/* * MIPS emulation for QEMU - main translation routines * * Copyright (c) 2004-2005 Jocelyn Mayer * Copyright (c) 2006 Marius Groeger (FPU operations) * Copyright (c) 2006 Thiemo Seufer (MIPS32R2 support) * Copyright (c) 2009 CodeSourcery (MIPS16 and microMIPS support) * Copyright (c) 2012 Jia Liu & Dongxue Zhang (MIPS ASE DSP support) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "internal.h" #include "tcg/tcg-op.h" #include "exec/cpu_ldst.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "hw/semihosting/semihost.h" #include "target/mips/trace.h" #include "trace-tcg.h" #include "exec/translator.h" #include "exec/log.h" #include "qemu/qemu-print.h" #include "fpu_helper.h" #include "translate.h" enum { /* indirect opcode tables */ OPC_SPECIAL = (0x00 << 26), OPC_REGIMM = (0x01 << 26), OPC_CP0 = (0x10 << 26), OPC_CP2 = (0x12 << 26), OPC_CP3 = (0x13 << 26), OPC_SPECIAL2 = (0x1C << 26), OPC_SPECIAL3 = (0x1F << 26), /* arithmetic with immediate */ OPC_ADDI = (0x08 << 26), OPC_ADDIU = (0x09 << 26), OPC_SLTI = (0x0A << 26), OPC_SLTIU = (0x0B << 26), /* logic with immediate */ OPC_ANDI = (0x0C << 26), OPC_ORI = (0x0D << 26), OPC_XORI = (0x0E << 26), OPC_LUI = (0x0F << 26), /* arithmetic with immediate */ OPC_DADDI = (0x18 << 26), OPC_DADDIU = (0x19 << 26), /* Jump and branches */ OPC_J = (0x02 << 26), OPC_JAL = (0x03 << 26), OPC_BEQ = (0x04 << 26), /* Unconditional if rs = rt = 0 (B) */ OPC_BEQL = (0x14 << 26), OPC_BNE = (0x05 << 26), OPC_BNEL = (0x15 << 26), OPC_BLEZ = (0x06 << 26), OPC_BLEZL = (0x16 << 26), OPC_BGTZ = (0x07 << 26), OPC_BGTZL = (0x17 << 26), OPC_JALX = (0x1D << 26), OPC_DAUI = (0x1D << 26), /* Load and stores */ OPC_LDL = (0x1A << 26), OPC_LDR = (0x1B << 26), OPC_LB = (0x20 << 26), OPC_LH = (0x21 << 26), OPC_LWL = (0x22 << 26), OPC_LW = (0x23 << 26), OPC_LWPC = OPC_LW | 0x5, OPC_LBU = (0x24 << 26), OPC_LHU = (0x25 << 26), OPC_LWR = (0x26 << 26), OPC_LWU = (0x27 << 26), OPC_SB = (0x28 << 26), OPC_SH = (0x29 << 26), OPC_SWL = (0x2A << 26), OPC_SW = (0x2B << 26), OPC_SDL = (0x2C << 26), OPC_SDR = (0x2D << 26), OPC_SWR = (0x2E << 26), OPC_LL = (0x30 << 26), OPC_LLD = (0x34 << 26), OPC_LD = (0x37 << 26), OPC_LDPC = OPC_LD | 0x5, OPC_SC = (0x38 << 26), OPC_SCD = (0x3C << 26), OPC_SD = (0x3F << 26), /* Floating point load/store */ OPC_LWC1 = (0x31 << 26), OPC_LWC2 = (0x32 << 26), OPC_LDC1 = (0x35 << 26), OPC_LDC2 = (0x36 << 26), OPC_SWC1 = (0x39 << 26), OPC_SWC2 = (0x3A << 26), OPC_SDC1 = (0x3D << 26), OPC_SDC2 = (0x3E << 26), /* Compact Branches */ OPC_BLEZALC = (0x06 << 26), OPC_BGEZALC = (0x06 << 26), OPC_BGEUC = (0x06 << 26), OPC_BGTZALC = (0x07 << 26), OPC_BLTZALC = (0x07 << 26), OPC_BLTUC = (0x07 << 26), OPC_BOVC = (0x08 << 26), OPC_BEQZALC = (0x08 << 26), OPC_BEQC = (0x08 << 26), OPC_BLEZC = (0x16 << 26), OPC_BGEZC = (0x16 << 26), OPC_BGEC = (0x16 << 26), OPC_BGTZC = (0x17 << 26), OPC_BLTZC = (0x17 << 26), OPC_BLTC = (0x17 << 26), OPC_BNVC = (0x18 << 26), OPC_BNEZALC = (0x18 << 26), OPC_BNEC = (0x18 << 26), OPC_BC = (0x32 << 26), OPC_BEQZC = (0x36 << 26), OPC_JIC = (0x36 << 26), OPC_BALC = (0x3A << 26), OPC_BNEZC = (0x3E << 26), OPC_JIALC = (0x3E << 26), /* MDMX ASE specific */ OPC_MDMX = (0x1E << 26), /* MSA ASE, same as MDMX */ OPC_MSA = OPC_MDMX, /* Cache and prefetch */ OPC_CACHE = (0x2F << 26), OPC_PREF = (0x33 << 26), /* PC-relative address computation / loads */ OPC_PCREL = (0x3B << 26), }; /* PC-relative address computation / loads */ #define MASK_OPC_PCREL_TOP2BITS(op) (MASK_OP_MAJOR(op) | (op & (3 << 19))) #define MASK_OPC_PCREL_TOP5BITS(op) (MASK_OP_MAJOR(op) | (op & (0x1f << 16))) enum { /* Instructions determined by bits 19 and 20 */ OPC_ADDIUPC = OPC_PCREL | (0 << 19), R6_OPC_LWPC = OPC_PCREL | (1 << 19), OPC_LWUPC = OPC_PCREL | (2 << 19), /* Instructions determined by bits 16 ... 20 */ OPC_AUIPC = OPC_PCREL | (0x1e << 16), OPC_ALUIPC = OPC_PCREL | (0x1f << 16), /* Other */ R6_OPC_LDPC = OPC_PCREL | (6 << 18), }; /* MIPS special opcodes */ #define MASK_SPECIAL(op) (MASK_OP_MAJOR(op) | (op & 0x3F)) enum { /* Shifts */ OPC_SLL = 0x00 | OPC_SPECIAL, /* NOP is SLL r0, r0, 0 */ /* SSNOP is SLL r0, r0, 1 */ /* EHB is SLL r0, r0, 3 */ OPC_SRL = 0x02 | OPC_SPECIAL, /* also ROTR */ OPC_ROTR = OPC_SRL | (1 << 21), OPC_SRA = 0x03 | OPC_SPECIAL, OPC_SLLV = 0x04 | OPC_SPECIAL, OPC_SRLV = 0x06 | OPC_SPECIAL, /* also ROTRV */ OPC_ROTRV = OPC_SRLV | (1 << 6), OPC_SRAV = 0x07 | OPC_SPECIAL, OPC_DSLLV = 0x14 | OPC_SPECIAL, OPC_DSRLV = 0x16 | OPC_SPECIAL, /* also DROTRV */ OPC_DROTRV = OPC_DSRLV | (1 << 6), OPC_DSRAV = 0x17 | OPC_SPECIAL, OPC_DSLL = 0x38 | OPC_SPECIAL, OPC_DSRL = 0x3A | OPC_SPECIAL, /* also DROTR */ OPC_DROTR = OPC_DSRL | (1 << 21), OPC_DSRA = 0x3B | OPC_SPECIAL, OPC_DSLL32 = 0x3C | OPC_SPECIAL, OPC_DSRL32 = 0x3E | OPC_SPECIAL, /* also DROTR32 */ OPC_DROTR32 = OPC_DSRL32 | (1 << 21), OPC_DSRA32 = 0x3F | OPC_SPECIAL, /* Multiplication / division */ OPC_MULT = 0x18 | OPC_SPECIAL, OPC_MULTU = 0x19 | OPC_SPECIAL, OPC_DIV = 0x1A | OPC_SPECIAL, OPC_DIVU = 0x1B | OPC_SPECIAL, OPC_DMULT = 0x1C | OPC_SPECIAL, OPC_DMULTU = 0x1D | OPC_SPECIAL, OPC_DDIV = 0x1E | OPC_SPECIAL, OPC_DDIVU = 0x1F | OPC_SPECIAL, /* 2 registers arithmetic / logic */ OPC_ADD = 0x20 | OPC_SPECIAL, OPC_ADDU = 0x21 | OPC_SPECIAL, OPC_SUB = 0x22 | OPC_SPECIAL, OPC_SUBU = 0x23 | OPC_SPECIAL, OPC_AND = 0x24 | OPC_SPECIAL, OPC_OR = 0x25 | OPC_SPECIAL, OPC_XOR = 0x26 | OPC_SPECIAL, OPC_NOR = 0x27 | OPC_SPECIAL, OPC_SLT = 0x2A | OPC_SPECIAL, OPC_SLTU = 0x2B | OPC_SPECIAL, OPC_DADD = 0x2C | OPC_SPECIAL, OPC_DADDU = 0x2D | OPC_SPECIAL, OPC_DSUB = 0x2E | OPC_SPECIAL, OPC_DSUBU = 0x2F | OPC_SPECIAL, /* Jumps */ OPC_JR = 0x08 | OPC_SPECIAL, /* Also JR.HB */ OPC_JALR = 0x09 | OPC_SPECIAL, /* Also JALR.HB */ /* Traps */ OPC_TGE = 0x30 | OPC_SPECIAL, OPC_TGEU = 0x31 | OPC_SPECIAL, OPC_TLT = 0x32 | OPC_SPECIAL, OPC_TLTU = 0x33 | OPC_SPECIAL, OPC_TEQ = 0x34 | OPC_SPECIAL, OPC_TNE = 0x36 | OPC_SPECIAL, /* HI / LO registers load & stores */ OPC_MFHI = 0x10 | OPC_SPECIAL, OPC_MTHI = 0x11 | OPC_SPECIAL, OPC_MFLO = 0x12 | OPC_SPECIAL, OPC_MTLO = 0x13 | OPC_SPECIAL, /* Conditional moves */ OPC_MOVZ = 0x0A | OPC_SPECIAL, OPC_MOVN = 0x0B | OPC_SPECIAL, OPC_SELEQZ = 0x35 | OPC_SPECIAL, OPC_SELNEZ = 0x37 | OPC_SPECIAL, OPC_MOVCI = 0x01 | OPC_SPECIAL, /* Special */ OPC_PMON = 0x05 | OPC_SPECIAL, /* unofficial */ OPC_SYSCALL = 0x0C | OPC_SPECIAL, OPC_BREAK = 0x0D | OPC_SPECIAL, OPC_SPIM = 0x0E | OPC_SPECIAL, /* unofficial */ OPC_SYNC = 0x0F | OPC_SPECIAL, OPC_SPECIAL28_RESERVED = 0x28 | OPC_SPECIAL, OPC_SPECIAL29_RESERVED = 0x29 | OPC_SPECIAL, OPC_SPECIAL39_RESERVED = 0x39 | OPC_SPECIAL, OPC_SPECIAL3D_RESERVED = 0x3D | OPC_SPECIAL, }; /* * R6 Multiply and Divide instructions have the same opcode * and function field as legacy OPC_MULT[U]/OPC_DIV[U] */ #define MASK_R6_MULDIV(op) (MASK_SPECIAL(op) | (op & (0x7ff))) enum { R6_OPC_MUL = OPC_MULT | (2 << 6), R6_OPC_MUH = OPC_MULT | (3 << 6), R6_OPC_MULU = OPC_MULTU | (2 << 6), R6_OPC_MUHU = OPC_MULTU | (3 << 6), R6_OPC_DIV = OPC_DIV | (2 << 6), R6_OPC_MOD = OPC_DIV | (3 << 6), R6_OPC_DIVU = OPC_DIVU | (2 << 6), R6_OPC_MODU = OPC_DIVU | (3 << 6), R6_OPC_DMUL = OPC_DMULT | (2 << 6), R6_OPC_DMUH = OPC_DMULT | (3 << 6), R6_OPC_DMULU = OPC_DMULTU | (2 << 6), R6_OPC_DMUHU = OPC_DMULTU | (3 << 6), R6_OPC_DDIV = OPC_DDIV | (2 << 6), R6_OPC_DMOD = OPC_DDIV | (3 << 6), R6_OPC_DDIVU = OPC_DDIVU | (2 << 6), R6_OPC_DMODU = OPC_DDIVU | (3 << 6), R6_OPC_CLZ = 0x10 | OPC_SPECIAL, R6_OPC_CLO = 0x11 | OPC_SPECIAL, R6_OPC_DCLZ = 0x12 | OPC_SPECIAL, R6_OPC_DCLO = 0x13 | OPC_SPECIAL, R6_OPC_SDBBP = 0x0e | OPC_SPECIAL, OPC_LSA = 0x05 | OPC_SPECIAL, OPC_DLSA = 0x15 | OPC_SPECIAL, }; /* Multiplication variants of the vr54xx. */ #define MASK_MUL_VR54XX(op) (MASK_SPECIAL(op) | (op & (0x1F << 6))) enum { OPC_VR54XX_MULS = (0x03 << 6) | OPC_MULT, OPC_VR54XX_MULSU = (0x03 << 6) | OPC_MULTU, OPC_VR54XX_MACC = (0x05 << 6) | OPC_MULT, OPC_VR54XX_MACCU = (0x05 << 6) | OPC_MULTU, OPC_VR54XX_MSAC = (0x07 << 6) | OPC_MULT, OPC_VR54XX_MSACU = (0x07 << 6) | OPC_MULTU, OPC_VR54XX_MULHI = (0x09 << 6) | OPC_MULT, OPC_VR54XX_MULHIU = (0x09 << 6) | OPC_MULTU, OPC_VR54XX_MULSHI = (0x0B << 6) | OPC_MULT, OPC_VR54XX_MULSHIU = (0x0B << 6) | OPC_MULTU, OPC_VR54XX_MACCHI = (0x0D << 6) | OPC_MULT, OPC_VR54XX_MACCHIU = (0x0D << 6) | OPC_MULTU, OPC_VR54XX_MSACHI = (0x0F << 6) | OPC_MULT, OPC_VR54XX_MSACHIU = (0x0F << 6) | OPC_MULTU, }; /* REGIMM (rt field) opcodes */ #define MASK_REGIMM(op) (MASK_OP_MAJOR(op) | (op & (0x1F << 16))) enum { OPC_BLTZ = (0x00 << 16) | OPC_REGIMM, OPC_BLTZL = (0x02 << 16) | OPC_REGIMM, OPC_BGEZ = (0x01 << 16) | OPC_REGIMM, OPC_BGEZL = (0x03 << 16) | OPC_REGIMM, OPC_BLTZAL = (0x10 << 16) | OPC_REGIMM, OPC_BLTZALL = (0x12 << 16) | OPC_REGIMM, OPC_BGEZAL = (0x11 << 16) | OPC_REGIMM, OPC_BGEZALL = (0x13 << 16) | OPC_REGIMM, OPC_TGEI = (0x08 << 16) | OPC_REGIMM, OPC_TGEIU = (0x09 << 16) | OPC_REGIMM, OPC_TLTI = (0x0A << 16) | OPC_REGIMM, OPC_TLTIU = (0x0B << 16) | OPC_REGIMM, OPC_TEQI = (0x0C << 16) | OPC_REGIMM, OPC_TNEI = (0x0E << 16) | OPC_REGIMM, OPC_SIGRIE = (0x17 << 16) | OPC_REGIMM, OPC_SYNCI = (0x1F << 16) | OPC_REGIMM, OPC_DAHI = (0x06 << 16) | OPC_REGIMM, OPC_DATI = (0x1e << 16) | OPC_REGIMM, }; /* Special2 opcodes */ #define MASK_SPECIAL2(op) (MASK_OP_MAJOR(op) | (op & 0x3F)) enum { /* Multiply & xxx operations */ OPC_MADD = 0x00 | OPC_SPECIAL2, OPC_MADDU = 0x01 | OPC_SPECIAL2, OPC_MUL = 0x02 | OPC_SPECIAL2, OPC_MSUB = 0x04 | OPC_SPECIAL2, OPC_MSUBU = 0x05 | OPC_SPECIAL2, /* Loongson 2F */ OPC_MULT_G_2F = 0x10 | OPC_SPECIAL2, OPC_DMULT_G_2F = 0x11 | OPC_SPECIAL2, OPC_MULTU_G_2F = 0x12 | OPC_SPECIAL2, OPC_DMULTU_G_2F = 0x13 | OPC_SPECIAL2, OPC_DIV_G_2F = 0x14 | OPC_SPECIAL2, OPC_DDIV_G_2F = 0x15 | OPC_SPECIAL2, OPC_DIVU_G_2F = 0x16 | OPC_SPECIAL2, OPC_DDIVU_G_2F = 0x17 | OPC_SPECIAL2, OPC_MOD_G_2F = 0x1c | OPC_SPECIAL2, OPC_DMOD_G_2F = 0x1d | OPC_SPECIAL2, OPC_MODU_G_2F = 0x1e | OPC_SPECIAL2, OPC_DMODU_G_2F = 0x1f | OPC_SPECIAL2, /* Misc */ OPC_CLZ = 0x20 | OPC_SPECIAL2, OPC_CLO = 0x21 | OPC_SPECIAL2, OPC_DCLZ = 0x24 | OPC_SPECIAL2, OPC_DCLO = 0x25 | OPC_SPECIAL2, /* Special */ OPC_SDBBP = 0x3F | OPC_SPECIAL2, }; /* Special3 opcodes */ #define MASK_SPECIAL3(op) (MASK_OP_MAJOR(op) | (op & 0x3F)) enum { OPC_EXT = 0x00 | OPC_SPECIAL3, OPC_DEXTM = 0x01 | OPC_SPECIAL3, OPC_DEXTU = 0x02 | OPC_SPECIAL3, OPC_DEXT = 0x03 | OPC_SPECIAL3, OPC_INS = 0x04 | OPC_SPECIAL3, OPC_DINSM = 0x05 | OPC_SPECIAL3, OPC_DINSU = 0x06 | OPC_SPECIAL3, OPC_DINS = 0x07 | OPC_SPECIAL3, OPC_FORK = 0x08 | OPC_SPECIAL3, OPC_YIELD = 0x09 | OPC_SPECIAL3, OPC_BSHFL = 0x20 | OPC_SPECIAL3, OPC_DBSHFL = 0x24 | OPC_SPECIAL3, OPC_RDHWR = 0x3B | OPC_SPECIAL3, OPC_GINV = 0x3D | OPC_SPECIAL3, /* Loongson 2E */ OPC_MULT_G_2E = 0x18 | OPC_SPECIAL3, OPC_MULTU_G_2E = 0x19 | OPC_SPECIAL3, OPC_DIV_G_2E = 0x1A | OPC_SPECIAL3, OPC_DIVU_G_2E = 0x1B | OPC_SPECIAL3, OPC_DMULT_G_2E = 0x1C | OPC_SPECIAL3, OPC_DMULTU_G_2E = 0x1D | OPC_SPECIAL3, OPC_DDIV_G_2E = 0x1E | OPC_SPECIAL3, OPC_DDIVU_G_2E = 0x1F | OPC_SPECIAL3, OPC_MOD_G_2E = 0x22 | OPC_SPECIAL3, OPC_MODU_G_2E = 0x23 | OPC_SPECIAL3, OPC_DMOD_G_2E = 0x26 | OPC_SPECIAL3, OPC_DMODU_G_2E = 0x27 | OPC_SPECIAL3, /* MIPS DSP Load */ OPC_LX_DSP = 0x0A | OPC_SPECIAL3, /* MIPS DSP Arithmetic */ OPC_ADDU_QB_DSP = 0x10 | OPC_SPECIAL3, OPC_ADDU_OB_DSP = 0x14 | OPC_SPECIAL3, OPC_ABSQ_S_PH_DSP = 0x12 | OPC_SPECIAL3, OPC_ABSQ_S_QH_DSP = 0x16 | OPC_SPECIAL3, /* OPC_ADDUH_QB_DSP is same as OPC_MULT_G_2E. */ /* OPC_ADDUH_QB_DSP = 0x18 | OPC_SPECIAL3, */ OPC_CMPU_EQ_QB_DSP = 0x11 | OPC_SPECIAL3, OPC_CMPU_EQ_OB_DSP = 0x15 | OPC_SPECIAL3, /* MIPS DSP GPR-Based Shift Sub-class */ OPC_SHLL_QB_DSP = 0x13 | OPC_SPECIAL3, OPC_SHLL_OB_DSP = 0x17 | OPC_SPECIAL3, /* MIPS DSP Multiply Sub-class insns */ /* OPC_MUL_PH_DSP is same as OPC_ADDUH_QB_DSP. */ /* OPC_MUL_PH_DSP = 0x18 | OPC_SPECIAL3, */ OPC_DPA_W_PH_DSP = 0x30 | OPC_SPECIAL3, OPC_DPAQ_W_QH_DSP = 0x34 | OPC_SPECIAL3, /* DSP Bit/Manipulation Sub-class */ OPC_INSV_DSP = 0x0C | OPC_SPECIAL3, OPC_DINSV_DSP = 0x0D | OPC_SPECIAL3, /* MIPS DSP Append Sub-class */ OPC_APPEND_DSP = 0x31 | OPC_SPECIAL3, OPC_DAPPEND_DSP = 0x35 | OPC_SPECIAL3, /* MIPS DSP Accumulator and DSPControl Access Sub-class */ OPC_EXTR_W_DSP = 0x38 | OPC_SPECIAL3, OPC_DEXTR_W_DSP = 0x3C | OPC_SPECIAL3, /* EVA */ OPC_LWLE = 0x19 | OPC_SPECIAL3, OPC_LWRE = 0x1A | OPC_SPECIAL3, OPC_CACHEE = 0x1B | OPC_SPECIAL3, OPC_SBE = 0x1C | OPC_SPECIAL3, OPC_SHE = 0x1D | OPC_SPECIAL3, OPC_SCE = 0x1E | OPC_SPECIAL3, OPC_SWE = 0x1F | OPC_SPECIAL3, OPC_SWLE = 0x21 | OPC_SPECIAL3, OPC_SWRE = 0x22 | OPC_SPECIAL3, OPC_PREFE = 0x23 | OPC_SPECIAL3, OPC_LBUE = 0x28 | OPC_SPECIAL3, OPC_LHUE = 0x29 | OPC_SPECIAL3, OPC_LBE = 0x2C | OPC_SPECIAL3, OPC_LHE = 0x2D | OPC_SPECIAL3, OPC_LLE = 0x2E | OPC_SPECIAL3, OPC_LWE = 0x2F | OPC_SPECIAL3, /* R6 */ R6_OPC_PREF = 0x35 | OPC_SPECIAL3, R6_OPC_CACHE = 0x25 | OPC_SPECIAL3, R6_OPC_LL = 0x36 | OPC_SPECIAL3, R6_OPC_SC = 0x26 | OPC_SPECIAL3, R6_OPC_LLD = 0x37 | OPC_SPECIAL3, R6_OPC_SCD = 0x27 | OPC_SPECIAL3, }; /* Loongson EXT load/store quad word opcodes */ #define MASK_LOONGSON_GSLSQ(op) (MASK_OP_MAJOR(op) | (op & 0x8020)) enum { OPC_GSLQ = 0x0020 | OPC_LWC2, OPC_GSLQC1 = 0x8020 | OPC_LWC2, OPC_GSSHFL = OPC_LWC2, OPC_GSSQ = 0x0020 | OPC_SWC2, OPC_GSSQC1 = 0x8020 | OPC_SWC2, OPC_GSSHFS = OPC_SWC2, }; /* Loongson EXT shifted load/store opcodes */ #define MASK_LOONGSON_GSSHFLS(op) (MASK_OP_MAJOR(op) | (op & 0xc03f)) enum { OPC_GSLWLC1 = 0x4 | OPC_GSSHFL, OPC_GSLWRC1 = 0x5 | OPC_GSSHFL, OPC_GSLDLC1 = 0x6 | OPC_GSSHFL, OPC_GSLDRC1 = 0x7 | OPC_GSSHFL, OPC_GSSWLC1 = 0x4 | OPC_GSSHFS, OPC_GSSWRC1 = 0x5 | OPC_GSSHFS, OPC_GSSDLC1 = 0x6 | OPC_GSSHFS, OPC_GSSDRC1 = 0x7 | OPC_GSSHFS, }; /* Loongson EXT LDC2/SDC2 opcodes */ #define MASK_LOONGSON_LSDC2(op) (MASK_OP_MAJOR(op) | (op & 0x7)) enum { OPC_GSLBX = 0x0 | OPC_LDC2, OPC_GSLHX = 0x1 | OPC_LDC2, OPC_GSLWX = 0x2 | OPC_LDC2, OPC_GSLDX = 0x3 | OPC_LDC2, OPC_GSLWXC1 = 0x6 | OPC_LDC2, OPC_GSLDXC1 = 0x7 | OPC_LDC2, OPC_GSSBX = 0x0 | OPC_SDC2, OPC_GSSHX = 0x1 | OPC_SDC2, OPC_GSSWX = 0x2 | OPC_SDC2, OPC_GSSDX = 0x3 | OPC_SDC2, OPC_GSSWXC1 = 0x6 | OPC_SDC2, OPC_GSSDXC1 = 0x7 | OPC_SDC2, }; /* BSHFL opcodes */ #define MASK_BSHFL(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { OPC_WSBH = (0x02 << 6) | OPC_BSHFL, OPC_SEB = (0x10 << 6) | OPC_BSHFL, OPC_SEH = (0x18 << 6) | OPC_BSHFL, OPC_ALIGN = (0x08 << 6) | OPC_BSHFL, /* 010.bp (010.00 to 010.11) */ OPC_ALIGN_1 = (0x09 << 6) | OPC_BSHFL, OPC_ALIGN_2 = (0x0A << 6) | OPC_BSHFL, OPC_ALIGN_3 = (0x0B << 6) | OPC_BSHFL, OPC_BITSWAP = (0x00 << 6) | OPC_BSHFL /* 00000 */ }; /* DBSHFL opcodes */ #define MASK_DBSHFL(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { OPC_DSBH = (0x02 << 6) | OPC_DBSHFL, OPC_DSHD = (0x05 << 6) | OPC_DBSHFL, OPC_DALIGN = (0x08 << 6) | OPC_DBSHFL, /* 01.bp (01.000 to 01.111) */ OPC_DALIGN_1 = (0x09 << 6) | OPC_DBSHFL, OPC_DALIGN_2 = (0x0A << 6) | OPC_DBSHFL, OPC_DALIGN_3 = (0x0B << 6) | OPC_DBSHFL, OPC_DALIGN_4 = (0x0C << 6) | OPC_DBSHFL, OPC_DALIGN_5 = (0x0D << 6) | OPC_DBSHFL, OPC_DALIGN_6 = (0x0E << 6) | OPC_DBSHFL, OPC_DALIGN_7 = (0x0F << 6) | OPC_DBSHFL, OPC_DBITSWAP = (0x00 << 6) | OPC_DBSHFL, /* 00000 */ }; /* MIPS DSP REGIMM opcodes */ enum { OPC_BPOSGE32 = (0x1C << 16) | OPC_REGIMM, OPC_BPOSGE64 = (0x1D << 16) | OPC_REGIMM, }; #define MASK_LX(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) /* MIPS DSP Load */ enum { OPC_LBUX = (0x06 << 6) | OPC_LX_DSP, OPC_LHX = (0x04 << 6) | OPC_LX_DSP, OPC_LWX = (0x00 << 6) | OPC_LX_DSP, OPC_LDX = (0x08 << 6) | OPC_LX_DSP, }; #define MASK_ADDU_QB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Arithmetic Sub-class */ OPC_ADDQ_PH = (0x0A << 6) | OPC_ADDU_QB_DSP, OPC_ADDQ_S_PH = (0x0E << 6) | OPC_ADDU_QB_DSP, OPC_ADDQ_S_W = (0x16 << 6) | OPC_ADDU_QB_DSP, OPC_ADDU_QB = (0x00 << 6) | OPC_ADDU_QB_DSP, OPC_ADDU_S_QB = (0x04 << 6) | OPC_ADDU_QB_DSP, OPC_ADDU_PH = (0x08 << 6) | OPC_ADDU_QB_DSP, OPC_ADDU_S_PH = (0x0C << 6) | OPC_ADDU_QB_DSP, OPC_SUBQ_PH = (0x0B << 6) | OPC_ADDU_QB_DSP, OPC_SUBQ_S_PH = (0x0F << 6) | OPC_ADDU_QB_DSP, OPC_SUBQ_S_W = (0x17 << 6) | OPC_ADDU_QB_DSP, OPC_SUBU_QB = (0x01 << 6) | OPC_ADDU_QB_DSP, OPC_SUBU_S_QB = (0x05 << 6) | OPC_ADDU_QB_DSP, OPC_SUBU_PH = (0x09 << 6) | OPC_ADDU_QB_DSP, OPC_SUBU_S_PH = (0x0D << 6) | OPC_ADDU_QB_DSP, OPC_ADDSC = (0x10 << 6) | OPC_ADDU_QB_DSP, OPC_ADDWC = (0x11 << 6) | OPC_ADDU_QB_DSP, OPC_MODSUB = (0x12 << 6) | OPC_ADDU_QB_DSP, OPC_RADDU_W_QB = (0x14 << 6) | OPC_ADDU_QB_DSP, /* MIPS DSP Multiply Sub-class insns */ OPC_MULEU_S_PH_QBL = (0x06 << 6) | OPC_ADDU_QB_DSP, OPC_MULEU_S_PH_QBR = (0x07 << 6) | OPC_ADDU_QB_DSP, OPC_MULQ_RS_PH = (0x1F << 6) | OPC_ADDU_QB_DSP, OPC_MULEQ_S_W_PHL = (0x1C << 6) | OPC_ADDU_QB_DSP, OPC_MULEQ_S_W_PHR = (0x1D << 6) | OPC_ADDU_QB_DSP, OPC_MULQ_S_PH = (0x1E << 6) | OPC_ADDU_QB_DSP, }; #define OPC_ADDUH_QB_DSP OPC_MULT_G_2E #define MASK_ADDUH_QB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Arithmetic Sub-class */ OPC_ADDUH_QB = (0x00 << 6) | OPC_ADDUH_QB_DSP, OPC_ADDUH_R_QB = (0x02 << 6) | OPC_ADDUH_QB_DSP, OPC_ADDQH_PH = (0x08 << 6) | OPC_ADDUH_QB_DSP, OPC_ADDQH_R_PH = (0x0A << 6) | OPC_ADDUH_QB_DSP, OPC_ADDQH_W = (0x10 << 6) | OPC_ADDUH_QB_DSP, OPC_ADDQH_R_W = (0x12 << 6) | OPC_ADDUH_QB_DSP, OPC_SUBUH_QB = (0x01 << 6) | OPC_ADDUH_QB_DSP, OPC_SUBUH_R_QB = (0x03 << 6) | OPC_ADDUH_QB_DSP, OPC_SUBQH_PH = (0x09 << 6) | OPC_ADDUH_QB_DSP, OPC_SUBQH_R_PH = (0x0B << 6) | OPC_ADDUH_QB_DSP, OPC_SUBQH_W = (0x11 << 6) | OPC_ADDUH_QB_DSP, OPC_SUBQH_R_W = (0x13 << 6) | OPC_ADDUH_QB_DSP, /* MIPS DSP Multiply Sub-class insns */ OPC_MUL_PH = (0x0C << 6) | OPC_ADDUH_QB_DSP, OPC_MUL_S_PH = (0x0E << 6) | OPC_ADDUH_QB_DSP, OPC_MULQ_S_W = (0x16 << 6) | OPC_ADDUH_QB_DSP, OPC_MULQ_RS_W = (0x17 << 6) | OPC_ADDUH_QB_DSP, }; #define MASK_ABSQ_S_PH(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Arithmetic Sub-class */ OPC_ABSQ_S_QB = (0x01 << 6) | OPC_ABSQ_S_PH_DSP, OPC_ABSQ_S_PH = (0x09 << 6) | OPC_ABSQ_S_PH_DSP, OPC_ABSQ_S_W = (0x11 << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEQ_W_PHL = (0x0C << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEQ_W_PHR = (0x0D << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEQU_PH_QBL = (0x04 << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEQU_PH_QBR = (0x05 << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEQU_PH_QBLA = (0x06 << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEQU_PH_QBRA = (0x07 << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEU_PH_QBL = (0x1C << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEU_PH_QBR = (0x1D << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEU_PH_QBLA = (0x1E << 6) | OPC_ABSQ_S_PH_DSP, OPC_PRECEU_PH_QBRA = (0x1F << 6) | OPC_ABSQ_S_PH_DSP, /* DSP Bit/Manipulation Sub-class */ OPC_BITREV = (0x1B << 6) | OPC_ABSQ_S_PH_DSP, OPC_REPL_QB = (0x02 << 6) | OPC_ABSQ_S_PH_DSP, OPC_REPLV_QB = (0x03 << 6) | OPC_ABSQ_S_PH_DSP, OPC_REPL_PH = (0x0A << 6) | OPC_ABSQ_S_PH_DSP, OPC_REPLV_PH = (0x0B << 6) | OPC_ABSQ_S_PH_DSP, }; #define MASK_CMPU_EQ_QB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Arithmetic Sub-class */ OPC_PRECR_QB_PH = (0x0D << 6) | OPC_CMPU_EQ_QB_DSP, OPC_PRECRQ_QB_PH = (0x0C << 6) | OPC_CMPU_EQ_QB_DSP, OPC_PRECR_SRA_PH_W = (0x1E << 6) | OPC_CMPU_EQ_QB_DSP, OPC_PRECR_SRA_R_PH_W = (0x1F << 6) | OPC_CMPU_EQ_QB_DSP, OPC_PRECRQ_PH_W = (0x14 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_PRECRQ_RS_PH_W = (0x15 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_PRECRQU_S_QB_PH = (0x0F << 6) | OPC_CMPU_EQ_QB_DSP, /* DSP Compare-Pick Sub-class */ OPC_CMPU_EQ_QB = (0x00 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMPU_LT_QB = (0x01 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMPU_LE_QB = (0x02 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMPGU_EQ_QB = (0x04 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMPGU_LT_QB = (0x05 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMPGU_LE_QB = (0x06 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMPGDU_EQ_QB = (0x18 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMPGDU_LT_QB = (0x19 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMPGDU_LE_QB = (0x1A << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMP_EQ_PH = (0x08 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMP_LT_PH = (0x09 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_CMP_LE_PH = (0x0A << 6) | OPC_CMPU_EQ_QB_DSP, OPC_PICK_QB = (0x03 << 6) | OPC_CMPU_EQ_QB_DSP, OPC_PICK_PH = (0x0B << 6) | OPC_CMPU_EQ_QB_DSP, OPC_PACKRL_PH = (0x0E << 6) | OPC_CMPU_EQ_QB_DSP, }; #define MASK_SHLL_QB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP GPR-Based Shift Sub-class */ OPC_SHLL_QB = (0x00 << 6) | OPC_SHLL_QB_DSP, OPC_SHLLV_QB = (0x02 << 6) | OPC_SHLL_QB_DSP, OPC_SHLL_PH = (0x08 << 6) | OPC_SHLL_QB_DSP, OPC_SHLLV_PH = (0x0A << 6) | OPC_SHLL_QB_DSP, OPC_SHLL_S_PH = (0x0C << 6) | OPC_SHLL_QB_DSP, OPC_SHLLV_S_PH = (0x0E << 6) | OPC_SHLL_QB_DSP, OPC_SHLL_S_W = (0x14 << 6) | OPC_SHLL_QB_DSP, OPC_SHLLV_S_W = (0x16 << 6) | OPC_SHLL_QB_DSP, OPC_SHRL_QB = (0x01 << 6) | OPC_SHLL_QB_DSP, OPC_SHRLV_QB = (0x03 << 6) | OPC_SHLL_QB_DSP, OPC_SHRL_PH = (0x19 << 6) | OPC_SHLL_QB_DSP, OPC_SHRLV_PH = (0x1B << 6) | OPC_SHLL_QB_DSP, OPC_SHRA_QB = (0x04 << 6) | OPC_SHLL_QB_DSP, OPC_SHRA_R_QB = (0x05 << 6) | OPC_SHLL_QB_DSP, OPC_SHRAV_QB = (0x06 << 6) | OPC_SHLL_QB_DSP, OPC_SHRAV_R_QB = (0x07 << 6) | OPC_SHLL_QB_DSP, OPC_SHRA_PH = (0x09 << 6) | OPC_SHLL_QB_DSP, OPC_SHRAV_PH = (0x0B << 6) | OPC_SHLL_QB_DSP, OPC_SHRA_R_PH = (0x0D << 6) | OPC_SHLL_QB_DSP, OPC_SHRAV_R_PH = (0x0F << 6) | OPC_SHLL_QB_DSP, OPC_SHRA_R_W = (0x15 << 6) | OPC_SHLL_QB_DSP, OPC_SHRAV_R_W = (0x17 << 6) | OPC_SHLL_QB_DSP, }; #define MASK_DPA_W_PH(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Multiply Sub-class insns */ OPC_DPAU_H_QBL = (0x03 << 6) | OPC_DPA_W_PH_DSP, OPC_DPAU_H_QBR = (0x07 << 6) | OPC_DPA_W_PH_DSP, OPC_DPSU_H_QBL = (0x0B << 6) | OPC_DPA_W_PH_DSP, OPC_DPSU_H_QBR = (0x0F << 6) | OPC_DPA_W_PH_DSP, OPC_DPA_W_PH = (0x00 << 6) | OPC_DPA_W_PH_DSP, OPC_DPAX_W_PH = (0x08 << 6) | OPC_DPA_W_PH_DSP, OPC_DPAQ_S_W_PH = (0x04 << 6) | OPC_DPA_W_PH_DSP, OPC_DPAQX_S_W_PH = (0x18 << 6) | OPC_DPA_W_PH_DSP, OPC_DPAQX_SA_W_PH = (0x1A << 6) | OPC_DPA_W_PH_DSP, OPC_DPS_W_PH = (0x01 << 6) | OPC_DPA_W_PH_DSP, OPC_DPSX_W_PH = (0x09 << 6) | OPC_DPA_W_PH_DSP, OPC_DPSQ_S_W_PH = (0x05 << 6) | OPC_DPA_W_PH_DSP, OPC_DPSQX_S_W_PH = (0x19 << 6) | OPC_DPA_W_PH_DSP, OPC_DPSQX_SA_W_PH = (0x1B << 6) | OPC_DPA_W_PH_DSP, OPC_MULSAQ_S_W_PH = (0x06 << 6) | OPC_DPA_W_PH_DSP, OPC_DPAQ_SA_L_W = (0x0C << 6) | OPC_DPA_W_PH_DSP, OPC_DPSQ_SA_L_W = (0x0D << 6) | OPC_DPA_W_PH_DSP, OPC_MAQ_S_W_PHL = (0x14 << 6) | OPC_DPA_W_PH_DSP, OPC_MAQ_S_W_PHR = (0x16 << 6) | OPC_DPA_W_PH_DSP, OPC_MAQ_SA_W_PHL = (0x10 << 6) | OPC_DPA_W_PH_DSP, OPC_MAQ_SA_W_PHR = (0x12 << 6) | OPC_DPA_W_PH_DSP, OPC_MULSA_W_PH = (0x02 << 6) | OPC_DPA_W_PH_DSP, }; #define MASK_INSV(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* DSP Bit/Manipulation Sub-class */ OPC_INSV = (0x00 << 6) | OPC_INSV_DSP, }; #define MASK_APPEND(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Append Sub-class */ OPC_APPEND = (0x00 << 6) | OPC_APPEND_DSP, OPC_PREPEND = (0x01 << 6) | OPC_APPEND_DSP, OPC_BALIGN = (0x10 << 6) | OPC_APPEND_DSP, }; #define MASK_EXTR_W(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Accumulator and DSPControl Access Sub-class */ OPC_EXTR_W = (0x00 << 6) | OPC_EXTR_W_DSP, OPC_EXTR_R_W = (0x04 << 6) | OPC_EXTR_W_DSP, OPC_EXTR_RS_W = (0x06 << 6) | OPC_EXTR_W_DSP, OPC_EXTR_S_H = (0x0E << 6) | OPC_EXTR_W_DSP, OPC_EXTRV_S_H = (0x0F << 6) | OPC_EXTR_W_DSP, OPC_EXTRV_W = (0x01 << 6) | OPC_EXTR_W_DSP, OPC_EXTRV_R_W = (0x05 << 6) | OPC_EXTR_W_DSP, OPC_EXTRV_RS_W = (0x07 << 6) | OPC_EXTR_W_DSP, OPC_EXTP = (0x02 << 6) | OPC_EXTR_W_DSP, OPC_EXTPV = (0x03 << 6) | OPC_EXTR_W_DSP, OPC_EXTPDP = (0x0A << 6) | OPC_EXTR_W_DSP, OPC_EXTPDPV = (0x0B << 6) | OPC_EXTR_W_DSP, OPC_SHILO = (0x1A << 6) | OPC_EXTR_W_DSP, OPC_SHILOV = (0x1B << 6) | OPC_EXTR_W_DSP, OPC_MTHLIP = (0x1F << 6) | OPC_EXTR_W_DSP, OPC_WRDSP = (0x13 << 6) | OPC_EXTR_W_DSP, OPC_RDDSP = (0x12 << 6) | OPC_EXTR_W_DSP, }; #define MASK_ABSQ_S_QH(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Arithmetic Sub-class */ OPC_PRECEQ_L_PWL = (0x14 << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEQ_L_PWR = (0x15 << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEQ_PW_QHL = (0x0C << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEQ_PW_QHR = (0x0D << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEQ_PW_QHLA = (0x0E << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEQ_PW_QHRA = (0x0F << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEQU_QH_OBL = (0x04 << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEQU_QH_OBR = (0x05 << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEQU_QH_OBLA = (0x06 << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEQU_QH_OBRA = (0x07 << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEU_QH_OBL = (0x1C << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEU_QH_OBR = (0x1D << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEU_QH_OBLA = (0x1E << 6) | OPC_ABSQ_S_QH_DSP, OPC_PRECEU_QH_OBRA = (0x1F << 6) | OPC_ABSQ_S_QH_DSP, OPC_ABSQ_S_OB = (0x01 << 6) | OPC_ABSQ_S_QH_DSP, OPC_ABSQ_S_PW = (0x11 << 6) | OPC_ABSQ_S_QH_DSP, OPC_ABSQ_S_QH = (0x09 << 6) | OPC_ABSQ_S_QH_DSP, /* DSP Bit/Manipulation Sub-class */ OPC_REPL_OB = (0x02 << 6) | OPC_ABSQ_S_QH_DSP, OPC_REPL_PW = (0x12 << 6) | OPC_ABSQ_S_QH_DSP, OPC_REPL_QH = (0x0A << 6) | OPC_ABSQ_S_QH_DSP, OPC_REPLV_OB = (0x03 << 6) | OPC_ABSQ_S_QH_DSP, OPC_REPLV_PW = (0x13 << 6) | OPC_ABSQ_S_QH_DSP, OPC_REPLV_QH = (0x0B << 6) | OPC_ABSQ_S_QH_DSP, }; #define MASK_ADDU_OB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Multiply Sub-class insns */ OPC_MULEQ_S_PW_QHL = (0x1C << 6) | OPC_ADDU_OB_DSP, OPC_MULEQ_S_PW_QHR = (0x1D << 6) | OPC_ADDU_OB_DSP, OPC_MULEU_S_QH_OBL = (0x06 << 6) | OPC_ADDU_OB_DSP, OPC_MULEU_S_QH_OBR = (0x07 << 6) | OPC_ADDU_OB_DSP, OPC_MULQ_RS_QH = (0x1F << 6) | OPC_ADDU_OB_DSP, /* MIPS DSP Arithmetic Sub-class */ OPC_RADDU_L_OB = (0x14 << 6) | OPC_ADDU_OB_DSP, OPC_SUBQ_PW = (0x13 << 6) | OPC_ADDU_OB_DSP, OPC_SUBQ_S_PW = (0x17 << 6) | OPC_ADDU_OB_DSP, OPC_SUBQ_QH = (0x0B << 6) | OPC_ADDU_OB_DSP, OPC_SUBQ_S_QH = (0x0F << 6) | OPC_ADDU_OB_DSP, OPC_SUBU_OB = (0x01 << 6) | OPC_ADDU_OB_DSP, OPC_SUBU_S_OB = (0x05 << 6) | OPC_ADDU_OB_DSP, OPC_SUBU_QH = (0x09 << 6) | OPC_ADDU_OB_DSP, OPC_SUBU_S_QH = (0x0D << 6) | OPC_ADDU_OB_DSP, OPC_SUBUH_OB = (0x19 << 6) | OPC_ADDU_OB_DSP, OPC_SUBUH_R_OB = (0x1B << 6) | OPC_ADDU_OB_DSP, OPC_ADDQ_PW = (0x12 << 6) | OPC_ADDU_OB_DSP, OPC_ADDQ_S_PW = (0x16 << 6) | OPC_ADDU_OB_DSP, OPC_ADDQ_QH = (0x0A << 6) | OPC_ADDU_OB_DSP, OPC_ADDQ_S_QH = (0x0E << 6) | OPC_ADDU_OB_DSP, OPC_ADDU_OB = (0x00 << 6) | OPC_ADDU_OB_DSP, OPC_ADDU_S_OB = (0x04 << 6) | OPC_ADDU_OB_DSP, OPC_ADDU_QH = (0x08 << 6) | OPC_ADDU_OB_DSP, OPC_ADDU_S_QH = (0x0C << 6) | OPC_ADDU_OB_DSP, OPC_ADDUH_OB = (0x18 << 6) | OPC_ADDU_OB_DSP, OPC_ADDUH_R_OB = (0x1A << 6) | OPC_ADDU_OB_DSP, }; #define MASK_CMPU_EQ_OB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* DSP Compare-Pick Sub-class */ OPC_CMP_EQ_PW = (0x10 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMP_LT_PW = (0x11 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMP_LE_PW = (0x12 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMP_EQ_QH = (0x08 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMP_LT_QH = (0x09 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMP_LE_QH = (0x0A << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMPGDU_EQ_OB = (0x18 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMPGDU_LT_OB = (0x19 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMPGDU_LE_OB = (0x1A << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMPGU_EQ_OB = (0x04 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMPGU_LT_OB = (0x05 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMPGU_LE_OB = (0x06 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMPU_EQ_OB = (0x00 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMPU_LT_OB = (0x01 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_CMPU_LE_OB = (0x02 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PACKRL_PW = (0x0E << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PICK_OB = (0x03 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PICK_PW = (0x13 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PICK_QH = (0x0B << 6) | OPC_CMPU_EQ_OB_DSP, /* MIPS DSP Arithmetic Sub-class */ OPC_PRECR_OB_QH = (0x0D << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PRECR_SRA_QH_PW = (0x1E << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PRECR_SRA_R_QH_PW = (0x1F << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PRECRQ_OB_QH = (0x0C << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PRECRQ_PW_L = (0x1C << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PRECRQ_QH_PW = (0x14 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PRECRQ_RS_QH_PW = (0x15 << 6) | OPC_CMPU_EQ_OB_DSP, OPC_PRECRQU_S_OB_QH = (0x0F << 6) | OPC_CMPU_EQ_OB_DSP, }; #define MASK_DAPPEND(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* DSP Append Sub-class */ OPC_DAPPEND = (0x00 << 6) | OPC_DAPPEND_DSP, OPC_PREPENDD = (0x03 << 6) | OPC_DAPPEND_DSP, OPC_PREPENDW = (0x01 << 6) | OPC_DAPPEND_DSP, OPC_DBALIGN = (0x10 << 6) | OPC_DAPPEND_DSP, }; #define MASK_DEXTR_W(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Accumulator and DSPControl Access Sub-class */ OPC_DMTHLIP = (0x1F << 6) | OPC_DEXTR_W_DSP, OPC_DSHILO = (0x1A << 6) | OPC_DEXTR_W_DSP, OPC_DEXTP = (0x02 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTPDP = (0x0A << 6) | OPC_DEXTR_W_DSP, OPC_DEXTPDPV = (0x0B << 6) | OPC_DEXTR_W_DSP, OPC_DEXTPV = (0x03 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTR_L = (0x10 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTR_R_L = (0x14 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTR_RS_L = (0x16 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTR_W = (0x00 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTR_R_W = (0x04 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTR_RS_W = (0x06 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTR_S_H = (0x0E << 6) | OPC_DEXTR_W_DSP, OPC_DEXTRV_L = (0x11 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTRV_R_L = (0x15 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTRV_RS_L = (0x17 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTRV_S_H = (0x0F << 6) | OPC_DEXTR_W_DSP, OPC_DEXTRV_W = (0x01 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTRV_R_W = (0x05 << 6) | OPC_DEXTR_W_DSP, OPC_DEXTRV_RS_W = (0x07 << 6) | OPC_DEXTR_W_DSP, OPC_DSHILOV = (0x1B << 6) | OPC_DEXTR_W_DSP, }; #define MASK_DINSV(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* DSP Bit/Manipulation Sub-class */ OPC_DINSV = (0x00 << 6) | OPC_DINSV_DSP, }; #define MASK_DPAQ_W_QH(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP Multiply Sub-class insns */ OPC_DMADD = (0x19 << 6) | OPC_DPAQ_W_QH_DSP, OPC_DMADDU = (0x1D << 6) | OPC_DPAQ_W_QH_DSP, OPC_DMSUB = (0x1B << 6) | OPC_DPAQ_W_QH_DSP, OPC_DMSUBU = (0x1F << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPA_W_QH = (0x00 << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPAQ_S_W_QH = (0x04 << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPAQ_SA_L_PW = (0x0C << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPAU_H_OBL = (0x03 << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPAU_H_OBR = (0x07 << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPS_W_QH = (0x01 << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPSQ_S_W_QH = (0x05 << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPSQ_SA_L_PW = (0x0D << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPSU_H_OBL = (0x0B << 6) | OPC_DPAQ_W_QH_DSP, OPC_DPSU_H_OBR = (0x0F << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_S_L_PWL = (0x1C << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_S_L_PWR = (0x1E << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_S_W_QHLL = (0x14 << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_SA_W_QHLL = (0x10 << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_S_W_QHLR = (0x15 << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_SA_W_QHLR = (0x11 << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_S_W_QHRL = (0x16 << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_SA_W_QHRL = (0x12 << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_S_W_QHRR = (0x17 << 6) | OPC_DPAQ_W_QH_DSP, OPC_MAQ_SA_W_QHRR = (0x13 << 6) | OPC_DPAQ_W_QH_DSP, OPC_MULSAQ_S_L_PW = (0x0E << 6) | OPC_DPAQ_W_QH_DSP, OPC_MULSAQ_S_W_QH = (0x06 << 6) | OPC_DPAQ_W_QH_DSP, }; #define MASK_SHLL_OB(op) (MASK_SPECIAL3(op) | (op & (0x1F << 6))) enum { /* MIPS DSP GPR-Based Shift Sub-class */ OPC_SHLL_PW = (0x10 << 6) | OPC_SHLL_OB_DSP, OPC_SHLL_S_PW = (0x14 << 6) | OPC_SHLL_OB_DSP, OPC_SHLLV_OB = (0x02 << 6) | OPC_SHLL_OB_DSP, OPC_SHLLV_PW = (0x12 << 6) | OPC_SHLL_OB_DSP, OPC_SHLLV_S_PW = (0x16 << 6) | OPC_SHLL_OB_DSP, OPC_SHLLV_QH = (0x0A << 6) | OPC_SHLL_OB_DSP, OPC_SHLLV_S_QH = (0x0E << 6) | OPC_SHLL_OB_DSP, OPC_SHRA_PW = (0x11 << 6) | OPC_SHLL_OB_DSP, OPC_SHRA_R_PW = (0x15 << 6) | OPC_SHLL_OB_DSP, OPC_SHRAV_OB = (0x06 << 6) | OPC_SHLL_OB_DSP, OPC_SHRAV_R_OB = (0x07 << 6) | OPC_SHLL_OB_DSP, OPC_SHRAV_PW = (0x13 << 6) | OPC_SHLL_OB_DSP, OPC_SHRAV_R_PW = (0x17 << 6) | OPC_SHLL_OB_DSP, OPC_SHRAV_QH = (0x0B << 6) | OPC_SHLL_OB_DSP, OPC_SHRAV_R_QH = (0x0F << 6) | OPC_SHLL_OB_DSP, OPC_SHRLV_OB = (0x03 << 6) | OPC_SHLL_OB_DSP, OPC_SHRLV_QH = (0x1B << 6) | OPC_SHLL_OB_DSP, OPC_SHLL_OB = (0x00 << 6) | OPC_SHLL_OB_DSP, OPC_SHLL_QH = (0x08 << 6) | OPC_SHLL_OB_DSP, OPC_SHLL_S_QH = (0x0C << 6) | OPC_SHLL_OB_DSP, OPC_SHRA_OB = (0x04 << 6) | OPC_SHLL_OB_DSP, OPC_SHRA_R_OB = (0x05 << 6) | OPC_SHLL_OB_DSP, OPC_SHRA_QH = (0x09 << 6) | OPC_SHLL_OB_DSP, OPC_SHRA_R_QH = (0x0D << 6) | OPC_SHLL_OB_DSP, OPC_SHRL_OB = (0x01 << 6) | OPC_SHLL_OB_DSP, OPC_SHRL_QH = (0x19 << 6) | OPC_SHLL_OB_DSP, }; /* Coprocessor 0 (rs field) */ #define MASK_CP0(op) (MASK_OP_MAJOR(op) | (op & (0x1F << 21))) enum { OPC_MFC0 = (0x00 << 21) | OPC_CP0, OPC_DMFC0 = (0x01 << 21) | OPC_CP0, OPC_MFHC0 = (0x02 << 21) | OPC_CP0, OPC_MTC0 = (0x04 << 21) | OPC_CP0, OPC_DMTC0 = (0x05 << 21) | OPC_CP0, OPC_MTHC0 = (0x06 << 21) | OPC_CP0, OPC_MFTR = (0x08 << 21) | OPC_CP0, OPC_RDPGPR = (0x0A << 21) | OPC_CP0, OPC_MFMC0 = (0x0B << 21) | OPC_CP0, OPC_MTTR = (0x0C << 21) | OPC_CP0, OPC_WRPGPR = (0x0E << 21) | OPC_CP0, OPC_C0 = (0x10 << 21) | OPC_CP0, OPC_C0_1 = (0x11 << 21) | OPC_CP0, OPC_C0_2 = (0x12 << 21) | OPC_CP0, OPC_C0_3 = (0x13 << 21) | OPC_CP0, OPC_C0_4 = (0x14 << 21) | OPC_CP0, OPC_C0_5 = (0x15 << 21) | OPC_CP0, OPC_C0_6 = (0x16 << 21) | OPC_CP0, OPC_C0_7 = (0x17 << 21) | OPC_CP0, OPC_C0_8 = (0x18 << 21) | OPC_CP0, OPC_C0_9 = (0x19 << 21) | OPC_CP0, OPC_C0_A = (0x1A << 21) | OPC_CP0, OPC_C0_B = (0x1B << 21) | OPC_CP0, OPC_C0_C = (0x1C << 21) | OPC_CP0, OPC_C0_D = (0x1D << 21) | OPC_CP0, OPC_C0_E = (0x1E << 21) | OPC_CP0, OPC_C0_F = (0x1F << 21) | OPC_CP0, }; /* MFMC0 opcodes */ #define MASK_MFMC0(op) (MASK_CP0(op) | (op & 0xFFFF)) enum { OPC_DMT = 0x01 | (0 << 5) | (0x0F << 6) | (0x01 << 11) | OPC_MFMC0, OPC_EMT = 0x01 | (1 << 5) | (0x0F << 6) | (0x01 << 11) | OPC_MFMC0, OPC_DVPE = 0x01 | (0 << 5) | OPC_MFMC0, OPC_EVPE = 0x01 | (1 << 5) | OPC_MFMC0, OPC_DI = (0 << 5) | (0x0C << 11) | OPC_MFMC0, OPC_EI = (1 << 5) | (0x0C << 11) | OPC_MFMC0, OPC_DVP = 0x04 | (0 << 3) | (1 << 5) | (0 << 11) | OPC_MFMC0, OPC_EVP = 0x04 | (0 << 3) | (0 << 5) | (0 << 11) | OPC_MFMC0, }; /* Coprocessor 0 (with rs == C0) */ #define MASK_C0(op) (MASK_CP0(op) | (op & 0x3F)) enum { OPC_TLBR = 0x01 | OPC_C0, OPC_TLBWI = 0x02 | OPC_C0, OPC_TLBINV = 0x03 | OPC_C0, OPC_TLBINVF = 0x04 | OPC_C0, OPC_TLBWR = 0x06 | OPC_C0, OPC_TLBP = 0x08 | OPC_C0, OPC_RFE = 0x10 | OPC_C0, OPC_ERET = 0x18 | OPC_C0, OPC_DERET = 0x1F | OPC_C0, OPC_WAIT = 0x20 | OPC_C0, }; #define MASK_CP2(op) (MASK_OP_MAJOR(op) | (op & (0x1F << 21))) enum { OPC_MFC2 = (0x00 << 21) | OPC_CP2, OPC_DMFC2 = (0x01 << 21) | OPC_CP2, OPC_CFC2 = (0x02 << 21) | OPC_CP2, OPC_MFHC2 = (0x03 << 21) | OPC_CP2, OPC_MTC2 = (0x04 << 21) | OPC_CP2, OPC_DMTC2 = (0x05 << 21) | OPC_CP2, OPC_CTC2 = (0x06 << 21) | OPC_CP2, OPC_MTHC2 = (0x07 << 21) | OPC_CP2, OPC_BC2 = (0x08 << 21) | OPC_CP2, OPC_BC2EQZ = (0x09 << 21) | OPC_CP2, OPC_BC2NEZ = (0x0D << 21) | OPC_CP2, }; #define MASK_LMMI(op) (MASK_OP_MAJOR(op) | (op & (0x1F << 21)) | (op & 0x1F)) enum { OPC_PADDSH = (24 << 21) | (0x00) | OPC_CP2, OPC_PADDUSH = (25 << 21) | (0x00) | OPC_CP2, OPC_PADDH = (26 << 21) | (0x00) | OPC_CP2, OPC_PADDW = (27 << 21) | (0x00) | OPC_CP2, OPC_PADDSB = (28 << 21) | (0x00) | OPC_CP2, OPC_PADDUSB = (29 << 21) | (0x00) | OPC_CP2, OPC_PADDB = (30 << 21) | (0x00) | OPC_CP2, OPC_PADDD = (31 << 21) | (0x00) | OPC_CP2, OPC_PSUBSH = (24 << 21) | (0x01) | OPC_CP2, OPC_PSUBUSH = (25 << 21) | (0x01) | OPC_CP2, OPC_PSUBH = (26 << 21) | (0x01) | OPC_CP2, OPC_PSUBW = (27 << 21) | (0x01) | OPC_CP2, OPC_PSUBSB = (28 << 21) | (0x01) | OPC_CP2, OPC_PSUBUSB = (29 << 21) | (0x01) | OPC_CP2, OPC_PSUBB = (30 << 21) | (0x01) | OPC_CP2, OPC_PSUBD = (31 << 21) | (0x01) | OPC_CP2, OPC_PSHUFH = (24 << 21) | (0x02) | OPC_CP2, OPC_PACKSSWH = (25 << 21) | (0x02) | OPC_CP2, OPC_PACKSSHB = (26 << 21) | (0x02) | OPC_CP2, OPC_PACKUSHB = (27 << 21) | (0x02) | OPC_CP2, OPC_XOR_CP2 = (28 << 21) | (0x02) | OPC_CP2, OPC_NOR_CP2 = (29 << 21) | (0x02) | OPC_CP2, OPC_AND_CP2 = (30 << 21) | (0x02) | OPC_CP2, OPC_PANDN = (31 << 21) | (0x02) | OPC_CP2, OPC_PUNPCKLHW = (24 << 21) | (0x03) | OPC_CP2, OPC_PUNPCKHHW = (25 << 21) | (0x03) | OPC_CP2, OPC_PUNPCKLBH = (26 << 21) | (0x03) | OPC_CP2, OPC_PUNPCKHBH = (27 << 21) | (0x03) | OPC_CP2, OPC_PINSRH_0 = (28 << 21) | (0x03) | OPC_CP2, OPC_PINSRH_1 = (29 << 21) | (0x03) | OPC_CP2, OPC_PINSRH_2 = (30 << 21) | (0x03) | OPC_CP2, OPC_PINSRH_3 = (31 << 21) | (0x03) | OPC_CP2, OPC_PAVGH = (24 << 21) | (0x08) | OPC_CP2, OPC_PAVGB = (25 << 21) | (0x08) | OPC_CP2, OPC_PMAXSH = (26 << 21) | (0x08) | OPC_CP2, OPC_PMINSH = (27 << 21) | (0x08) | OPC_CP2, OPC_PMAXUB = (28 << 21) | (0x08) | OPC_CP2, OPC_PMINUB = (29 << 21) | (0x08) | OPC_CP2, OPC_PCMPEQW = (24 << 21) | (0x09) | OPC_CP2, OPC_PCMPGTW = (25 << 21) | (0x09) | OPC_CP2, OPC_PCMPEQH = (26 << 21) | (0x09) | OPC_CP2, OPC_PCMPGTH = (27 << 21) | (0x09) | OPC_CP2, OPC_PCMPEQB = (28 << 21) | (0x09) | OPC_CP2, OPC_PCMPGTB = (29 << 21) | (0x09) | OPC_CP2, OPC_PSLLW = (24 << 21) | (0x0A) | OPC_CP2, OPC_PSLLH = (25 << 21) | (0x0A) | OPC_CP2, OPC_PMULLH = (26 << 21) | (0x0A) | OPC_CP2, OPC_PMULHH = (27 << 21) | (0x0A) | OPC_CP2, OPC_PMULUW = (28 << 21) | (0x0A) | OPC_CP2, OPC_PMULHUH = (29 << 21) | (0x0A) | OPC_CP2, OPC_PSRLW = (24 << 21) | (0x0B) | OPC_CP2, OPC_PSRLH = (25 << 21) | (0x0B) | OPC_CP2, OPC_PSRAW = (26 << 21) | (0x0B) | OPC_CP2, OPC_PSRAH = (27 << 21) | (0x0B) | OPC_CP2, OPC_PUNPCKLWD = (28 << 21) | (0x0B) | OPC_CP2, OPC_PUNPCKHWD = (29 << 21) | (0x0B) | OPC_CP2, OPC_ADDU_CP2 = (24 << 21) | (0x0C) | OPC_CP2, OPC_OR_CP2 = (25 << 21) | (0x0C) | OPC_CP2, OPC_ADD_CP2 = (26 << 21) | (0x0C) | OPC_CP2, OPC_DADD_CP2 = (27 << 21) | (0x0C) | OPC_CP2, OPC_SEQU_CP2 = (28 << 21) | (0x0C) | OPC_CP2, OPC_SEQ_CP2 = (29 << 21) | (0x0C) | OPC_CP2, OPC_SUBU_CP2 = (24 << 21) | (0x0D) | OPC_CP2, OPC_PASUBUB = (25 << 21) | (0x0D) | OPC_CP2, OPC_SUB_CP2 = (26 << 21) | (0x0D) | OPC_CP2, OPC_DSUB_CP2 = (27 << 21) | (0x0D) | OPC_CP2, OPC_SLTU_CP2 = (28 << 21) | (0x0D) | OPC_CP2, OPC_SLT_CP2 = (29 << 21) | (0x0D) | OPC_CP2, OPC_SLL_CP2 = (24 << 21) | (0x0E) | OPC_CP2, OPC_DSLL_CP2 = (25 << 21) | (0x0E) | OPC_CP2, OPC_PEXTRH = (26 << 21) | (0x0E) | OPC_CP2, OPC_PMADDHW = (27 << 21) | (0x0E) | OPC_CP2, OPC_SLEU_CP2 = (28 << 21) | (0x0E) | OPC_CP2, OPC_SLE_CP2 = (29 << 21) | (0x0E) | OPC_CP2, OPC_SRL_CP2 = (24 << 21) | (0x0F) | OPC_CP2, OPC_DSRL_CP2 = (25 << 21) | (0x0F) | OPC_CP2, OPC_SRA_CP2 = (26 << 21) | (0x0F) | OPC_CP2, OPC_DSRA_CP2 = (27 << 21) | (0x0F) | OPC_CP2, OPC_BIADD = (28 << 21) | (0x0F) | OPC_CP2, OPC_PMOVMSKB = (29 << 21) | (0x0F) | OPC_CP2, }; #define MASK_CP3(op) (MASK_OP_MAJOR(op) | (op & 0x3F)) enum { OPC_LWXC1 = 0x00 | OPC_CP3, OPC_LDXC1 = 0x01 | OPC_CP3, OPC_LUXC1 = 0x05 | OPC_CP3, OPC_SWXC1 = 0x08 | OPC_CP3, OPC_SDXC1 = 0x09 | OPC_CP3, OPC_SUXC1 = 0x0D | OPC_CP3, OPC_PREFX = 0x0F | OPC_CP3, OPC_ALNV_PS = 0x1E | OPC_CP3, OPC_MADD_S = 0x20 | OPC_CP3, OPC_MADD_D = 0x21 | OPC_CP3, OPC_MADD_PS = 0x26 | OPC_CP3, OPC_MSUB_S = 0x28 | OPC_CP3, OPC_MSUB_D = 0x29 | OPC_CP3, OPC_MSUB_PS = 0x2E | OPC_CP3, OPC_NMADD_S = 0x30 | OPC_CP3, OPC_NMADD_D = 0x31 | OPC_CP3, OPC_NMADD_PS = 0x36 | OPC_CP3, OPC_NMSUB_S = 0x38 | OPC_CP3, OPC_NMSUB_D = 0x39 | OPC_CP3, OPC_NMSUB_PS = 0x3E | OPC_CP3, }; /* MSA Opcodes */ #define MASK_MSA_MINOR(op) (MASK_OP_MAJOR(op) | (op & 0x3F)) enum { OPC_MSA_I8_00 = 0x00 | OPC_MSA, OPC_MSA_I8_01 = 0x01 | OPC_MSA, OPC_MSA_I8_02 = 0x02 | OPC_MSA, OPC_MSA_I5_06 = 0x06 | OPC_MSA, OPC_MSA_I5_07 = 0x07 | OPC_MSA, OPC_MSA_BIT_09 = 0x09 | OPC_MSA, OPC_MSA_BIT_0A = 0x0A | OPC_MSA, OPC_MSA_3R_0D = 0x0D | OPC_MSA, OPC_MSA_3R_0E = 0x0E | OPC_MSA, OPC_MSA_3R_0F = 0x0F | OPC_MSA, OPC_MSA_3R_10 = 0x10 | OPC_MSA, OPC_MSA_3R_11 = 0x11 | OPC_MSA, OPC_MSA_3R_12 = 0x12 | OPC_MSA, OPC_MSA_3R_13 = 0x13 | OPC_MSA, OPC_MSA_3R_14 = 0x14 | OPC_MSA, OPC_MSA_3R_15 = 0x15 | OPC_MSA, OPC_MSA_ELM = 0x19 | OPC_MSA, OPC_MSA_3RF_1A = 0x1A | OPC_MSA, OPC_MSA_3RF_1B = 0x1B | OPC_MSA, OPC_MSA_3RF_1C = 0x1C | OPC_MSA, OPC_MSA_VEC = 0x1E | OPC_MSA, /* MI10 instruction */ OPC_LD_B = (0x20) | OPC_MSA, OPC_LD_H = (0x21) | OPC_MSA, OPC_LD_W = (0x22) | OPC_MSA, OPC_LD_D = (0x23) | OPC_MSA, OPC_ST_B = (0x24) | OPC_MSA, OPC_ST_H = (0x25) | OPC_MSA, OPC_ST_W = (0x26) | OPC_MSA, OPC_ST_D = (0x27) | OPC_MSA, }; enum { /* I5 instruction df(bits 22..21) = _b, _h, _w, _d */ OPC_ADDVI_df = (0x0 << 23) | OPC_MSA_I5_06, OPC_CEQI_df = (0x0 << 23) | OPC_MSA_I5_07, OPC_SUBVI_df = (0x1 << 23) | OPC_MSA_I5_06, OPC_MAXI_S_df = (0x2 << 23) | OPC_MSA_I5_06, OPC_CLTI_S_df = (0x2 << 23) | OPC_MSA_I5_07, OPC_MAXI_U_df = (0x3 << 23) | OPC_MSA_I5_06, OPC_CLTI_U_df = (0x3 << 23) | OPC_MSA_I5_07, OPC_MINI_S_df = (0x4 << 23) | OPC_MSA_I5_06, OPC_CLEI_S_df = (0x4 << 23) | OPC_MSA_I5_07, OPC_MINI_U_df = (0x5 << 23) | OPC_MSA_I5_06, OPC_CLEI_U_df = (0x5 << 23) | OPC_MSA_I5_07, OPC_LDI_df = (0x6 << 23) | OPC_MSA_I5_07, /* I8 instruction */ OPC_ANDI_B = (0x0 << 24) | OPC_MSA_I8_00, OPC_BMNZI_B = (0x0 << 24) | OPC_MSA_I8_01, OPC_SHF_B = (0x0 << 24) | OPC_MSA_I8_02, OPC_ORI_B = (0x1 << 24) | OPC_MSA_I8_00, OPC_BMZI_B = (0x1 << 24) | OPC_MSA_I8_01, OPC_SHF_H = (0x1 << 24) | OPC_MSA_I8_02, OPC_NORI_B = (0x2 << 24) | OPC_MSA_I8_00, OPC_BSELI_B = (0x2 << 24) | OPC_MSA_I8_01, OPC_SHF_W = (0x2 << 24) | OPC_MSA_I8_02, OPC_XORI_B = (0x3 << 24) | OPC_MSA_I8_00, /* VEC/2R/2RF instruction */ OPC_AND_V = (0x00 << 21) | OPC_MSA_VEC, OPC_OR_V = (0x01 << 21) | OPC_MSA_VEC, OPC_NOR_V = (0x02 << 21) | OPC_MSA_VEC, OPC_XOR_V = (0x03 << 21) | OPC_MSA_VEC, OPC_BMNZ_V = (0x04 << 21) | OPC_MSA_VEC, OPC_BMZ_V = (0x05 << 21) | OPC_MSA_VEC, OPC_BSEL_V = (0x06 << 21) | OPC_MSA_VEC, OPC_MSA_2R = (0x18 << 21) | OPC_MSA_VEC, OPC_MSA_2RF = (0x19 << 21) | OPC_MSA_VEC, /* 2R instruction df(bits 17..16) = _b, _h, _w, _d */ OPC_FILL_df = (0x00 << 18) | OPC_MSA_2R, OPC_PCNT_df = (0x01 << 18) | OPC_MSA_2R, OPC_NLOC_df = (0x02 << 18) | OPC_MSA_2R, OPC_NLZC_df = (0x03 << 18) | OPC_MSA_2R, /* 2RF instruction df(bit 16) = _w, _d */ OPC_FCLASS_df = (0x00 << 17) | OPC_MSA_2RF, OPC_FTRUNC_S_df = (0x01 << 17) | OPC_MSA_2RF, OPC_FTRUNC_U_df = (0x02 << 17) | OPC_MSA_2RF, OPC_FSQRT_df = (0x03 << 17) | OPC_MSA_2RF, OPC_FRSQRT_df = (0x04 << 17) | OPC_MSA_2RF, OPC_FRCP_df = (0x05 << 17) | OPC_MSA_2RF, OPC_FRINT_df = (0x06 << 17) | OPC_MSA_2RF, OPC_FLOG2_df = (0x07 << 17) | OPC_MSA_2RF, OPC_FEXUPL_df = (0x08 << 17) | OPC_MSA_2RF, OPC_FEXUPR_df = (0x09 << 17) | OPC_MSA_2RF, OPC_FFQL_df = (0x0A << 17) | OPC_MSA_2RF, OPC_FFQR_df = (0x0B << 17) | OPC_MSA_2RF, OPC_FTINT_S_df = (0x0C << 17) | OPC_MSA_2RF, OPC_FTINT_U_df = (0x0D << 17) | OPC_MSA_2RF, OPC_FFINT_S_df = (0x0E << 17) | OPC_MSA_2RF, OPC_FFINT_U_df = (0x0F << 17) | OPC_MSA_2RF, /* 3R instruction df(bits 22..21) = _b, _h, _w, d */ OPC_SLL_df = (0x0 << 23) | OPC_MSA_3R_0D, OPC_ADDV_df = (0x0 << 23) | OPC_MSA_3R_0E, OPC_CEQ_df = (0x0 << 23) | OPC_MSA_3R_0F, OPC_ADD_A_df = (0x0 << 23) | OPC_MSA_3R_10, OPC_SUBS_S_df = (0x0 << 23) | OPC_MSA_3R_11, OPC_MULV_df = (0x0 << 23) | OPC_MSA_3R_12, OPC_DOTP_S_df = (0x0 << 23) | OPC_MSA_3R_13, OPC_SLD_df = (0x0 << 23) | OPC_MSA_3R_14, OPC_VSHF_df = (0x0 << 23) | OPC_MSA_3R_15, OPC_SRA_df = (0x1 << 23) | OPC_MSA_3R_0D, OPC_SUBV_df = (0x1 << 23) | OPC_MSA_3R_0E, OPC_ADDS_A_df = (0x1 << 23) | OPC_MSA_3R_10, OPC_SUBS_U_df = (0x1 << 23) | OPC_MSA_3R_11, OPC_MADDV_df = (0x1 << 23) | OPC_MSA_3R_12, OPC_DOTP_U_df = (0x1 << 23) | OPC_MSA_3R_13, OPC_SPLAT_df = (0x1 << 23) | OPC_MSA_3R_14, OPC_SRAR_df = (0x1 << 23) | OPC_MSA_3R_15, OPC_SRL_df = (0x2 << 23) | OPC_MSA_3R_0D, OPC_MAX_S_df = (0x2 << 23) | OPC_MSA_3R_0E, OPC_CLT_S_df = (0x2 << 23) | OPC_MSA_3R_0F, OPC_ADDS_S_df = (0x2 << 23) | OPC_MSA_3R_10, OPC_SUBSUS_U_df = (0x2 << 23) | OPC_MSA_3R_11, OPC_MSUBV_df = (0x2 << 23) | OPC_MSA_3R_12, OPC_DPADD_S_df = (0x2 << 23) | OPC_MSA_3R_13, OPC_PCKEV_df = (0x2 << 23) | OPC_MSA_3R_14, OPC_SRLR_df = (0x2 << 23) | OPC_MSA_3R_15, OPC_BCLR_df = (0x3 << 23) | OPC_MSA_3R_0D, OPC_MAX_U_df = (0x3 << 23) | OPC_MSA_3R_0E, OPC_CLT_U_df = (0x3 << 23) | OPC_MSA_3R_0F, OPC_ADDS_U_df = (0x3 << 23) | OPC_MSA_3R_10, OPC_SUBSUU_S_df = (0x3 << 23) | OPC_MSA_3R_11, OPC_DPADD_U_df = (0x3 << 23) | OPC_MSA_3R_13, OPC_PCKOD_df = (0x3 << 23) | OPC_MSA_3R_14, OPC_BSET_df = (0x4 << 23) | OPC_MSA_3R_0D, OPC_MIN_S_df = (0x4 << 23) | OPC_MSA_3R_0E, OPC_CLE_S_df = (0x4 << 23) | OPC_MSA_3R_0F, OPC_AVE_S_df = (0x4 << 23) | OPC_MSA_3R_10, OPC_ASUB_S_df = (0x4 << 23) | OPC_MSA_3R_11, OPC_DIV_S_df = (0x4 << 23) | OPC_MSA_3R_12, OPC_DPSUB_S_df = (0x4 << 23) | OPC_MSA_3R_13, OPC_ILVL_df = (0x4 << 23) | OPC_MSA_3R_14, OPC_HADD_S_df = (0x4 << 23) | OPC_MSA_3R_15, OPC_BNEG_df = (0x5 << 23) | OPC_MSA_3R_0D, OPC_MIN_U_df = (0x5 << 23) | OPC_MSA_3R_0E, OPC_CLE_U_df = (0x5 << 23) | OPC_MSA_3R_0F, OPC_AVE_U_df = (0x5 << 23) | OPC_MSA_3R_10, OPC_ASUB_U_df = (0x5 << 23) | OPC_MSA_3R_11, OPC_DIV_U_df = (0x5 << 23) | OPC_MSA_3R_12, OPC_DPSUB_U_df = (0x5 << 23) | OPC_MSA_3R_13, OPC_ILVR_df = (0x5 << 23) | OPC_MSA_3R_14, OPC_HADD_U_df = (0x5 << 23) | OPC_MSA_3R_15, OPC_BINSL_df = (0x6 << 23) | OPC_MSA_3R_0D, OPC_MAX_A_df = (0x6 << 23) | OPC_MSA_3R_0E, OPC_AVER_S_df = (0x6 << 23) | OPC_MSA_3R_10, OPC_MOD_S_df = (0x6 << 23) | OPC_MSA_3R_12, OPC_ILVEV_df = (0x6 << 23) | OPC_MSA_3R_14, OPC_HSUB_S_df = (0x6 << 23) | OPC_MSA_3R_15, OPC_BINSR_df = (0x7 << 23) | OPC_MSA_3R_0D, OPC_MIN_A_df = (0x7 << 23) | OPC_MSA_3R_0E, OPC_AVER_U_df = (0x7 << 23) | OPC_MSA_3R_10, OPC_MOD_U_df = (0x7 << 23) | OPC_MSA_3R_12, OPC_ILVOD_df = (0x7 << 23) | OPC_MSA_3R_14, OPC_HSUB_U_df = (0x7 << 23) | OPC_MSA_3R_15, /* ELM instructions df(bits 21..16) = _b, _h, _w, _d */ OPC_SLDI_df = (0x0 << 22) | (0x00 << 16) | OPC_MSA_ELM, OPC_CTCMSA = (0x0 << 22) | (0x3E << 16) | OPC_MSA_ELM, OPC_SPLATI_df = (0x1 << 22) | (0x00 << 16) | OPC_MSA_ELM, OPC_CFCMSA = (0x1 << 22) | (0x3E << 16) | OPC_MSA_ELM, OPC_COPY_S_df = (0x2 << 22) | (0x00 << 16) | OPC_MSA_ELM, OPC_MOVE_V = (0x2 << 22) | (0x3E << 16) | OPC_MSA_ELM, OPC_COPY_U_df = (0x3 << 22) | (0x00 << 16) | OPC_MSA_ELM, OPC_INSERT_df = (0x4 << 22) | (0x00 << 16) | OPC_MSA_ELM, OPC_INSVE_df = (0x5 << 22) | (0x00 << 16) | OPC_MSA_ELM, /* 3RF instruction _df(bit 21) = _w, _d */ OPC_FCAF_df = (0x0 << 22) | OPC_MSA_3RF_1A, OPC_FADD_df = (0x0 << 22) | OPC_MSA_3RF_1B, OPC_FCUN_df = (0x1 << 22) | OPC_MSA_3RF_1A, OPC_FSUB_df = (0x1 << 22) | OPC_MSA_3RF_1B, OPC_FCOR_df = (0x1 << 22) | OPC_MSA_3RF_1C, OPC_FCEQ_df = (0x2 << 22) | OPC_MSA_3RF_1A, OPC_FMUL_df = (0x2 << 22) | OPC_MSA_3RF_1B, OPC_FCUNE_df = (0x2 << 22) | OPC_MSA_3RF_1C, OPC_FCUEQ_df = (0x3 << 22) | OPC_MSA_3RF_1A, OPC_FDIV_df = (0x3 << 22) | OPC_MSA_3RF_1B, OPC_FCNE_df = (0x3 << 22) | OPC_MSA_3RF_1C, OPC_FCLT_df = (0x4 << 22) | OPC_MSA_3RF_1A, OPC_FMADD_df = (0x4 << 22) | OPC_MSA_3RF_1B, OPC_MUL_Q_df = (0x4 << 22) | OPC_MSA_3RF_1C, OPC_FCULT_df = (0x5 << 22) | OPC_MSA_3RF_1A, OPC_FMSUB_df = (0x5 << 22) | OPC_MSA_3RF_1B, OPC_MADD_Q_df = (0x5 << 22) | OPC_MSA_3RF_1C, OPC_FCLE_df = (0x6 << 22) | OPC_MSA_3RF_1A, OPC_MSUB_Q_df = (0x6 << 22) | OPC_MSA_3RF_1C, OPC_FCULE_df = (0x7 << 22) | OPC_MSA_3RF_1A, OPC_FEXP2_df = (0x7 << 22) | OPC_MSA_3RF_1B, OPC_FSAF_df = (0x8 << 22) | OPC_MSA_3RF_1A, OPC_FEXDO_df = (0x8 << 22) | OPC_MSA_3RF_1B, OPC_FSUN_df = (0x9 << 22) | OPC_MSA_3RF_1A, OPC_FSOR_df = (0x9 << 22) | OPC_MSA_3RF_1C, OPC_FSEQ_df = (0xA << 22) | OPC_MSA_3RF_1A, OPC_FTQ_df = (0xA << 22) | OPC_MSA_3RF_1B, OPC_FSUNE_df = (0xA << 22) | OPC_MSA_3RF_1C, OPC_FSUEQ_df = (0xB << 22) | OPC_MSA_3RF_1A, OPC_FSNE_df = (0xB << 22) | OPC_MSA_3RF_1C, OPC_FSLT_df = (0xC << 22) | OPC_MSA_3RF_1A, OPC_FMIN_df = (0xC << 22) | OPC_MSA_3RF_1B, OPC_MULR_Q_df = (0xC << 22) | OPC_MSA_3RF_1C, OPC_FSULT_df = (0xD << 22) | OPC_MSA_3RF_1A, OPC_FMIN_A_df = (0xD << 22) | OPC_MSA_3RF_1B, OPC_MADDR_Q_df = (0xD << 22) | OPC_MSA_3RF_1C, OPC_FSLE_df = (0xE << 22) | OPC_MSA_3RF_1A, OPC_FMAX_df = (0xE << 22) | OPC_MSA_3RF_1B, OPC_MSUBR_Q_df = (0xE << 22) | OPC_MSA_3RF_1C, OPC_FSULE_df = (0xF << 22) | OPC_MSA_3RF_1A, OPC_FMAX_A_df = (0xF << 22) | OPC_MSA_3RF_1B, /* BIT instruction df(bits 22..16) = _B _H _W _D */ OPC_SLLI_df = (0x0 << 23) | OPC_MSA_BIT_09, OPC_SAT_S_df = (0x0 << 23) | OPC_MSA_BIT_0A, OPC_SRAI_df = (0x1 << 23) | OPC_MSA_BIT_09, OPC_SAT_U_df = (0x1 << 23) | OPC_MSA_BIT_0A, OPC_SRLI_df = (0x2 << 23) | OPC_MSA_BIT_09, OPC_SRARI_df = (0x2 << 23) | OPC_MSA_BIT_0A, OPC_BCLRI_df = (0x3 << 23) | OPC_MSA_BIT_09, OPC_SRLRI_df = (0x3 << 23) | OPC_MSA_BIT_0A, OPC_BSETI_df = (0x4 << 23) | OPC_MSA_BIT_09, OPC_BNEGI_df = (0x5 << 23) | OPC_MSA_BIT_09, OPC_BINSLI_df = (0x6 << 23) | OPC_MSA_BIT_09, OPC_BINSRI_df = (0x7 << 23) | OPC_MSA_BIT_09, }; /* * * AN OVERVIEW OF MXU EXTENSION INSTRUCTION SET * ============================================ * * * MXU (full name: MIPS eXtension/enhanced Unit) is a SIMD extension of MIPS32 * instructions set. It is designed to fit the needs of signal, graphical and * video processing applications. MXU instruction set is used in Xburst family * of microprocessors by Ingenic. * * MXU unit contains 17 registers called X0-X16. X0 is always zero, and X16 is * the control register. * * * The notation used in MXU assembler mnemonics * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * Register operands: * * XRa, XRb, XRc, XRd - MXU registers * Rb, Rc, Rd, Rs, Rt - general purpose MIPS registers * * Non-register operands: * * aptn1 - 1-bit accumulate add/subtract pattern * aptn2 - 2-bit accumulate add/subtract pattern * eptn2 - 2-bit execute add/subtract pattern * optn2 - 2-bit operand pattern * optn3 - 3-bit operand pattern * sft4 - 4-bit shift amount * strd2 - 2-bit stride amount * * Prefixes: * * Level of parallelism: Operand size: * S - single operation at a time 32 - word * D - two operations in parallel 16 - half word * Q - four operations in parallel 8 - byte * * Operations: * * ADD - Add or subtract * ADDC - Add with carry-in * ACC - Accumulate * ASUM - Sum together then accumulate (add or subtract) * ASUMC - Sum together then accumulate (add or subtract) with carry-in * AVG - Average between 2 operands * ABD - Absolute difference * ALN - Align data * AND - Logical bitwise 'and' operation * CPS - Copy sign * EXTR - Extract bits * I2M - Move from GPR register to MXU register * LDD - Load data from memory to XRF * LDI - Load data from memory to XRF (and increase the address base) * LUI - Load unsigned immediate * MUL - Multiply * MULU - Unsigned multiply * MADD - 64-bit operand add 32x32 product * MSUB - 64-bit operand subtract 32x32 product * MAC - Multiply and accumulate (add or subtract) * MAD - Multiply and add or subtract * MAX - Maximum between 2 operands * MIN - Minimum between 2 operands * M2I - Move from MXU register to GPR register * MOVZ - Move if zero * MOVN - Move if non-zero * NOR - Logical bitwise 'nor' operation * OR - Logical bitwise 'or' operation * STD - Store data from XRF to memory * SDI - Store data from XRF to memory (and increase the address base) * SLT - Set of less than comparison * SAD - Sum of absolute differences * SLL - Logical shift left * SLR - Logical shift right * SAR - Arithmetic shift right * SAT - Saturation * SFL - Shuffle * SCOP - Calculate x’s scope (-1, means x<0; 0, means x==0; 1, means x>0) * XOR - Logical bitwise 'exclusive or' operation * * Suffixes: * * E - Expand results * F - Fixed point multiplication * L - Low part result * R - Doing rounding * V - Variable instead of immediate * W - Combine above L and V * * * The list of MXU instructions grouped by functionality * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * Load/Store instructions Multiplication instructions * ----------------------- --------------------------- * * S32LDD XRa, Rb, s12 S32MADD XRa, XRd, Rs, Rt * S32STD XRa, Rb, s12 S32MADDU XRa, XRd, Rs, Rt * S32LDDV XRa, Rb, rc, strd2 S32MSUB XRa, XRd, Rs, Rt * S32STDV XRa, Rb, rc, strd2 S32MSUBU XRa, XRd, Rs, Rt * S32LDI XRa, Rb, s12 S32MUL XRa, XRd, Rs, Rt * S32SDI XRa, Rb, s12 S32MULU XRa, XRd, Rs, Rt * S32LDIV XRa, Rb, rc, strd2 D16MUL XRa, XRb, XRc, XRd, optn2 * S32SDIV XRa, Rb, rc, strd2 D16MULE XRa, XRb, XRc, optn2 * S32LDDR XRa, Rb, s12 D16MULF XRa, XRb, XRc, optn2 * S32STDR XRa, Rb, s12 D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 * S32LDDVR XRa, Rb, rc, strd2 D16MACE XRa, XRb, XRc, XRd, aptn2, optn2 * S32STDVR XRa, Rb, rc, strd2 D16MACF XRa, XRb, XRc, XRd, aptn2, optn2 * S32LDIR XRa, Rb, s12 D16MADL XRa, XRb, XRc, XRd, aptn2, optn2 * S32SDIR XRa, Rb, s12 S16MAD XRa, XRb, XRc, XRd, aptn1, optn2 * S32LDIVR XRa, Rb, rc, strd2 Q8MUL XRa, XRb, XRc, XRd * S32SDIVR XRa, Rb, rc, strd2 Q8MULSU XRa, XRb, XRc, XRd * S16LDD XRa, Rb, s10, eptn2 Q8MAC XRa, XRb, XRc, XRd, aptn2 * S16STD XRa, Rb, s10, eptn2 Q8MACSU XRa, XRb, XRc, XRd, aptn2 * S16LDI XRa, Rb, s10, eptn2 Q8MADL XRa, XRb, XRc, XRd, aptn2 * S16SDI XRa, Rb, s10, eptn2 * S8LDD XRa, Rb, s8, eptn3 * S8STD XRa, Rb, s8, eptn3 Addition and subtraction instructions * S8LDI XRa, Rb, s8, eptn3 ------------------------------------- * S8SDI XRa, Rb, s8, eptn3 * LXW Rd, Rs, Rt, strd2 D32ADD XRa, XRb, XRc, XRd, eptn2 * LXH Rd, Rs, Rt, strd2 D32ADDC XRa, XRb, XRc, XRd * LXHU Rd, Rs, Rt, strd2 D32ACC XRa, XRb, XRc, XRd, eptn2 * LXB Rd, Rs, Rt, strd2 D32ACCM XRa, XRb, XRc, XRd, eptn2 * LXBU Rd, Rs, Rt, strd2 D32ASUM XRa, XRb, XRc, XRd, eptn2 * S32CPS XRa, XRb, XRc * Q16ADD XRa, XRb, XRc, XRd, eptn2, optn2 * Comparison instructions Q16ACC XRa, XRb, XRc, XRd, eptn2 * ----------------------- Q16ACCM XRa, XRb, XRc, XRd, eptn2 * D16ASUM XRa, XRb, XRc, XRd, eptn2 * S32MAX XRa, XRb, XRc D16CPS XRa, XRb, * S32MIN XRa, XRb, XRc D16AVG XRa, XRb, XRc * S32SLT XRa, XRb, XRc D16AVGR XRa, XRb, XRc * S32MOVZ XRa, XRb, XRc Q8ADD XRa, XRb, XRc, eptn2 * S32MOVN XRa, XRb, XRc Q8ADDE XRa, XRb, XRc, XRd, eptn2 * D16MAX XRa, XRb, XRc Q8ACCE XRa, XRb, XRc, XRd, eptn2 * D16MIN XRa, XRb, XRc Q8ABD XRa, XRb, XRc * D16SLT XRa, XRb, XRc Q8SAD XRa, XRb, XRc, XRd * D16MOVZ XRa, XRb, XRc Q8AVG XRa, XRb, XRc * D16MOVN XRa, XRb, XRc Q8AVGR XRa, XRb, XRc * Q8MAX XRa, XRb, XRc D8SUM XRa, XRb, XRc, XRd * Q8MIN XRa, XRb, XRc D8SUMC XRa, XRb, XRc, XRd * Q8SLT XRa, XRb, XRc * Q8SLTU XRa, XRb, XRc * Q8MOVZ XRa, XRb, XRc Shift instructions * Q8MOVN XRa, XRb, XRc ------------------ * * D32SLL XRa, XRb, XRc, XRd, sft4 * Bitwise instructions D32SLR XRa, XRb, XRc, XRd, sft4 * -------------------- D32SAR XRa, XRb, XRc, XRd, sft4 * D32SARL XRa, XRb, XRc, sft4 * S32NOR XRa, XRb, XRc D32SLLV XRa, XRb, Rb * S32AND XRa, XRb, XRc D32SLRV XRa, XRb, Rb * S32XOR XRa, XRb, XRc D32SARV XRa, XRb, Rb * S32OR XRa, XRb, XRc D32SARW XRa, XRb, XRc, Rb * Q16SLL XRa, XRb, XRc, XRd, sft4 * Q16SLR XRa, XRb, XRc, XRd, sft4 * Miscellaneous instructions Q16SAR XRa, XRb, XRc, XRd, sft4 * ------------------------- Q16SLLV XRa, XRb, Rb * Q16SLRV XRa, XRb, Rb * S32SFL XRa, XRb, XRc, XRd, optn2 Q16SARV XRa, XRb, Rb * S32ALN XRa, XRb, XRc, Rb * S32ALNI XRa, XRb, XRc, s3 * S32LUI XRa, s8, optn3 Move instructions * S32EXTR XRa, XRb, Rb, bits5 ----------------- * S32EXTRV XRa, XRb, Rs, Rt * Q16SCOP XRa, XRb, XRc, XRd S32M2I XRa, Rb * Q16SAT XRa, XRb, XRc S32I2M XRa, Rb * * * The opcode organization of MXU instructions * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * The bits 31..26 of all MXU instructions are equal to 0x1C (also referred * as opcode SPECIAL2 in the base MIPS ISA). The organization and meaning of * other bits up to the instruction level is as follows: * * bits * 05..00 * * ┌─ 000000 ─ OPC_MXU_S32MADD * ├─ 000001 ─ OPC_MXU_S32MADDU * ├─ 000010 ─ (non-MXU OPC_MUL) * │ * │ 20..18 * ├─ 000011 ─ OPC_MXU__POOL00 ─┬─ 000 ─ OPC_MXU_S32MAX * │ ├─ 001 ─ OPC_MXU_S32MIN * │ ├─ 010 ─ OPC_MXU_D16MAX * │ ├─ 011 ─ OPC_MXU_D16MIN * │ ├─ 100 ─ OPC_MXU_Q8MAX * │ ├─ 101 ─ OPC_MXU_Q8MIN * │ ├─ 110 ─ OPC_MXU_Q8SLT * │ └─ 111 ─ OPC_MXU_Q8SLTU * ├─ 000100 ─ OPC_MXU_S32MSUB * ├─ 000101 ─ OPC_MXU_S32MSUBU 20..18 * ├─ 000110 ─ OPC_MXU__POOL01 ─┬─ 000 ─ OPC_MXU_S32SLT * │ ├─ 001 ─ OPC_MXU_D16SLT * │ ├─ 010 ─ OPC_MXU_D16AVG * │ ├─ 011 ─ OPC_MXU_D16AVGR * │ ├─ 100 ─ OPC_MXU_Q8AVG * │ ├─ 101 ─ OPC_MXU_Q8AVGR * │ └─ 111 ─ OPC_MXU_Q8ADD * │ * │ 20..18 * ├─ 000111 ─ OPC_MXU__POOL02 ─┬─ 000 ─ OPC_MXU_S32CPS * │ ├─ 010 ─ OPC_MXU_D16CPS * │ ├─ 100 ─ OPC_MXU_Q8ABD * │ └─ 110 ─ OPC_MXU_Q16SAT * ├─ 001000 ─ OPC_MXU_D16MUL * │ 25..24 * ├─ 001001 ─ OPC_MXU__POOL03 ─┬─ 00 ─ OPC_MXU_D16MULF * │ └─ 01 ─ OPC_MXU_D16MULE * ├─ 001010 ─ OPC_MXU_D16MAC * ├─ 001011 ─ OPC_MXU_D16MACF * ├─ 001100 ─ OPC_MXU_D16MADL * ├─ 001101 ─ OPC_MXU_S16MAD * ├─ 001110 ─ OPC_MXU_Q16ADD * ├─ 001111 ─ OPC_MXU_D16MACE 23 * │ ┌─ 0 ─ OPC_MXU_S32LDD * ├─ 010000 ─ OPC_MXU__POOL04 ─┴─ 1 ─ OPC_MXU_S32LDDR * │ * │ 23 * ├─ 010001 ─ OPC_MXU__POOL05 ─┬─ 0 ─ OPC_MXU_S32STD * │ └─ 1 ─ OPC_MXU_S32STDR * │ * │ 13..10 * ├─ 010010 ─ OPC_MXU__POOL06 ─┬─ 0000 ─ OPC_MXU_S32LDDV * │ └─ 0001 ─ OPC_MXU_S32LDDVR * │ * │ 13..10 * ├─ 010011 ─ OPC_MXU__POOL07 ─┬─ 0000 ─ OPC_MXU_S32STDV * │ └─ 0001 ─ OPC_MXU_S32STDVR * │ * │ 23 * ├─ 010100 ─ OPC_MXU__POOL08 ─┬─ 0 ─ OPC_MXU_S32LDI * │ └─ 1 ─ OPC_MXU_S32LDIR * │ * │ 23 * ├─ 010101 ─ OPC_MXU__POOL09 ─┬─ 0 ─ OPC_MXU_S32SDI * │ └─ 1 ─ OPC_MXU_S32SDIR * │ * │ 13..10 * ├─ 010110 ─ OPC_MXU__POOL10 ─┬─ 0000 ─ OPC_MXU_S32LDIV * │ └─ 0001 ─ OPC_MXU_S32LDIVR * │ * │ 13..10 * ├─ 010111 ─ OPC_MXU__POOL11 ─┬─ 0000 ─ OPC_MXU_S32SDIV * │ └─ 0001 ─ OPC_MXU_S32SDIVR * ├─ 011000 ─ OPC_MXU_D32ADD * │ 23..22 * MXU ├─ 011001 ─ OPC_MXU__POOL12 ─┬─ 00 ─ OPC_MXU_D32ACC * opcodes ─┤ ├─ 01 ─ OPC_MXU_D32ACCM * │ └─ 10 ─ OPC_MXU_D32ASUM * ├─ 011010 ─ * │ 23..22 * ├─ 011011 ─ OPC_MXU__POOL13 ─┬─ 00 ─ OPC_MXU_Q16ACC * │ ├─ 01 ─ OPC_MXU_Q16ACCM * │ └─ 10 ─ OPC_MXU_Q16ASUM * │ * │ 23..22 * ├─ 011100 ─ OPC_MXU__POOL14 ─┬─ 00 ─ OPC_MXU_Q8ADDE * │ ├─ 01 ─ OPC_MXU_D8SUM * ├─ 011101 ─ OPC_MXU_Q8ACCE └─ 10 ─ OPC_MXU_D8SUMC * ├─ 011110 ─ * ├─ 011111 ─ * ├─ 100000 ─ (overlaps with CLZ) * ├─ 100001 ─ (overlaps with CLO) * ├─ 100010 ─ OPC_MXU_S8LDD * ├─ 100011 ─ OPC_MXU_S8STD 15..14 * ├─ 100100 ─ OPC_MXU_S8LDI ┌─ 00 ─ OPC_MXU_S32MUL * ├─ 100101 ─ OPC_MXU_S8SDI ├─ 00 ─ OPC_MXU_S32MULU * │ ├─ 00 ─ OPC_MXU_S32EXTR * ├─ 100110 ─ OPC_MXU__POOL15 ─┴─ 00 ─ OPC_MXU_S32EXTRV * │ * │ 20..18 * ├─ 100111 ─ OPC_MXU__POOL16 ─┬─ 000 ─ OPC_MXU_D32SARW * │ ├─ 001 ─ OPC_MXU_S32ALN * │ ├─ 010 ─ OPC_MXU_S32ALNI * │ ├─ 011 ─ OPC_MXU_S32LUI * │ ├─ 100 ─ OPC_MXU_S32NOR * │ ├─ 101 ─ OPC_MXU_S32AND * │ ├─ 110 ─ OPC_MXU_S32OR * │ └─ 111 ─ OPC_MXU_S32XOR * │ * │ 7..5 * ├─ 101000 ─ OPC_MXU__POOL17 ─┬─ 000 ─ OPC_MXU_LXB * │ ├─ 001 ─ OPC_MXU_LXH * ├─ 101001 ─ ├─ 011 ─ OPC_MXU_LXW * ├─ 101010 ─ OPC_MXU_S16LDD ├─ 100 ─ OPC_MXU_LXBU * ├─ 101011 ─ OPC_MXU_S16STD └─ 101 ─ OPC_MXU_LXHU * ├─ 101100 ─ OPC_MXU_S16LDI * ├─ 101101 ─ OPC_MXU_S16SDI * ├─ 101110 ─ OPC_MXU_S32M2I * ├─ 101111 ─ OPC_MXU_S32I2M * ├─ 110000 ─ OPC_MXU_D32SLL * ├─ 110001 ─ OPC_MXU_D32SLR 20..18 * ├─ 110010 ─ OPC_MXU_D32SARL ┌─ 000 ─ OPC_MXU_D32SLLV * ├─ 110011 ─ OPC_MXU_D32SAR ├─ 001 ─ OPC_MXU_D32SLRV * ├─ 110100 ─ OPC_MXU_Q16SLL ├─ 010 ─ OPC_MXU_D32SARV * ├─ 110101 ─ OPC_MXU_Q16SLR ├─ 011 ─ OPC_MXU_Q16SLLV * │ ├─ 100 ─ OPC_MXU_Q16SLRV * ├─ 110110 ─ OPC_MXU__POOL18 ─┴─ 101 ─ OPC_MXU_Q16SARV * │ * ├─ 110111 ─ OPC_MXU_Q16SAR * │ 23..22 * ├─ 111000 ─ OPC_MXU__POOL19 ─┬─ 00 ─ OPC_MXU_Q8MUL * │ └─ 01 ─ OPC_MXU_Q8MULSU * │ * │ 20..18 * ├─ 111001 ─ OPC_MXU__POOL20 ─┬─ 000 ─ OPC_MXU_Q8MOVZ * │ ├─ 001 ─ OPC_MXU_Q8MOVN * │ ├─ 010 ─ OPC_MXU_D16MOVZ * │ ├─ 011 ─ OPC_MXU_D16MOVN * │ ├─ 100 ─ OPC_MXU_S32MOVZ * │ └─ 101 ─ OPC_MXU_S32MOVN * │ * │ 23..22 * ├─ 111010 ─ OPC_MXU__POOL21 ─┬─ 00 ─ OPC_MXU_Q8MAC * │ └─ 10 ─ OPC_MXU_Q8MACSU * ├─ 111011 ─ OPC_MXU_Q16SCOP * ├─ 111100 ─ OPC_MXU_Q8MADL * ├─ 111101 ─ OPC_MXU_S32SFL * ├─ 111110 ─ OPC_MXU_Q8SAD * └─ 111111 ─ (overlaps with SDBBP) * * * Compiled after: * * "XBurst® Instruction Set Architecture MIPS eXtension/enhanced Unit * Programming Manual", Ingenic Semiconductor Co, Ltd., revision June 2, 2017 */ enum { OPC_MXU_S32MADD = 0x00, OPC_MXU_S32MADDU = 0x01, OPC__MXU_MUL = 0x02, OPC_MXU__POOL00 = 0x03, OPC_MXU_S32MSUB = 0x04, OPC_MXU_S32MSUBU = 0x05, OPC_MXU__POOL01 = 0x06, OPC_MXU__POOL02 = 0x07, OPC_MXU_D16MUL = 0x08, OPC_MXU__POOL03 = 0x09, OPC_MXU_D16MAC = 0x0A, OPC_MXU_D16MACF = 0x0B, OPC_MXU_D16MADL = 0x0C, OPC_MXU_S16MAD = 0x0D, OPC_MXU_Q16ADD = 0x0E, OPC_MXU_D16MACE = 0x0F, OPC_MXU__POOL04 = 0x10, OPC_MXU__POOL05 = 0x11, OPC_MXU__POOL06 = 0x12, OPC_MXU__POOL07 = 0x13, OPC_MXU__POOL08 = 0x14, OPC_MXU__POOL09 = 0x15, OPC_MXU__POOL10 = 0x16, OPC_MXU__POOL11 = 0x17, OPC_MXU_D32ADD = 0x18, OPC_MXU__POOL12 = 0x19, /* not assigned 0x1A */ OPC_MXU__POOL13 = 0x1B, OPC_MXU__POOL14 = 0x1C, OPC_MXU_Q8ACCE = 0x1D, /* not assigned 0x1E */ /* not assigned 0x1F */ /* not assigned 0x20 */ /* not assigned 0x21 */ OPC_MXU_S8LDD = 0x22, OPC_MXU_S8STD = 0x23, OPC_MXU_S8LDI = 0x24, OPC_MXU_S8SDI = 0x25, OPC_MXU__POOL15 = 0x26, OPC_MXU__POOL16 = 0x27, OPC_MXU__POOL17 = 0x28, /* not assigned 0x29 */ OPC_MXU_S16LDD = 0x2A, OPC_MXU_S16STD = 0x2B, OPC_MXU_S16LDI = 0x2C, OPC_MXU_S16SDI = 0x2D, OPC_MXU_S32M2I = 0x2E, OPC_MXU_S32I2M = 0x2F, OPC_MXU_D32SLL = 0x30, OPC_MXU_D32SLR = 0x31, OPC_MXU_D32SARL = 0x32, OPC_MXU_D32SAR = 0x33, OPC_MXU_Q16SLL = 0x34, OPC_MXU_Q16SLR = 0x35, OPC_MXU__POOL18 = 0x36, OPC_MXU_Q16SAR = 0x37, OPC_MXU__POOL19 = 0x38, OPC_MXU__POOL20 = 0x39, OPC_MXU__POOL21 = 0x3A, OPC_MXU_Q16SCOP = 0x3B, OPC_MXU_Q8MADL = 0x3C, OPC_MXU_S32SFL = 0x3D, OPC_MXU_Q8SAD = 0x3E, /* not assigned 0x3F */ }; /* * MXU pool 00 */ enum { OPC_MXU_S32MAX = 0x00, OPC_MXU_S32MIN = 0x01, OPC_MXU_D16MAX = 0x02, OPC_MXU_D16MIN = 0x03, OPC_MXU_Q8MAX = 0x04, OPC_MXU_Q8MIN = 0x05, OPC_MXU_Q8SLT = 0x06, OPC_MXU_Q8SLTU = 0x07, }; /* * MXU pool 01 */ enum { OPC_MXU_S32SLT = 0x00, OPC_MXU_D16SLT = 0x01, OPC_MXU_D16AVG = 0x02, OPC_MXU_D16AVGR = 0x03, OPC_MXU_Q8AVG = 0x04, OPC_MXU_Q8AVGR = 0x05, OPC_MXU_Q8ADD = 0x07, }; /* * MXU pool 02 */ enum { OPC_MXU_S32CPS = 0x00, OPC_MXU_D16CPS = 0x02, OPC_MXU_Q8ABD = 0x04, OPC_MXU_Q16SAT = 0x06, }; /* * MXU pool 03 */ enum { OPC_MXU_D16MULF = 0x00, OPC_MXU_D16MULE = 0x01, }; /* * MXU pool 04 */ enum { OPC_MXU_S32LDD = 0x00, OPC_MXU_S32LDDR = 0x01, }; /* * MXU pool 05 */ enum { OPC_MXU_S32STD = 0x00, OPC_MXU_S32STDR = 0x01, }; /* * MXU pool 06 */ enum { OPC_MXU_S32LDDV = 0x00, OPC_MXU_S32LDDVR = 0x01, }; /* * MXU pool 07 */ enum { OPC_MXU_S32STDV = 0x00, OPC_MXU_S32STDVR = 0x01, }; /* * MXU pool 08 */ enum { OPC_MXU_S32LDI = 0x00, OPC_MXU_S32LDIR = 0x01, }; /* * MXU pool 09 */ enum { OPC_MXU_S32SDI = 0x00, OPC_MXU_S32SDIR = 0x01, }; /* * MXU pool 10 */ enum { OPC_MXU_S32LDIV = 0x00, OPC_MXU_S32LDIVR = 0x01, }; /* * MXU pool 11 */ enum { OPC_MXU_S32SDIV = 0x00, OPC_MXU_S32SDIVR = 0x01, }; /* * MXU pool 12 */ enum { OPC_MXU_D32ACC = 0x00, OPC_MXU_D32ACCM = 0x01, OPC_MXU_D32ASUM = 0x02, }; /* * MXU pool 13 */ enum { OPC_MXU_Q16ACC = 0x00, OPC_MXU_Q16ACCM = 0x01, OPC_MXU_Q16ASUM = 0x02, }; /* * MXU pool 14 */ enum { OPC_MXU_Q8ADDE = 0x00, OPC_MXU_D8SUM = 0x01, OPC_MXU_D8SUMC = 0x02, }; /* * MXU pool 15 */ enum { OPC_MXU_S32MUL = 0x00, OPC_MXU_S32MULU = 0x01, OPC_MXU_S32EXTR = 0x02, OPC_MXU_S32EXTRV = 0x03, }; /* * MXU pool 16 */ enum { OPC_MXU_D32SARW = 0x00, OPC_MXU_S32ALN = 0x01, OPC_MXU_S32ALNI = 0x02, OPC_MXU_S32LUI = 0x03, OPC_MXU_S32NOR = 0x04, OPC_MXU_S32AND = 0x05, OPC_MXU_S32OR = 0x06, OPC_MXU_S32XOR = 0x07, }; /* * MXU pool 17 */ enum { OPC_MXU_LXB = 0x00, OPC_MXU_LXH = 0x01, OPC_MXU_LXW = 0x03, OPC_MXU_LXBU = 0x04, OPC_MXU_LXHU = 0x05, }; /* * MXU pool 18 */ enum { OPC_MXU_D32SLLV = 0x00, OPC_MXU_D32SLRV = 0x01, OPC_MXU_D32SARV = 0x03, OPC_MXU_Q16SLLV = 0x04, OPC_MXU_Q16SLRV = 0x05, OPC_MXU_Q16SARV = 0x07, }; /* * MXU pool 19 */ enum { OPC_MXU_Q8MUL = 0x00, OPC_MXU_Q8MULSU = 0x01, }; /* * MXU pool 20 */ enum { OPC_MXU_Q8MOVZ = 0x00, OPC_MXU_Q8MOVN = 0x01, OPC_MXU_D16MOVZ = 0x02, OPC_MXU_D16MOVN = 0x03, OPC_MXU_S32MOVZ = 0x04, OPC_MXU_S32MOVN = 0x05, }; /* * MXU pool 21 */ enum { OPC_MXU_Q8MAC = 0x00, OPC_MXU_Q8MACSU = 0x01, }; /* * Overview of the TX79-specific instruction set * ============================================= * * The R5900 and the C790 have 128-bit wide GPRs, where the upper 64 bits * are only used by the specific quadword (128-bit) LQ/SQ load/store * instructions and certain multimedia instructions (MMIs). These MMIs * configure the 128-bit data path as two 64-bit, four 32-bit, eight 16-bit * or sixteen 8-bit paths. * * Reference: * * The Toshiba TX System RISC TX79 Core Architecture manual, * https://wiki.qemu.org/File:C790.pdf * * Three-Operand Multiply and Multiply-Add (4 instructions) * -------------------------------------------------------- * MADD [rd,] rs, rt Multiply/Add * MADDU [rd,] rs, rt Multiply/Add Unsigned * MULT [rd,] rs, rt Multiply (3-operand) * MULTU [rd,] rs, rt Multiply Unsigned (3-operand) * * Multiply Instructions for Pipeline 1 (10 instructions) * ------------------------------------------------------ * MULT1 [rd,] rs, rt Multiply Pipeline 1 * MULTU1 [rd,] rs, rt Multiply Unsigned Pipeline 1 * DIV1 rs, rt Divide Pipeline 1 * DIVU1 rs, rt Divide Unsigned Pipeline 1 * MADD1 [rd,] rs, rt Multiply-Add Pipeline 1 * MADDU1 [rd,] rs, rt Multiply-Add Unsigned Pipeline 1 * MFHI1 rd Move From HI1 Register * MFLO1 rd Move From LO1 Register * MTHI1 rs Move To HI1 Register * MTLO1 rs Move To LO1 Register * * Arithmetic (19 instructions) * ---------------------------- * PADDB rd, rs, rt Parallel Add Byte * PSUBB rd, rs, rt Parallel Subtract Byte * PADDH rd, rs, rt Parallel Add Halfword * PSUBH rd, rs, rt Parallel Subtract Halfword * PADDW rd, rs, rt Parallel Add Word * PSUBW rd, rs, rt Parallel Subtract Word * PADSBH rd, rs, rt Parallel Add/Subtract Halfword * PADDSB rd, rs, rt Parallel Add with Signed Saturation Byte * PSUBSB rd, rs, rt Parallel Subtract with Signed Saturation Byte * PADDSH rd, rs, rt Parallel Add with Signed Saturation Halfword * PSUBSH rd, rs, rt Parallel Subtract with Signed Saturation Halfword * PADDSW rd, rs, rt Parallel Add with Signed Saturation Word * PSUBSW rd, rs, rt Parallel Subtract with Signed Saturation Word * PADDUB rd, rs, rt Parallel Add with Unsigned saturation Byte * PSUBUB rd, rs, rt Parallel Subtract with Unsigned saturation Byte * PADDUH rd, rs, rt Parallel Add with Unsigned saturation Halfword * PSUBUH rd, rs, rt Parallel Subtract with Unsigned saturation Halfword * PADDUW rd, rs, rt Parallel Add with Unsigned saturation Word * PSUBUW rd, rs, rt Parallel Subtract with Unsigned saturation Word * * Min/Max (4 instructions) * ------------------------ * PMAXH rd, rs, rt Parallel Maximum Halfword * PMINH rd, rs, rt Parallel Minimum Halfword * PMAXW rd, rs, rt Parallel Maximum Word * PMINW rd, rs, rt Parallel Minimum Word * * Absolute (2 instructions) * ------------------------- * PABSH rd, rt Parallel Absolute Halfword * PABSW rd, rt Parallel Absolute Word * * Logical (4 instructions) * ------------------------ * PAND rd, rs, rt Parallel AND * POR rd, rs, rt Parallel OR * PXOR rd, rs, rt Parallel XOR * PNOR rd, rs, rt Parallel NOR * * Shift (9 instructions) * ---------------------- * PSLLH rd, rt, sa Parallel Shift Left Logical Halfword * PSRLH rd, rt, sa Parallel Shift Right Logical Halfword * PSRAH rd, rt, sa Parallel Shift Right Arithmetic Halfword * PSLLW rd, rt, sa Parallel Shift Left Logical Word * PSRLW rd, rt, sa Parallel Shift Right Logical Word * PSRAW rd, rt, sa Parallel Shift Right Arithmetic Word * PSLLVW rd, rt, rs Parallel Shift Left Logical Variable Word * PSRLVW rd, rt, rs Parallel Shift Right Logical Variable Word * PSRAVW rd, rt, rs Parallel Shift Right Arithmetic Variable Word * * Compare (6 instructions) * ------------------------ * PCGTB rd, rs, rt Parallel Compare for Greater Than Byte * PCEQB rd, rs, rt Parallel Compare for Equal Byte * PCGTH rd, rs, rt Parallel Compare for Greater Than Halfword * PCEQH rd, rs, rt Parallel Compare for Equal Halfword * PCGTW rd, rs, rt Parallel Compare for Greater Than Word * PCEQW rd, rs, rt Parallel Compare for Equal Word * * LZC (1 instruction) * ------------------- * PLZCW rd, rs Parallel Leading Zero or One Count Word * * Quadword Load and Store (2 instructions) * ---------------------------------------- * LQ rt, offset(base) Load Quadword * SQ rt, offset(base) Store Quadword * * Multiply and Divide (19 instructions) * ------------------------------------- * PMULTW rd, rs, rt Parallel Multiply Word * PMULTUW rd, rs, rt Parallel Multiply Unsigned Word * PDIVW rs, rt Parallel Divide Word * PDIVUW rs, rt Parallel Divide Unsigned Word * PMADDW rd, rs, rt Parallel Multiply-Add Word * PMADDUW rd, rs, rt Parallel Multiply-Add Unsigned Word * PMSUBW rd, rs, rt Parallel Multiply-Subtract Word * PMULTH rd, rs, rt Parallel Multiply Halfword * PMADDH rd, rs, rt Parallel Multiply-Add Halfword * PMSUBH rd, rs, rt Parallel Multiply-Subtract Halfword * PHMADH rd, rs, rt Parallel Horizontal Multiply-Add Halfword * PHMSBH rd, rs, rt Parallel Horizontal Multiply-Subtract Halfword * PDIVBW rs, rt Parallel Divide Broadcast Word * PMFHI rd Parallel Move From HI Register * PMFLO rd Parallel Move From LO Register * PMTHI rs Parallel Move To HI Register * PMTLO rs Parallel Move To LO Register * PMFHL rd Parallel Move From HI/LO Register * PMTHL rs Parallel Move To HI/LO Register * * Pack/Extend (11 instructions) * ----------------------------- * PPAC5 rd, rt Parallel Pack to 5 bits * PPACB rd, rs, rt Parallel Pack to Byte * PPACH rd, rs, rt Parallel Pack to Halfword * PPACW rd, rs, rt Parallel Pack to Word * PEXT5 rd, rt Parallel Extend Upper from 5 bits * PEXTUB rd, rs, rt Parallel Extend Upper from Byte * PEXTLB rd, rs, rt Parallel Extend Lower from Byte * PEXTUH rd, rs, rt Parallel Extend Upper from Halfword * PEXTLH rd, rs, rt Parallel Extend Lower from Halfword * PEXTUW rd, rs, rt Parallel Extend Upper from Word * PEXTLW rd, rs, rt Parallel Extend Lower from Word * * Others (16 instructions) * ------------------------ * PCPYH rd, rt Parallel Copy Halfword * PCPYLD rd, rs, rt Parallel Copy Lower Doubleword * PCPYUD rd, rs, rt Parallel Copy Upper Doubleword * PREVH rd, rt Parallel Reverse Halfword * PINTH rd, rs, rt Parallel Interleave Halfword * PINTEH rd, rs, rt Parallel Interleave Even Halfword * PEXEH rd, rt Parallel Exchange Even Halfword * PEXCH rd, rt Parallel Exchange Center Halfword * PEXEW rd, rt Parallel Exchange Even Word * PEXCW rd, rt Parallel Exchange Center Word * QFSRV rd, rs, rt Quadword Funnel Shift Right Variable * MFSA rd Move from Shift Amount Register * MTSA rs Move to Shift Amount Register * MTSAB rs, immediate Move Byte Count to Shift Amount Register * MTSAH rs, immediate Move Halfword Count to Shift Amount Register * PROT3W rd, rt Parallel Rotate 3 Words * * MMI (MultiMedia Instruction) encodings * ====================================== * * MMI instructions encoding table keys: * * * This code is reserved for future use. An attempt to execute it * causes a Reserved Instruction exception. * % This code indicates an instruction class. The instruction word * must be further decoded by examining additional tables that show * the values for other instruction fields. * # This code is reserved for the unsupported instructions DMULT, * DMULTU, DDIV, DDIVU, LL, LLD, SC, SCD, LWC2 and SWC2. An attempt * to execute it causes a Reserved Instruction exception. * * MMI instructions encoded by opcode field (MMI, LQ, SQ): * * 31 26 0 * +--------+----------------------------------------+ * | opcode | | * +--------+----------------------------------------+ * * opcode bits 28..26 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 * 31..29 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 * -------+-------+-------+-------+-------+-------+-------+-------+------- * 0 000 |SPECIAL| REGIMM| J | JAL | BEQ | BNE | BLEZ | BGTZ * 1 001 | ADDI | ADDIU | SLTI | SLTIU | ANDI | ORI | XORI | LUI * 2 010 | COP0 | COP1 | * | * | BEQL | BNEL | BLEZL | BGTZL * 3 011 | DADDI | DADDIU| LDL | LDR | MMI% | * | LQ | SQ * 4 100 | LB | LH | LWL | LW | LBU | LHU | LWR | LWU * 5 101 | SB | SH | SWL | SW | SDL | SDR | SWR | CACHE * 6 110 | # | LWC1 | # | PREF | # | LDC1 | # | LD * 7 111 | # | SWC1 | # | * | # | SDC1 | # | SD */ enum { MMI_OPC_CLASS_MMI = 0x1C << 26, /* Same as OPC_SPECIAL2 */ MMI_OPC_LQ = 0x1E << 26, /* Same as OPC_MSA */ MMI_OPC_SQ = 0x1F << 26, /* Same as OPC_SPECIAL3 */ }; /* * MMI instructions with opcode field = MMI: * * 31 26 5 0 * +--------+-------------------------------+--------+ * | MMI | |function| * +--------+-------------------------------+--------+ * * function bits 2..0 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 * 5..3 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 * -------+-------+-------+-------+-------+-------+-------+-------+------- * 0 000 | MADD | MADDU | * | * | PLZCW | * | * | * * 1 001 | MMI0% | MMI2% | * | * | * | * | * | * * 2 010 | MFHI1 | MTHI1 | MFLO1 | MTLO1 | * | * | * | * * 3 011 | MULT1 | MULTU1| DIV1 | DIVU1 | * | * | * | * * 4 100 | MADD1 | MADDU1| * | * | * | * | * | * * 5 101 | MMI1% | MMI3% | * | * | * | * | * | * * 6 110 | PMFHL | PMTHL | * | * | PSLLH | * | PSRLH | PSRAH * 7 111 | * | * | * | * | PSLLW | * | PSRLW | PSRAW */ #define MASK_MMI(op) (MASK_OP_MAJOR(op) | ((op) & 0x3F)) enum { MMI_OPC_MADD = 0x00 | MMI_OPC_CLASS_MMI, /* Same as OPC_MADD */ MMI_OPC_MADDU = 0x01 | MMI_OPC_CLASS_MMI, /* Same as OPC_MADDU */ MMI_OPC_PLZCW = 0x04 | MMI_OPC_CLASS_MMI, MMI_OPC_CLASS_MMI0 = 0x08 | MMI_OPC_CLASS_MMI, MMI_OPC_CLASS_MMI2 = 0x09 | MMI_OPC_CLASS_MMI, MMI_OPC_MFHI1 = 0x10 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MFHI */ MMI_OPC_MTHI1 = 0x11 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MTHI */ MMI_OPC_MFLO1 = 0x12 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MFLO */ MMI_OPC_MTLO1 = 0x13 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MTLO */ MMI_OPC_MULT1 = 0x18 | MMI_OPC_CLASS_MMI, /* Same minor as OPC_MULT */ MMI_OPC_MULTU1 = 0x19 | MMI_OPC_CLASS_MMI, /* Same min. as OPC_MULTU */ MMI_OPC_DIV1 = 0x1A | MMI_OPC_CLASS_MMI, /* Same minor as OPC_DIV */ MMI_OPC_DIVU1 = 0x1B | MMI_OPC_CLASS_MMI, /* Same minor as OPC_DIVU */ MMI_OPC_MADD1 = 0x20 | MMI_OPC_CLASS_MMI, MMI_OPC_MADDU1 = 0x21 | MMI_OPC_CLASS_MMI, MMI_OPC_CLASS_MMI1 = 0x28 | MMI_OPC_CLASS_MMI, MMI_OPC_CLASS_MMI3 = 0x29 | MMI_OPC_CLASS_MMI, MMI_OPC_PMFHL = 0x30 | MMI_OPC_CLASS_MMI, MMI_OPC_PMTHL = 0x31 | MMI_OPC_CLASS_MMI, MMI_OPC_PSLLH = 0x34 | MMI_OPC_CLASS_MMI, MMI_OPC_PSRLH = 0x36 | MMI_OPC_CLASS_MMI, MMI_OPC_PSRAH = 0x37 | MMI_OPC_CLASS_MMI, MMI_OPC_PSLLW = 0x3C | MMI_OPC_CLASS_MMI, MMI_OPC_PSRLW = 0x3E | MMI_OPC_CLASS_MMI, MMI_OPC_PSRAW = 0x3F | MMI_OPC_CLASS_MMI, }; /* * MMI instructions with opcode field = MMI and bits 5..0 = MMI0: * * 31 26 10 6 5 0 * +--------+----------------------+--------+--------+ * | MMI | |function| MMI0 | * +--------+----------------------+--------+--------+ * * function bits 7..6 * bits | 0 | 1 | 2 | 3 * 10..8 | 00 | 01 | 10 | 11 * -------+-------+-------+-------+------- * 0 000 | PADDW | PSUBW | PCGTW | PMAXW * 1 001 | PADDH | PSUBH | PCGTH | PMAXH * 2 010 | PADDB | PSUBB | PCGTB | * * 3 011 | * | * | * | * * 4 100 | PADDSW| PSUBSW| PEXTLW| PPACW * 5 101 | PADDSH| PSUBSH| PEXTLH| PPACH * 6 110 | PADDSB| PSUBSB| PEXTLB| PPACB * 7 111 | * | * | PEXT5 | PPAC5 */ #define MASK_MMI0(op) (MASK_OP_MAJOR(op) | ((op) & 0x7FF)) enum { MMI_OPC_0_PADDW = (0x00 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PSUBW = (0x01 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PCGTW = (0x02 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PMAXW = (0x03 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PADDH = (0x04 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PSUBH = (0x05 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PCGTH = (0x06 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PMAXH = (0x07 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PADDB = (0x08 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PSUBB = (0x09 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PCGTB = (0x0A << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PADDSW = (0x10 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PSUBSW = (0x11 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PEXTLW = (0x12 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PPACW = (0x13 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PADDSH = (0x14 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PSUBSH = (0x15 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PEXTLH = (0x16 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PPACH = (0x17 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PADDSB = (0x18 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PSUBSB = (0x19 << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PEXTLB = (0x1A << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PPACB = (0x1B << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PEXT5 = (0x1E << 6) | MMI_OPC_CLASS_MMI0, MMI_OPC_0_PPAC5 = (0x1F << 6) | MMI_OPC_CLASS_MMI0, }; /* * MMI instructions with opcode field = MMI and bits 5..0 = MMI1: * * 31 26 10 6 5 0 * +--------+----------------------+--------+--------+ * | MMI | |function| MMI1 | * +--------+----------------------+--------+--------+ * * function bits 7..6 * bits | 0 | 1 | 2 | 3 * 10..8 | 00 | 01 | 10 | 11 * -------+-------+-------+-------+------- * 0 000 | * | PABSW | PCEQW | PMINW * 1 001 | PADSBH| PABSH | PCEQH | PMINH * 2 010 | * | * | PCEQB | * * 3 011 | * | * | * | * * 4 100 | PADDUW| PSUBUW| PEXTUW| * * 5 101 | PADDUH| PSUBUH| PEXTUH| * * 6 110 | PADDUB| PSUBUB| PEXTUB| QFSRV * 7 111 | * | * | * | * */ #define MASK_MMI1(op) (MASK_OP_MAJOR(op) | ((op) & 0x7FF)) enum { MMI_OPC_1_PABSW = (0x01 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PCEQW = (0x02 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PMINW = (0x03 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PADSBH = (0x04 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PABSH = (0x05 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PCEQH = (0x06 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PMINH = (0x07 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PCEQB = (0x0A << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PADDUW = (0x10 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PSUBUW = (0x11 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PEXTUW = (0x12 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PADDUH = (0x14 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PSUBUH = (0x15 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PEXTUH = (0x16 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PADDUB = (0x18 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PSUBUB = (0x19 << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_PEXTUB = (0x1A << 6) | MMI_OPC_CLASS_MMI1, MMI_OPC_1_QFSRV = (0x1B << 6) | MMI_OPC_CLASS_MMI1, }; /* * MMI instructions with opcode field = MMI and bits 5..0 = MMI2: * * 31 26 10 6 5 0 * +--------+----------------------+--------+--------+ * | MMI | |function| MMI2 | * +--------+----------------------+--------+--------+ * * function bits 7..6 * bits | 0 | 1 | 2 | 3 * 10..8 | 00 | 01 | 10 | 11 * -------+-------+-------+-------+------- * 0 000 | PMADDW| * | PSLLVW| PSRLVW * 1 001 | PMSUBW| * | * | * * 2 010 | PMFHI | PMFLO | PINTH | * * 3 011 | PMULTW| PDIVW | PCPYLD| * * 4 100 | PMADDH| PHMADH| PAND | PXOR * 5 101 | PMSUBH| PHMSBH| * | * * 6 110 | * | * | PEXEH | PREVH * 7 111 | PMULTH| PDIVBW| PEXEW | PROT3W */ #define MASK_MMI2(op) (MASK_OP_MAJOR(op) | ((op) & 0x7FF)) enum { MMI_OPC_2_PMADDW = (0x00 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PSLLVW = (0x02 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PSRLVW = (0x03 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PMSUBW = (0x04 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PMFHI = (0x08 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PMFLO = (0x09 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PINTH = (0x0A << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PMULTW = (0x0C << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PDIVW = (0x0D << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PCPYLD = (0x0E << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PMADDH = (0x10 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PHMADH = (0x11 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PAND = (0x12 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PXOR = (0x13 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PMSUBH = (0x14 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PHMSBH = (0x15 << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PEXEH = (0x1A << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PREVH = (0x1B << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PMULTH = (0x1C << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PDIVBW = (0x1D << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PEXEW = (0x1E << 6) | MMI_OPC_CLASS_MMI2, MMI_OPC_2_PROT3W = (0x1F << 6) | MMI_OPC_CLASS_MMI2, }; /* * MMI instructions with opcode field = MMI and bits 5..0 = MMI3: * * 31 26 10 6 5 0 * +--------+----------------------+--------+--------+ * | MMI | |function| MMI3 | * +--------+----------------------+--------+--------+ * * function bits 7..6 * bits | 0 | 1 | 2 | 3 * 10..8 | 00 | 01 | 10 | 11 * -------+-------+-------+-------+------- * 0 000 |PMADDUW| * | * | PSRAVW * 1 001 | * | * | * | * * 2 010 | PMTHI | PMTLO | PINTEH| * * 3 011 |PMULTUW| PDIVUW| PCPYUD| * * 4 100 | * | * | POR | PNOR * 5 101 | * | * | * | * * 6 110 | * | * | PEXCH | PCPYH * 7 111 | * | * | PEXCW | * */ #define MASK_MMI3(op) (MASK_OP_MAJOR(op) | ((op) & 0x7FF)) enum { MMI_OPC_3_PMADDUW = (0x00 << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PSRAVW = (0x03 << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PMTHI = (0x08 << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PMTLO = (0x09 << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PINTEH = (0x0A << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PMULTUW = (0x0C << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PDIVUW = (0x0D << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PCPYUD = (0x0E << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_POR = (0x12 << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PNOR = (0x13 << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PEXCH = (0x1A << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PCPYH = (0x1B << 6) | MMI_OPC_CLASS_MMI3, MMI_OPC_3_PEXCW = (0x1E << 6) | MMI_OPC_CLASS_MMI3, }; /* global register indices */ TCGv cpu_gpr[32], cpu_PC; static TCGv cpu_HI[MIPS_DSP_ACC], cpu_LO[MIPS_DSP_ACC]; static TCGv cpu_dspctrl, btarget; TCGv bcond; static TCGv cpu_lladdr, cpu_llval; static TCGv_i32 hflags; TCGv_i32 fpu_fcr0, fpu_fcr31; TCGv_i64 fpu_f64[32]; static TCGv_i64 msa_wr_d[64]; #if defined(TARGET_MIPS64) /* Upper halves of R5900's 128-bit registers: MMRs (multimedia registers) */ static TCGv_i64 cpu_mmr[32]; #endif #if !defined(TARGET_MIPS64) /* MXU registers */ static TCGv mxu_gpr[NUMBER_OF_MXU_REGISTERS - 1]; static TCGv mxu_CR; #endif #include "exec/gen-icount.h" #define gen_helper_0e0i(name, arg) do { \ TCGv_i32 helper_tmp = tcg_const_i32(arg); \ gen_helper_##name(cpu_env, helper_tmp); \ tcg_temp_free_i32(helper_tmp); \ } while (0) #define gen_helper_0e1i(name, arg1, arg2) do { \ TCGv_i32 helper_tmp = tcg_const_i32(arg2); \ gen_helper_##name(cpu_env, arg1, helper_tmp); \ tcg_temp_free_i32(helper_tmp); \ } while (0) #define gen_helper_1e0i(name, ret, arg1) do { \ TCGv_i32 helper_tmp = tcg_const_i32(arg1); \ gen_helper_##name(ret, cpu_env, helper_tmp); \ tcg_temp_free_i32(helper_tmp); \ } while (0) #define gen_helper_1e1i(name, ret, arg1, arg2) do { \ TCGv_i32 helper_tmp = tcg_const_i32(arg2); \ gen_helper_##name(ret, cpu_env, arg1, helper_tmp); \ tcg_temp_free_i32(helper_tmp); \ } while (0) #define gen_helper_0e2i(name, arg1, arg2, arg3) do { \ TCGv_i32 helper_tmp = tcg_const_i32(arg3); \ gen_helper_##name(cpu_env, arg1, arg2, helper_tmp); \ tcg_temp_free_i32(helper_tmp); \ } while (0) #define gen_helper_1e2i(name, ret, arg1, arg2, arg3) do { \ TCGv_i32 helper_tmp = tcg_const_i32(arg3); \ gen_helper_##name(ret, cpu_env, arg1, arg2, helper_tmp); \ tcg_temp_free_i32(helper_tmp); \ } while (0) #define gen_helper_0e3i(name, arg1, arg2, arg3, arg4) do { \ TCGv_i32 helper_tmp = tcg_const_i32(arg4); \ gen_helper_##name(cpu_env, arg1, arg2, arg3, helper_tmp); \ tcg_temp_free_i32(helper_tmp); \ } while (0) #define DISAS_STOP DISAS_TARGET_0 #define DISAS_EXIT DISAS_TARGET_1 static const char * const regnames[] = { "r0", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", }; static const char * const regnames_HI[] = { "HI0", "HI1", "HI2", "HI3", }; static const char * const regnames_LO[] = { "LO0", "LO1", "LO2", "LO3", }; static const char * const fregnames[] = { "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", }; static const char * const msaregnames[] = { "w0.d0", "w0.d1", "w1.d0", "w1.d1", "w2.d0", "w2.d1", "w3.d0", "w3.d1", "w4.d0", "w4.d1", "w5.d0", "w5.d1", "w6.d0", "w6.d1", "w7.d0", "w7.d1", "w8.d0", "w8.d1", "w9.d0", "w9.d1", "w10.d0", "w10.d1", "w11.d0", "w11.d1", "w12.d0", "w12.d1", "w13.d0", "w13.d1", "w14.d0", "w14.d1", "w15.d0", "w15.d1", "w16.d0", "w16.d1", "w17.d0", "w17.d1", "w18.d0", "w18.d1", "w19.d0", "w19.d1", "w20.d0", "w20.d1", "w21.d0", "w21.d1", "w22.d0", "w22.d1", "w23.d0", "w23.d1", "w24.d0", "w24.d1", "w25.d0", "w25.d1", "w26.d0", "w26.d1", "w27.d0", "w27.d1", "w28.d0", "w28.d1", "w29.d0", "w29.d1", "w30.d0", "w30.d1", "w31.d0", "w31.d1", }; #if !defined(TARGET_MIPS64) static const char * const mxuregnames[] = { "XR1", "XR2", "XR3", "XR4", "XR5", "XR6", "XR7", "XR8", "XR9", "XR10", "XR11", "XR12", "XR13", "XR14", "XR15", "MXU_CR", }; #endif /* General purpose registers moves. */ void gen_load_gpr(TCGv t, int reg) { if (reg == 0) { tcg_gen_movi_tl(t, 0); } else { tcg_gen_mov_tl(t, cpu_gpr[reg]); } } void gen_store_gpr(TCGv t, int reg) { if (reg != 0) { tcg_gen_mov_tl(cpu_gpr[reg], t); } } /* Moves to/from shadow registers. */ static inline void gen_load_srsgpr(int from, int to) { TCGv t0 = tcg_temp_new(); if (from == 0) { tcg_gen_movi_tl(t0, 0); } else { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_ptr addr = tcg_temp_new_ptr(); tcg_gen_ld_i32(t2, cpu_env, offsetof(CPUMIPSState, CP0_SRSCtl)); tcg_gen_shri_i32(t2, t2, CP0SRSCtl_PSS); tcg_gen_andi_i32(t2, t2, 0xf); tcg_gen_muli_i32(t2, t2, sizeof(target_ulong) * 32); tcg_gen_ext_i32_ptr(addr, t2); tcg_gen_add_ptr(addr, cpu_env, addr); tcg_gen_ld_tl(t0, addr, sizeof(target_ulong) * from); tcg_temp_free_ptr(addr); tcg_temp_free_i32(t2); } gen_store_gpr(t0, to); tcg_temp_free(t0); } static inline void gen_store_srsgpr(int from, int to) { if (to != 0) { TCGv t0 = tcg_temp_new(); TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_ptr addr = tcg_temp_new_ptr(); gen_load_gpr(t0, from); tcg_gen_ld_i32(t2, cpu_env, offsetof(CPUMIPSState, CP0_SRSCtl)); tcg_gen_shri_i32(t2, t2, CP0SRSCtl_PSS); tcg_gen_andi_i32(t2, t2, 0xf); tcg_gen_muli_i32(t2, t2, sizeof(target_ulong) * 32); tcg_gen_ext_i32_ptr(addr, t2); tcg_gen_add_ptr(addr, cpu_env, addr); tcg_gen_st_tl(t0, addr, sizeof(target_ulong) * to); tcg_temp_free_ptr(addr); tcg_temp_free_i32(t2); tcg_temp_free(t0); } } #if !defined(TARGET_MIPS64) /* MXU General purpose registers moves. */ static inline void gen_load_mxu_gpr(TCGv t, unsigned int reg) { if (reg == 0) { tcg_gen_movi_tl(t, 0); } else if (reg <= 15) { tcg_gen_mov_tl(t, mxu_gpr[reg - 1]); } } static inline void gen_store_mxu_gpr(TCGv t, unsigned int reg) { if (reg > 0 && reg <= 15) { tcg_gen_mov_tl(mxu_gpr[reg - 1], t); } } /* MXU control register moves. */ static inline void gen_load_mxu_cr(TCGv t) { tcg_gen_mov_tl(t, mxu_CR); } static inline void gen_store_mxu_cr(TCGv t) { /* TODO: Add handling of RW rules for MXU_CR. */ tcg_gen_mov_tl(mxu_CR, t); } #endif /* Tests */ static inline void gen_save_pc(target_ulong pc) { tcg_gen_movi_tl(cpu_PC, pc); } static inline void save_cpu_state(DisasContext *ctx, int do_save_pc) { LOG_DISAS("hflags %08x saved %08x\n", ctx->hflags, ctx->saved_hflags); if (do_save_pc && ctx->base.pc_next != ctx->saved_pc) { gen_save_pc(ctx->base.pc_next); ctx->saved_pc = ctx->base.pc_next; } if (ctx->hflags != ctx->saved_hflags) { tcg_gen_movi_i32(hflags, ctx->hflags); ctx->saved_hflags = ctx->hflags; switch (ctx->hflags & MIPS_HFLAG_BMASK_BASE) { case MIPS_HFLAG_BR: break; case MIPS_HFLAG_BC: case MIPS_HFLAG_BL: case MIPS_HFLAG_B: tcg_gen_movi_tl(btarget, ctx->btarget); break; } } } static inline void restore_cpu_state(CPUMIPSState *env, DisasContext *ctx) { ctx->saved_hflags = ctx->hflags; switch (ctx->hflags & MIPS_HFLAG_BMASK_BASE) { case MIPS_HFLAG_BR: break; case MIPS_HFLAG_BC: case MIPS_HFLAG_BL: case MIPS_HFLAG_B: ctx->btarget = env->btarget; break; } } void generate_exception_err(DisasContext *ctx, int excp, int err) { TCGv_i32 texcp = tcg_const_i32(excp); TCGv_i32 terr = tcg_const_i32(err); save_cpu_state(ctx, 1); gen_helper_raise_exception_err(cpu_env, texcp, terr); tcg_temp_free_i32(terr); tcg_temp_free_i32(texcp); ctx->base.is_jmp = DISAS_NORETURN; } void generate_exception(DisasContext *ctx, int excp) { gen_helper_0e0i(raise_exception, excp); } void generate_exception_end(DisasContext *ctx, int excp) { generate_exception_err(ctx, excp, 0); } void gen_reserved_instruction(DisasContext *ctx) { generate_exception_end(ctx, EXCP_RI); } /* Floating point register moves. */ void gen_load_fpr32(DisasContext *ctx, TCGv_i32 t, int reg) { if (ctx->hflags & MIPS_HFLAG_FRE) { generate_exception(ctx, EXCP_RI); } tcg_gen_extrl_i64_i32(t, fpu_f64[reg]); } void gen_store_fpr32(DisasContext *ctx, TCGv_i32 t, int reg) { TCGv_i64 t64; if (ctx->hflags & MIPS_HFLAG_FRE) { generate_exception(ctx, EXCP_RI); } t64 = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(t64, t); tcg_gen_deposit_i64(fpu_f64[reg], fpu_f64[reg], t64, 0, 32); tcg_temp_free_i64(t64); } static void gen_load_fpr32h(DisasContext *ctx, TCGv_i32 t, int reg) { if (ctx->hflags & MIPS_HFLAG_F64) { tcg_gen_extrh_i64_i32(t, fpu_f64[reg]); } else { gen_load_fpr32(ctx, t, reg | 1); } } static void gen_store_fpr32h(DisasContext *ctx, TCGv_i32 t, int reg) { if (ctx->hflags & MIPS_HFLAG_F64) { TCGv_i64 t64 = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(t64, t); tcg_gen_deposit_i64(fpu_f64[reg], fpu_f64[reg], t64, 32, 32); tcg_temp_free_i64(t64); } else { gen_store_fpr32(ctx, t, reg | 1); } } void gen_load_fpr64(DisasContext *ctx, TCGv_i64 t, int reg) { if (ctx->hflags & MIPS_HFLAG_F64) { tcg_gen_mov_i64(t, fpu_f64[reg]); } else { tcg_gen_concat32_i64(t, fpu_f64[reg & ~1], fpu_f64[reg | 1]); } } void gen_store_fpr64(DisasContext *ctx, TCGv_i64 t, int reg) { if (ctx->hflags & MIPS_HFLAG_F64) { tcg_gen_mov_i64(fpu_f64[reg], t); } else { TCGv_i64 t0; tcg_gen_deposit_i64(fpu_f64[reg & ~1], fpu_f64[reg & ~1], t, 0, 32); t0 = tcg_temp_new_i64(); tcg_gen_shri_i64(t0, t, 32); tcg_gen_deposit_i64(fpu_f64[reg | 1], fpu_f64[reg | 1], t0, 0, 32); tcg_temp_free_i64(t0); } } int get_fp_bit(int cc) { if (cc) { return 24 + cc; } else { return 23; } } /* Addresses computation */ void gen_op_addr_add(DisasContext *ctx, TCGv ret, TCGv arg0, TCGv arg1) { tcg_gen_add_tl(ret, arg0, arg1); #if defined(TARGET_MIPS64) if (ctx->hflags & MIPS_HFLAG_AWRAP) { tcg_gen_ext32s_i64(ret, ret); } #endif } static inline void gen_op_addr_addi(DisasContext *ctx, TCGv ret, TCGv base, target_long ofs) { tcg_gen_addi_tl(ret, base, ofs); #if defined(TARGET_MIPS64) if (ctx->hflags & MIPS_HFLAG_AWRAP) { tcg_gen_ext32s_i64(ret, ret); } #endif } /* Addresses computation (translation time) */ static target_long addr_add(DisasContext *ctx, target_long base, target_long offset) { target_long sum = base + offset; #if defined(TARGET_MIPS64) if (ctx->hflags & MIPS_HFLAG_AWRAP) { sum = (int32_t)sum; } #endif return sum; } /* Sign-extract the low 32-bits to a target_long. */ void gen_move_low32(TCGv ret, TCGv_i64 arg) { #if defined(TARGET_MIPS64) tcg_gen_ext32s_i64(ret, arg); #else tcg_gen_extrl_i64_i32(ret, arg); #endif } /* Sign-extract the high 32-bits to a target_long. */ void gen_move_high32(TCGv ret, TCGv_i64 arg) { #if defined(TARGET_MIPS64) tcg_gen_sari_i64(ret, arg, 32); #else tcg_gen_extrh_i64_i32(ret, arg); #endif } void check_cp0_enabled(DisasContext *ctx) { if (unlikely(!(ctx->hflags & MIPS_HFLAG_CP0))) { generate_exception_end(ctx, EXCP_CpU); } } void check_cp1_enabled(DisasContext *ctx) { if (unlikely(!(ctx->hflags & MIPS_HFLAG_FPU))) { generate_exception_err(ctx, EXCP_CpU, 1); } } /* * Verify that the processor is running with COP1X instructions enabled. * This is associated with the nabla symbol in the MIPS32 and MIPS64 * opcode tables. */ void check_cop1x(DisasContext *ctx) { if (unlikely(!(ctx->hflags & MIPS_HFLAG_COP1X))) { gen_reserved_instruction(ctx); } } /* * Verify that the processor is running with 64-bit floating-point * operations enabled. */ void check_cp1_64bitmode(DisasContext *ctx) { if (unlikely(~ctx->hflags & (MIPS_HFLAG_F64 | MIPS_HFLAG_COP1X))) { gen_reserved_instruction(ctx); } } /* * Verify if floating point register is valid; an operation is not defined * if bit 0 of any register specification is set and the FR bit in the * Status register equals zero, since the register numbers specify an * even-odd pair of adjacent coprocessor general registers. When the FR bit * in the Status register equals one, both even and odd register numbers * are valid. This limitation exists only for 64 bit wide (d,l,ps) registers. * * Multiple 64 bit wide registers can be checked by calling * gen_op_cp1_registers(freg1 | freg2 | ... | fregN); */ void check_cp1_registers(DisasContext *ctx, int regs) { if (unlikely(!(ctx->hflags & MIPS_HFLAG_F64) && (regs & 1))) { gen_reserved_instruction(ctx); } } /* * Verify that the processor is running with DSP instructions enabled. * This is enabled by CP0 Status register MX(24) bit. */ static inline void check_dsp(DisasContext *ctx) { if (unlikely(!(ctx->hflags & MIPS_HFLAG_DSP))) { if (ctx->insn_flags & ASE_DSP) { generate_exception_end(ctx, EXCP_DSPDIS); } else { gen_reserved_instruction(ctx); } } } static inline void check_dsp_r2(DisasContext *ctx) { if (unlikely(!(ctx->hflags & MIPS_HFLAG_DSP_R2))) { if (ctx->insn_flags & ASE_DSP) { generate_exception_end(ctx, EXCP_DSPDIS); } else { gen_reserved_instruction(ctx); } } } static inline void check_dsp_r3(DisasContext *ctx) { if (unlikely(!(ctx->hflags & MIPS_HFLAG_DSP_R3))) { if (ctx->insn_flags & ASE_DSP) { generate_exception_end(ctx, EXCP_DSPDIS); } else { gen_reserved_instruction(ctx); } } } /* * This code generates a "reserved instruction" exception if the * CPU does not support the instruction set corresponding to flags. */ void check_insn(DisasContext *ctx, uint64_t flags) { if (unlikely(!(ctx->insn_flags & flags))) { gen_reserved_instruction(ctx); } } /* * This code generates a "reserved instruction" exception if the * CPU has corresponding flag set which indicates that the instruction * has been removed. */ static inline void check_insn_opc_removed(DisasContext *ctx, uint64_t flags) { if (unlikely(ctx->insn_flags & flags)) { gen_reserved_instruction(ctx); } } /* * The Linux kernel traps certain reserved instruction exceptions to * emulate the corresponding instructions. QEMU is the kernel in user * mode, so those traps are emulated by accepting the instructions. * * A reserved instruction exception is generated for flagged CPUs if * QEMU runs in system mode. */ static inline void check_insn_opc_user_only(DisasContext *ctx, uint64_t flags) { #ifndef CONFIG_USER_ONLY check_insn_opc_removed(ctx, flags); #endif } /* * This code generates a "reserved instruction" exception if the * CPU does not support 64-bit paired-single (PS) floating point data type. */ static inline void check_ps(DisasContext *ctx) { if (unlikely(!ctx->ps)) { generate_exception(ctx, EXCP_RI); } check_cp1_64bitmode(ctx); } #ifdef TARGET_MIPS64 /* * This code generates a "reserved instruction" exception if 64-bit * instructions are not enabled. */ void check_mips_64(DisasContext *ctx) { if (unlikely(!(ctx->hflags & MIPS_HFLAG_64))) { gen_reserved_instruction(ctx); } } #endif #ifndef CONFIG_USER_ONLY static inline void check_mvh(DisasContext *ctx) { if (unlikely(!ctx->mvh)) { generate_exception(ctx, EXCP_RI); } } #endif /* * This code generates a "reserved instruction" exception if the * Config5 XNP bit is set. */ static inline void check_xnp(DisasContext *ctx) { if (unlikely(ctx->CP0_Config5 & (1 << CP0C5_XNP))) { gen_reserved_instruction(ctx); } } #ifndef CONFIG_USER_ONLY /* * This code generates a "reserved instruction" exception if the * Config3 PW bit is NOT set. */ static inline void check_pw(DisasContext *ctx) { if (unlikely(!(ctx->CP0_Config3 & (1 << CP0C3_PW)))) { gen_reserved_instruction(ctx); } } #endif /* * This code generates a "reserved instruction" exception if the * Config3 MT bit is NOT set. */ static inline void check_mt(DisasContext *ctx) { if (unlikely(!(ctx->CP0_Config3 & (1 << CP0C3_MT)))) { gen_reserved_instruction(ctx); } } #ifndef CONFIG_USER_ONLY /* * This code generates a "coprocessor unusable" exception if CP0 is not * available, and, if that is not the case, generates a "reserved instruction" * exception if the Config5 MT bit is NOT set. This is needed for availability * control of some of MT ASE instructions. */ static inline void check_cp0_mt(DisasContext *ctx) { if (unlikely(!(ctx->hflags & MIPS_HFLAG_CP0))) { generate_exception_end(ctx, EXCP_CpU); } else { if (unlikely(!(ctx->CP0_Config3 & (1 << CP0C3_MT)))) { gen_reserved_instruction(ctx); } } } #endif /* * This code generates a "reserved instruction" exception if the * Config5 NMS bit is set. */ static inline void check_nms(DisasContext *ctx) { if (unlikely(ctx->CP0_Config5 & (1 << CP0C5_NMS))) { gen_reserved_instruction(ctx); } } /* * This code generates a "reserved instruction" exception if the * Config5 NMS bit is set, and Config1 DL, Config1 IL, Config2 SL, * Config2 TL, and Config5 L2C are unset. */ static inline void check_nms_dl_il_sl_tl_l2c(DisasContext *ctx) { if (unlikely((ctx->CP0_Config5 & (1 << CP0C5_NMS)) && !(ctx->CP0_Config1 & (1 << CP0C1_DL)) && !(ctx->CP0_Config1 & (1 << CP0C1_IL)) && !(ctx->CP0_Config2 & (1 << CP0C2_SL)) && !(ctx->CP0_Config2 & (1 << CP0C2_TL)) && !(ctx->CP0_Config5 & (1 << CP0C5_L2C)))) { gen_reserved_instruction(ctx); } } /* * This code generates a "reserved instruction" exception if the * Config5 EVA bit is NOT set. */ static inline void check_eva(DisasContext *ctx) { if (unlikely(!(ctx->CP0_Config5 & (1 << CP0C5_EVA)))) { gen_reserved_instruction(ctx); } } /* * Define small wrappers for gen_load_fpr* so that we have a uniform * calling interface for 32 and 64-bit FPRs. No sense in changing * all callers for gen_load_fpr32 when we need the CTX parameter for * this one use. */ #define gen_ldcmp_fpr32(ctx, x, y) gen_load_fpr32(ctx, x, y) #define gen_ldcmp_fpr64(ctx, x, y) gen_load_fpr64(ctx, x, y) #define FOP_CONDS(type, abs, fmt, ifmt, bits) \ static inline void gen_cmp ## type ## _ ## fmt(DisasContext *ctx, int n, \ int ft, int fs, int cc) \ { \ TCGv_i##bits fp0 = tcg_temp_new_i##bits(); \ TCGv_i##bits fp1 = tcg_temp_new_i##bits(); \ switch (ifmt) { \ case FMT_PS: \ check_ps(ctx); \ break; \ case FMT_D: \ if (abs) { \ check_cop1x(ctx); \ } \ check_cp1_registers(ctx, fs | ft); \ break; \ case FMT_S: \ if (abs) { \ check_cop1x(ctx); \ } \ break; \ } \ gen_ldcmp_fpr##bits(ctx, fp0, fs); \ gen_ldcmp_fpr##bits(ctx, fp1, ft); \ switch (n) { \ case 0: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _f, fp0, fp1, cc); \ break; \ case 1: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _un, fp0, fp1, cc); \ break; \ case 2: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _eq, fp0, fp1, cc); \ break; \ case 3: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ueq, fp0, fp1, cc); \ break; \ case 4: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _olt, fp0, fp1, cc); \ break; \ case 5: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ult, fp0, fp1, cc); \ break; \ case 6: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ole, fp0, fp1, cc); \ break; \ case 7: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ule, fp0, fp1, cc); \ break; \ case 8: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _sf, fp0, fp1, cc); \ break; \ case 9: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ngle, fp0, fp1, cc); \ break; \ case 10: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _seq, fp0, fp1, cc); \ break; \ case 11: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ngl, fp0, fp1, cc); \ break; \ case 12: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _lt, fp0, fp1, cc); \ break; \ case 13: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _nge, fp0, fp1, cc); \ break; \ case 14: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _le, fp0, fp1, cc); \ break; \ case 15: \ gen_helper_0e2i(cmp ## type ## _ ## fmt ## _ngt, fp0, fp1, cc); \ break; \ default: \ abort(); \ } \ tcg_temp_free_i##bits(fp0); \ tcg_temp_free_i##bits(fp1); \ } FOP_CONDS(, 0, d, FMT_D, 64) FOP_CONDS(abs, 1, d, FMT_D, 64) FOP_CONDS(, 0, s, FMT_S, 32) FOP_CONDS(abs, 1, s, FMT_S, 32) FOP_CONDS(, 0, ps, FMT_PS, 64) FOP_CONDS(abs, 1, ps, FMT_PS, 64) #undef FOP_CONDS #define FOP_CONDNS(fmt, ifmt, bits, STORE) \ static inline void gen_r6_cmp_ ## fmt(DisasContext *ctx, int n, \ int ft, int fs, int fd) \ { \ TCGv_i ## bits fp0 = tcg_temp_new_i ## bits(); \ TCGv_i ## bits fp1 = tcg_temp_new_i ## bits(); \ if (ifmt == FMT_D) { \ check_cp1_registers(ctx, fs | ft | fd); \ } \ gen_ldcmp_fpr ## bits(ctx, fp0, fs); \ gen_ldcmp_fpr ## bits(ctx, fp1, ft); \ switch (n) { \ case 0: \ gen_helper_r6_cmp_ ## fmt ## _af(fp0, cpu_env, fp0, fp1); \ break; \ case 1: \ gen_helper_r6_cmp_ ## fmt ## _un(fp0, cpu_env, fp0, fp1); \ break; \ case 2: \ gen_helper_r6_cmp_ ## fmt ## _eq(fp0, cpu_env, fp0, fp1); \ break; \ case 3: \ gen_helper_r6_cmp_ ## fmt ## _ueq(fp0, cpu_env, fp0, fp1); \ break; \ case 4: \ gen_helper_r6_cmp_ ## fmt ## _lt(fp0, cpu_env, fp0, fp1); \ break; \ case 5: \ gen_helper_r6_cmp_ ## fmt ## _ult(fp0, cpu_env, fp0, fp1); \ break; \ case 6: \ gen_helper_r6_cmp_ ## fmt ## _le(fp0, cpu_env, fp0, fp1); \ break; \ case 7: \ gen_helper_r6_cmp_ ## fmt ## _ule(fp0, cpu_env, fp0, fp1); \ break; \ case 8: \ gen_helper_r6_cmp_ ## fmt ## _saf(fp0, cpu_env, fp0, fp1); \ break; \ case 9: \ gen_helper_r6_cmp_ ## fmt ## _sun(fp0, cpu_env, fp0, fp1); \ break; \ case 10: \ gen_helper_r6_cmp_ ## fmt ## _seq(fp0, cpu_env, fp0, fp1); \ break; \ case 11: \ gen_helper_r6_cmp_ ## fmt ## _sueq(fp0, cpu_env, fp0, fp1); \ break; \ case 12: \ gen_helper_r6_cmp_ ## fmt ## _slt(fp0, cpu_env, fp0, fp1); \ break; \ case 13: \ gen_helper_r6_cmp_ ## fmt ## _sult(fp0, cpu_env, fp0, fp1); \ break; \ case 14: \ gen_helper_r6_cmp_ ## fmt ## _sle(fp0, cpu_env, fp0, fp1); \ break; \ case 15: \ gen_helper_r6_cmp_ ## fmt ## _sule(fp0, cpu_env, fp0, fp1); \ break; \ case 17: \ gen_helper_r6_cmp_ ## fmt ## _or(fp0, cpu_env, fp0, fp1); \ break; \ case 18: \ gen_helper_r6_cmp_ ## fmt ## _une(fp0, cpu_env, fp0, fp1); \ break; \ case 19: \ gen_helper_r6_cmp_ ## fmt ## _ne(fp0, cpu_env, fp0, fp1); \ break; \ case 25: \ gen_helper_r6_cmp_ ## fmt ## _sor(fp0, cpu_env, fp0, fp1); \ break; \ case 26: \ gen_helper_r6_cmp_ ## fmt ## _sune(fp0, cpu_env, fp0, fp1); \ break; \ case 27: \ gen_helper_r6_cmp_ ## fmt ## _sne(fp0, cpu_env, fp0, fp1); \ break; \ default: \ abort(); \ } \ STORE; \ tcg_temp_free_i ## bits(fp0); \ tcg_temp_free_i ## bits(fp1); \ } FOP_CONDNS(d, FMT_D, 64, gen_store_fpr64(ctx, fp0, fd)) FOP_CONDNS(s, FMT_S, 32, gen_store_fpr32(ctx, fp0, fd)) #undef FOP_CONDNS #undef gen_ldcmp_fpr32 #undef gen_ldcmp_fpr64 /* load/store instructions. */ #ifdef CONFIG_USER_ONLY #define OP_LD_ATOMIC(insn, fname) \ static inline void op_ld_##insn(TCGv ret, TCGv arg1, int mem_idx, \ DisasContext *ctx) \ { \ TCGv t0 = tcg_temp_new(); \ tcg_gen_mov_tl(t0, arg1); \ tcg_gen_qemu_##fname(ret, arg1, ctx->mem_idx); \ tcg_gen_st_tl(t0, cpu_env, offsetof(CPUMIPSState, lladdr)); \ tcg_gen_st_tl(ret, cpu_env, offsetof(CPUMIPSState, llval)); \ tcg_temp_free(t0); \ } #else #define OP_LD_ATOMIC(insn, fname) \ static inline void op_ld_##insn(TCGv ret, TCGv arg1, int mem_idx, \ DisasContext *ctx) \ { \ gen_helper_1e1i(insn, ret, arg1, mem_idx); \ } #endif OP_LD_ATOMIC(ll, ld32s); #if defined(TARGET_MIPS64) OP_LD_ATOMIC(lld, ld64); #endif #undef OP_LD_ATOMIC void gen_base_offset_addr(DisasContext *ctx, TCGv addr, int base, int offset) { if (base == 0) { tcg_gen_movi_tl(addr, offset); } else if (offset == 0) { gen_load_gpr(addr, base); } else { tcg_gen_movi_tl(addr, offset); gen_op_addr_add(ctx, addr, cpu_gpr[base], addr); } } static target_ulong pc_relative_pc(DisasContext *ctx) { target_ulong pc = ctx->base.pc_next; if (ctx->hflags & MIPS_HFLAG_BMASK) { int branch_bytes = ctx->hflags & MIPS_HFLAG_BDS16 ? 2 : 4; pc -= branch_bytes; } pc &= ~(target_ulong)3; return pc; } /* Load */ static void gen_ld(DisasContext *ctx, uint32_t opc, int rt, int base, int offset) { TCGv t0, t1, t2; int mem_idx = ctx->mem_idx; if (rt == 0 && ctx->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F | INSN_LOONGSON3A)) { /* * Loongson CPU uses a load to zero register for prefetch. * We emulate it as a NOP. On other CPU we must perform the * actual memory access. */ return; } t0 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, base, offset); switch (opc) { #if defined(TARGET_MIPS64) case OPC_LWU: tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEUL | ctx->default_tcg_memop_mask); gen_store_gpr(t0, rt); break; case OPC_LD: tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_store_gpr(t0, rt); break; case OPC_LLD: case R6_OPC_LLD: op_ld_lld(t0, t0, mem_idx, ctx); gen_store_gpr(t0, rt); break; case OPC_LDL: t1 = tcg_temp_new(); /* * Do a byte access to possibly trigger a page * fault with the unaligned address. */ tcg_gen_qemu_ld_tl(t1, t0, mem_idx, MO_UB); tcg_gen_andi_tl(t1, t0, 7); #ifndef TARGET_WORDS_BIGENDIAN tcg_gen_xori_tl(t1, t1, 7); #endif tcg_gen_shli_tl(t1, t1, 3); tcg_gen_andi_tl(t0, t0, ~7); tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEQ); tcg_gen_shl_tl(t0, t0, t1); t2 = tcg_const_tl(-1); tcg_gen_shl_tl(t2, t2, t1); gen_load_gpr(t1, rt); tcg_gen_andc_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_or_tl(t0, t0, t1); tcg_temp_free(t1); gen_store_gpr(t0, rt); break; case OPC_LDR: t1 = tcg_temp_new(); /* * Do a byte access to possibly trigger a page * fault with the unaligned address. */ tcg_gen_qemu_ld_tl(t1, t0, mem_idx, MO_UB); tcg_gen_andi_tl(t1, t0, 7); #ifdef TARGET_WORDS_BIGENDIAN tcg_gen_xori_tl(t1, t1, 7); #endif tcg_gen_shli_tl(t1, t1, 3); tcg_gen_andi_tl(t0, t0, ~7); tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEQ); tcg_gen_shr_tl(t0, t0, t1); tcg_gen_xori_tl(t1, t1, 63); t2 = tcg_const_tl(0xfffffffffffffffeull); tcg_gen_shl_tl(t2, t2, t1); gen_load_gpr(t1, rt); tcg_gen_and_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_or_tl(t0, t0, t1); tcg_temp_free(t1); gen_store_gpr(t0, rt); break; case OPC_LDPC: t1 = tcg_const_tl(pc_relative_pc(ctx)); gen_op_addr_add(ctx, t0, t0, t1); tcg_temp_free(t1); tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEQ); gen_store_gpr(t0, rt); break; #endif case OPC_LWPC: t1 = tcg_const_tl(pc_relative_pc(ctx)); gen_op_addr_add(ctx, t0, t0, t1); tcg_temp_free(t1); tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TESL); gen_store_gpr(t0, rt); break; case OPC_LWE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_LW: tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TESL | ctx->default_tcg_memop_mask); gen_store_gpr(t0, rt); break; case OPC_LHE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_LH: tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TESW | ctx->default_tcg_memop_mask); gen_store_gpr(t0, rt); break; case OPC_LHUE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_LHU: tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEUW | ctx->default_tcg_memop_mask); gen_store_gpr(t0, rt); break; case OPC_LBE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_LB: tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_SB); gen_store_gpr(t0, rt); break; case OPC_LBUE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_LBU: tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_UB); gen_store_gpr(t0, rt); break; case OPC_LWLE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_LWL: t1 = tcg_temp_new(); /* * Do a byte access to possibly trigger a page * fault with the unaligned address. */ tcg_gen_qemu_ld_tl(t1, t0, mem_idx, MO_UB); tcg_gen_andi_tl(t1, t0, 3); #ifndef TARGET_WORDS_BIGENDIAN tcg_gen_xori_tl(t1, t1, 3); #endif tcg_gen_shli_tl(t1, t1, 3); tcg_gen_andi_tl(t0, t0, ~3); tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEUL); tcg_gen_shl_tl(t0, t0, t1); t2 = tcg_const_tl(-1); tcg_gen_shl_tl(t2, t2, t1); gen_load_gpr(t1, rt); tcg_gen_andc_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_or_tl(t0, t0, t1); tcg_temp_free(t1); tcg_gen_ext32s_tl(t0, t0); gen_store_gpr(t0, rt); break; case OPC_LWRE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_LWR: t1 = tcg_temp_new(); /* * Do a byte access to possibly trigger a page * fault with the unaligned address. */ tcg_gen_qemu_ld_tl(t1, t0, mem_idx, MO_UB); tcg_gen_andi_tl(t1, t0, 3); #ifdef TARGET_WORDS_BIGENDIAN tcg_gen_xori_tl(t1, t1, 3); #endif tcg_gen_shli_tl(t1, t1, 3); tcg_gen_andi_tl(t0, t0, ~3); tcg_gen_qemu_ld_tl(t0, t0, mem_idx, MO_TEUL); tcg_gen_shr_tl(t0, t0, t1); tcg_gen_xori_tl(t1, t1, 31); t2 = tcg_const_tl(0xfffffffeull); tcg_gen_shl_tl(t2, t2, t1); gen_load_gpr(t1, rt); tcg_gen_and_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_or_tl(t0, t0, t1); tcg_temp_free(t1); tcg_gen_ext32s_tl(t0, t0); gen_store_gpr(t0, rt); break; case OPC_LLE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_LL: case R6_OPC_LL: op_ld_ll(t0, t0, mem_idx, ctx); gen_store_gpr(t0, rt); break; } tcg_temp_free(t0); } static void gen_llwp(DisasContext *ctx, uint32_t base, int16_t offset, uint32_t reg1, uint32_t reg2) { TCGv taddr = tcg_temp_new(); TCGv_i64 tval = tcg_temp_new_i64(); TCGv tmp1 = tcg_temp_new(); TCGv tmp2 = tcg_temp_new(); gen_base_offset_addr(ctx, taddr, base, offset); tcg_gen_qemu_ld64(tval, taddr, ctx->mem_idx); #ifdef TARGET_WORDS_BIGENDIAN tcg_gen_extr_i64_tl(tmp2, tmp1, tval); #else tcg_gen_extr_i64_tl(tmp1, tmp2, tval); #endif gen_store_gpr(tmp1, reg1); tcg_temp_free(tmp1); gen_store_gpr(tmp2, reg2); tcg_temp_free(tmp2); tcg_gen_st_i64(tval, cpu_env, offsetof(CPUMIPSState, llval_wp)); tcg_temp_free_i64(tval); tcg_gen_st_tl(taddr, cpu_env, offsetof(CPUMIPSState, lladdr)); tcg_temp_free(taddr); } /* Store */ static void gen_st(DisasContext *ctx, uint32_t opc, int rt, int base, int offset) { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); int mem_idx = ctx->mem_idx; gen_base_offset_addr(ctx, t0, base, offset); gen_load_gpr(t1, rt); switch (opc) { #if defined(TARGET_MIPS64) case OPC_SD: tcg_gen_qemu_st_tl(t1, t0, mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); break; case OPC_SDL: gen_helper_0e2i(sdl, t1, t0, mem_idx); break; case OPC_SDR: gen_helper_0e2i(sdr, t1, t0, mem_idx); break; #endif case OPC_SWE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_SW: tcg_gen_qemu_st_tl(t1, t0, mem_idx, MO_TEUL | ctx->default_tcg_memop_mask); break; case OPC_SHE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_SH: tcg_gen_qemu_st_tl(t1, t0, mem_idx, MO_TEUW | ctx->default_tcg_memop_mask); break; case OPC_SBE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_SB: tcg_gen_qemu_st_tl(t1, t0, mem_idx, MO_8); break; case OPC_SWLE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_SWL: gen_helper_0e2i(swl, t1, t0, mem_idx); break; case OPC_SWRE: mem_idx = MIPS_HFLAG_UM; /* fall through */ case OPC_SWR: gen_helper_0e2i(swr, t1, t0, mem_idx); break; } tcg_temp_free(t0); tcg_temp_free(t1); } /* Store conditional */ static void gen_st_cond(DisasContext *ctx, int rt, int base, int offset, MemOp tcg_mo, bool eva) { TCGv addr, t0, val; TCGLabel *l1 = gen_new_label(); TCGLabel *done = gen_new_label(); t0 = tcg_temp_new(); addr = tcg_temp_new(); /* compare the address against that of the preceding LL */ gen_base_offset_addr(ctx, addr, base, offset); tcg_gen_brcond_tl(TCG_COND_EQ, addr, cpu_lladdr, l1); tcg_temp_free(addr); tcg_gen_movi_tl(t0, 