FSUBUW) SSE_HELPER_W(helper_psubsw, FSUBSW) SSE_HELPER_B(helper_pminub, FMINUB) SSE_HELPER_B(helper_pmaxub, FMAXUB) SSE_HELPER_W(helper_pminsw, FMINSW) SSE_HELPER_W(helper_pmaxsw, FMAXSW) SSE_HELPER_Q(helper_pand, FAND) SSE_HELPER_Q(helper_pandn, FANDN) SSE_HELPER_Q(helper_por, FOR) SSE_HELPER_Q(helper_pxor, FXOR) SSE_HELPER_B(helper_pcmpgtb, FCMPGTB) SSE_HELPER_W(helper_pcmpgtw, FCMPGTW) SSE_HELPER_L(helper_pcmpgtl, FCMPGTL) SSE_HELPER_B(helper_pcmpeqb, FCMPEQ) SSE_HELPER_W(helper_pcmpeqw, FCMPEQ) SSE_HELPER_L(helper_pcmpeql, FCMPEQ) SSE_HELPER_W(helper_pmullw, FMULLW) #if SHIFT == 0 SSE_HELPER_W(helper_pmulhrw, FMULHRW) #endif SSE_HELPER_W(helper_pmulhuw, FMULHUW) SSE_HELPER_W(helper_pmulhw, FMULHW) SSE_HELPER_B(helper_pavgb, FAVG) SSE_HELPER_W(helper_pavgw, FAVG) void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; int i; for (i = 0; i < (1 << SHIFT); i++) { d->Q(i) = (uint64_t)s->L(i * 2) * (uint64_t)v->L(i * 2); } } void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; int i; for (i = 0; i < (2 << SHIFT); i++) { d->L(i) = (int16_t)s->W(2 * i) * (int16_t)v->W(2 * i) + (int16_t)s->W(2 * i + 1) * (int16_t)v->W(2 * i + 1); } } #if SHIFT == 0 static inline int abs1(int a) { if (a < 0) { return -a; } else { return a; } } #endif void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; int i; for (i = 0; i < (1 << SHIFT); i++) { unsigned int val = 0; val += abs1(v->B(8 * i + 0) - s->B(8 * i + 0)); val += abs1(v->B(8 * i + 1) - s->B(8 * i + 1)); val += abs1(v->B(8 * i + 2) - s->B(8 * i + 2)); val += abs1(v->B(8 * i + 3) - s->B(8 * i + 3)); val += abs1(v->B(8 * i + 4) - s->B(8 * i + 4)); val += abs1(v->B(8 * i + 5) - s->B(8 * i + 5)); val += abs1(v->B(8 * i + 6) - s->B(8 * i + 6)); val += abs1(v->B(8 * i + 7) - s->B(8 * i + 7)); d->Q(i) = val; } } #if SHIFT < 2 void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, target_ulong a0) { int i; for (i = 0; i < (8 << SHIFT); i++) { if (s->B(i) & 0x80) { cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC()); } } } #endif void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val) { int i; d->L(0) = val; d->L(1) = 0; for (i = 1; i < (1 << SHIFT); i++) { d->Q(i) = 0; } } #ifdef TARGET_X86_64 void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val) { int i; d->Q(0) = val; for (i = 1; i < (1 << SHIFT); i++) { d->Q(i) = 0; } } #endif #define SHUFFLE4(F, a, b, offset) do { \ r0 = a->F((order & 3) + offset); \ r1 = a->F(((order >> 2) & 3) + offset); \ r2 = b->F(((order >> 4) & 3) + offset); \ r3 = b->F(((order >> 6) & 3) + offset); \ d->F(offset) = r0; \ d->F(offset + 1) = r1; \ d->F(offset + 2) = r2; \ d->F(offset + 3) = r3; \ } while (0) #if SHIFT == 0 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order) { uint16_t r0, r1, r2, r3; SHUFFLE4(W, s, s, 0); } #else void glue(helper_shufps, SUFFIX)(Reg *d, Reg *s, int order) { Reg *v = d; uint32_t r0, r1, r2, r3; int i; for (i = 0; i < 2 << SHIFT; i += 4) { SHUFFLE4(L, v, s, i); } } void glue(helper_shufpd, SUFFIX)(Reg *d, Reg *s, int order) { Reg *v = d; uint64_t r0, r1; int i; for (i = 0; i < 1 << SHIFT; i += 2) { r0 = v->Q(((order & 1) & 1) + i); r1 = s->Q(((order >> 1) & 1) + i); d->Q(i) = r0; d->Q(i + 1) = r1; order >>= 2; } } void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order) { uint32_t r0, r1, r2, r3; int i; for (i = 0; i < 2 << SHIFT; i += 4) { SHUFFLE4(L, s, s, i); } } void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order) { uint16_t r0, r1, r2, r3; int i, j; for (i = 0, j = 1; j < 1 << SHIFT; i += 8, j += 2) { SHUFFLE4(W, s, s, i); d->Q(j) = s->Q(j); } } void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order) { uint16_t r0, r1, r2, r3; int i, j; for (i = 4, j = 0; j < 1 << SHIFT; i += 8, j += 2) { d->Q(j) = s->Q(j); SHUFFLE4(W, s, s, i); } } #endif #if SHIFT >= 1 /* FPU ops */ /* XXX: not accurate */ #define SSE_HELPER_P(name, F) \ void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env, \ Reg *d, Reg *s) \ { \ Reg *v = d; \ int i; \ for (i = 0; i < 2 << SHIFT; i++) { \ d->ZMM_S(i) = F(32, v->ZMM_S(i), s->ZMM_S(i)); \ } \ } \ \ void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env, \ Reg *d, Reg *s) \ { \ Reg *v = d; \ int i; \ for (i = 0; i < 1 << SHIFT; i++) { \ d->ZMM_D(i) = F(64, v->ZMM_D(i), s->ZMM_D(i)); \ } \ } #if SHIFT == 1 #define SSE_HELPER_S(name, F) \ SSE_HELPER_P(name, F) \ \ void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s)\ { \ Reg *v = d; \ d->ZMM_S(0) = F(32, v->ZMM_S(0), s->ZMM_S(0)); \ } \ \ void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s)\ { \ Reg *v = d; \ d->ZMM_D(0) = F(64, v->ZMM_D(0), s->ZMM_D(0)); \ } #else #define SSE_HELPER_S(name, F) SSE_HELPER_P(name, F) #endif #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) /* Note that the choice of comparison op here is important to get the * special cases right: for min and max Intel specifies that (-0,0), * (NaN, anything) and (anything, NaN) return the second argument. */ #define FPU_MIN(size, a, b) \ (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b)) #define FPU_MAX(size, a, b) \ (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b)) SSE_HELPER_S(add, FPU_ADD) SSE_HELPER_S(sub, FPU_SUB) SSE_HELPER_S(mul, FPU_MUL) SSE_HELPER_S(div, FPU_DIV) SSE_HELPER_S(min, FPU_MIN) SSE_HELPER_S(max, FPU_MAX) void glue(helper_sqrtps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; for (i = 0; i < 2 << SHIFT; i++) { d->ZMM_S(i) = float32_sqrt(s->ZMM_S(i), &env->sse_status); } } void glue(helper_sqrtpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; for (i = 0; i < 1 << SHIFT; i++) { d->ZMM_D(i) = float64_sqrt(s->ZMM_D(i), &env->sse_status); } } #if SHIFT == 1 void helper_sqrtss(CPUX86State *env, Reg *d, Reg *s) { d->ZMM_S(0) = float32_sqrt(s->ZMM_S(0), &env->sse_status); } void helper_sqrtsd(CPUX86State *env, Reg *d, Reg *s) { d->ZMM_D(0) = float64_sqrt(s->ZMM_D(0), &env->sse_status); } #endif /* float to float conversions */ void glue(helper_cvtps2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; for (i = 1 << SHIFT; --i >= 0; ) { d->ZMM_D(i) = float32_to_float64(s->ZMM_S(i), &env->sse_status); } } void glue(helper_cvtpd2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; for (i = 0; i < 1 << SHIFT; i++) { d->ZMM_S(i) = float64_to_float32(s->ZMM_D(i), &env->sse_status); } for (i >>= 1; i < 1 << SHIFT; i++) { d->Q(i) = 0; } } #if SHIFT == 1 void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *s) { d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status); } void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *s) { d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); } #endif /* integer to float */ void glue(helper_cvtdq2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; for (i = 0; i < 2 << SHIFT; i++) { d->ZMM_S(i) = int32_to_float32(s->ZMM_L(i), &env->sse_status); } } void glue(helper_cvtdq2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; for (i = 1 << SHIFT; --i >= 0; ) { int32_t l = s->ZMM_L(i); d->ZMM_D(i) = int32_to_float64(l, &env->sse_status); } } #if SHIFT == 1 void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s) { d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); } void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s) { d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); } void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val) { d->ZMM_S(0) = int32_to_float32(val, &env->sse_status); } void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val) { d->ZMM_D(0) = int32_to_float64(val, &env->sse_status); } #ifdef TARGET_X86_64 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val) { d->ZMM_S(0) = int64_to_float32(val, &env->sse_status); } void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val) { d->ZMM_D(0) = int64_to_float64(val, &env->sse_status); } #endif #endif /* float to integer */ #if SHIFT == 1 /* * x86 mandates that we return the indefinite integer value for the result * of any float-to-integer conversion that raises the 'invalid' exception. * Wrap the softfloat functions to get this behaviour. */ #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \ static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \ { \ int oldflags, newflags; \ RETTYPE r; \ \ oldflags = get_float_exception_flags(s); \ set_float_exception_flags(0, s); \ r = FN(a, s); \ newflags = get_float_exception_flags(s); \ if (newflags & float_flag_invalid) { \ r = INDEFVALUE; \ } \ set_float_exception_flags(newflags | oldflags, s); \ return r; \ } WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN) WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN) WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN) WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN) WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN) WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN) WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN) WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN) #endif void glue(helper_cvtps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) { int i; for (i = 0; i < 2 << SHIFT; i++) { d->ZMM_L(i) = x86_float32_to_int32(s->ZMM_S(i), &env->sse_status); } } void glue(helper_cvtpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) { int i; for (i = 0; i < 1 << SHIFT; i++) { d->ZMM_L(i) = x86_float64_to_int32(s->ZMM_D(i), &env->sse_status); } for (i >>= 1; i < 1 << SHIFT; i++) { d->Q(i) = 0; } } #if SHIFT == 1 void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) { d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); } void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) { d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); } int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s) { return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); } int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s) { return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); } #ifdef TARGET_X86_64 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s) { return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status); } int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s) { return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status); } #endif #endif /* float to integer truncated */ void glue(helper_cvttps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) { int i; for (i = 0; i < 2 << SHIFT; i++) { d->ZMM_L(i) = x86_float32_to_int32_round_to_zero(s->ZMM_S(i), &env->sse_status); } } void glue(helper_cvttpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) { int i; for (i = 0; i < 1 << SHIFT; i++) { d->ZMM_L(i) = x86_float64_to_int32_round_to_zero(s->ZMM_D(i), &env->sse_status); } for (i >>= 1; i < 1 << SHIFT; i++) { d->Q(i) = 0; } } #if SHIFT == 1 void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) { d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); } void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) { d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); } int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s) { return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); } int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s) { return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); } #ifdef