0); gen_store_gpr(t0, rt); tcg_gen_br(done); gen_set_label(l1); /* generate cmpxchg */ val = tcg_temp_new(); gen_load_gpr(val, rt); tcg_gen_atomic_cmpxchg_tl(t0, cpu_lladdr, cpu_llval, val, eva ? MIPS_HFLAG_UM : ctx->mem_idx, tcg_mo); tcg_gen_setcond_tl(TCG_COND_EQ, t0, t0, cpu_llval); gen_store_gpr(t0, rt); tcg_temp_free(val); gen_set_label(done); tcg_temp_free(t0); } static void gen_scwp(DisasContext *ctx, uint32_t base, int16_t offset, uint32_t reg1, uint32_t reg2, bool eva) { TCGv taddr = tcg_temp_local_new(); TCGv lladdr = tcg_temp_local_new(); TCGv_i64 tval = tcg_temp_new_i64(); TCGv_i64 llval = tcg_temp_new_i64(); TCGv_i64 val = tcg_temp_new_i64(); TCGv tmp1 = tcg_temp_new(); TCGv tmp2 = tcg_temp_new(); TCGLabel *lab_fail = gen_new_label(); TCGLabel *lab_done = gen_new_label(); gen_base_offset_addr(ctx, taddr, base, offset); tcg_gen_ld_tl(lladdr, cpu_env, offsetof(CPUMIPSState, lladdr)); tcg_gen_brcond_tl(TCG_COND_NE, taddr, lladdr, lab_fail); gen_load_gpr(tmp1, reg1); gen_load_gpr(tmp2, reg2); #ifdef TARGET_WORDS_BIGENDIAN tcg_gen_concat_tl_i64(tval, tmp2, tmp1); #else tcg_gen_concat_tl_i64(tval, tmp1, tmp2); #endif tcg_gen_ld_i64(llval, cpu_env, offsetof(CPUMIPSState, llval_wp)); tcg_gen_atomic_cmpxchg_i64(val, taddr, llval, tval, eva ? MIPS_HFLAG_UM : ctx->mem_idx, MO_64); if (reg1 != 0) { tcg_gen_movi_tl(cpu_gpr[reg1], 1); } tcg_gen_brcond_i64(TCG_COND_EQ, val, llval, lab_done); gen_set_label(lab_fail); if (reg1 != 0) { tcg_gen_movi_tl(cpu_gpr[reg1], 0); } gen_set_label(lab_done); tcg_gen_movi_tl(lladdr, -1); tcg_gen_st_tl(lladdr, cpu_env, offsetof(CPUMIPSState, lladdr)); } /* Load and store */ static void gen_flt_ldst(DisasContext *ctx, uint32_t opc, int ft, TCGv t0) { /* * Don't do NOP if destination is zero: we must perform the actual * memory access. */ switch (opc) { case OPC_LWC1: { TCGv_i32 fp0 = tcg_temp_new_i32(); tcg_gen_qemu_ld_i32(fp0, t0, ctx->mem_idx, MO_TESL | ctx->default_tcg_memop_mask); gen_store_fpr32(ctx, fp0, ft); tcg_temp_free_i32(fp0); } break; case OPC_SWC1: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, ft); tcg_gen_qemu_st_i32(fp0, t0, ctx->mem_idx, MO_TEUL | ctx->default_tcg_memop_mask); tcg_temp_free_i32(fp0); } break; case OPC_LDC1: { TCGv_i64 fp0 = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(fp0, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_store_fpr64(ctx, fp0, ft); tcg_temp_free_i64(fp0); } break; case OPC_SDC1: { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, ft); tcg_gen_qemu_st_i64(fp0, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); tcg_temp_free_i64(fp0); } break; default: MIPS_INVAL("flt_ldst"); gen_reserved_instruction(ctx); break; } } static void gen_cop1_ldst(DisasContext *ctx, uint32_t op, int rt, int rs, int16_t imm) { TCGv t0 = tcg_temp_new(); if (ctx->CP0_Config1 & (1 << CP0C1_FP)) { check_cp1_enabled(ctx); switch (op) { case OPC_LDC1: case OPC_SDC1: check_insn(ctx, ISA_MIPS2); /* Fallthrough */ default: gen_base_offset_addr(ctx, t0, rs, imm); gen_flt_ldst(ctx, op, rt, t0); } } else { generate_exception_err(ctx, EXCP_CpU, 1); } tcg_temp_free(t0); } /* Arithmetic with immediate operand */ static void gen_arith_imm(DisasContext *ctx, uint32_t opc, int rt, int rs, int imm) { target_ulong uimm = (target_long)imm; /* Sign extend to 32/64 bits */ if (rt == 0 && opc != OPC_ADDI && opc != OPC_DADDI) { /* * If no destination, treat it as a NOP. * For addi, we must generate the overflow exception when needed. */ return; } switch (opc) { case OPC_ADDI: { TCGv t0 = tcg_temp_local_new(); TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_temp_new(); TCGLabel *l1 = gen_new_label(); gen_load_gpr(t1, rs); tcg_gen_addi_tl(t0, t1, uimm); tcg_gen_ext32s_tl(t0, t0); tcg_gen_xori_tl(t1, t1, ~uimm); tcg_gen_xori_tl(t2, t0, uimm); tcg_gen_and_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1); tcg_temp_free(t1); /* operands of same sign, result different sign */ generate_exception(ctx, EXCP_OVERFLOW); gen_set_label(l1); tcg_gen_ext32s_tl(t0, t0); gen_store_gpr(t0, rt); tcg_temp_free(t0); } break; case OPC_ADDIU: if (rs != 0) { tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rs], uimm); tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]); } else { tcg_gen_movi_tl(cpu_gpr[rt], uimm); } break; #if defined(TARGET_MIPS64) case OPC_DADDI: { TCGv t0 = tcg_temp_local_new(); TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_temp_new(); TCGLabel *l1 = gen_new_label(); gen_load_gpr(t1, rs); tcg_gen_addi_tl(t0, t1, uimm); tcg_gen_xori_tl(t1, t1, ~uimm); tcg_gen_xori_tl(t2, t0, uimm); tcg_gen_and_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1); tcg_temp_free(t1); /* operands of same sign, result different sign */ generate_exception(ctx, EXCP_OVERFLOW); gen_set_label(l1); gen_store_gpr(t0, rt); tcg_temp_free(t0); } break; case OPC_DADDIU: if (rs != 0) { tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rs], uimm); } else { tcg_gen_movi_tl(cpu_gpr[rt], uimm); } break; #endif } } /* Logic with immediate operand */ static void gen_logic_imm(DisasContext *ctx, uint32_t opc, int rt, int rs, int16_t imm) { target_ulong uimm; if (rt == 0) { /* If no destination, treat it as a NOP. */ return; } uimm = (uint16_t)imm; switch (opc) { case OPC_ANDI: if (likely(rs != 0)) { tcg_gen_andi_tl(cpu_gpr[rt], cpu_gpr[rs], uimm); } else { tcg_gen_movi_tl(cpu_gpr[rt], 0); } break; case OPC_ORI: if (rs != 0) { tcg_gen_ori_tl(cpu_gpr[rt], cpu_gpr[rs], uimm); } else { tcg_gen_movi_tl(cpu_gpr[rt], uimm); } break; case OPC_XORI: if (likely(rs != 0)) { tcg_gen_xori_tl(cpu_gpr[rt], cpu_gpr[rs], uimm); } else { tcg_gen_movi_tl(cpu_gpr[rt], uimm); } break; case OPC_LUI: if (rs != 0 && (ctx->insn_flags & ISA_MIPS_R6)) { /* OPC_AUI */ tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rs], imm << 16); tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]); } else { tcg_gen_movi_tl(cpu_gpr[rt], imm << 16); } break; default: break; } } /* Set on less than with immediate operand */ static void gen_slt_imm(DisasContext *ctx, uint32_t opc, int rt, int rs, int16_t imm) { target_ulong uimm = (target_long)imm; /* Sign extend to 32/64 bits */ TCGv t0; if (rt == 0) { /* If no destination, treat it as a NOP. */ return; } t0 = tcg_temp_new(); gen_load_gpr(t0, rs); switch (opc) { case OPC_SLTI: tcg_gen_setcondi_tl(TCG_COND_LT, cpu_gpr[rt], t0, uimm); break; case OPC_SLTIU: tcg_gen_setcondi_tl(TCG_COND_LTU, cpu_gpr[rt], t0, uimm); break; } tcg_temp_free(t0); } /* Shifts with immediate operand */ static void gen_shift_imm(DisasContext *ctx, uint32_t opc, int rt, int rs, int16_t imm) { target_ulong uimm = ((uint16_t)imm) & 0x1f; TCGv t0; if (rt == 0) { /* If no destination, treat it as a NOP. */ return; } t0 = tcg_temp_new(); gen_load_gpr(t0, rs); switch (opc) { case OPC_SLL: tcg_gen_shli_tl(t0, t0, uimm); tcg_gen_ext32s_tl(cpu_gpr[rt], t0); break; case OPC_SRA: tcg_gen_sari_tl(cpu_gpr[rt], t0, uimm); break; case OPC_SRL: if (uimm != 0) { tcg_gen_ext32u_tl(t0, t0); tcg_gen_shri_tl(cpu_gpr[rt], t0, uimm); } else { tcg_gen_ext32s_tl(cpu_gpr[rt], t0); } break; case OPC_ROTR: if (uimm != 0) { TCGv_i32 t1 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t1, t0); tcg_gen_rotri_i32(t1, t1, uimm); tcg_gen_ext_i32_tl(cpu_gpr[rt], t1); tcg_temp_free_i32(t1); } else { tcg_gen_ext32s_tl(cpu_gpr[rt], t0); } break; #if defined(TARGET_MIPS64) case OPC_DSLL: tcg_gen_shli_tl(cpu_gpr[rt], t0, uimm); break; case OPC_DSRA: tcg_gen_sari_tl(cpu_gpr[rt], t0, uimm); break; case OPC_DSRL: tcg_gen_shri_tl(cpu_gpr[rt], t0, uimm); break; case OPC_DROTR: if (uimm != 0) { tcg_gen_rotri_tl(cpu_gpr[rt], t0, uimm); } else { tcg_gen_mov_tl(cpu_gpr[rt], t0); } break; case OPC_DSLL32: tcg_gen_shli_tl(cpu_gpr[rt], t0, uimm + 32); break; case OPC_DSRA32: tcg_gen_sari_tl(cpu_gpr[rt], t0, uimm + 32); break; case OPC_DSRL32: tcg_gen_shri_tl(cpu_gpr[rt], t0, uimm + 32); break; case OPC_DROTR32: tcg_gen_rotri_tl(cpu_gpr[rt], t0, uimm + 32); break; #endif } tcg_temp_free(t0); } /* Arithmetic */ static void gen_arith(DisasContext *ctx, uint32_t opc, int rd, int rs, int rt) { if (rd == 0 && opc != OPC_ADD && opc != OPC_SUB && opc != OPC_DADD && opc != OPC_DSUB) { /* * If no destination, treat it as a NOP. * For add & sub, we must generate the overflow exception when needed. */ return; } switch (opc) { case OPC_ADD: { TCGv t0 = tcg_temp_local_new(); TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_temp_new(); TCGLabel *l1 = gen_new_label(); gen_load_gpr(t1, rs); gen_load_gpr(t2, rt); tcg_gen_add_tl(t0, t1, t2); tcg_gen_ext32s_tl(t0, t0); tcg_gen_xor_tl(t1, t1, t2); tcg_gen_xor_tl(t2, t0, t2); tcg_gen_andc_tl(t1, t2, t1); tcg_temp_free(t2); tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1); tcg_temp_free(t1); /* operands of same sign, result different sign */ generate_exception(ctx, EXCP_OVERFLOW); gen_set_label(l1); gen_store_gpr(t0, rd); tcg_temp_free(t0); } break; case OPC_ADDU: if (rs != 0 && rt != 0) { tcg_gen_add_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); } else if (rs == 0 && rt != 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rt]); } else if (rs != 0 && rt == 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]); } else { tcg_gen_movi_tl(cpu_gpr[rd], 0); } break; case OPC_SUB: { TCGv t0 = tcg_temp_local_new(); TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_temp_new(); TCGLabel *l1 = gen_new_label(); gen_load_gpr(t1, rs); gen_load_gpr(t2, rt); tcg_gen_sub_tl(t0, t1, t2); tcg_gen_ext32s_tl(t0, t0); tcg_gen_xor_tl(t2, t1, t2); tcg_gen_xor_tl(t1, t0, t1); tcg_gen_and_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1); tcg_temp_free(t1); /* * operands of different sign, first operand and the result * of different sign */ generate_exception(ctx, EXCP_OVERFLOW); gen_set_label(l1); gen_store_gpr(t0, rd); tcg_temp_free(t0); } break; case OPC_SUBU: if (rs != 0 && rt != 0) { tcg_gen_sub_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); } else if (rs == 0 && rt != 0) { tcg_gen_neg_tl(cpu_gpr[rd], cpu_gpr[rt]); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); } else if (rs != 0 && rt == 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]); } else { tcg_gen_movi_tl(cpu_gpr[rd], 0); } break; #if defined(TARGET_MIPS64) case OPC_DADD: { TCGv t0 = tcg_temp_local_new(); TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_temp_new(); TCGLabel *l1 = gen_new_label(); gen_load_gpr(t1, rs); gen_load_gpr(t2, rt); tcg_gen_add_tl(t0, t1, t2); tcg_gen_xor_tl(t1, t1, t2); tcg_gen_xor_tl(t2, t0, t2); tcg_gen_andc_tl(t1, t2, t1); tcg_temp_free(t2); tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1); tcg_temp_free(t1); /* operands of same sign, result different sign */ generate_exception(ctx, EXCP_OVERFLOW); gen_set_label(l1); gen_store_gpr(t0, rd); tcg_temp_free(t0); } break; case OPC_DADDU: if (rs != 0 && rt != 0) { tcg_gen_add_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]); } else if (rs == 0 && rt != 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rt]); } else if (rs != 0 && rt == 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]); } else { tcg_gen_movi_tl(cpu_gpr[rd], 0); } break; case OPC_DSUB: { TCGv t0 = tcg_temp_local_new(); TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_temp_new(); TCGLabel *l1 = gen_new_label(); gen_load_gpr(t1, rs); gen_load_gpr(t2, rt); tcg_gen_sub_tl(t0, t1, t2); tcg_gen_xor_tl(t2, t1, t2); tcg_gen_xor_tl(t1, t0, t1); tcg_gen_and_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_brcondi_tl(TCG_COND_GE, t1, 0, l1); tcg_temp_free(t1); /* * Operands of different sign, first operand and result different * sign. */ generate_exception(ctx, EXCP_OVERFLOW); gen_set_label(l1); gen_store_gpr(t0, rd); tcg_temp_free(t0); } break; case OPC_DSUBU: if (rs != 0 && rt != 0) { tcg_gen_sub_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]); } else if (rs == 0 && rt != 0) { tcg_gen_neg_tl(cpu_gpr[rd], cpu_gpr[rt]); } else if (rs != 0 && rt == 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]); } else { tcg_gen_movi_tl(cpu_gpr[rd], 0); } break; #endif case OPC_MUL: if (likely(rs != 0 && rt != 0)) { tcg_gen_mul_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); } else { tcg_gen_movi_tl(cpu_gpr[rd], 0); } break; } } /* Conditional move */ static void gen_cond_move(DisasContext *ctx, uint32_t opc, int rd, int rs, int rt) { TCGv t0, t1, t2; if (rd == 0) { /* If no destination, treat it as a NOP. */ return; } t0 = tcg_temp_new(); gen_load_gpr(t0, rt); t1 = tcg_const_tl(0); t2 = tcg_temp_new(); gen_load_gpr(t2, rs); switch (opc) { case OPC_MOVN: tcg_gen_movcond_tl(TCG_COND_NE, cpu_gpr[rd], t0, t1, t2, cpu_gpr[rd]); break; case OPC_MOVZ: tcg_gen_movcond_tl(TCG_COND_EQ, cpu_gpr[rd], t0, t1, t2, cpu_gpr[rd]); break; case OPC_SELNEZ: tcg_gen_movcond_tl(TCG_COND_NE, cpu_gpr[rd], t0, t1, t2, t1); break; case OPC_SELEQZ: tcg_gen_movcond_tl(TCG_COND_EQ, cpu_gpr[rd], t0, t1, t2, t1); break; } tcg_temp_free(t2); tcg_temp_free(t1); tcg_temp_free(t0); } /* Logic */ static void gen_logic(DisasContext *ctx, uint32_t opc, int rd, int rs, int rt) { if (rd == 0) { /* If no destination, treat it as a NOP. */ return; } switch (opc) { case OPC_AND: if (likely(rs != 0 && rt != 0)) { tcg_gen_and_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]); } else { tcg_gen_movi_tl(cpu_gpr[rd], 0); } break; case OPC_NOR: if (rs != 0 && rt != 0) { tcg_gen_nor_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]); } else if (rs == 0 && rt != 0) { tcg_gen_not_tl(cpu_gpr[rd], cpu_gpr[rt]); } else if (rs != 0 && rt == 0) { tcg_gen_not_tl(cpu_gpr[rd], cpu_gpr[rs]); } else { tcg_gen_movi_tl(cpu_gpr[rd], ~((target_ulong)0)); } break; case OPC_OR: if (likely(rs != 0 && rt != 0)) { tcg_gen_or_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]); } else if (rs == 0 && rt != 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rt]); } else if (rs != 0 && rt == 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]); } else { tcg_gen_movi_tl(cpu_gpr[rd], 0); } break; case OPC_XOR: if (likely(rs != 0 && rt != 0)) { tcg_gen_xor_tl(cpu_gpr[rd], cpu_gpr[rs], cpu_gpr[rt]); } else if (rs == 0 && rt != 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rt]); } else if (rs != 0 && rt == 0) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]); } else { tcg_gen_movi_tl(cpu_gpr[rd], 0); } break; } } /* Set on lower than */ static void gen_slt(DisasContext *ctx, uint32_t opc, int rd, int rs, int rt) { TCGv t0, t1; if (rd == 0) { /* If no destination, treat it as a NOP. */ return; } t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); switch (opc) { case OPC_SLT: tcg_gen_setcond_tl(TCG_COND_LT, cpu_gpr[rd], t0, t1); break; case OPC_SLTU: tcg_gen_setcond_tl(TCG_COND_LTU, cpu_gpr[rd], t0, t1); break; } tcg_temp_free(t0); tcg_temp_free(t1); } /* Shifts */ static void gen_shift(DisasContext *ctx, uint32_t opc, int rd, int rs, int rt) { TCGv t0, t1; if (rd == 0) { /* * If no destination, treat it as a NOP. * For add & sub, we must generate the overflow exception when needed. */ return; } t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); switch (opc) { case OPC_SLLV: tcg_gen_andi_tl(t0, t0, 0x1f); tcg_gen_shl_tl(t0, t1, t0); tcg_gen_ext32s_tl(cpu_gpr[rd], t0); break; case OPC_SRAV: tcg_gen_andi_tl(t0, t0, 0x1f); tcg_gen_sar_tl(cpu_gpr[rd], t1, t0); break; case OPC_SRLV: tcg_gen_ext32u_tl(t1, t1); tcg_gen_andi_tl(t0, t0, 0x1f); tcg_gen_shr_tl(t0, t1, t0); tcg_gen_ext32s_tl(cpu_gpr[rd], t0); break; case OPC_ROTRV: { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_andi_i32(t2, t2, 0x1f); tcg_gen_rotr_i32(t2, t3, t2); tcg_gen_ext_i32_tl(cpu_gpr[rd], t2); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; #if defined(TARGET_MIPS64) case OPC_DSLLV: tcg_gen_andi_tl(t0, t0, 0x3f); tcg_gen_shl_tl(cpu_gpr[rd], t1, t0); break; case OPC_DSRAV: tcg_gen_andi_tl(t0, t0, 0x3f); tcg_gen_sar_tl(cpu_gpr[rd], t1, t0); break; case OPC_DSRLV: tcg_gen_andi_tl(t0, t0, 0x3f); tcg_gen_shr_tl(cpu_gpr[rd], t1, t0); break; case OPC_DROTRV: tcg_gen_andi_tl(t0, t0, 0x3f); tcg_gen_rotr_tl(cpu_gpr[rd], t1, t0); break; #endif } tcg_temp_free(t0); tcg_temp_free(t1); } #if defined(TARGET_MIPS64) /* Copy GPR to and from TX79 HI1/LO1 register. */ static void gen_HILO1_tx79(DisasContext *ctx, uint32_t opc, int reg) { if (reg == 0 && (opc == MMI_OPC_MFHI1 || opc == MMI_OPC_MFLO1)) { /* Treat as NOP. */ return; } switch (opc) { case MMI_OPC_MFHI1: tcg_gen_mov_tl(cpu_gpr[reg], cpu_HI[1]); break; case MMI_OPC_MFLO1: tcg_gen_mov_tl(cpu_gpr[reg], cpu_LO[1]); break; case MMI_OPC_MTHI1: if (reg != 0) { tcg_gen_mov_tl(cpu_HI[1], cpu_gpr[reg]); } else { tcg_gen_movi_tl(cpu_HI[1], 0); } break; case MMI_OPC_MTLO1: if (reg != 0) { tcg_gen_mov_tl(cpu_LO[1], cpu_gpr[reg]); } else { tcg_gen_movi_tl(cpu_LO[1], 0); } break; default: MIPS_INVAL("mfthilo1 TX79"); gen_reserved_instruction(ctx); break; } } #endif /* Arithmetic on HI/LO registers */ static void gen_HILO(DisasContext *ctx, uint32_t opc, int acc, int reg) { if (reg == 0 && (opc == OPC_MFHI || opc == OPC_MFLO)) { /* Treat as NOP. */ return; } if (acc != 0) { check_dsp(ctx); } switch (opc) { case OPC_MFHI: #if defined(TARGET_MIPS64) if (acc != 0) { tcg_gen_ext32s_tl(cpu_gpr[reg], cpu_HI[acc]); } else #endif { tcg_gen_mov_tl(cpu_gpr[reg], cpu_HI[acc]); } break; case OPC_MFLO: #if defined(TARGET_MIPS64) if (acc != 0) { tcg_gen_ext32s_tl(cpu_gpr[reg], cpu_LO[acc]); } else #endif { tcg_gen_mov_tl(cpu_gpr[reg], cpu_LO[acc]); } break; case OPC_MTHI: if (reg != 0) { #if defined(TARGET_MIPS64) if (acc != 0) { tcg_gen_ext32s_tl(cpu_HI[acc], cpu_gpr[reg]); } else #endif { tcg_gen_mov_tl(cpu_HI[acc], cpu_gpr[reg]); } } else { tcg_gen_movi_tl(cpu_HI[acc], 0); } break; case OPC_MTLO: if (reg != 0) { #if defined(TARGET_MIPS64) if (acc != 0) { tcg_gen_ext32s_tl(cpu_LO[acc], cpu_gpr[reg]); } else #endif { tcg_gen_mov_tl(cpu_LO[acc], cpu_gpr[reg]); } } else { tcg_gen_movi_tl(cpu_LO[acc], 0); } break; } } static inline void gen_r6_ld(target_long addr, int reg, int memidx, MemOp memop) { TCGv t0 = tcg_const_tl(addr); tcg_gen_qemu_ld_tl(t0, t0, memidx, memop); gen_store_gpr(t0, reg); tcg_temp_free(t0); } static inline void gen_pcrel(DisasContext *ctx, int opc, target_ulong pc, int rs) { target_long offset; target_long addr; switch (MASK_OPC_PCREL_TOP2BITS(opc)) { case OPC_ADDIUPC: if (rs != 0) { offset = sextract32(ctx->opcode << 2, 0, 21); addr = addr_add(ctx, pc, offset); tcg_gen_movi_tl(cpu_gpr[rs], addr); } break; case R6_OPC_LWPC: offset = sextract32(ctx->opcode << 2, 0, 21); addr = addr_add(ctx, pc, offset); gen_r6_ld(addr, rs, ctx->mem_idx, MO_TESL); break; #if defined(TARGET_MIPS64) case OPC_LWUPC: check_mips_64(ctx); offset = sextract32(ctx->opcode << 2, 0, 21); addr = addr_add(ctx, pc, offset); gen_r6_ld(addr, rs, ctx->mem_idx, MO_TEUL); break; #endif default: switch (MASK_OPC_PCREL_TOP5BITS(opc)) { case OPC_AUIPC: if (rs != 0) { offset = sextract32(ctx->opcode, 0, 16) << 16; addr = addr_add(ctx, pc, offset); tcg_gen_movi_tl(cpu_gpr[rs], addr); } break; case OPC_ALUIPC: if (rs != 0) { offset = sextract32(ctx->opcode, 0, 16) << 16; addr = ~0xFFFF & addr_add(ctx, pc, offset); tcg_gen_movi_tl(cpu_gpr[rs], addr); } break; #if defined(TARGET_MIPS64) case R6_OPC_LDPC: /* bits 16 and 17 are part of immediate */ case R6_OPC_LDPC + (1 << 16): case R6_OPC_LDPC + (2 << 16): case R6_OPC_LDPC + (3 << 16): check_mips_64(ctx); offset = sextract32(ctx->opcode << 3, 0, 21); addr = addr_add(ctx, (pc & ~0x7), offset); gen_r6_ld(addr, rs, ctx->mem_idx, MO_TEQ); break; #endif default: MIPS_INVAL("OPC_PCREL"); gen_reserved_instruction(ctx); break; } break; } } static void gen_r6_muldiv(DisasContext *ctx, int opc, int rd, int rs, int rt) { TCGv t0, t1; if (rd == 0) { /* Treat as NOP. */ return; } t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); switch (opc) { case R6_OPC_DIV: { TCGv t2 = tcg_temp_new(); TCGv t3 = tcg_temp_new(); tcg_gen_ext32s_tl(t0, t0); tcg_gen_ext32s_tl(t1, t1); tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, INT_MIN); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1); tcg_gen_and_tl(t2, t2, t3); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0); tcg_gen_or_tl(t2, t2, t3); tcg_gen_movi_tl(t3, 0); tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1); tcg_gen_div_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); tcg_temp_free(t3); tcg_temp_free(t2); } break; case R6_OPC_MOD: { TCGv t2 = tcg_temp_new(); TCGv t3 = tcg_temp_new(); tcg_gen_ext32s_tl(t0, t0); tcg_gen_ext32s_tl(t1, t1); tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, INT_MIN); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1); tcg_gen_and_tl(t2, t2, t3); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0); tcg_gen_or_tl(t2, t2, t3); tcg_gen_movi_tl(t3, 0); tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1); tcg_gen_rem_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); tcg_temp_free(t3); tcg_temp_free(t2); } break; case R6_OPC_DIVU: { TCGv t2 = tcg_const_tl(0); TCGv t3 = tcg_const_tl(1); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1); tcg_gen_divu_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); tcg_temp_free(t3); tcg_temp_free(t2); } break; case R6_OPC_MODU: { TCGv t2 = tcg_const_tl(0); TCGv t3 = tcg_const_tl(1); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1); tcg_gen_remu_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); tcg_temp_free(t3); tcg_temp_free(t2); } break; case R6_OPC_MUL: { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_mul_i32(t2, t2, t3); tcg_gen_ext_i32_tl(cpu_gpr[rd], t2); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; case R6_OPC_MUH: { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_muls2_i32(t2, t3, t2, t3); tcg_gen_ext_i32_tl(cpu_gpr[rd], t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; case R6_OPC_MULU: { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_mul_i32(t2, t2, t3); tcg_gen_ext_i32_tl(cpu_gpr[rd], t2); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; case R6_OPC_MUHU: { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_mulu2_i32(t2, t3, t2, t3); tcg_gen_ext_i32_tl(cpu_gpr[rd], t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; #if defined(TARGET_MIPS64) case R6_OPC_DDIV: { TCGv t2 = tcg_temp_new(); TCGv t3 = tcg_temp_new(); tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, -1LL << 63); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1LL); tcg_gen_and_tl(t2, t2, t3); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0); tcg_gen_or_tl(t2, t2, t3); tcg_gen_movi_tl(t3, 0); tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1); tcg_gen_div_tl(cpu_gpr[rd], t0, t1); tcg_temp_free(t3); tcg_temp_free(t2); } break; case R6_OPC_DMOD: { TCGv t2 = tcg_temp_new(); TCGv t3 = tcg_temp_new(); tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, -1LL << 63); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1LL); tcg_gen_and_tl(t2, t2, t3); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0); tcg_gen_or_tl(t2, t2, t3); tcg_gen_movi_tl(t3, 0); tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1); tcg_gen_rem_tl(cpu_gpr[rd], t0, t1); tcg_temp_free(t3); tcg_temp_free(t2); } break; case R6_OPC_DDIVU: { TCGv t2 = tcg_const_tl(0); TCGv t3 = tcg_const_tl(1); tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1); tcg_gen_divu_i64(cpu_gpr[rd], t0, t1); tcg_temp_free(t3); tcg_temp_free(t2); } break; case R6_OPC_DMODU: { TCGv t2 = tcg_const_tl(0); TCGv t3 = tcg_const_tl(1); tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1); tcg_gen_remu_i64(cpu_gpr[rd], t0, t1); tcg_temp_free(t3); tcg_temp_free(t2); } break; case R6_OPC_DMUL: tcg_gen_mul_i64(cpu_gpr[rd], t0, t1); break; case R6_OPC_DMUH: { TCGv t2 = tcg_temp_new(); tcg_gen_muls2_i64(t2, cpu_gpr[rd], t0, t1); tcg_temp_free(t2); } break; case R6_OPC_DMULU: tcg_gen_mul_i64(cpu_gpr[rd], t0, t1); break; case R6_OPC_DMUHU: { TCGv t2 = tcg_temp_new(); tcg_gen_mulu2_i64(t2, cpu_gpr[rd], t0, t1); tcg_temp_free(t2); } break; #endif default: MIPS_INVAL("r6 mul/div"); gen_reserved_instruction(ctx); goto out; } out: tcg_temp_free(t0); tcg_temp_free(t1); } #if defined(TARGET_MIPS64) static void gen_div1_tx79(DisasContext *ctx, uint32_t opc, int rs, int rt) { TCGv t0, t1; t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); switch (opc) { case MMI_OPC_DIV1: { TCGv t2 = tcg_temp_new(); TCGv t3 = tcg_temp_new(); tcg_gen_ext32s_tl(t0, t0); tcg_gen_ext32s_tl(t1, t1); tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, INT_MIN); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1); tcg_gen_and_tl(t2, t2, t3); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0); tcg_gen_or_tl(t2, t2, t3); tcg_gen_movi_tl(t3, 0); tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1); tcg_gen_div_tl(cpu_LO[1], t0, t1); tcg_gen_rem_tl(cpu_HI[1], t0, t1); tcg_gen_ext32s_tl(cpu_LO[1], cpu_LO[1]); tcg_gen_ext32s_tl(cpu_HI[1], cpu_HI[1]); tcg_temp_free(t3); tcg_temp_free(t2); } break; case MMI_OPC_DIVU1: { TCGv t2 = tcg_const_tl(0); TCGv t3 = tcg_const_tl(1); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1); tcg_gen_divu_tl(cpu_LO[1], t0, t1); tcg_gen_remu_tl(cpu_HI[1], t0, t1); tcg_gen_ext32s_tl(cpu_LO[1], cpu_LO[1]); tcg_gen_ext32s_tl(cpu_HI[1], cpu_HI[1]); tcg_temp_free(t3); tcg_temp_free(t2); } break; default: MIPS_INVAL("div1 TX79"); gen_reserved_instruction(ctx); goto out; } out: tcg_temp_free(t0); tcg_temp_free(t1); } #endif static void gen_muldiv(DisasContext *ctx, uint32_t opc, int acc, int rs, int rt) { TCGv t0, t1; t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); if (acc != 0) { check_dsp(ctx); } switch (opc) { case OPC_DIV: { TCGv t2 = tcg_temp_new(); TCGv t3 = tcg_temp_new(); tcg_gen_ext32s_tl(t0, t0); tcg_gen_ext32s_tl(t1, t1); tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, INT_MIN); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1); tcg_gen_and_tl(t2, t2, t3); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0); tcg_gen_or_tl(t2, t2, t3); tcg_gen_movi_tl(t3, 0); tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1); tcg_gen_div_tl(cpu_LO[acc], t0, t1); tcg_gen_rem_tl(cpu_HI[acc], t0, t1); tcg_gen_ext32s_tl(cpu_LO[acc], cpu_LO[acc]); tcg_gen_ext32s_tl(cpu_HI[acc], cpu_HI[acc]); tcg_temp_free(t3); tcg_temp_free(t2); } break; case OPC_DIVU: { TCGv t2 = tcg_const_tl(0); TCGv t3 = tcg_const_tl(1); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1); tcg_gen_divu_tl(cpu_LO[acc], t0, t1); tcg_gen_remu_tl(cpu_HI[acc], t0, t1); tcg_gen_ext32s_tl(cpu_LO[acc], cpu_LO[acc]); tcg_gen_ext32s_tl(cpu_HI[acc], cpu_HI[acc]); tcg_temp_free(t3); tcg_temp_free(t2); } break; case OPC_MULT: { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_muls2_i32(t2, t3, t2, t3); tcg_gen_ext_i32_tl(cpu_LO[acc], t2); tcg_gen_ext_i32_tl(cpu_HI[acc], t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; case OPC_MULTU: { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_mulu2_i32(t2, t3, t2, t3); tcg_gen_ext_i32_tl(cpu_LO[acc], t2); tcg_gen_ext_i32_tl(cpu_HI[acc], t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; #if defined(TARGET_MIPS64) case OPC_DDIV: { TCGv t2 = tcg_temp_new(); TCGv t3 = tcg_temp_new(); tcg_gen_setcondi_tl(TCG_COND_EQ, t2, t0, -1LL << 63); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, -1LL); tcg_gen_and_tl(t2, t2, t3); tcg_gen_setcondi_tl(TCG_COND_EQ, t3, t1, 0); tcg_gen_or_tl(t2, t2, t3); tcg_gen_movi_tl(t3, 0); tcg_gen_movcond_tl(TCG_COND_NE, t1, t2, t3, t2, t1); tcg_gen_div_tl(cpu_LO[acc], t0, t1); tcg_gen_rem_tl(cpu_HI[acc], t0, t1); tcg_temp_free(t3); tcg_temp_free(t2); } break; case OPC_DDIVU: { TCGv t2 = tcg_const_tl(0); TCGv t3 = tcg_const_tl(1); tcg_gen_movcond_tl(TCG_COND_EQ, t1, t1, t2, t3, t1); tcg_gen_divu_i64(cpu_LO[acc], t0, t1); tcg_gen_remu_i64(cpu_HI[acc], t0, t1); tcg_temp_free(t3); tcg_temp_free(t2); } break; case OPC_DMULT: tcg_gen_muls2_i64(cpu_LO[acc], cpu_HI[acc], t0, t1); break; case OPC_DMULTU: tcg_gen_mulu2_i64(cpu_LO[acc], cpu_HI[acc], t0, t1); break; #endif case OPC_MADD: { TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(t2, t0); tcg_gen_ext_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_add_i64(t2, t2, t3); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); tcg_temp_free_i64(t2); } break; case OPC_MADDU: { TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_extu_tl_i64(t2, t0); tcg_gen_extu_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_add_i64(t2, t2, t3); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); tcg_temp_free_i64(t2); } break; case