TARGET_X86_64 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s) { return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status); } int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s) { return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status); } #endif #endif void glue(helper_rsqrtps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) { uint8_t old_flags = get_float_exception_flags(&env->sse_status); int i; for (i = 0; i < 2 << SHIFT; i++) { d->ZMM_S(i) = float32_div(float32_one, float32_sqrt(s->ZMM_S(i), &env->sse_status), &env->sse_status); } set_float_exception_flags(old_flags, &env->sse_status); } #if SHIFT == 1 void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *s) { uint8_t old_flags = get_float_exception_flags(&env->sse_status); d->ZMM_S(0) = float32_div(float32_one, float32_sqrt(s->ZMM_S(0), &env->sse_status), &env->sse_status); set_float_exception_flags(old_flags, &env->sse_status); } #endif void glue(helper_rcpps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s) { uint8_t old_flags = get_float_exception_flags(&env->sse_status); int i; for (i = 0; i < 2 << SHIFT; i++) { d->ZMM_S(i) = float32_div(float32_one, s->ZMM_S(i), &env->sse_status); } set_float_exception_flags(old_flags, &env->sse_status); } #if SHIFT == 1 void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *s) { uint8_t old_flags = get_float_exception_flags(&env->sse_status); d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); set_float_exception_flags(old_flags, &env->sse_status); } #endif #if SHIFT == 1 static inline uint64_t helper_extrq(uint64_t src, int shift, int len) { uint64_t mask; if (len == 0) { mask = ~0LL; } else { mask = (1ULL << len) - 1; } return (src >> shift) & mask; } void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1), s->ZMM_B(0)); } void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length) { d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length); } static inline uint64_t helper_insertq(uint64_t src, int shift, int len) { uint64_t mask; if (len == 0) { mask = ~0ULL; } else { mask = (1ULL << len) - 1; } return (src & ~(mask << shift)) | ((src & mask) << shift); } void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_Q(0) = helper_insertq(s->ZMM_Q(0), s->ZMM_B(9), s->ZMM_B(8)); } void helper_insertq_i(CPUX86State *env, ZMMReg *d, int index, int length) { d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), index, length); } #endif #define SSE_HELPER_HPS(name, F) \ void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ Reg *v = d; \ float32 r[2 << SHIFT]; \ int i, j, k; \ for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) { \ for (i = j = 0; j < 4; i++, j += 2) { \ r[i + k] = F(v->ZMM_S(j + k), v->ZMM_S(j + k + 1), &env->sse_status); \ } \ for (j = 0; j < 4; i++, j += 2) { \ r[i + k] = F(s->ZMM_S(j + k), s->ZMM_S(j + k + 1), &env->sse_status); \ } \ } \ for (i = 0; i < 2 << SHIFT; i++) { \ d->ZMM_S(i) = r[i]; \ } \ } SSE_HELPER_HPS(haddps, float32_add) SSE_HELPER_HPS(hsubps, float32_sub) #define SSE_HELPER_HPD(name, F) \ void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ Reg *v = d; \ float64 r[1 << SHIFT]; \ int i, j, k; \ for (k = 0; k < 1 << SHIFT; k += LANE_WIDTH / 8) { \ for (i = j = 0; j < 2; i++, j += 2) { \ r[i + k] = F(v->ZMM_D(j + k), v->ZMM_D(j + k + 1), &env->sse_status); \ } \ for (j = 0; j < 2; i++, j += 2) { \ r[i + k] = F(s->ZMM_D(j + k), s->ZMM_D(j + k + 1), &env->sse_status); \ } \ } \ for (i = 0; i < 1 << SHIFT; i++) { \ d->ZMM_D(i) = r[i]; \ } \ } SSE_HELPER_HPD(haddpd, float64_add) SSE_HELPER_HPD(hsubpd, float64_sub) void glue(helper_addsubps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; int i; for (i = 0; i < 2 << SHIFT; i += 2) { d->ZMM_S(i) = float32_sub(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status); d->ZMM_S(i+1) = float32_add(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status); } } void glue(helper_addsubpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; int i; for (i = 0; i < 1 << SHIFT; i += 2) { d->ZMM_D(i) = float64_sub(v->ZMM_D(i), s->ZMM_D(i), &env->sse_status); d->ZMM_D(i+1) = float64_add(v->ZMM_D(i+1), s->ZMM_D(i+1), &env->sse_status); } } #define SSE_HELPER_CMP_P(name, F, C) \ void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env, \ Reg *d, Reg *s) \ { \ Reg *v = d; \ int i; \ for (i = 0; i < 2 << SHIFT; i++) { \ d->ZMM_L(i) = C(F(32, v->ZMM_S(i), s->ZMM_S(i))) ? -1 : 0; \ } \ } \ \ void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env, \ Reg *d, Reg *s) \ { \ Reg *v = d; \ int i; \ for (i = 0; i < 1 << SHIFT; i++) { \ d->ZMM_Q(i) = C(F(64, v->ZMM_D(i), s->ZMM_D(i))) ? -1 : 0; \ } \ } #if SHIFT == 1 #define SSE_HELPER_CMP(name, F, C) \ SSE_HELPER_CMP_P(name, F, C) \ void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ { \ Reg *v = d; \ d->ZMM_L(0) = C(F(32, v->ZMM_S(0), s->ZMM_S(0))) ? -1 : 0; \ } \ \ void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ { \ Reg *v = d; \ d->ZMM_Q(0) = C(F(64, v->ZMM_D(0), s->ZMM_D(0))) ? -1 : 0; \ } #define FPU_EQ(x) (x == float_relation_equal) #define FPU_LT(x) (x == float_relation_less) #define FPU_LE(x) (x <= float_relation_equal) #define FPU_UNORD(x) (x == float_relation_unordered) #define FPU_CMPQ(size, a, b) \ float ## size ## _compare_quiet(a, b, &env->sse_status) #define FPU_CMPS(size, a, b) \ float ## size ## _compare(a, b, &env->sse_status) #else #define SSE_HELPER_CMP(name, F, C) SSE_HELPER_CMP_P(name, F, C) #endif SSE_HELPER_CMP(cmpeq, FPU_CMPQ, FPU_EQ) SSE_HELPER_CMP(cmplt, FPU_CMPS, FPU_LT) SSE_HELPER_CMP(cmple, FPU_CMPS, FPU_LE) SSE_HELPER_CMP(cmpunord, FPU_CMPQ, FPU_UNORD) SSE_HELPER_CMP(cmpneq, FPU_CMPQ, !FPU_EQ) SSE_HELPER_CMP(cmpnlt, FPU_CMPS, !FPU_LT) SSE_HELPER_CMP(cmpnle, FPU_CMPS, !FPU_LE) SSE_HELPER_CMP(cmpord, FPU_CMPQ, !FPU_UNORD) #undef SSE_HELPER_CMP #if SHIFT == 1 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s) { FloatRelation ret; float32 s0, s1; s0 = d->ZMM_S(0); s1 = s->ZMM_S(0); ret = float32_compare_quiet(s0, s1, &env->sse_status); CC_SRC = comis_eflags[ret + 1]; } void helper_comiss(CPUX86State *env, Reg *d, Reg *s) { FloatRelation ret; float32 s0, s1; s0 = d->ZMM_S(0); s1 = s->ZMM_S(0); ret = float32_compare(s0, s1, &env->sse_status); CC_SRC = comis_eflags[ret + 1]; } void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s) { FloatRelation ret; float64 d0, d1; d0 = d->ZMM_D(0); d1 = s->ZMM_D(0); ret = float64_compare_quiet(d0, d1, &env->sse_status); CC_SRC = comis_eflags[ret + 1]; } void helper_comisd(CPUX86State *env, Reg *d, Reg *s) { FloatRelation ret; float64 d0, d1; d0 = d->ZMM_D(0); d1 = s->ZMM_D(0); ret = float64_compare(d0, d1, &env->sse_status); CC_SRC = comis_eflags[ret + 1]; } #endif uint32_t glue(helper_movmskps, SUFFIX)(CPUX86State *env, Reg *s) { uint32_t mask; int i; mask = 0; for (i = 0; i < 2 << SHIFT; i++) { mask |= (s->ZMM_L(i) >> (31 - i)) & (1 << i); } return mask; } uint32_t glue(helper_movmskpd, SUFFIX)(CPUX86State *env, Reg *s) { uint32_t mask; int i; mask = 0; for (i = 0; i < 1 << SHIFT; i++) { mask |= (s->ZMM_Q(i) >> (63 - i)) & (1 << i); } return mask; } #endif uint32_t glue(helper_pmovmskb, SUFFIX)(CPUX86State *env, Reg *s) { uint32_t val; int i; val = 0; for (i = 0; i < (1 << SHIFT); i++) { uint8_t byte = 0; byte |= (s->B(8 * i + 0) >> 7); byte |= (s->B(8 * i + 1) >> 6) & 0x02; byte |= (s->B(8 * i + 2) >> 5) & 0x04; byte |= (s->B(8 * i + 3) >> 4) & 0x08; byte |= (s->B(8 * i + 4) >> 3) & 0x10; byte |= (s->B(8 * i + 5) >> 2) & 0x20; byte |= (s->B(8 * i + 6) >> 1) & 0x40; byte |= (s->B(8 * i + 7)) & 0x80; val |= byte << (8 * i); } return val; } #define PACK_HELPER_B(name, F) \ void glue(helper_pack ## name, SUFFIX)(CPUX86State *env, \ Reg *d, Reg *s) \ { \ Reg *v = d; \ uint8_t r[PACK_WIDTH * 2]; \ int j, k; \ for (j = 0; j < 4 << SHIFT; j += PACK_WIDTH) { \ for (k = 0; k < PACK_WIDTH; k++) { \ r[k] = F((int16_t)v->W(j + k)); \ } \ for (k = 0; k < PACK_WIDTH; k++) { \ r[PACK_WIDTH + k] = F((int16_t)s->W(j + k)); \ } \ for (k = 0; k < PACK_WIDTH * 2; k++) { \ d->B(2 * j + k) = r[k]; \ } \ } \ } PACK_HELPER_B(sswb, satsb) PACK_HELPER_B(uswb, satub) void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; uint16_t r[PACK_WIDTH]; int j, k; for (j = 0; j < 2 << SHIFT; j += PACK_WIDTH / 2) { for (k = 0; k < PACK_WIDTH / 2; k++) { r[k] = satsw(v->L(j + k)); } for (k = 0; k < PACK_WIDTH / 2; k++) { r[PACK_WIDTH / 2 + k] = satsw(s->L(j + k)); } for (k = 0; k < PACK_WIDTH; k++) { d->W(2 * j + k) = r[k]; } } } #define UNPCK_OP(base_name, base) \ \ void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\ Reg *d, Reg *s) \ { \ Reg *v = d; \ uint8_t r[PACK_WIDTH * 2]; \ int j, i; \ \ for (j = 0; j < 8 << SHIFT; ) { \ int k = j + base * PACK_WIDTH; \ for (i = 0; i < PACK_WIDTH; i++) { \ r[2 * i] = v->B(k + i); \ r[2 * i + 1] = s->B(k + i); \ } \ for (i = 0; i < PACK_WIDTH * 2; i++, j++) { \ d->B(j) = r[i]; \ } \ } \ } \ \ void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\ Reg *d, Reg *s) \ { \ Reg *v = d; \ uint16_t r[PACK_WIDTH]; \ int j, i; \ \ for (j = 0; j < 4 << SHIFT; ) { \ int k = j + base * PACK_WIDTH / 2; \ for (i = 0; i < PACK_WIDTH / 2; i++) { \ r[2 * i] = v->W(k + i); \ r[2 * i + 1] = s->W(k + i); \ } \ for (i = 0; i < PACK_WIDTH; i++, j++) { \ d->W(j) = r[i]; \ } \ } \ } \ \ void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\ Reg *d, Reg *s) \ { \ Reg *v = d; \ uint32_t r[PACK_WIDTH / 2]; \ int j, i; \ \ for (j = 0; j < 2 << SHIFT; ) { \ int k = j + base * PACK_WIDTH / 4; \ for (i = 0; i < PACK_WIDTH / 4; i++) { \ r[2 * i] = v->L(k + i); \ r[2 * i + 1] = s->L(k + i); \ } \ for (i = 0; i < PACK_WIDTH / 2; i++, j++) { \ d->L(j) = r[i]; \ } \ } \ } \ \ XMM_ONLY( \ void glue(helper_punpck ## base_name ## qdq, SUFFIX)( \ CPUX86State *env, Reg *d, Reg *s) \ { \ Reg *v = d; \ uint64_t r[2]; \ int i; \ \ for (i = 0; i < 1 << SHIFT; i += 2) { \ r[0] = v->Q(base + i); \ r[1] = s->Q(base + i); \ d->Q(i) = r[0]; \ d->Q(i + 1) = r[1]; \ } \ } \ ) UNPCK_OP(l, 0) UNPCK_OP(h, 1) #undef PACK_WIDTH #undef PACK_HELPER_B #undef UNPCK_OP /* 3DNow! float ops */ #if SHIFT == 0 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status); d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status); } void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status); d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status); } void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status); d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status); } void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status)); d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status)); } void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s) { float32 r; r = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); d->MMX_S(0) = r; } void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); } void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0; d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0; } void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0; d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0; } void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0; d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0; } void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s) { if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) { d->MMX_S(0) = s->MMX_S(0); } if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) { d->MMX_S(1) = s->MMX_S(1); } } void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s) { if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) { d->MMX_S(0) = s->MMX_S(0); } if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) { d->MMX_S(1) = s->MMX_S(1); } } void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); } void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s) { float32 r; r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); d->MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); d->MMX_S(0) = r; } void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s) { float32 r; r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); d->MMX_S(0) = r; } void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status); d->MMX_S(1) = d->MMX_S(0); } void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff; d->MMX_S(1) = float32_div(float32_one, float32_sqrt(d->MMX_S(1), &env->mmx_status), &env->mmx_status); d->MMX_L(1) |= s->MMX_L(0) & 0x80000000; d->MMX_L(0) = d->MMX_L(1); } void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); } void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status); d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status); } void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s) { uint32_t r; r = s->MMX_L(0); d->MMX_L(0) = s->MMX_L(1); d->MMX_L(1) = r; } #endif /* SSSE3 op helpers */ void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; int i; #if SHIFT == 0 uint8_t r[8]; for (i = 0; i < 8; i++) { r[i] = (s->B(i) & 0x80) ? 0 : (v->B(s->B(i) & 7)); } for (i = 0; i < 8; i++) { d->B(i) = r[i]; } #else uint8_t r[8 << SHIFT]; for (i = 0; i < 8 << SHIFT; i++) { int j = i & ~0xf; r[i] = (s->B(i) & 0x80) ? 0 : v->B(j | (s->B(i) & 0xf)); } for (i = 0; i < 8 << SHIFT; i++) { d->B(i) = r[i]; } #endif } #define SSE_HELPER_HW(name, F) \ void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ Reg *v = d; \ uint16_t r[4 << SHIFT]; \ int i, j, k; \ for (k = 0; k < 4 << SHIFT; k += LANE_WIDTH / 2) { \ for (i = j = 0; j < LANE_WIDTH / 2; i++, j += 2) { \ r[i + k] = F(v->W(j + k), v->W(j + k + 1)); \ } \ for (j = 0; j < LANE_WIDTH / 2; i++, j += 2) { \ r[i + k] = F(s->W(j + k), s->W(j + k + 1)); \ } \ } \ for (i = 0; i < 4 << SHIFT; i++) { \ d->W(i) = r[i]; \ } \ } #define SSE_HELPER_HL(name, F) \ void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ Reg *v = d; \ uint32_t r[2 << SHIFT]; \ int i, j, k; \ for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) { \ for (i = j = 0; j < LANE_WIDTH / 4; i++, j += 2) { \ r[i + k] = F(v->L(j + k), v->L(j + k + 1)); \ } \ for (j = 0; j < LANE_WIDTH / 4; i++, j += 2) { \ r[i + k] = F(s->L(j + k), s->L(j + k + 1)); \ } \ } \ for (i = 0; i < 2 << SHIFT; i++) { \ d->L(i) = r[i]; \ } \ } SSE_HELPER_HW(phaddw, FADD) SSE_HELPER_HW(phsubw, FSUB) SSE_HELPER_HW(phaddsw, FADDSW) SSE_HELPER_HW(phsubsw, FSUBSW) SSE_HELPER_HL(phaddd, FADD) SSE_HELPER_HL(phsubd, FSUB) #undef SSE_HELPER_HW #undef SSE_HELPER_HL void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; int i; for (i = 0; i < 4 << SHIFT; i++) { d->W(i) = satsw((int8_t)s->B(i * 2) * (uint8_t)v->B(i * 2) + (int8_t)s->B(i * 2 + 1) * (uint8_t)v->B(i * 2 + 1)); } } #define FABSB(x) (x > INT8_MAX ? -(int8_t)x : x) #define FABSW(x) (x > INT16_MAX ? -(int16_t)x : x) #define FABSL(x) (x > INT32_MAX ? -(int32_t)x : x) SSE_HELPER_1(helper_pabsb, B, 8 << SHIFT, FABSB) SSE_HELPER_1(helper_pabsw, W, 4 << SHIFT, FABSW) SSE_HELPER_1(helper_pabsd, L, 2 << SHIFT, FABSL) #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15) SSE_HELPER_W(helper_pmulhrsw, FMULHRSW) #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d) #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d) #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d) SSE_HELPER_B(helper_psignb, FSIGNB) SSE_HELPER_W(helper_psignw, FSIGNW) SSE_HELPER_L(helper_psignd, FSIGNL) void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, int32_t shift) { Reg *v = d; int i; /* XXX could be checked during translation */ if (shift >= (SHIFT ? 32 : 16)) { for (i = 0; i < (1 << SHIFT); i++) { d->Q(i) = 0; } } else { shift <<= 3; #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0) #if SHIFT == 0 d->Q(0) = SHR(s->Q(0), shift - 0) | SHR(v->Q(0), shift - 64); #else for (i = 0; i < (1 << SHIFT); i += 2) { uint64_t r0, r1; r0 = SHR(s->Q(i), shift - 0) | SHR(s->Q(i + 1), shift - 64) | SHR(v->Q(i), shift - 128) | SHR(v->Q(i + 1), shift - 192); r1 = SHR(s->Q(i), shift + 64) | SHR(s->Q(i + 1), shift - 0) | SHR(v->Q(i), shift - 64) | SHR(v->Q(i + 1), shift - 128); d->Q(i) = r0; d->Q(i + 1) = r1; } #endif #undef SHR } } #define XMM0 (env->xmm_regs[0]) #if SHIFT == 1 #define SSE_HELPER_V(name, elem, num, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \ d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \ if (num > 2) { \ d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \ d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \ if (num > 4) { \ d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \ d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \ d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \ d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \ if (num > 8) { \ d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \ d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \ d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \ d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \ d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \ d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \ d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \ d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \ } \ } \ } \ } #define SSE_HELPER_I(name, elem, num, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t imm) \ { \ d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \ d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \ if (num > 2) { \ d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \ d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \ if (num > 4) { \ d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \ d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \ d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \ d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \ if (num > 8) { \ d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \ d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \ d->elem(10) = F(d->elem(10), s->elem(10), \ ((imm >> 10) & 1)); \ d->elem(11) = F(d->elem(11), s->elem(11), \ ((imm >> 11) & 1)); \ d->elem(12) = F(d->elem(12), s->elem(12), \ ((imm >> 12) & 1)); \ d->elem(13) = F(d->elem(13), s->elem(13), \ ((imm >> 13) & 1)); \ d->elem(14) = F(d->elem(14), s->elem(14), \ ((imm >> 14) & 1)); \ d->elem(15) = F(d->elem(15), s->elem(15), \ ((imm >> 15) & 1)); \ } \ } \ } \ } /* SSE4.1 op helpers */ #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d) #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d) #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d) SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB) SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS) SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD) void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { uint64_t zf = 0, cf = 0; int i; for (i = 0; i < 1 << SHIFT; i++) { zf |= (s->Q(i) & d->Q(i)); cf |= (s->Q(i) & ~d->Q(i)); } CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C); } #define SSE_HELPER_F(name, elem, num, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ int n = num; \ for (int i = n; --i >= 0; ) { \ d->elem(i) = F(i); \ } \ } #if SHIFT > 0 SSE_HELPER_F(helper_pmovsxbw, W, 4 << SHIFT, (int8_t) s->B) SSE_HELPER_F(helper_pmovsxbd, L, 2 << SHIFT, (int8_t) s->B) SSE_HELPER_F(helper_pmovsxbq, Q, 1 << SHIFT, (int8_t) s->B) SSE_HELPER_F(helper_pmovsxwd, L, 2 << SHIFT, (int16_t) s->W) SSE_HELPER_F(helper_pmovsxwq, Q, 1 << SHIFT, (int16_t) s->W) SSE_HELPER_F(helper_pmovsxdq, Q, 1 << SHIFT, (int32_t) s->L) SSE_HELPER_F(helper_pmovzxbw, W, 4 << SHIFT, s->B) SSE_HELPER_F(helper_pmovzxbd, L, 2 << SHIFT, s->B) SSE_HELPER_F(helper_pmovzxbq, Q, 1 << SHIFT, s->B) SSE_HELPER_F(helper_pmovzxwd, L, 2 << SHIFT, s->W) SSE_HELPER_F(helper_pmovzxwq, Q, 1 << SHIFT, s->W) SSE_HELPER_F(helper_pmovzxdq, Q, 1 << SHIFT, s->L) #endif void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; int i; for (i = 0; i < 1 << SHIFT; i++) { d->Q(i) = (int64_t)(int32_t) v->L(2 * i) * (int32_t) s->L(2 * i); } } #define FCMPEQQ(d, s) (d == s ? -1 : 0) SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ) void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg *v = d; uint16_t r[8]; int i, j, k; for (i = 0, j = 0; i <= 2 << SHIFT; i += 8, j += 4) { r[0] = satuw(v->L(j)); r[1] = satuw(v->L(j + 1)); r[2] = satuw(v->L(j + 2)); r[3] = satuw(v->L(j + 3)); r[4] = satuw(s->L(j)); r[5] = satuw(s->L(j + 1)); r[6] = satuw(s->L(j + 2)); r[7] = satuw(s->L(j + 3)); for (k = 0; k < 8; k++) { d->W(i + k) = r[k]; } } } #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s) #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s) #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s) #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s) SSE_HELPER_B(helper_pminsb, FMINSB) SSE_HELPER_L(helper_pminsd, FMINSD) SSE_HELPER_W(helper_pminuw, MIN) SSE_HELPER_L(helper_pminud, MIN) SSE_HELPER_B(helper_pmaxsb, FMAXSB) SSE_HELPER_L(helper_pmaxsd, FMAXSD) SSE_HELPER_W(helper_pmaxuw, MAX) SSE_HELPER_L(helper_pmaxud, MAX) #define FMULLD(d, s) ((int32_t)d * (int32_t)s) SSE_HELPER_L(helper_pmulld, FMULLD) #if SHIFT == 1 void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int idx = 0; if (s->W(1) < s->W(idx)) { idx = 1; } if (s->W(2) < s->W(idx)) { idx = 2; } if (s->W(3) < s->W(idx)) { idx = 3; } if (s->W(4) < s->W(idx)) { idx = 4; } if (s->W(5) < s->W(idx)) { idx = 5; } if (s->W(6) < s->W(idx)) { idx = 6; } if (s->W(7) < s->W(idx)) { idx = 7; } d->W(0) = s->W(idx); d->W(1) = idx; d->L(1) = 0; d->Q(1) = 0; } #endif void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mode) { uint8_t old_flags = get_float_exception_flags(&env->sse_status); signed char prev_rounding_mode; int i; prev_rounding_mode = env->sse_status.float_rounding_mode; if (!(mode & (1 << 2))) { switch (mode & 3) { case 0: set_float_rounding_mode(float_round_nearest_even, &env->sse_status); break; case 1: set_float_rounding_mode(float_round_down, &env->sse_status); break; case 2: set_float_rounding_mode(float_round_up, &env->sse_status); break; case 3: set_float_rounding_mode(float_round_to_zero, &env->sse_status); break; } } for (i = 0; i < 2 << SHIFT; i++) { d->ZMM_S(i) = float32_round_to_int(s->ZMM_S(i), &env->sse_status); } if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { set_float_exception_flags(get_float_exception_flags(&env->sse_status) & ~float_flag_inexact, &env->sse_status); } env->sse_status.float_rounding_mode = prev_rounding_mode; } void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mode) { uint8_t old_flags = get_float_exception_flags(&env->sse_status); signed char prev_rounding_mode; int i; prev_rounding_mode = env->sse_status.float_rounding_mode; if (!