OPC_MSUB: { TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(t2, t0); tcg_gen_ext_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_sub_i64(t2, t3, t2); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); tcg_temp_free_i64(t2); } break; case OPC_MSUBU: { TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_extu_tl_i64(t2, t0); tcg_gen_extu_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_sub_i64(t2, t3, t2); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); tcg_temp_free_i64(t2); } break; default: MIPS_INVAL("mul/div"); gen_reserved_instruction(ctx); goto out; } out: tcg_temp_free(t0); tcg_temp_free(t1); } /* * These MULT[U] and MADD[U] instructions implemented in for example * the Toshiba/Sony R5900 and the Toshiba TX19, TX39 and TX79 core * architectures are special three-operand variants with the syntax * * MULT[U][1] rd, rs, rt * * such that * * (rd, LO, HI) <- rs * rt * * and * * MADD[U][1] rd, rs, rt * * such that * * (rd, LO, HI) <- (LO, HI) + rs * rt * * where the low-order 32-bits of the result is placed into both the * GPR rd and the special register LO. The high-order 32-bits of the * result is placed into the special register HI. * * If the GPR rd is omitted in assembly language, it is taken to be 0, * which is the zero register that always reads as 0. */ static void gen_mul_txx9(DisasContext *ctx, uint32_t opc, int rd, int rs, int rt) { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); int acc = 0; gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); switch (opc) { case MMI_OPC_MULT1: acc = 1; /* Fall through */ case OPC_MULT: { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_muls2_i32(t2, t3, t2, t3); if (rd) { tcg_gen_ext_i32_tl(cpu_gpr[rd], t2); } tcg_gen_ext_i32_tl(cpu_LO[acc], t2); tcg_gen_ext_i32_tl(cpu_HI[acc], t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; case MMI_OPC_MULTU1: acc = 1; /* Fall through */ case OPC_MULTU: { TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_mulu2_i32(t2, t3, t2, t3); if (rd) { tcg_gen_ext_i32_tl(cpu_gpr[rd], t2); } tcg_gen_ext_i32_tl(cpu_LO[acc], t2); tcg_gen_ext_i32_tl(cpu_HI[acc], t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; case MMI_OPC_MADD1: acc = 1; /* Fall through */ case MMI_OPC_MADD: { TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(t2, t0); tcg_gen_ext_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_add_i64(t2, t2, t3); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); if (rd) { gen_move_low32(cpu_gpr[rd], t2); } tcg_temp_free_i64(t2); } break; case MMI_OPC_MADDU1: acc = 1; /* Fall through */ case MMI_OPC_MADDU: { TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_extu_tl_i64(t2, t0); tcg_gen_extu_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_add_i64(t2, t2, t3); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); if (rd) { gen_move_low32(cpu_gpr[rd], t2); } tcg_temp_free_i64(t2); } break; default: MIPS_INVAL("mul/madd TXx9"); gen_reserved_instruction(ctx); goto out; } out: tcg_temp_free(t0); tcg_temp_free(t1); } static void gen_mul_vr54xx(DisasContext *ctx, uint32_t opc, int rd, int rs, int rt) { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); switch (opc) { case OPC_VR54XX_MULS: gen_helper_muls(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MULSU: gen_helper_mulsu(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MACC: gen_helper_macc(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MACCU: gen_helper_maccu(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MSAC: gen_helper_msac(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MSACU: gen_helper_msacu(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MULHI: gen_helper_mulhi(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MULHIU: gen_helper_mulhiu(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MULSHI: gen_helper_mulshi(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MULSHIU: gen_helper_mulshiu(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MACCHI: gen_helper_macchi(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MACCHIU: gen_helper_macchiu(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MSACHI: gen_helper_msachi(t0, cpu_env, t0, t1); break; case OPC_VR54XX_MSACHIU: gen_helper_msachiu(t0, cpu_env, t0, t1); break; default: MIPS_INVAL("mul vr54xx"); gen_reserved_instruction(ctx); goto out; } gen_store_gpr(t0, rd); out: tcg_temp_free(t0); tcg_temp_free(t1); } static void gen_cl(DisasContext *ctx, uint32_t opc, int rd, int rs) { TCGv t0; if (rd == 0) { /* Treat as NOP. */ return; } t0 = cpu_gpr[rd]; gen_load_gpr(t0, rs); switch (opc) { case OPC_CLO: case R6_OPC_CLO: #if defined(TARGET_MIPS64) case OPC_DCLO: case R6_OPC_DCLO: #endif tcg_gen_not_tl(t0, t0); break; } switch (opc) { case OPC_CLO: case R6_OPC_CLO: case OPC_CLZ: case R6_OPC_CLZ: tcg_gen_ext32u_tl(t0, t0); tcg_gen_clzi_tl(t0, t0, TARGET_LONG_BITS); tcg_gen_subi_tl(t0, t0, TARGET_LONG_BITS - 32); break; #if defined(TARGET_MIPS64) case OPC_DCLO: case R6_OPC_DCLO: case OPC_DCLZ: case R6_OPC_DCLZ: tcg_gen_clzi_i64(t0, t0, 64); break; #endif } } /* Godson integer instructions */ static void gen_loongson_integer(DisasContext *ctx, uint32_t opc, int rd, int rs, int rt) { TCGv t0, t1; if (rd == 0) { /* Treat as NOP. */ return; } switch (opc) { case OPC_MULT_G_2E: case OPC_MULT_G_2F: case OPC_MULTU_G_2E: case OPC_MULTU_G_2F: #if defined(TARGET_MIPS64) case OPC_DMULT_G_2E: case OPC_DMULT_G_2F: case OPC_DMULTU_G_2E: case OPC_DMULTU_G_2F: #endif t0 = tcg_temp_new(); t1 = tcg_temp_new(); break; default: t0 = tcg_temp_local_new(); t1 = tcg_temp_local_new(); break; } gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); switch (opc) { case OPC_MULT_G_2E: case OPC_MULT_G_2F: tcg_gen_mul_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); break; case OPC_MULTU_G_2E: case OPC_MULTU_G_2F: tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_mul_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); break; case OPC_DIV_G_2E: case OPC_DIV_G_2F: { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); TCGLabel *l3 = gen_new_label(); tcg_gen_ext32s_tl(t0, t0); tcg_gen_ext32s_tl(t1, t1); tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1); tcg_gen_movi_tl(cpu_gpr[rd], 0); tcg_gen_br(l3); gen_set_label(l1); tcg_gen_brcondi_tl(TCG_COND_NE, t0, INT_MIN, l2); tcg_gen_brcondi_tl(TCG_COND_NE, t1, -1, l2); tcg_gen_mov_tl(cpu_gpr[rd], t0); tcg_gen_br(l3); gen_set_label(l2); tcg_gen_div_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); gen_set_label(l3); } break; case OPC_DIVU_G_2E: case OPC_DIVU_G_2F: { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1); tcg_gen_movi_tl(cpu_gpr[rd], 0); tcg_gen_br(l2); gen_set_label(l1); tcg_gen_divu_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); gen_set_label(l2); } break; case OPC_MOD_G_2E: case OPC_MOD_G_2F: { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); TCGLabel *l3 = gen_new_label(); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_brcondi_tl(TCG_COND_EQ, t1, 0, l1); tcg_gen_brcondi_tl(TCG_COND_NE, t0, INT_MIN, l2); tcg_gen_brcondi_tl(TCG_COND_NE, t1, -1, l2); gen_set_label(l1); tcg_gen_movi_tl(cpu_gpr[rd], 0); tcg_gen_br(l3); gen_set_label(l2); tcg_gen_rem_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); gen_set_label(l3); } break; case OPC_MODU_G_2E: case OPC_MODU_G_2F: { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1); tcg_gen_movi_tl(cpu_gpr[rd], 0); tcg_gen_br(l2); gen_set_label(l1); tcg_gen_remu_tl(cpu_gpr[rd], t0, t1); tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); gen_set_label(l2); } break; #if defined(TARGET_MIPS64) case OPC_DMULT_G_2E: case OPC_DMULT_G_2F: tcg_gen_mul_tl(cpu_gpr[rd], t0, t1); break; case OPC_DMULTU_G_2E: case OPC_DMULTU_G_2F: tcg_gen_mul_tl(cpu_gpr[rd], t0, t1); break; case OPC_DDIV_G_2E: case OPC_DDIV_G_2F: { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); TCGLabel *l3 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1); tcg_gen_movi_tl(cpu_gpr[rd], 0); tcg_gen_br(l3); gen_set_label(l1); tcg_gen_brcondi_tl(TCG_COND_NE, t0, -1LL << 63, l2); tcg_gen_brcondi_tl(TCG_COND_NE, t1, -1LL, l2); tcg_gen_mov_tl(cpu_gpr[rd], t0); tcg_gen_br(l3); gen_set_label(l2); tcg_gen_div_tl(cpu_gpr[rd], t0, t1); gen_set_label(l3); } break; case OPC_DDIVU_G_2E: case OPC_DDIVU_G_2F: { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1); tcg_gen_movi_tl(cpu_gpr[rd], 0); tcg_gen_br(l2); gen_set_label(l1); tcg_gen_divu_tl(cpu_gpr[rd], t0, t1); gen_set_label(l2); } break; case OPC_DMOD_G_2E: case OPC_DMOD_G_2F: { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); TCGLabel *l3 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, t1, 0, l1); tcg_gen_brcondi_tl(TCG_COND_NE, t0, -1LL << 63, l2); tcg_gen_brcondi_tl(TCG_COND_NE, t1, -1LL, l2); gen_set_label(l1); tcg_gen_movi_tl(cpu_gpr[rd], 0); tcg_gen_br(l3); gen_set_label(l2); tcg_gen_rem_tl(cpu_gpr[rd], t0, t1); gen_set_label(l3); } break; case OPC_DMODU_G_2E: case OPC_DMODU_G_2F: { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_NE, t1, 0, l1); tcg_gen_movi_tl(cpu_gpr[rd], 0); tcg_gen_br(l2); gen_set_label(l1); tcg_gen_remu_tl(cpu_gpr[rd], t0, t1); gen_set_label(l2); } break; #endif } tcg_temp_free(t0); tcg_temp_free(t1); } /* Loongson multimedia instructions */ static void gen_loongson_multimedia(DisasContext *ctx, int rd, int rs, int rt) { uint32_t opc, shift_max; TCGv_i64 t0, t1; TCGCond cond; opc = MASK_LMMI(ctx->opcode); switch (opc) { case OPC_ADD_CP2: case OPC_SUB_CP2: case OPC_DADD_CP2: case OPC_DSUB_CP2: t0 = tcg_temp_local_new_i64(); t1 = tcg_temp_local_new_i64(); break; default: t0 = tcg_temp_new_i64(); t1 = tcg_temp_new_i64(); break; } check_cp1_enabled(ctx); gen_load_fpr64(ctx, t0, rs); gen_load_fpr64(ctx, t1, rt); switch (opc) { case OPC_PADDSH: gen_helper_paddsh(t0, t0, t1); break; case OPC_PADDUSH: gen_helper_paddush(t0, t0, t1); break; case OPC_PADDH: gen_helper_paddh(t0, t0, t1); break; case OPC_PADDW: gen_helper_paddw(t0, t0, t1); break; case OPC_PADDSB: gen_helper_paddsb(t0, t0, t1); break; case OPC_PADDUSB: gen_helper_paddusb(t0, t0, t1); break; case OPC_PADDB: gen_helper_paddb(t0, t0, t1); break; case OPC_PSUBSH: gen_helper_psubsh(t0, t0, t1); break; case OPC_PSUBUSH: gen_helper_psubush(t0, t0, t1); break; case OPC_PSUBH: gen_helper_psubh(t0, t0, t1); break; case OPC_PSUBW: gen_helper_psubw(t0, t0, t1); break; case OPC_PSUBSB: gen_helper_psubsb(t0, t0, t1); break; case OPC_PSUBUSB: gen_helper_psubusb(t0, t0, t1); break; case OPC_PSUBB: gen_helper_psubb(t0, t0, t1); break; case OPC_PSHUFH: gen_helper_pshufh(t0, t0, t1); break; case OPC_PACKSSWH: gen_helper_packsswh(t0, t0, t1); break; case OPC_PACKSSHB: gen_helper_packsshb(t0, t0, t1); break; case OPC_PACKUSHB: gen_helper_packushb(t0, t0, t1); break; case OPC_PUNPCKLHW: gen_helper_punpcklhw(t0, t0, t1); break; case OPC_PUNPCKHHW: gen_helper_punpckhhw(t0, t0, t1); break; case OPC_PUNPCKLBH: gen_helper_punpcklbh(t0, t0, t1); break; case OPC_PUNPCKHBH: gen_helper_punpckhbh(t0, t0, t1); break; case OPC_PUNPCKLWD: gen_helper_punpcklwd(t0, t0, t1); break; case OPC_PUNPCKHWD: gen_helper_punpckhwd(t0, t0, t1); break; case OPC_PAVGH: gen_helper_pavgh(t0, t0, t1); break; case OPC_PAVGB: gen_helper_pavgb(t0, t0, t1); break; case OPC_PMAXSH: gen_helper_pmaxsh(t0, t0, t1); break; case OPC_PMINSH: gen_helper_pminsh(t0, t0, t1); break; case OPC_PMAXUB: gen_helper_pmaxub(t0, t0, t1); break; case OPC_PMINUB: gen_helper_pminub(t0, t0, t1); break; case OPC_PCMPEQW: gen_helper_pcmpeqw(t0, t0, t1); break; case OPC_PCMPGTW: gen_helper_pcmpgtw(t0, t0, t1); break; case OPC_PCMPEQH: gen_helper_pcmpeqh(t0, t0, t1); break; case OPC_PCMPGTH: gen_helper_pcmpgth(t0, t0, t1); break; case OPC_PCMPEQB: gen_helper_pcmpeqb(t0, t0, t1); break; case OPC_PCMPGTB: gen_helper_pcmpgtb(t0, t0, t1); break; case OPC_PSLLW: gen_helper_psllw(t0, t0, t1); break; case OPC_PSLLH: gen_helper_psllh(t0, t0, t1); break; case OPC_PSRLW: gen_helper_psrlw(t0, t0, t1); break; case OPC_PSRLH: gen_helper_psrlh(t0, t0, t1); break; case OPC_PSRAW: gen_helper_psraw(t0, t0, t1); break; case OPC_PSRAH: gen_helper_psrah(t0, t0, t1); break; case OPC_PMULLH: gen_helper_pmullh(t0, t0, t1); break; case OPC_PMULHH: gen_helper_pmulhh(t0, t0, t1); break; case OPC_PMULHUH: gen_helper_pmulhuh(t0, t0, t1); break; case OPC_PMADDHW: gen_helper_pmaddhw(t0, t0, t1); break; case OPC_PASUBUB: gen_helper_pasubub(t0, t0, t1); break; case OPC_BIADD: gen_helper_biadd(t0, t0); break; case OPC_PMOVMSKB: gen_helper_pmovmskb(t0, t0); break; case OPC_PADDD: tcg_gen_add_i64(t0, t0, t1); break; case OPC_PSUBD: tcg_gen_sub_i64(t0, t0, t1); break; case OPC_XOR_CP2: tcg_gen_xor_i64(t0, t0, t1); break; case OPC_NOR_CP2: tcg_gen_nor_i64(t0, t0, t1); break; case OPC_AND_CP2: tcg_gen_and_i64(t0, t0, t1); break; case OPC_OR_CP2: tcg_gen_or_i64(t0, t0, t1); break; case OPC_PANDN: tcg_gen_andc_i64(t0, t1, t0); break; case OPC_PINSRH_0: tcg_gen_deposit_i64(t0, t0, t1, 0, 16); break; case OPC_PINSRH_1: tcg_gen_deposit_i64(t0, t0, t1, 16, 16); break; case OPC_PINSRH_2: tcg_gen_deposit_i64(t0, t0, t1, 32, 16); break; case OPC_PINSRH_3: tcg_gen_deposit_i64(t0, t0, t1, 48, 16); break; case OPC_PEXTRH: tcg_gen_andi_i64(t1, t1, 3); tcg_gen_shli_i64(t1, t1, 4); tcg_gen_shr_i64(t0, t0, t1); tcg_gen_ext16u_i64(t0, t0); break; case OPC_ADDU_CP2: tcg_gen_add_i64(t0, t0, t1); tcg_gen_ext32s_i64(t0, t0); break; case OPC_SUBU_CP2: tcg_gen_sub_i64(t0, t0, t1); tcg_gen_ext32s_i64(t0, t0); break; case OPC_SLL_CP2: shift_max = 32; goto do_shift; case OPC_SRL_CP2: shift_max = 32; goto do_shift; case OPC_SRA_CP2: shift_max = 32; goto do_shift; case OPC_DSLL_CP2: shift_max = 64; goto do_shift; case OPC_DSRL_CP2: shift_max = 64; goto do_shift; case OPC_DSRA_CP2: shift_max = 64; goto do_shift; do_shift: /* Make sure shift count isn't TCG undefined behaviour. */ tcg_gen_andi_i64(t1, t1, shift_max - 1); switch (opc) { case OPC_SLL_CP2: case OPC_DSLL_CP2: tcg_gen_shl_i64(t0, t0, t1); break; case OPC_SRA_CP2: case OPC_DSRA_CP2: /* * Since SRA is UndefinedResult without sign-extended inputs, * we can treat SRA and DSRA the same. */ tcg_gen_sar_i64(t0, t0, t1); break; case OPC_SRL_CP2: /* We want to shift in zeros for SRL; zero-extend first. */ tcg_gen_ext32u_i64(t0, t0); /* FALLTHRU */ case OPC_DSRL_CP2: tcg_gen_shr_i64(t0, t0, t1); break; } if (shift_max == 32) { tcg_gen_ext32s_i64(t0, t0); } /* Shifts larger than MAX produce zero. */ tcg_gen_setcondi_i64(TCG_COND_LTU, t1, t1, shift_max); tcg_gen_neg_i64(t1, t1); tcg_gen_and_i64(t0, t0, t1); break; case OPC_ADD_CP2: case OPC_DADD_CP2: { TCGv_i64 t2 = tcg_temp_new_i64(); TCGLabel *lab = gen_new_label(); tcg_gen_mov_i64(t2, t0); tcg_gen_add_i64(t0, t1, t2); if (opc == OPC_ADD_CP2) { tcg_gen_ext32s_i64(t0, t0); } tcg_gen_xor_i64(t1, t1, t2); tcg_gen_xor_i64(t2, t2, t0); tcg_gen_andc_i64(t1, t2, t1); tcg_temp_free_i64(t2); tcg_gen_brcondi_i64(TCG_COND_GE, t1, 0, lab); generate_exception(ctx, EXCP_OVERFLOW); gen_set_label(lab); break; } case OPC_SUB_CP2: case OPC_DSUB_CP2: { TCGv_i64 t2 = tcg_temp_new_i64(); TCGLabel *lab = gen_new_label(); tcg_gen_mov_i64(t2, t0); tcg_gen_sub_i64(t0, t1, t2); if (opc == OPC_SUB_CP2) { tcg_gen_ext32s_i64(t0, t0); } tcg_gen_xor_i64(t1, t1, t2); tcg_gen_xor_i64(t2, t2, t0); tcg_gen_and_i64(t1, t1, t2); tcg_temp_free_i64(t2); tcg_gen_brcondi_i64(TCG_COND_GE, t1, 0, lab); generate_exception(ctx, EXCP_OVERFLOW); gen_set_label(lab); break; } case OPC_PMULUW: tcg_gen_ext32u_i64(t0, t0); tcg_gen_ext32u_i64(t1, t1); tcg_gen_mul_i64(t0, t0, t1); break; case OPC_SEQU_CP2: case OPC_SEQ_CP2: cond = TCG_COND_EQ; goto do_cc_cond; break; case OPC_SLTU_CP2: cond = TCG_COND_LTU; goto do_cc_cond; break; case OPC_SLT_CP2: cond = TCG_COND_LT; goto do_cc_cond; break; case OPC_SLEU_CP2: cond = TCG_COND_LEU; goto do_cc_cond; break; case OPC_SLE_CP2: cond = TCG_COND_LE; do_cc_cond: { int cc = (ctx->opcode >> 8) & 0x7; TCGv_i64 t64 = tcg_temp_new_i64(); TCGv_i32 t32 = tcg_temp_new_i32(); tcg_gen_setcond_i64(cond, t64, t0, t1); tcg_gen_extrl_i64_i32(t32, t64); tcg_gen_deposit_i32(fpu_fcr31, fpu_fcr31, t32, get_fp_bit(cc), 1); tcg_temp_free_i32(t32); tcg_temp_free_i64(t64); } goto no_rd; break; default: MIPS_INVAL("loongson_cp2"); gen_reserved_instruction(ctx); return; } gen_store_fpr64(ctx, t0, rd); no_rd: tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); } static void gen_loongson_lswc2(DisasContext *ctx, int rt, int rs, int rd) { TCGv t0, t1, t2; TCGv_i32 fp0; #if defined(TARGET_MIPS64) int lsq_rt1 = ctx->opcode & 0x1f; int lsq_offset = sextract32(ctx->opcode, 6, 9) << 4; #endif int shf_offset = sextract32(ctx->opcode, 6, 8); t0 = tcg_temp_new(); switch (MASK_LOONGSON_GSLSQ(ctx->opcode)) { #if defined(TARGET_MIPS64) case OPC_GSLQ: t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, lsq_offset); tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_base_offset_addr(ctx, t0, rs, lsq_offset + 8); tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_store_gpr(t1, rt); gen_store_gpr(t0, lsq_rt1); tcg_temp_free(t1); break; case OPC_GSLQC1: check_cp1_enabled(ctx); t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, lsq_offset); tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_base_offset_addr(ctx, t0, rs, lsq_offset + 8); tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_store_fpr64(ctx, t1, rt); gen_store_fpr64(ctx, t0, lsq_rt1); tcg_temp_free(t1); break; case OPC_GSSQ: t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, lsq_offset); gen_load_gpr(t1, rt); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_base_offset_addr(ctx, t0, rs, lsq_offset + 8); gen_load_gpr(t1, lsq_rt1); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); tcg_temp_free(t1); break; case OPC_GSSQC1: check_cp1_enabled(ctx); t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, lsq_offset); gen_load_fpr64(ctx, t1, rt); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_base_offset_addr(ctx, t0, rs, lsq_offset + 8); gen_load_fpr64(ctx, t1, lsq_rt1); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); tcg_temp_free(t1); break; #endif case OPC_GSSHFL: switch (MASK_LOONGSON_GSSHFLS(ctx->opcode)) { case OPC_GSLWLC1: check_cp1_enabled(ctx); gen_base_offset_addr(ctx, t0, rs, shf_offset); t1 = tcg_temp_new(); tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); tcg_gen_andi_tl(t1, t0, 3); #ifndef TARGET_WORDS_BIGENDIAN tcg_gen_xori_tl(t1, t1, 3); #endif tcg_gen_shli_tl(t1, t1, 3); tcg_gen_andi_tl(t0, t0, ~3); tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEUL); tcg_gen_shl_tl(t0, t0, t1); t2 = tcg_const_tl(-1); tcg_gen_shl_tl(t2, t2, t1); fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, rt); tcg_gen_ext_i32_tl(t1, fp0); tcg_gen_andc_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_or_tl(t0, t0, t1); tcg_temp_free(t1); #if defined(TARGET_MIPS64) tcg_gen_extrl_i64_i32(fp0, t0); #else tcg_gen_ext32s_tl(fp0, t0); #endif gen_store_fpr32(ctx, fp0, rt); tcg_temp_free_i32(fp0); break; case OPC_GSLWRC1: check_cp1_enabled(ctx); gen_base_offset_addr(ctx, t0, rs, shf_offset); t1 = tcg_temp_new(); tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); tcg_gen_andi_tl(t1, t0, 3); #ifdef TARGET_WORDS_BIGENDIAN tcg_gen_xori_tl(t1, t1, 3); #endif tcg_gen_shli_tl(t1, t1, 3); tcg_gen_andi_tl(t0, t0, ~3); tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEUL); tcg_gen_shr_tl(t0, t0, t1); tcg_gen_xori_tl(t1, t1, 31); t2 = tcg_const_tl(0xfffffffeull); tcg_gen_shl_tl(t2, t2, t1); fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, rt); tcg_gen_ext_i32_tl(t1, fp0); tcg_gen_and_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_or_tl(t0, t0, t1); tcg_temp_free(t1); #if defined(TARGET_MIPS64) tcg_gen_extrl_i64_i32(fp0, t0); #else tcg_gen_ext32s_tl(fp0, t0); #endif gen_store_fpr32(ctx, fp0, rt); tcg_temp_free_i32(fp0); break; #if defined(TARGET_MIPS64) case OPC_GSLDLC1: check_cp1_enabled(ctx); gen_base_offset_addr(ctx, t0, rs, shf_offset); t1 = tcg_temp_new(); tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); tcg_gen_andi_tl(t1, t0, 7); #ifndef TARGET_WORDS_BIGENDIAN tcg_gen_xori_tl(t1, t1, 7); #endif tcg_gen_shli_tl(t1, t1, 3); tcg_gen_andi_tl(t0, t0, ~7); tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEQ); tcg_gen_shl_tl(t0, t0, t1); t2 = tcg_const_tl(-1); tcg_gen_shl_tl(t2, t2, t1); gen_load_fpr64(ctx, t1, rt); tcg_gen_andc_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_or_tl(t0, t0, t1); tcg_temp_free(t1); gen_store_fpr64(ctx, t0, rt); break; case OPC_GSLDRC1: check_cp1_enabled(ctx); gen_base_offset_addr(ctx, t0, rs, shf_offset); t1 = tcg_temp_new(); tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); tcg_gen_andi_tl(t1, t0, 7); #ifdef TARGET_WORDS_BIGENDIAN tcg_gen_xori_tl(t1, t1, 7); #endif tcg_gen_shli_tl(t1, t1, 3); tcg_gen_andi_tl(t0, t0, ~7); tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEQ); tcg_gen_shr_tl(t0, t0, t1); tcg_gen_xori_tl(t1, t1, 63); t2 = tcg_const_tl(0xfffffffffffffffeull); tcg_gen_shl_tl(t2, t2, t1); gen_load_fpr64(ctx, t1, rt); tcg_gen_and_tl(t1, t1, t2); tcg_temp_free(t2); tcg_gen_or_tl(t0, t0, t1); tcg_temp_free(t1); gen_store_fpr64(ctx, t0, rt); break; #endif default: MIPS_INVAL("loongson_gsshfl"); gen_reserved_instruction(ctx); break; } break; case OPC_GSSHFS: switch (MASK_LOONGSON_GSSHFLS(ctx->opcode)) { case OPC_GSSWLC1: check_cp1_enabled(ctx); t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, shf_offset); fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, rt); tcg_gen_ext_i32_tl(t1, fp0); gen_helper_0e2i(swl, t1, t0, ctx->mem_idx); tcg_temp_free_i32(fp0); tcg_temp_free(t1); break; case OPC_GSSWRC1: check_cp1_enabled(ctx); t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, shf_offset); fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, rt); tcg_gen_ext_i32_tl(t1, fp0); gen_helper_0e2i(swr, t1, t0, ctx->mem_idx); tcg_temp_free_i32(fp0); tcg_temp_free(t1); break; #if defined(TARGET_MIPS64) case OPC_GSSDLC1: check_cp1_enabled(ctx); t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, shf_offset); gen_load_fpr64(ctx, t1, rt); gen_helper_0e2i(sdl, t1, t0, ctx->mem_idx); tcg_temp_free(t1); break; case OPC_GSSDRC1: check_cp1_enabled(ctx); t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, shf_offset); gen_load_fpr64(ctx, t1, rt); gen_helper_0e2i(sdr, t1, t0, ctx->mem_idx); tcg_temp_free(t1); break; #endif default: MIPS_INVAL("loongson_gsshfs"); gen_reserved_instruction(ctx); break; } break; default: MIPS_INVAL("loongson_gslsq"); gen_reserved_instruction(ctx); break; } tcg_temp_free(t0); } /* Loongson EXT LDC2/SDC2 */ static void gen_loongson_lsdc2(DisasContext *ctx, int rt, int rs, int rd) { int offset = sextract32(ctx->opcode, 3, 8); uint32_t opc = MASK_LOONGSON_LSDC2(ctx->opcode); TCGv t0, t1; TCGv_i32 fp0; /* Pre-conditions */ switch (opc) { case OPC_GSLBX: case OPC_GSLHX: case OPC_GSLWX: case OPC_GSLDX: /* prefetch, implement as NOP */ if (rt == 0) { return; } break; case OPC_GSSBX: case OPC_GSSHX: case OPC_GSSWX: case OPC_GSSDX: break; case OPC_GSLWXC1: #if defined(TARGET_MIPS64) case OPC_GSLDXC1: #endif check_cp1_enabled(ctx); /* prefetch, implement as NOP */ if (rt == 0) { return; } break; case OPC_GSSWXC1: #if defined(TARGET_MIPS64) case OPC_GSSDXC1: #endif check_cp1_enabled(ctx); break; default: MIPS_INVAL("loongson_lsdc2"); gen_reserved_instruction(ctx); return; break; } t0 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, offset); gen_op_addr_add(ctx, t0, cpu_gpr[rd], t0); switch (opc) { case OPC_GSLBX: tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_SB); gen_store_gpr(t0, rt); break; case OPC_GSLHX: tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESW | ctx->default_tcg_memop_mask); gen_store_gpr(t0, rt); break; case OPC_GSLWX: gen_base_offset_addr(ctx, t0, rs, offset); if (rd) { gen_op_addr_add(ctx, t0, cpu_gpr[rd], t0); } tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESL | ctx->default_tcg_memop_mask); gen_store_gpr(t0, rt); break; #if defined(TARGET_MIPS64) case OPC_GSLDX: gen_base_offset_addr(ctx, t0, rs, offset); if (rd) { gen_op_addr_add(ctx, t0, cpu_gpr[rd], t0); } tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_store_gpr(t0, rt); break; #endif case OPC_GSLWXC1: check_cp1_enabled(ctx); gen_base_offset_addr(ctx, t0, rs, offset); if (rd) { gen_op_addr_add(ctx, t0, cpu_gpr[rd], t0); } fp0 = tcg_temp_new_i32(); tcg_gen_qemu_ld_i32(fp0, t0, ctx->mem_idx, MO_TESL | ctx->default_tcg_memop_mask); gen_store_fpr32(ctx, fp0, rt); tcg_temp_free_i32(fp0); break; #if defined(TARGET_MIPS64) case OPC_GSLDXC1: check_cp1_enabled(ctx); gen_base_offset_addr(ctx, t0, rs, offset); if (rd) { gen_op_addr_add(ctx, t0, cpu_gpr[rd], t0); } tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); gen_store_fpr64(ctx, t0, rt); break; #endif case OPC_GSSBX: t1 = tcg_temp_new(); gen_load_gpr(t1, rt); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_SB); tcg_temp_free(t1); break; case OPC_GSSHX: t1 = tcg_temp_new(); gen_load_gpr(t1, rt); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUW | ctx->default_tcg_memop_mask); tcg_temp_free(t1); break; case OPC_GSSWX: t1 = tcg_temp_new(); gen_load_gpr(t1, rt); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL | ctx->default_tcg_memop_mask); tcg_temp_free(t1); break; #if defined(TARGET_MIPS64) case OPC_GSSDX: t1 = tcg_temp_new(); gen_load_gpr(t1, rt); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); tcg_temp_free(t1); break; #endif case OPC_GSSWXC1: fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, rt); tcg_gen_qemu_st_i32(fp0, t0, ctx->mem_idx, MO_TEUL | ctx->default_tcg_memop_mask); tcg_temp_free_i32(fp0); break; #if defined(TARGET_MIPS64) case OPC_GSSDXC1: t1 = tcg_temp_new(); gen_load_fpr64(ctx, t1, rt); tcg_gen_qemu_st_i64(t1, t0, ctx->mem_idx, MO_TEQ | ctx->default_tcg_memop_mask); tcg_temp_free(t1); break; #endif default: break; } tcg_temp_free(t0); } /* Traps */ static void gen_trap(DisasContext *ctx, uint32_t opc, int rs, int rt, int16_t imm) { int cond; TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); cond = 0; /* Load needed operands */ switch (opc) { case OPC_TEQ: case OPC_TGE: case OPC_TGEU: case OPC_TLT: case OPC_TLTU: case OPC_TNE: /* Compare two registers */ if (rs != rt) { gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); cond = 1; } break; case OPC_TEQI: case OPC_TGEI: case OPC_TGEIU: case OPC_TLTI: case OPC_TLTIU: case OPC_TNEI: /* Compare register to immediate */ if (rs != 0 || imm != 0) { gen_load_gpr(t0, rs); tcg_gen_movi_tl(t1, (int32_t)imm); cond = 1; } break; } if (cond == 0) { switch (opc) { case OPC_TEQ: /* rs == rs */ case OPC_TEQI: /* r0 == 0 */ case OPC_TGE: /* rs >= rs */ case OPC_TGEI: /* r0 >= 0 */ case OPC_TGEU: /* rs >= rs unsigned */ case OPC_TGEIU: /* r0 >= 0 unsigned */ /* Always trap */ generate_exception_end(ctx, EXCP_TRAP); break; case OPC_TLT: /* rs < rs */ case OPC_TLTI: /* r0 < 0 */ case OPC_TLTU: /* rs < rs unsigned */ case OPC_TLTIU: /* r0 < 0 unsigned */ case OPC_TNE: /* rs != rs */ case OPC_TNEI: /* r0 != 0 */ /* Never trap: treat as NOP. */ break; } } else { TCGLabel *l1 = gen_new_label(); switch (opc) { case OPC_TEQ: case OPC_TEQI: tcg_gen_brcond_tl(TCG_COND_NE, t0, t1, l1); break; case OPC_TGE: case OPC_TGEI: tcg_gen_brcond_tl(TCG_COND_LT, t0, t1, l1); break; case OPC_TGEU: case OPC_TGEIU: tcg_gen_brcond_tl(TCG_COND_LTU, t0, t1, l1); break; case OPC_TLT: case OPC_TLTI: tcg_gen_brcond_tl(TCG_COND_GE, t0, t1, l1); break; case OPC_TLTU: case OPC_TLTIU: tcg_gen_brcond_tl(TCG_COND_GEU, t0, t1, l1); break; case OPC_TNE: case OPC_TNEI: tcg_gen_brcond_tl(TCG_COND_EQ, t0, t1, l1); break; } generate_exception(ctx, EXCP_TRAP); gen_set_label(l1); } tcg_temp_free(t0); tcg_temp_free(t1); } static inline bool use_goto_tb(DisasContext *ctx, target_ulong dest) { if (unlikely(ctx->base.singlestep_enabled)) { return false; } #ifndef CONFIG_USER_ONLY return (ctx->base.tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK); #else return true; #endif } static inline void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) { if (use_goto_tb(ctx, dest)) { tcg_gen_goto_tb(n); gen_save_pc(dest); tcg_gen_exit_tb(ctx->base.tb, n); } else { gen_save_pc(dest); if (ctx->base.singlestep_enabled) { save_cpu_state(ctx, 0); gen_helper_raise_exception_debug(cpu_env); } tcg_gen_lookup_and_goto_ptr(); } } /* Branches (before delay slot) */ static void gen_compute_branch(DisasContext *ctx, uint32_t opc, int insn_bytes, int rs, int rt, int32_t offset, int delayslot_size) { target_ulong btgt = -1; int blink = 0; int