(mode & (1 << 2))) { switch (mode & 3) { case 0: set_float_rounding_mode(float_round_nearest_even, &env->sse_status); break; case 1: set_float_rounding_mode(float_round_down, &env->sse_status); break; case 2: set_float_rounding_mode(float_round_up, &env->sse_status); break; case 3: set_float_rounding_mode(float_round_to_zero, &env->sse_status); break; } } for (i = 0; i < 1 << SHIFT; i++) { d->ZMM_D(i) = float64_round_to_int(s->ZMM_D(i), &env->sse_status); } if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { set_float_exception_flags(get_float_exception_flags(&env->sse_status) & ~float_flag_inexact, &env->sse_status); } env->sse_status.float_rounding_mode = prev_rounding_mode; } #if SHIFT == 1 void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mode) { uint8_t old_flags = get_float_exception_flags(&env->sse_status); signed char prev_rounding_mode; prev_rounding_mode = env->sse_status.float_rounding_mode; if (!(mode & (1 << 2))) { switch (mode & 3) { case 0: set_float_rounding_mode(float_round_nearest_even, &env->sse_status); break; case 1: set_float_rounding_mode(float_round_down, &env->sse_status); break; case 2: set_float_rounding_mode(float_round_up, &env->sse_status); break; case 3: set_float_rounding_mode(float_round_to_zero, &env->sse_status); break; } } d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { set_float_exception_flags(get_float_exception_flags(&env->sse_status) & ~float_flag_inexact, &env->sse_status); } env->sse_status.float_rounding_mode = prev_rounding_mode; } void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mode) { uint8_t old_flags = get_float_exception_flags(&env->sse_status); signed char prev_rounding_mode; prev_rounding_mode = env->sse_status.float_rounding_mode; if (!(mode & (1 << 2))) { switch (mode & 3) { case 0: set_float_rounding_mode(float_round_nearest_even, &env->sse_status); break; case 1: set_float_rounding_mode(float_round_down, &env->sse_status); break; case 2: set_float_rounding_mode(float_round_up, &env->sse_status); break; case 3: set_float_rounding_mode(float_round_to_zero, &env->sse_status); break; } } d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { set_float_exception_flags(get_float_exception_flags(&env->sse_status) & ~float_flag_inexact, &env->sse_status); } env->sse_status.float_rounding_mode = prev_rounding_mode; } #endif #define FBLENDP(d, s, m) (m ? s : d) SSE_HELPER_I(helper_blendps, L, 4, FBLENDP) SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP) SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP) void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) { Reg *v = d; float32 prod1, prod2, temp2, temp3, temp4; int i; for (i = 0; i < 2 << SHIFT; i += 4) { /* * We must evaluate (A+B)+(C+D), not ((A+B)+C)+D * to correctly round the intermediate results */ if (mask & (1 << 4)) { prod1 = float32_mul(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status); } else { prod1 = float32_zero; } if (mask & (1 << 5)) { prod2 = float32_mul(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status); } else { prod2 = float32_zero; } temp2 = float32_add(prod1, prod2, &env->sse_status); if (mask & (1 << 6)) { prod1 = float32_mul(v->ZMM_S(i+2), s->ZMM_S(i+2), &env->sse_status); } else { prod1 = float32_zero; } if (mask & (1 << 7)) { prod2 = float32_mul(v->ZMM_S(i+3), s->ZMM_S(i+3), &env->sse_status); } else { prod2 = float32_zero; } temp3 = float32_add(prod1, prod2, &env->sse_status); temp4 = float32_add(temp2, temp3, &env->sse_status); d->ZMM_S(i) = (mask & (1 << 0)) ? temp4 : float32_zero; d->ZMM_S(i+1) = (mask & (1 << 1)) ? temp4 : float32_zero; d->ZMM_S(i+2) = (mask & (1 << 2)) ? temp4 : float32_zero; d->ZMM_S(i+3) = (mask & (1 << 3)) ? temp4 : float32_zero; } } #if SHIFT == 1 /* Oddly, there is no ymm version of dppd */ void glue(helper_dppd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) { Reg *v = d; float64 prod1, prod2, temp2; if (mask & (1 << 4)) { prod1 = float64_mul(v->ZMM_D(0), s->ZMM_D(0), &env->sse_status); } else { prod1 = float64_zero; } if (mask & (1 << 5)) { prod2 = float64_mul(v->ZMM_D(1), s->ZMM_D(1), &env->sse_status); } else { prod2 = float64_zero; } temp2 = float64_add(prod1, prod2, &env->sse_status); d->ZMM_D(0) = (mask & (1 << 0)) ? temp2 : float64_zero; d->ZMM_D(1) = (mask & (1 << 1)) ? temp2 : float64_zero; } #endif void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t offset) { Reg *v = d; int i, j; uint16_t r[8]; for (j = 0; j < 4 << SHIFT; ) { int s0 = (j * 2) + ((offset & 3) << 2); int d0 = (j * 2) + ((offset & 4) << 0); for (i = 0; i < LANE_WIDTH / 2; i++, d0++) { r[i] = 0; r[i] += abs1(v->B(d0 + 0) - s->B(s0 + 0)); r[i] += abs1(v->B(d0 + 1) - s->B(s0 + 1)); r[i] += abs1(v->B(d0 + 2) - s->B(s0 + 2)); r[i] += abs1(v->B(d0 + 3) - s->B(s0 + 3)); } for (i = 0; i < LANE_WIDTH / 2; i++, j++) { d->W(j) = r[i]; } offset >>= 3; } } /* SSE4.2 op helpers */ #define FCMPGTQ(d, s) ((int64_t)d > (int64_t)s ? -1 : 0) SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ) #if SHIFT == 1 static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl) { target_long val, limit; /* Presence of REX.W is indicated by a bit higher than 7 set */ if (ctrl >> 8) { val = (target_long)env->regs[reg]; } else { val = (int32_t)env->regs[reg]; } if (ctrl & 1) { limit = 8; } else { limit = 16; } if ((val > limit) || (val < -limit)) { return limit; } return abs1(val); } static inline int pcmp_ilen(Reg *r, uint8_t ctrl) { int val = 0; if (ctrl & 1) { while (val < 8 && r->W(val)) { val++; } } else { while (val < 16 && r->B(val)) { val++; } } return val; } static inline int pcmp_val(Reg *r, uint8_t ctrl, int i) { switch ((ctrl >> 0) & 3) { case 0: return r->B(i); case 1: return r->W(i); case 2: return (int8_t)r->B(i); case 3: default: return (int16_t)r->W(i); } } static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s, int8_t ctrl, int valids, int validd) { unsigned int res = 0; int v; int j, i; int upper = (ctrl & 1) ? 7 : 15; valids--; validd--; CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0); switch ((ctrl >> 2) & 3) { case 0: for (j = valids; j >= 0; j--) { res <<= 1; v = pcmp_val(s, ctrl, j); for (i = validd; i >= 0; i--) { res |= (v == pcmp_val(d, ctrl, i)); } } break; case 1: for (j = valids; j >= 0; j--) { res <<= 1; v = pcmp_val(s, ctrl, j); for (i = ((validd - 1) | 1); i >= 0; i -= 2) { res |= (pcmp_val(d, ctrl, i - 0) >= v && pcmp_val(d, ctrl, i - 1) <= v); } } break; case 2: res = (1 << (upper - MAX(valids, validd))) - 1; res <<= MAX(valids, validd) - MIN(valids, validd); for (i = MIN(valids, validd); i >= 0; i--) { res <<= 1; v = pcmp_val(s, ctrl, i); res |= (v == pcmp_val(d, ctrl, i)); } break; case 3: if (validd == -1) { res = (2 << upper) - 1; break; } for (j = valids == upper ? valids : valids - validd; j >= 0; j--) { res <<= 1; v = 1; for (i = MIN(valids - j, validd); i >= 0; i--) { v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i)); } res |= v; } break; } switch ((ctrl >> 4) & 3) { case 1: res ^= (2 << upper) - 1; break; case 3: res ^= (1 << (valids + 1)) - 1; break; } if (res) { CC_SRC |= CC_C; } if (res & 1) { CC_SRC |= CC_O; } return res; } void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { unsigned int res = pcmpxstrx(env, d, s, ctrl, pcmp_elen(env, R_EDX, ctrl), pcmp_elen(env, R_EAX, ctrl)); if (res) { env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); } else { env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); } } void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { int i; unsigned int res = pcmpxstrx(env, d, s, ctrl, pcmp_elen(env, R_EDX, ctrl), pcmp_elen(env, R_EAX, ctrl)); if ((ctrl >> 6) & 1) { if (ctrl & 1) { for (i = 0; i < 8; i++, res >>= 1) { env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; } } else { for (i = 0; i < 16; i++, res >>= 1) { env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; } } } else { env->xmm_regs[0].Q(1) = 0; env->xmm_regs[0].Q(0) = res; } } void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { unsigned int res = pcmpxstrx(env, d, s, ctrl, pcmp_ilen(s, ctrl), pcmp_ilen(d, ctrl)); if (res) { env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); } else { env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); } } void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { int i; unsigned int res = pcmpxstrx(env, d, s, ctrl, pcmp_ilen(s, ctrl), pcmp_ilen(d, ctrl)); if ((ctrl >> 6) & 1) { if (ctrl & 1) { for (i = 0; i < 8; i++, res >>= 1) { env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; } } else { for (i = 0; i < 16; i++, res >>= 1) { env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; } } } else { env->xmm_regs[0].Q(1) = 0; env->xmm_regs[0].Q(0) = res; } } #define CRCPOLY 0x1edc6f41 #define CRCPOLY_BITREV 0x82f63b78 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len) { target_ulong crc = (msg & ((target_ulong) -1 >> (TARGET_LONG_BITS - len))) ^ crc1; while (len--) { crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0); } return crc; } #endif void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { uint64_t ah, al, b, resh, resl; ah = 0; al = d->Q((ctrl & 1) != 0); b = s->Q((ctrl & 16) != 0); resh = resl = 0; while (b) { if (b & 1) { resl ^= al; resh ^= ah; } ah = (ah << 1) | (al >> 63); al <<= 1; b >>= 1; } d->Q(0) = resl; d->Q(1) = resh; } void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg st = *d; Reg rk = *s; for (i = 0 ; i < 4 ; i++) { d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4*i+0])] ^ AES_Td1[st.B(AES_ishifts[4*i+1])] ^ AES_Td2[st.B(AES_ishifts[4*i+2])] ^ AES_Td3[st.B(AES_ishifts[4*i+3])]); } } void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg st = *d; Reg rk = *s; for (i = 0; i < 16; i++) { d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]); } } void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg st = *d; Reg rk = *s; for (i = 0 ; i < 4 ; i++) { d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4*i+0])] ^ AES_Te1[st.B(AES_shifts[4*i+1])] ^ AES_Te2[st.B(AES_shifts[4*i+2])] ^ AES_Te3[st.B(AES_shifts[4*i+3])]); } } void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg st = *d; Reg rk = *s; for (i = 0; i < 16; i++) { d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]); } } void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg tmp = *s; for (i = 0 ; i < 4 ; i++) { d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^ AES_imc[tmp.B(4*i+1)][1] ^ AES_imc[tmp.B(4*i+2)][2] ^ AES_imc[tmp.B(4*i+3)][3]); } } void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { int i; Reg tmp = *s; for (i = 0 ; i < 4 ; i++) { d->B(i) = AES_sbox[tmp.B(i + 4)]; d->B(i + 8) = AES_sbox[tmp.B(i + 12)]; } d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl; d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl; } #endif #undef SSE_HELPER_S #undef SHIFT #undef XMM_ONLY #undef Reg #undef B #undef W #undef L #undef Q #undef SUFFIX