bcond_compute = 0; TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); if (ctx->hflags & MIPS_HFLAG_BMASK) { #ifdef MIPS_DEBUG_DISAS LOG_DISAS("Branch in delay / forbidden slot at PC 0x" TARGET_FMT_lx "\n", ctx->base.pc_next); #endif gen_reserved_instruction(ctx); goto out; } /* Load needed operands */ switch (opc) { case OPC_BEQ: case OPC_BEQL: case OPC_BNE: case OPC_BNEL: /* Compare two registers */ if (rs != rt) { gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); bcond_compute = 1; } btgt = ctx->base.pc_next + insn_bytes + offset; break; case OPC_BGEZ: case OPC_BGEZAL: case OPC_BGEZALL: case OPC_BGEZL: case OPC_BGTZ: case OPC_BGTZL: case OPC_BLEZ: case OPC_BLEZL: case OPC_BLTZ: case OPC_BLTZAL: case OPC_BLTZALL: case OPC_BLTZL: /* Compare to zero */ if (rs != 0) { gen_load_gpr(t0, rs); bcond_compute = 1; } btgt = ctx->base.pc_next + insn_bytes + offset; break; case OPC_BPOSGE32: #if defined(TARGET_MIPS64) case OPC_BPOSGE64: tcg_gen_andi_tl(t0, cpu_dspctrl, 0x7F); #else tcg_gen_andi_tl(t0, cpu_dspctrl, 0x3F); #endif bcond_compute = 1; btgt = ctx->base.pc_next + insn_bytes + offset; break; case OPC_J: case OPC_JAL: case OPC_JALX: /* Jump to immediate */ btgt = ((ctx->base.pc_next + insn_bytes) & (int32_t)0xF0000000) | (uint32_t)offset; break; case OPC_JR: case OPC_JALR: /* Jump to register */ if (offset != 0 && offset != 16) { /* * Hint = 0 is JR/JALR, hint 16 is JR.HB/JALR.HB, the * others are reserved. */ MIPS_INVAL("jump hint"); gen_reserved_instruction(ctx); goto out; } gen_load_gpr(btarget, rs); break; default: MIPS_INVAL("branch/jump"); gen_reserved_instruction(ctx); goto out; } if (bcond_compute == 0) { /* No condition to be computed */ switch (opc) { case OPC_BEQ: /* rx == rx */ case OPC_BEQL: /* rx == rx likely */ case OPC_BGEZ: /* 0 >= 0 */ case OPC_BGEZL: /* 0 >= 0 likely */ case OPC_BLEZ: /* 0 <= 0 */ case OPC_BLEZL: /* 0 <= 0 likely */ /* Always take */ ctx->hflags |= MIPS_HFLAG_B; break; case OPC_BGEZAL: /* 0 >= 0 */ case OPC_BGEZALL: /* 0 >= 0 likely */ /* Always take and link */ blink = 31; ctx->hflags |= MIPS_HFLAG_B; break; case OPC_BNE: /* rx != rx */ case OPC_BGTZ: /* 0 > 0 */ case OPC_BLTZ: /* 0 < 0 */ /* Treat as NOP. */ goto out; case OPC_BLTZAL: /* 0 < 0 */ /* * Handle as an unconditional branch to get correct delay * slot checking. */ blink = 31; btgt = ctx->base.pc_next + insn_bytes + delayslot_size; ctx->hflags |= MIPS_HFLAG_B; break; case OPC_BLTZALL: /* 0 < 0 likely */ tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 8); /* Skip the instruction in the delay slot */ ctx->base.pc_next += 4; goto out; case OPC_BNEL: /* rx != rx likely */ case OPC_BGTZL: /* 0 > 0 likely */ case OPC_BLTZL: /* 0 < 0 likely */ /* Skip the instruction in the delay slot */ ctx->base.pc_next += 4; goto out; case OPC_J: ctx->hflags |= MIPS_HFLAG_B; break; case OPC_JALX: ctx->hflags |= MIPS_HFLAG_BX; /* Fallthrough */ case OPC_JAL: blink = 31; ctx->hflags |= MIPS_HFLAG_B; break; case OPC_JR: ctx->hflags |= MIPS_HFLAG_BR; break; case OPC_JALR: blink = rt; ctx->hflags |= MIPS_HFLAG_BR; break; default: MIPS_INVAL("branch/jump"); gen_reserved_instruction(ctx); goto out; } } else { switch (opc) { case OPC_BEQ: tcg_gen_setcond_tl(TCG_COND_EQ, bcond, t0, t1); goto not_likely; case OPC_BEQL: tcg_gen_setcond_tl(TCG_COND_EQ, bcond, t0, t1); goto likely; case OPC_BNE: tcg_gen_setcond_tl(TCG_COND_NE, bcond, t0, t1); goto not_likely; case OPC_BNEL: tcg_gen_setcond_tl(TCG_COND_NE, bcond, t0, t1); goto likely; case OPC_BGEZ: tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0); goto not_likely; case OPC_BGEZL: tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0); goto likely; case OPC_BGEZAL: tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0); blink = 31; goto not_likely; case OPC_BGEZALL: tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0); blink = 31; goto likely; case OPC_BGTZ: tcg_gen_setcondi_tl(TCG_COND_GT, bcond, t0, 0); goto not_likely; case OPC_BGTZL: tcg_gen_setcondi_tl(TCG_COND_GT, bcond, t0, 0); goto likely; case OPC_BLEZ: tcg_gen_setcondi_tl(TCG_COND_LE, bcond, t0, 0); goto not_likely; case OPC_BLEZL: tcg_gen_setcondi_tl(TCG_COND_LE, bcond, t0, 0); goto likely; case OPC_BLTZ: tcg_gen_setcondi_tl(TCG_COND_LT, bcond, t0, 0); goto not_likely; case OPC_BLTZL: tcg_gen_setcondi_tl(TCG_COND_LT, bcond, t0, 0); goto likely; case OPC_BPOSGE32: tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 32); goto not_likely; #if defined(TARGET_MIPS64) case OPC_BPOSGE64: tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 64); goto not_likely; #endif case OPC_BLTZAL: tcg_gen_setcondi_tl(TCG_COND_LT, bcond, t0, 0); blink = 31; not_likely: ctx->hflags |= MIPS_HFLAG_BC; break; case OPC_BLTZALL: tcg_gen_setcondi_tl(TCG_COND_LT, bcond, t0, 0); blink = 31; likely: ctx->hflags |= MIPS_HFLAG_BL; break; default: MIPS_INVAL("conditional branch/jump"); gen_reserved_instruction(ctx); goto out; } } ctx->btarget = btgt; switch (delayslot_size) { case 2: ctx->hflags |= MIPS_HFLAG_BDS16; break; case 4: ctx->hflags |= MIPS_HFLAG_BDS32; break; } if (blink > 0) { int post_delay = insn_bytes + delayslot_size; int lowbit = !!(ctx->hflags & MIPS_HFLAG_M16); tcg_gen_movi_tl(cpu_gpr[blink], ctx->base.pc_next + post_delay + lowbit); } out: if (insn_bytes == 2) { ctx->hflags |= MIPS_HFLAG_B16; } tcg_temp_free(t0); tcg_temp_free(t1); } /* nanoMIPS Branches */ static void gen_compute_branch_nm(DisasContext *ctx, uint32_t opc, int insn_bytes, int rs, int rt, int32_t offset) { target_ulong btgt = -1; int bcond_compute = 0; TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); /* Load needed operands */ switch (opc) { case OPC_BEQ: case OPC_BNE: /* Compare two registers */ if (rs != rt) { gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); bcond_compute = 1; } btgt = ctx->base.pc_next + insn_bytes + offset; break; case OPC_BGEZAL: /* Compare to zero */ if (rs != 0) { gen_load_gpr(t0, rs); bcond_compute = 1; } btgt = ctx->base.pc_next + insn_bytes + offset; break; case OPC_BPOSGE32: tcg_gen_andi_tl(t0, cpu_dspctrl, 0x3F); bcond_compute = 1; btgt = ctx->base.pc_next + insn_bytes + offset; break; case OPC_JR: case OPC_JALR: /* Jump to register */ if (offset != 0 && offset != 16) { /* * Hint = 0 is JR/JALR, hint 16 is JR.HB/JALR.HB, the * others are reserved. */ MIPS_INVAL("jump hint"); gen_reserved_instruction(ctx); goto out; } gen_load_gpr(btarget, rs); break; default: MIPS_INVAL("branch/jump"); gen_reserved_instruction(ctx); goto out; } if (bcond_compute == 0) { /* No condition to be computed */ switch (opc) { case OPC_BEQ: /* rx == rx */ /* Always take */ ctx->hflags |= MIPS_HFLAG_B; break; case OPC_BGEZAL: /* 0 >= 0 */ /* Always take and link */ tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + insn_bytes); ctx->hflags |= MIPS_HFLAG_B; break; case OPC_BNE: /* rx != rx */ tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 8); /* Skip the instruction in the delay slot */ ctx->base.pc_next += 4; goto out; case OPC_JR: ctx->hflags |= MIPS_HFLAG_BR; break; case OPC_JALR: if (rt > 0) { tcg_gen_movi_tl(cpu_gpr[rt], ctx->base.pc_next + insn_bytes); } ctx->hflags |= MIPS_HFLAG_BR; break; default: MIPS_INVAL("branch/jump"); gen_reserved_instruction(ctx); goto out; } } else { switch (opc) { case OPC_BEQ: tcg_gen_setcond_tl(TCG_COND_EQ, bcond, t0, t1); goto not_likely; case OPC_BNE: tcg_gen_setcond_tl(TCG_COND_NE, bcond, t0, t1); goto not_likely; case OPC_BGEZAL: tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 0); tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + insn_bytes); goto not_likely; case OPC_BPOSGE32: tcg_gen_setcondi_tl(TCG_COND_GE, bcond, t0, 32); not_likely: ctx->hflags |= MIPS_HFLAG_BC; break; default: MIPS_INVAL("conditional branch/jump"); gen_reserved_instruction(ctx); goto out; } } ctx->btarget = btgt; out: if (insn_bytes == 2) { ctx->hflags |= MIPS_HFLAG_B16; } tcg_temp_free(t0); tcg_temp_free(t1); } /* special3 bitfield operations */ static void gen_bitops(DisasContext *ctx, uint32_t opc, int rt, int rs, int lsb, int msb) { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); gen_load_gpr(t1, rs); switch (opc) { case OPC_EXT: if (lsb + msb > 31) { goto fail; } if (msb != 31) { tcg_gen_extract_tl(t0, t1, lsb, msb + 1); } else { /* * The two checks together imply that lsb == 0, * so this is a simple sign-extension. */ tcg_gen_ext32s_tl(t0, t1); } break; #if defined(TARGET_MIPS64) case OPC_DEXTU: lsb += 32; goto do_dext; case OPC_DEXTM: msb += 32; goto do_dext; case OPC_DEXT: do_dext: if (lsb + msb > 63) { goto fail; } tcg_gen_extract_tl(t0, t1, lsb, msb + 1); break; #endif case OPC_INS: if (lsb > msb) { goto fail; } gen_load_gpr(t0, rt); tcg_gen_deposit_tl(t0, t0, t1, lsb, msb - lsb + 1); tcg_gen_ext32s_tl(t0, t0); break; #if defined(TARGET_MIPS64) case OPC_DINSU: lsb += 32; /* FALLTHRU */ case OPC_DINSM: msb += 32; /* FALLTHRU */ case OPC_DINS: if (lsb > msb) { goto fail; } gen_load_gpr(t0, rt); tcg_gen_deposit_tl(t0, t0, t1, lsb, msb - lsb + 1); break; #endif default: fail: MIPS_INVAL("bitops"); gen_reserved_instruction(ctx); tcg_temp_free(t0); tcg_temp_free(t1); return; } gen_store_gpr(t0, rt); tcg_temp_free(t0); tcg_temp_free(t1); } static void gen_bshfl(DisasContext *ctx, uint32_t op2, int rt, int rd) { TCGv t0; if (rd == 0) { /* If no destination, treat it as a NOP. */ return; } t0 = tcg_temp_new(); gen_load_gpr(t0, rt); switch (op2) { case OPC_WSBH: { TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_const_tl(0x00FF00FF); tcg_gen_shri_tl(t1, t0, 8); tcg_gen_and_tl(t1, t1, t2); tcg_gen_and_tl(t0, t0, t2); tcg_gen_shli_tl(t0, t0, 8); tcg_gen_or_tl(t0, t0, t1); tcg_temp_free(t2); tcg_temp_free(t1); tcg_gen_ext32s_tl(cpu_gpr[rd], t0); } break; case OPC_SEB: tcg_gen_ext8s_tl(cpu_gpr[rd], t0); break; case OPC_SEH: tcg_gen_ext16s_tl(cpu_gpr[rd], t0); break; #if defined(TARGET_MIPS64) case OPC_DSBH: { TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_const_tl(0x00FF00FF00FF00FFULL); tcg_gen_shri_tl(t1, t0, 8); tcg_gen_and_tl(t1, t1, t2); tcg_gen_and_tl(t0, t0, t2); tcg_gen_shli_tl(t0, t0, 8); tcg_gen_or_tl(cpu_gpr[rd], t0, t1); tcg_temp_free(t2); tcg_temp_free(t1); } break; case OPC_DSHD: { TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_const_tl(0x0000FFFF0000FFFFULL); tcg_gen_shri_tl(t1, t0, 16); tcg_gen_and_tl(t1, t1, t2); tcg_gen_and_tl(t0, t0, t2); tcg_gen_shli_tl(t0, t0, 16); tcg_gen_or_tl(t0, t0, t1); tcg_gen_shri_tl(t1, t0, 32); tcg_gen_shli_tl(t0, t0, 32); tcg_gen_or_tl(cpu_gpr[rd], t0, t1); tcg_temp_free(t2); tcg_temp_free(t1); } break; #endif default: MIPS_INVAL("bsfhl"); gen_reserved_instruction(ctx); tcg_temp_free(t0); return; } tcg_temp_free(t0); } static void gen_lsa(DisasContext *ctx, int opc, int rd, int rs, int rt, int imm2) { TCGv t0; TCGv t1; if (rd == 0) { /* Treat as NOP. */ return; } t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); tcg_gen_shli_tl(t0, t0, imm2 + 1); tcg_gen_add_tl(cpu_gpr[rd], t0, t1); if (opc == OPC_LSA) { tcg_gen_ext32s_tl(cpu_gpr[rd], cpu_gpr[rd]); } tcg_temp_free(t1); tcg_temp_free(t0); return; } static void gen_align_bits(DisasContext *ctx, int wordsz, int rd, int rs, int rt, int bits) { TCGv t0; if (rd == 0) { /* Treat as NOP. */ return; } t0 = tcg_temp_new(); if (bits == 0 || bits == wordsz) { if (bits == 0) { gen_load_gpr(t0, rt); } else { gen_load_gpr(t0, rs); } switch (wordsz) { case 32: tcg_gen_ext32s_tl(cpu_gpr[rd], t0); break; #if defined(TARGET_MIPS64) case 64: tcg_gen_mov_tl(cpu_gpr[rd], t0); break; #endif } } else { TCGv t1 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_load_gpr(t1, rs); switch (wordsz) { case 32: { TCGv_i64 t2 = tcg_temp_new_i64(); tcg_gen_concat_tl_i64(t2, t1, t0); tcg_gen_shri_i64(t2, t2, 32 - bits); gen_move_low32(cpu_gpr[rd], t2); tcg_temp_free_i64(t2); } break; #if defined(TARGET_MIPS64) case 64: tcg_gen_shli_tl(t0, t0, bits); tcg_gen_shri_tl(t1, t1, 64 - bits); tcg_gen_or_tl(cpu_gpr[rd], t1, t0); break; #endif } tcg_temp_free(t1); } tcg_temp_free(t0); } static void gen_align(DisasContext *ctx, int wordsz, int rd, int rs, int rt, int bp) { gen_align_bits(ctx, wordsz, rd, rs, rt, bp * 8); } static void gen_ext(DisasContext *ctx, int wordsz, int rd, int rs, int rt, int shift) { gen_align_bits(ctx, wordsz, rd, rs, rt, wordsz - shift); } static void gen_bitswap(DisasContext *ctx, int opc, int rd, int rt) { TCGv t0; if (rd == 0) { /* Treat as NOP. */ return; } t0 = tcg_temp_new(); gen_load_gpr(t0, rt); switch (opc) { case OPC_BITSWAP: gen_helper_bitswap(cpu_gpr[rd], t0); break; #if defined(TARGET_MIPS64) case OPC_DBITSWAP: gen_helper_dbitswap(cpu_gpr[rd], t0); break; #endif } tcg_temp_free(t0); } #ifndef CONFIG_USER_ONLY /* CP0 (MMU and control) */ static inline void gen_mthc0_entrylo(TCGv arg, target_ulong off) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(t0, arg); tcg_gen_ld_i64(t1, cpu_env, off); #if defined(TARGET_MIPS64) tcg_gen_deposit_i64(t1, t1, t0, 30, 32); #else tcg_gen_concat32_i64(t1, t1, t0); #endif tcg_gen_st_i64(t1, cpu_env, off); tcg_temp_free_i64(t1); tcg_temp_free_i64(t0); } static inline void gen_mthc0_store64(TCGv arg, target_ulong off) { TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); tcg_gen_ext_tl_i64(t0, arg); tcg_gen_ld_i64(t1, cpu_env, off); tcg_gen_concat32_i64(t1, t1, t0); tcg_gen_st_i64(t1, cpu_env, off); tcg_temp_free_i64(t1); tcg_temp_free_i64(t0); } static inline void gen_mfhc0_entrylo(TCGv arg, target_ulong off) { TCGv_i64 t0 = tcg_temp_new_i64(); tcg_gen_ld_i64(t0, cpu_env, off); #if defined(TARGET_MIPS64) tcg_gen_shri_i64(t0, t0, 30); #else tcg_gen_shri_i64(t0, t0, 32); #endif gen_move_low32(arg, t0); tcg_temp_free_i64(t0); } static inline void gen_mfhc0_load64(TCGv arg, target_ulong off, int shift) { TCGv_i64 t0 = tcg_temp_new_i64(); tcg_gen_ld_i64(t0, cpu_env, off); tcg_gen_shri_i64(t0, t0, 32 + shift); gen_move_low32(arg, t0); tcg_temp_free_i64(t0); } static inline void gen_mfc0_load32(TCGv arg, target_ulong off) { TCGv_i32 t0 = tcg_temp_new_i32(); tcg_gen_ld_i32(t0, cpu_env, off); tcg_gen_ext_i32_tl(arg, t0); tcg_temp_free_i32(t0); } static inline void gen_mfc0_load64(TCGv arg, target_ulong off) { tcg_gen_ld_tl(arg, cpu_env, off); tcg_gen_ext32s_tl(arg, arg); } static inline void gen_mtc0_store32(TCGv arg, target_ulong off) { TCGv_i32 t0 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(t0, arg); tcg_gen_st_i32(t0, cpu_env, off); tcg_temp_free_i32(t0); } #define CP0_CHECK(c) \ do { \ if (!(c)) { \ goto cp0_unimplemented; \ } \ } while (0) static void gen_mfhc0(DisasContext *ctx, TCGv arg, int reg, int sel) { const char *register_name = "invalid"; switch (reg) { case CP0_REGISTER_02: switch (sel) { case 0: CP0_CHECK(ctx->hflags & MIPS_HFLAG_ELPA); gen_mfhc0_entrylo(arg, offsetof(CPUMIPSState, CP0_EntryLo0)); register_name = "EntryLo0"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_03: switch (sel) { case CP0_REG03__ENTRYLO1: CP0_CHECK(ctx->hflags & MIPS_HFLAG_ELPA); gen_mfhc0_entrylo(arg, offsetof(CPUMIPSState, CP0_EntryLo1)); register_name = "EntryLo1"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_09: switch (sel) { case CP0_REG09__SAAR: CP0_CHECK(ctx->saar); gen_helper_mfhc0_saar(arg, cpu_env); register_name = "SAAR"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_17: switch (sel) { case CP0_REG17__LLADDR: gen_mfhc0_load64(arg, offsetof(CPUMIPSState, CP0_LLAddr), ctx->CP0_LLAddr_shift); register_name = "LLAddr"; break; case CP0_REG17__MAAR: CP0_CHECK(ctx->mrp); gen_helper_mfhc0_maar(arg, cpu_env); register_name = "MAAR"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_19: switch (sel) { case CP0_REG19__WATCHHI0: case CP0_REG19__WATCHHI1: case CP0_REG19__WATCHHI2: case CP0_REG19__WATCHHI3: case CP0_REG19__WATCHHI4: case CP0_REG19__WATCHHI5: case CP0_REG19__WATCHHI6: case CP0_REG19__WATCHHI7: /* upper 32 bits are only available when Config5MI != 0 */ CP0_CHECK(ctx->mi); gen_mfhc0_load64(arg, offsetof(CPUMIPSState, CP0_WatchHi[sel]), 0); register_name = "WatchHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_28: switch (sel) { case 0: case 2: case 4: case 6: gen_mfhc0_load64(arg, offsetof(CPUMIPSState, CP0_TagLo), 0); register_name = "TagLo"; break; default: goto cp0_unimplemented; } break; default: goto cp0_unimplemented; } trace_mips_translate_c0("mfhc0", register_name, reg, sel); return; cp0_unimplemented: qemu_log_mask(LOG_UNIMP, "mfhc0 %s (reg %d sel %d)\n", register_name, reg, sel); tcg_gen_movi_tl(arg, 0); } static void gen_mthc0(DisasContext *ctx, TCGv arg, int reg, int sel) { const char *register_name = "invalid"; uint64_t mask = ctx->PAMask >> 36; switch (reg) { case CP0_REGISTER_02: switch (sel) { case 0: CP0_CHECK(ctx->hflags & MIPS_HFLAG_ELPA); tcg_gen_andi_tl(arg, arg, mask); gen_mthc0_entrylo(arg, offsetof(CPUMIPSState, CP0_EntryLo0)); register_name = "EntryLo0"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_03: switch (sel) { case CP0_REG03__ENTRYLO1: CP0_CHECK(ctx->hflags & MIPS_HFLAG_ELPA); tcg_gen_andi_tl(arg, arg, mask); gen_mthc0_entrylo(arg, offsetof(CPUMIPSState, CP0_EntryLo1)); register_name = "EntryLo1"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_09: switch (sel) { case CP0_REG09__SAAR: CP0_CHECK(ctx->saar); gen_helper_mthc0_saar(cpu_env, arg); register_name = "SAAR"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_17: switch (sel) { case CP0_REG17__LLADDR: /* * LLAddr is read-only (the only exception is bit 0 if LLB is * supported); the CP0_LLAddr_rw_bitmask does not seem to be * relevant for modern MIPS cores supporting MTHC0, therefore * treating MTHC0 to LLAddr as NOP. */ register_name = "LLAddr"; break; case CP0_REG17__MAAR: CP0_CHECK(ctx->mrp); gen_helper_mthc0_maar(cpu_env, arg); register_name = "MAAR"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_19: switch (sel) { case CP0_REG19__WATCHHI0: case CP0_REG19__WATCHHI1: case CP0_REG19__WATCHHI2: case CP0_REG19__WATCHHI3: case CP0_REG19__WATCHHI4: case CP0_REG19__WATCHHI5: case CP0_REG19__WATCHHI6: case CP0_REG19__WATCHHI7: /* upper 32 bits are only available when Config5MI != 0 */ CP0_CHECK(ctx->mi); gen_helper_0e1i(mthc0_watchhi, arg, sel); register_name = "WatchHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_28: switch (sel) { case 0: case 2: case 4: case 6: tcg_gen_andi_tl(arg, arg, mask); gen_mthc0_store64(arg, offsetof(CPUMIPSState, CP0_TagLo)); register_name = "TagLo"; break; default: goto cp0_unimplemented; } break; default: goto cp0_unimplemented; } trace_mips_translate_c0("mthc0", register_name, reg, sel); cp0_unimplemented: qemu_log_mask(LOG_UNIMP, "mthc0 %s (reg %d sel %d)\n", register_name, reg, sel); } static inline void gen_mfc0_unimplemented(DisasContext *ctx, TCGv arg) { if (ctx->insn_flags & ISA_MIPS_R6) { tcg_gen_movi_tl(arg, 0); } else { tcg_gen_movi_tl(arg, ~0); } } static void gen_mfc0(DisasContext *ctx, TCGv arg, int reg, int sel) { const char *register_name = "invalid"; if (sel != 0) { check_insn(ctx, ISA_MIPS_R1); } switch (reg) { case CP0_REGISTER_00: switch (sel) { case CP0_REG00__INDEX: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Index)); register_name = "Index"; break; case CP0_REG00__MVPCONTROL: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_mvpcontrol(arg, cpu_env); register_name = "MVPControl"; break; case CP0_REG00__MVPCONF0: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_mvpconf0(arg, cpu_env); register_name = "MVPConf0"; break; case CP0_REG00__MVPCONF1: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_mvpconf1(arg, cpu_env); register_name = "MVPConf1"; break; case CP0_REG00__VPCONTROL: CP0_CHECK(ctx->vp); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPControl)); register_name = "VPControl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_01: switch (sel) { case CP0_REG01__RANDOM: CP0_CHECK(!(ctx->insn_flags & ISA_MIPS_R6)); gen_helper_mfc0_random(arg, cpu_env); register_name = "Random"; break; case CP0_REG01__VPECONTROL: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEControl)); register_name = "VPEControl"; break; case CP0_REG01__VPECONF0: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf0)); register_name = "VPEConf0"; break; case CP0_REG01__VPECONF1: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf1)); register_name = "VPEConf1"; break; case CP0_REG01__YQMASK: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load64(arg, offsetof(CPUMIPSState, CP0_YQMask)); register_name = "YQMask"; break; case CP0_REG01__VPESCHEDULE: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load64(arg, offsetof(CPUMIPSState, CP0_VPESchedule)); register_name = "VPESchedule"; break; case CP0_REG01__VPESCHEFBACK: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load64(arg, offsetof(CPUMIPSState, CP0_VPEScheFBack)); register_name = "VPEScheFBack"; break; case CP0_REG01__VPEOPT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEOpt)); register_name = "VPEOpt"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_02: switch (sel) { case CP0_REG02__ENTRYLO0: { TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_ld_i64(tmp, cpu_env, offsetof(CPUMIPSState, CP0_EntryLo0)); #if defined(TARGET_MIPS64) if (ctx->rxi) { /* Move RI/XI fields to bits 31:30 */ tcg_gen_shri_tl(arg, tmp, CP0EnLo_XI); tcg_gen_deposit_tl(tmp, tmp, arg, 30, 2); } #endif gen_move_low32(arg, tmp); tcg_temp_free_i64(tmp); } register_name = "EntryLo0"; break; case CP0_REG02__TCSTATUS: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_tcstatus(arg, cpu_env); register_name = "TCStatus"; break; case CP0_REG02__TCBIND: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_tcbind(arg, cpu_env); register_name = "TCBind"; break; case CP0_REG02__TCRESTART: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_tcrestart(arg, cpu_env); register_name = "TCRestart"; break; case CP0_REG02__TCHALT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_tchalt(arg, cpu_env); register_name = "TCHalt"; break; case CP0_REG02__TCCONTEXT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_tccontext(arg, cpu_env); register_name = "TCContext"; break; case CP0_REG02__TCSCHEDULE: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_tcschedule(arg, cpu_env); register_name = "TCSchedule"; break; case CP0_REG02__TCSCHEFBACK: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_tcschefback(arg, cpu_env); register_name = "TCScheFBack"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_03: switch (sel) { case CP0_REG03__ENTRYLO1: { TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_ld_i64(tmp, cpu_env, offsetof(CPUMIPSState, CP0_EntryLo1)); #if defined(TARGET_MIPS64) if (ctx->rxi) { /* Move RI/XI fields to bits 31:30 */ tcg_gen_shri_tl(arg, tmp, CP0EnLo_XI); tcg_gen_deposit_tl(tmp, tmp, arg, 30, 2); } #endif gen_move_low32(arg, tmp); tcg_temp_free_i64(tmp); } register_name = "EntryLo1"; break; case CP0_REG03__GLOBALNUM: CP0_CHECK(ctx->vp); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_GlobalNumber)); register_name = "GlobalNumber"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_04: switch (sel) { case CP0_REG04__CONTEXT: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_Context)); tcg_gen_ext32s_tl(arg, arg); register_name = "Context"; break; case CP0_REG04__CONTEXTCONFIG: /* SmartMIPS ASE */ /* gen_helper_mfc0_contextconfig(arg); */ register_name = "ContextConfig"; goto cp0_unimplemented; case CP0_REG04__USERLOCAL: CP0_CHECK(ctx->ulri); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, active_tc.CP0_UserLocal)); tcg_gen_ext32s_tl(arg, arg); register_name = "UserLocal"; break; case CP0_REG04__MMID: CP0_CHECK(ctx->mi); gen_helper_mtc0_memorymapid(cpu_env, arg); register_name = "MMID"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_05: switch (sel) { case CP0_REG05__PAGEMASK: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageMask)); register_name = "PageMask"; break; case CP0_REG05__PAGEGRAIN: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageGrain)); register_name = "PageGrain"; break; case CP0_REG05__SEGCTL0: CP0_CHECK(ctx->sc); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl0)); tcg_gen_ext32s_tl(arg, arg); register_name = "SegCtl0"; break; case CP0_REG05__SEGCTL1: CP0_CHECK(ctx->sc); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl1)); tcg_gen_ext32s_tl(arg, arg); register_name = "SegCtl1"; break; case CP0_REG05__SEGCTL2: CP0_CHECK(ctx->sc); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl2)); tcg_gen_ext32s_tl(arg, arg); register_name = "SegCtl2"; break; case CP0_REG05__PWBASE: check_pw(ctx); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWBase)); register_name = "PWBase"; break; case CP0_REG05__PWFIELD: check_pw(ctx); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWField)); register_name = "PWField"; break; case CP0_REG05__PWSIZE: check_pw(ctx); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWSize)); register_name = "PWSize"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_06: switch (sel) { case CP0_REG06__WIRED: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Wired)); register_name = "Wired"; break; case CP0_REG06__SRSCONF0: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf0)); register_name = "SRSConf0"; break; case CP0_REG06__SRSCONF1: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf1)); register_name = "SRSConf1"; break; case CP0_REG06__SRSCONF2: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf2)); register_name = "SRSConf2"; break; case CP0_REG06__SRSCONF3: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf3)); register_name = "SRSConf3"; break; case CP0_REG06__SRSCONF4: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf4)); register_name = "SRSConf4"; break; case CP0_REG06__PWCTL: check_pw(ctx); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWCtl)); register_name = "PWCtl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_07: switch (sel) { case CP0_REG07__HWRENA: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_HWREna)); register_name = "HWREna"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_08: switch (sel) { case CP0_REG08__BADVADDR: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_BadVAddr)); tcg_gen_ext32s_tl(arg, arg); register_name = "BadVAddr"; break; case CP0_REG08__BADINSTR: CP0_CHECK(ctx->bi); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstr)); register_name = "BadInstr"; break; case CP0_REG08__BADINSTRP: CP0_CHECK(ctx->bp); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstrP)); register_name = "BadInstrP"; break; case CP0_REG08__BADINSTRX: CP0_CHECK(ctx->bi); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstrX)); tcg_gen_andi_tl(arg, arg, ~0xffff); register_name = "BadInstrX"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_09: switch (sel) { case CP0_REG09__COUNT: /* Mark as an IO operation because we read the time. */ if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { gen_io_start(); } gen_helper_mfc0_count(arg, cpu_env); /* * Break the TB to be able to take timer interrupts immediately * after reading count. DISAS_STOP isn't sufficient, we need to * ensure we break completely out of translated code. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; register_name = "Count"; break; case CP0_REG09__SAARI: CP0_CHECK(ctx->saar); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SAARI)); register_name = "SAARI"; break; case CP0_REG09__SAAR: CP0_CHECK(ctx->saar); gen_helper_mfc0_saar(arg, cpu_env); register_name = "SAAR"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_10: switch (sel) { case CP0_REG10__ENTRYHI: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryHi)); tcg_gen_ext32s_tl(arg, arg); register_name = "EntryHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_11: switch (sel) { case CP0_REG11__COMPARE: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Compare)); register_name = "Compare"; break; /* 6,7 are implementation dependent */ default: goto cp0_unimplemented; } break; case CP0_REGISTER_12: switch (sel) { case CP0_REG12__STATUS: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Status)); register_name = "Status"; break; case CP0_REG12__INTCTL: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_IntCtl)); register_name = "IntCtl"; break; case CP0_REG12__SRSCTL: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSCtl)); register_name = "SRSCtl"; break; case CP0_REG12__SRSMAP: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSMap)); register_name = "SRSMap"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_13: switch (sel) { case CP0_REG13__CAUSE: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Cause)); register_name = "Cause"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_14: switch (sel) { case CP0_REG14__EPC: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EPC)); tcg_gen_ext32s_tl(arg, arg); register_name = "EPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_15: switch (sel) { case CP0_REG15__PRID: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PRid)); register_name = "PRid"; break; case CP0_REG15__EBASE: check_insn(ctx, ISA_MIPS_R2); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EBase)); tcg_gen_ext32s_tl(arg, arg); register_name = "EBase"; break; case CP0_REG15__CMGCRBASE: check_insn(ctx, ISA_MIPS_R2); CP0_CHECK(ctx->cmgcr); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_CMGCRBase)); tcg_gen_ext32s_tl(arg, arg); register_name = "CMGCRBase"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_16: switch (sel) { case CP0_REG16__CONFIG: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config0)); register_name = "Config"; break; case CP0_REG16__CONFIG1: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config1)); register_name = "Config1"; break; case CP0_REG16__CONFIG2: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config2)); register_name = "Config2"; break; case CP0_REG16__CONFIG3: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config3)); register_name = "Config3"; break; case CP0_REG16__CONFIG4: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config4)); register_name = "Config4"; break; case CP0_REG16__CONFIG5: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config5)); register_name = "Config5"; break; /* 6,7 are implementation dependent */ case CP0_REG16__CONFIG6: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config6)); register_name = "Config6"; break; case CP0_REG16__CONFIG7: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config7)); register_name = "Config7"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_17: switch (sel) { case CP0_REG17__LLADDR: gen_helper_mfc0_lladdr(arg, cpu_env); register_name = "LLAddr"; break; case CP0_REG17__MAAR: CP0_CHECK(ctx->mrp); gen_helper_mfc0_maar(arg, cpu_env); register_name = "MAAR"; break; case CP0_REG17__MAARI: CP0_CHECK(ctx->mrp); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_MAARI)); register_name = "MAARI"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_18: switch (sel) { case CP0_REG18__WATCHLO0: case CP0_REG18__WATCHLO1: case CP0_REG18__WATCHLO2: case CP0_REG18__WATCHLO3: case CP0_REG18__WATCHLO4: case CP0_REG18__WATCHLO5: case CP0_REG18__WATCHLO6: case CP0_REG18__WATCHLO7: CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR)); gen_helper_1e0i(mfc0_watchlo, arg, sel); register_name = "WatchLo"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_19: switch (sel) { case CP0_REG19__WATCHHI0: case CP0_REG19__WATCHHI1: case CP0_REG19__WATCHHI2: case CP0_REG19__WATCHHI3: case CP0_REG19__WATCHHI4: case CP0_REG19__WATCHHI5: case CP0_REG19__WATCHHI6: case CP0_REG19__WATCHHI7: CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR)); gen_helper_1e0i(mfc0_watchhi, arg, sel); register_name = "WatchHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_20: switch (sel) { case CP0_REG20__XCONTEXT: #if defined(TARGET_MIPS64) check_insn(ctx, ISA_MIPS3); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_XContext)); tcg_gen_ext32s_tl(arg, arg); register_name = "XContext"; break; #endif default: goto cp0_unimplemented; } break; case CP0_REGISTER_21: /* Officially reserved, but sel 0 is used for R1x000 framemask */ CP0_CHECK(!(ctx->insn_flags & ISA_MIPS_R6)); switch (sel) { case 0: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Framemask)); register_name = "Framemask"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_22: tcg_gen_movi_tl(arg, 0); /* unimplemented */ register_name = "'Diagnostic"; /* implementation dependent */ break; case CP0_REGISTER_23: switch (sel) { case CP0_REG23__DEBUG: gen_helper_mfc0_debug(arg, cpu_env); /* EJTAG support */ register_name = "Debug"; break; case CP0_REG23__TRACECONTROL: /* PDtrace support */ /* gen_helper_mfc0_tracecontrol(arg); */ register_name = "TraceControl"; goto cp0_unimplemented; case CP0_REG23__TRACECONTROL2: /* PDtrace support */ /* gen_helper_mfc0_tracecontrol2(arg); */ register_name = "TraceControl2"; goto cp0_unimplemented; case CP0_REG23__USERTRACEDATA1: /* PDtrace support */ /* gen_helper_mfc0_usertracedata1(arg);*/ register_name = "UserTraceData1"; goto cp0_unimplemented; case CP0_REG23__TRACEIBPC: /* PDtrace support */ /* gen_helper_mfc0_traceibpc(arg); */ register_name = "TraceIBPC"; goto cp0_unimplemented; case CP0_REG23__TRACEDBPC: /* PDtrace support */ /* gen_helper_mfc0_tracedbpc(arg); */ register_name = "TraceDBPC"; goto cp0_unimplemented; default: goto cp0_unimplemented; } break; case CP0_REGISTER_24: switch (sel) { case CP0_REG24__DEPC: /* EJTAG support */ tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_DEPC)); tcg_gen_ext32s_tl(arg, arg); register_name = "DEPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_25: switch (sel) { case CP0_REG25__PERFCTL0: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Performance0)); register_name = "Performance0"; break; case CP0_REG25__PERFCNT0: /* gen_helper_mfc0_performance1(arg); */ register_name = "Performance1"; goto cp0_unimplemented; case CP0_REG25__PERFCTL1: /* gen_helper_mfc0_performance2(arg); */ register_name = "Performance2"; goto cp0_unimplemented; case CP0_REG25__PERFCNT1: /* gen_helper_mfc0_performance3(arg); */ register_name = "Performance3"; goto cp0_unimplemented; case CP0_REG25__PERFCTL2: /* gen_helper_mfc0_performance4(arg); */ register_name = "Performance4"; goto cp0_unimplemented; case CP0_REG25__PERFCNT2: /* gen_helper_mfc0_performance5(arg); */ register_name = "Performance5"; goto cp0_unimplemented; case CP0_REG25__PERFCTL3: /* gen_helper_mfc0_performance6(arg); */ register_name = "Performance6"; goto cp0_unimplemented; case CP0_REG25__PERFCNT3: /* gen_helper_mfc0_performance7(arg); */ register_name = "Performance7"; goto cp0_unimplemented; default: goto cp0_unimplemented; } break; case CP0_REGISTER_26: switch (sel) { case CP0_REG26__ERRCTL: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_ErrCtl)); register_name = "ErrCtl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_27: switch (sel) { case CP0_REG27__CACHERR: tcg_gen_movi_tl(arg, 0); /* unimplemented */ register_name = "CacheErr"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_28: switch (sel) { case CP0_REG28__TAGLO: case CP0_REG28__TAGLO1: case CP0_REG28__TAGLO2: case CP0_REG28__TAGLO3: { TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_ld_i64(tmp, cpu_env, offsetof(CPUMIPSState, CP0_TagLo)); gen_move_low32(arg, tmp); tcg_temp_free_i64(tmp); } register_name = "TagLo"; break; case CP0_REG28__DATALO: case CP0_REG28__DATALO1: case CP0_REG28__DATALO2: case CP0_REG28__DATALO3: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataLo)); register_name = "DataLo"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_29: switch (sel) { case CP0_REG29__TAGHI: case CP0_REG29__TAGHI1: case CP0_REG29__TAGHI2: case CP0_REG29__TAGHI3: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_TagHi)); register_name = "TagHi"; break; case CP0_REG29__DATAHI: case CP0_REG29__DATAHI1: case CP0_REG29__DATAHI2: case CP0_REG29__DATAHI3: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataHi)); register_name = "DataHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_30: switch (sel) { case CP0_REG30__ERROREPC: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_ErrorEPC)); tcg_gen_ext32s_tl(arg, arg); register_name = "ErrorEPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_31: switch (sel) { case CP0_REG31__DESAVE: /* EJTAG support */ gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DESAVE)); register_name = "DESAVE"; break; case CP0_REG31__KSCRATCH1: case CP0_REG31__KSCRATCH2: case CP0_REG31__KSCRATCH3: case CP0_REG31__KSCRATCH4: case CP0_REG31__KSCRATCH5: case CP0_REG31__KSCRATCH6: CP0_CHECK(ctx->kscrexist & (1 << sel)); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_KScratch[sel - 2])); tcg_gen_ext32s_tl(arg, arg); register_name = "KScratch"; break; default: goto cp0_unimplemented; } break; default: goto cp0_unimplemented; } trace_mips_translate_c0("mfc0", register_name, reg, sel); return; cp0_unimplemented: qemu_log_mask(LOG_UNIMP, "mfc0 %s (reg %d sel %d)\n", register_name, reg, sel); gen_mfc0_unimplemented(ctx, arg); } static void gen_mtc0(DisasContext *ctx, TCGv arg, int reg, int sel) { const char *register_name = "invalid"; if (sel != 0) { check_insn(ctx, ISA_MIPS_R1); } if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { gen_io_start(); } switch (reg) { case CP0_REGISTER_00: switch (sel) { case CP0_REG00__INDEX: gen_helper_mtc0_index(cpu_env, arg); register_name = "Index"; break; case CP0_REG00__MVPCONTROL: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_mvpcontrol(cpu_env, arg); register_name = "MVPControl"; break; case CP0_REG00__MVPCONF0: CP0_CHECK(ctx->insn_flags & ASE_MT); /* ignored */ register_name = "MVPConf0"; break; case CP0_REG00__MVPCONF1: CP0_CHECK(ctx->insn_flags & ASE_MT); /* ignored */ register_name = "MVPConf1"; break; case CP0_REG00__VPCONTROL: CP0_CHECK(ctx->vp); /* ignored */ register_name = "VPControl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_01: switch (sel) { case CP0_REG01__RANDOM: /* ignored */ register_name = "Random"; break; case CP0_REG01__VPECONTROL: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_vpecontrol(cpu_env, arg); register_name = "VPEControl"; break; case CP0_REG01__VPECONF0: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_vpeconf0(cpu_env, arg); register_name = "VPEConf0"; break; case CP0_REG01__VPECONF1: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_vpeconf1(cpu_env, arg); register_name = "VPEConf1"; break; case CP0_REG01__YQMASK: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_yqmask(cpu_env, arg); register_name = "YQMask"; break; case CP0_REG01__VPESCHEDULE: CP0_CHECK(ctx->insn_flags & ASE_MT); tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPESchedule)); register_name = "VPESchedule"; break; case CP0_REG01__VPESCHEFBACK: CP0_CHECK(ctx->insn_flags & ASE_MT); tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPEScheFBack)); register_name = "VPEScheFBack"; break; case CP0_REG01__VPEOPT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_vpeopt(cpu_env, arg); register_name = "VPEOpt"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_02: switch (sel) { case CP0_REG02__ENTRYLO0: gen_helper_mtc0_entrylo0(cpu_env, arg); register_name = "EntryLo0"; break; case CP0_REG02__TCSTATUS: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcstatus(cpu_env, arg); register_name = "TCStatus"; break; case CP0_REG02__TCBIND: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcbind(cpu_env, arg); register_name = "TCBind"; break; case CP0_REG02__TCRESTART: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcrestart(cpu_env, arg); register_name = "TCRestart"; break; case CP0_REG02__TCHALT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tchalt(cpu_env, arg); register_name = "TCHalt"; break; case CP0_REG02__TCCONTEXT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tccontext(cpu_env, arg); register_name = "TCContext"; break; case CP0_REG02__TCSCHEDULE: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcschedule(cpu_env, arg); register_name = "TCSchedule"; break; case CP0_REG02__TCSCHEFBACK: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcschefback(cpu_env, arg); register_name = "TCScheFBack"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_03: switch (sel) { case CP0_REG03__ENTRYLO1: gen_helper_mtc0_entrylo1(cpu_env, arg); register_name = "EntryLo1"; break; case CP0_REG03__GLOBALNUM: CP0_CHECK(ctx->vp); /* ignored */ register_name = "GlobalNumber"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_04: switch (sel) { case CP0_REG04__CONTEXT: gen_helper_mtc0_context(cpu_env, arg); register_name = "Context"; break; case CP0_REG04__CONTEXTCONFIG: /* SmartMIPS ASE */ /* gen_helper_mtc0_contextconfig(arg); */ register_name = "ContextConfig"; goto cp0_unimplemented; case CP0_REG04__USERLOCAL: CP0_CHECK(ctx->ulri); tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, active_tc.CP0_UserLocal)); register_name = "UserLocal"; break; case CP0_REG04__MMID: CP0_CHECK(ctx->mi); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_MemoryMapID)); register_name = "MMID"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_05: switch (sel) { case CP0_REG05__PAGEMASK: gen_helper_mtc0_pagemask(cpu_env, arg); register_name = "PageMask"; break; case CP0_REG05__PAGEGRAIN: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_pagegrain(cpu_env, arg); register_name = "PageGrain"; ctx->base.is_jmp = DISAS_STOP; break; case CP0_REG05__SEGCTL0: CP0_CHECK(ctx->sc); gen_helper_mtc0_segctl0(cpu_env, arg); register_name = "SegCtl0"; break; case CP0_REG05__SEGCTL1: CP0_CHECK(ctx->sc); gen_helper_mtc0_segctl1(cpu_env, arg); register_name = "SegCtl1"; break; case CP0_REG05__SEGCTL2: CP0_CHECK(ctx->sc); gen_helper_mtc0_segctl2(cpu_env, arg); register_name = "SegCtl2"; break; case CP0_REG05__PWBASE: check_pw(ctx); gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_PWBase)); register_name = "PWBase"; break; case CP0_REG05__PWFIELD: check_pw(ctx); gen_helper_mtc0_pwfield(cpu_env, arg); register_name = "PWField"; break; case CP0_REG05__PWSIZE: check_pw(ctx); gen_helper_mtc0_pwsize(cpu_env, arg); register_name = "PWSize"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_06: switch (sel) { case CP0_REG06__WIRED: gen_helper_mtc0_wired(cpu_env, arg); register_name = "Wired"; break; case CP0_REG06__SRSCONF0: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf0(cpu_env, arg); register_name = "SRSConf0"; break; case CP0_REG06__SRSCONF1: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf1(cpu_env, arg); register_name = "SRSConf1"; break; case CP0_REG06__SRSCONF2: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf2(cpu_env, arg); register_name = "SRSConf2"; break; case CP0_REG06__SRSCONF3: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf3(cpu_env, arg); register_name = "SRSConf3"; break; case CP0_REG06__SRSCONF4: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf4(cpu_env, arg); register_name = "SRSConf4"; break; case CP0_REG06__PWCTL: check_pw(ctx); gen_helper_mtc0_pwctl(cpu_env, arg); register_name = "PWCtl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_07: switch (sel) { case CP0_REG07__HWRENA: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_hwrena(cpu_env, arg); ctx->base.is_jmp = DISAS_STOP; register_name = "HWREna"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_08: switch (sel) { case CP0_REG08__BADVADDR: /* ignored */ register_name = "BadVAddr"; break; case CP0_REG08__BADINSTR: /* ignored */ register_name = "BadInstr"; break; case CP0_REG08__BADINSTRP: /* ignored */ register_name = "BadInstrP"; break; case CP0_REG08__BADINSTRX: /* ignored */ register_name = "BadInstrX"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_09: switch (sel) { case CP0_REG09__COUNT: gen_helper_mtc0_count(cpu_env, arg); register_name = "Count"; break; case CP0_REG09__SAARI: CP0_CHECK(ctx->saar); gen_helper_mtc0_saari(cpu_env, arg); register_name = "SAARI"; break; case CP0_REG09__SAAR: CP0_CHECK(ctx->saar); gen_helper_mtc0_saar(cpu_env, arg); register_name = "SAAR"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_10: switch (sel) { case CP0_REG10__ENTRYHI: gen_helper_mtc0_entryhi(cpu_env, arg); register_name = "EntryHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_11: switch (sel) { case CP0_REG11__COMPARE: gen_helper_mtc0_compare(cpu_env, arg); register_name = "Compare"; break; /* 6,7 are implementation dependent */ default: goto cp0_unimplemented; } break; case CP0_REGISTER_12: switch (sel) { case CP0_REG12__STATUS: save_cpu_state(ctx, 1); gen_helper_mtc0_status(cpu_env, arg); /* DISAS_STOP isn't good enough here, hflags may have changed. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; register_name = "Status"; break; case CP0_REG12__INTCTL: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_intctl(cpu_env, arg); /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "IntCtl"; break; case CP0_REG12__SRSCTL: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsctl(cpu_env, arg); /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "SRSCtl"; break; case CP0_REG12__SRSMAP: check_insn(ctx, ISA_MIPS_R2); gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_SRSMap)); /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "SRSMap"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_13: switch (sel) { case CP0_REG13__CAUSE: save_cpu_state(ctx, 1); gen_helper_mtc0_cause(cpu_env, arg); /* * Stop translation as we may have triggered an interrupt. * DISAS_STOP isn't sufficient, we need to ensure we break out of * translated code to check for pending interrupts. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; register_name = "Cause"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_14: switch (sel) { case CP0_REG14__EPC: tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EPC)); register_name = "EPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_15: switch (sel) { case CP0_REG15__PRID: /* ignored */ register_name = "PRid"; break; case CP0_REG15__EBASE: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_ebase(cpu_env, arg); register_name = "EBase"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_16: switch (sel) { case CP0_REG16__CONFIG: gen_helper_mtc0_config0(cpu_env, arg); register_name = "Config"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; case CP0_REG16__CONFIG1: /* ignored, read only */ register_name = "Config1"; break; case CP0_REG16__CONFIG2: gen_helper_mtc0_config2(cpu_env, arg); register_name = "Config2"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; case CP0_REG16__CONFIG3: gen_helper_mtc0_config3(cpu_env, arg); register_name = "Config3"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; case CP0_REG16__CONFIG4: gen_helper_mtc0_config4(cpu_env, arg); register_name = "Config4"; ctx->base.is_jmp = DISAS_STOP; break; case CP0_REG16__CONFIG5: gen_helper_mtc0_config5(cpu_env, arg); register_name = "Config5"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; /* 6,7 are implementation dependent */ case CP0_REG16__CONFIG6: /* ignored */ register_name = "Config6"; break; case CP0_REG16__CONFIG7: /* ignored */ register_name = "Config7"; break; default: register_name = "Invalid config selector"; goto cp0_unimplemented; } break; case CP0_REGISTER_17: switch (sel) { case CP0_REG17__LLADDR: gen_helper_mtc0_lladdr(cpu_env, arg); register_name = "LLAddr"; break; case CP0_REG17__MAAR: CP0_CHECK(ctx->mrp); gen_helper_mtc0_maar(cpu_env, arg); register_name = "MAAR"; break; case CP0_REG17__MAARI: CP0_CHECK(ctx->mrp); gen_helper_mtc0_maari(cpu_env, arg); register_name = "MAARI"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_18: switch (sel) { case CP0_REG18__WATCHLO0: case CP0_REG18__WATCHLO1: case CP0_REG18__WATCHLO2: case CP0_REG18__WATCHLO3: case CP0_REG18__WATCHLO4: case CP0_REG18__WATCHLO5: case CP0_REG18__WATCHLO6: case CP0_REG18__WATCHLO7: CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR)); gen_helper_0e1i(mtc0_watchlo, arg, sel); register_name = "WatchLo"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_19: switch (sel) { case CP0_REG19__WATCHHI0: case CP0_REG19__WATCHHI1: case CP0_REG19__WATCHHI2: case CP0_REG19__WATCHHI3: case CP0_REG19__WATCHHI4: case CP0_REG19__WATCHHI5: case CP0_REG19__WATCHHI6: case CP0_REG19__WATCHHI7: CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR)); gen_helper_0e1i(mtc0_watchhi, arg, sel); register_name = "WatchHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_20: switch (sel) { case CP0_REG20__XCONTEXT: #if defined(TARGET_MIPS64) check_insn(ctx, ISA_MIPS3); gen_helper_mtc0_xcontext(cpu_env, arg); register_name = "XContext"; break; #endif default: goto cp0_unimplemented; } break; case CP0_REGISTER_21: /* Officially reserved, but sel 0 is used for R1x000 framemask */ CP0_CHECK(!(ctx->insn_flags & ISA_MIPS_R6)); switch (sel) { case 0: gen_helper_mtc0_framemask(cpu_env, arg); register_name = "Framemask"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_22: /* ignored */ register_name = "Diagnostic"; /* implementation dependent */ break; case CP0_REGISTER_23: switch (sel) { case CP0_REG23__DEBUG: gen_helper_mtc0_debug(cpu_env, arg); /* EJTAG support */ /* DISAS_STOP isn't good enough here, hflags may have changed. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; register_name = "Debug"; break; case CP0_REG23__TRACECONTROL: /* PDtrace support */ /* gen_helper_mtc0_tracecontrol(cpu_env, arg); */ register_name = "TraceControl"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; goto cp0_unimplemented; case CP0_REG23__TRACECONTROL2: /* PDtrace support */ /* gen_helper_mtc0_tracecontrol2(cpu_env, arg); */ register_name = "TraceControl2"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; goto cp0_unimplemented; case CP0_REG23__USERTRACEDATA1: /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; /* PDtrace support */ /* gen_helper_mtc0_usertracedata1(cpu_env, arg);*/ register_name = "UserTraceData"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; goto cp0_unimplemented; case CP0_REG23__TRACEIBPC: /* PDtrace support */ /* gen_helper_mtc0_traceibpc(cpu_env, arg); */ /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "TraceIBPC"; goto cp0_unimplemented; case CP0_REG23__TRACEDBPC: /* PDtrace support */ /* gen_helper_mtc0_tracedbpc(cpu_env, arg); */ /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "TraceDBPC"; goto cp0_unimplemented; default: goto cp0_unimplemented; } break; case CP0_REGISTER_24: switch (sel) { case CP0_REG24__DEPC: /* EJTAG support */ tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_DEPC)); register_name = "DEPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_25: switch (sel) { case CP0_REG25__PERFCTL0: gen_helper_mtc0_performance0(cpu_env, arg); register_name = "Performance0"; break; case CP0_REG25__PERFCNT0: /* gen_helper_mtc0_performance1(arg); */ register_name = "Performance1"; goto cp0_unimplemented; case CP0_REG25__PERFCTL1: /* gen_helper_mtc0_performance2(arg); */ register_name = "Performance2"; goto cp0_unimplemented; case CP0_REG25__PERFCNT1: /* gen_helper_mtc0_performance3(arg); */ register_name = "Performance3"; goto cp0_unimplemented; case CP0_REG25__PERFCTL2: /* gen_helper_mtc0_performance4(arg); */ register_name = "Performance4"; goto cp0_unimplemented; case CP0_REG25__PERFCNT2: /* gen_helper_mtc0_performance5(arg); */ register_name = "Performance5"; goto cp0_unimplemented; case CP0_REG25__PERFCTL3: /* gen_helper_mtc0_performance6(arg); */ register_name = "Performance6"; goto cp0_unimplemented; case CP0_REG25__PERFCNT3: /* gen_helper_mtc0_performance7(arg); */ register_name = "Performance7"; goto cp0_unimplemented; default: goto cp0_unimplemented; } break; case CP0_REGISTER_26: switch (sel) { case CP0_REG26__ERRCTL: gen_helper_mtc0_errctl(cpu_env, arg); ctx->base.is_jmp = DISAS_STOP; register_name = "ErrCtl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_27: switch (sel) { case CP0_REG27__CACHERR: /* ignored */ register_name = "CacheErr"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_28: switch (sel) { case CP0_REG28__TAGLO: case CP0_REG28__TAGLO1: case CP0_REG28__TAGLO2: case CP0_REG28__TAGLO3: gen_helper_mtc0_taglo(cpu_env, arg); register_name = "TagLo"; break; case CP0_REG28__DATALO: case CP0_REG28__DATALO1: case CP0_REG28__DATALO2: case CP0_REG28__DATALO3: gen_helper_mtc0_datalo(cpu_env, arg); register_name = "DataLo"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_29: switch (sel) { case CP0_REG29__TAGHI: case CP0_REG29__TAGHI1: case CP0_REG29__TAGHI2: case CP0_REG29__TAGHI3: gen_helper_mtc0_taghi(cpu_env, arg); register_name = "TagHi"; break; case CP0_REG29__DATAHI: case CP0_REG29__DATAHI1: case CP0_REG29__DATAHI2: case CP0_REG29__DATAHI3: gen_helper_mtc0_datahi(cpu_env, arg); register_name = "DataHi"; break; default: register_name = "invalid sel"; goto cp0_unimplemented; } break; case CP0_REGISTER_30: switch (sel) { case CP0_REG30__ERROREPC: tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_ErrorEPC)); register_name = "ErrorEPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_31: switch (sel) { case CP0_REG31__DESAVE: /* EJTAG support */ gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_DESAVE)); register_name = "DESAVE"; break; case CP0_REG31__KSCRATCH1: case CP0_REG31__KSCRATCH2: case CP0_REG31__KSCRATCH3: case CP0_REG31__KSCRATCH4: case CP0_REG31__KSCRATCH5: case CP0_REG31__KSCRATCH6: CP0_CHECK(ctx->kscrexist & (1 << sel)); tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_KScratch[sel - 2])); register_name = "KScratch"; break; default: goto cp0_unimplemented; } break; default: goto cp0_unimplemented; } trace_mips_translate_c0("mtc0", register_name, reg, sel); /* For simplicity assume that all writes can cause interrupts. */ if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { /* * DISAS_STOP isn't sufficient, we need to ensure we break out of * translated code to check for pending interrupts. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; } return; cp0_unimplemented: qemu_log_mask(LOG_UNIMP, "mtc0 %s (reg %d sel %d)\n", register_name, reg, sel); } #if defined(TARGET_MIPS64) static void gen_dmfc0(DisasContext *ctx, TCGv arg, int reg, int sel) { const char *register_name = "invalid"; if (sel != 0) { check_insn(ctx, ISA_MIPS_R1); } switch (reg) { case CP0_REGISTER_00: switch (sel) { case CP0_REG00__INDEX: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Index)); register_name = "Index"; break; case CP0_REG00__MVPCONTROL: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_mvpcontrol(arg, cpu_env); register_name = "MVPControl"; break; case CP0_REG00__MVPCONF0: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_mvpconf0(arg, cpu_env); register_name = "MVPConf0"; break; case CP0_REG00__MVPCONF1: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_mvpconf1(arg, cpu_env); register_name = "MVPConf1"; break; case CP0_REG00__VPCONTROL: CP0_CHECK(ctx->vp); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPControl)); register_name = "VPControl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_01: switch (sel) { case CP0_REG01__RANDOM: CP0_CHECK(!(ctx->insn_flags & ISA_MIPS_R6)); gen_helper_mfc0_random(arg, cpu_env); register_name = "Random"; break; case CP0_REG01__VPECONTROL: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEControl)); register_name = "VPEControl"; break; case CP0_REG01__VPECONF0: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf0)); register_name = "VPEConf0"; break; case CP0_REG01__VPECONF1: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEConf1)); register_name = "VPEConf1"; break; case CP0_REG01__YQMASK: CP0_CHECK(ctx->insn_flags & ASE_MT); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_YQMask)); register_name = "YQMask"; break; case CP0_REG01__VPESCHEDULE: CP0_CHECK(ctx->insn_flags & ASE_MT); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPESchedule)); register_name = "VPESchedule"; break; case CP0_REG01__VPESCHEFBACK: CP0_CHECK(ctx->insn_flags & ASE_MT); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPEScheFBack)); register_name = "VPEScheFBack"; break; case CP0_REG01__VPEOPT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_VPEOpt)); register_name = "VPEOpt"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_02: switch (sel) { case CP0_REG02__ENTRYLO0: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryLo0)); register_name = "EntryLo0"; break; case CP0_REG02__TCSTATUS: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_tcstatus(arg, cpu_env); register_name = "TCStatus"; break; case CP0_REG02__TCBIND: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mfc0_tcbind(arg, cpu_env); register_name = "TCBind"; break; case CP0_REG02__TCRESTART: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_dmfc0_tcrestart(arg, cpu_env); register_name = "TCRestart"; break; case CP0_REG02__TCHALT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_dmfc0_tchalt(arg, cpu_env); register_name = "TCHalt"; break; case CP0_REG02__TCCONTEXT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_dmfc0_tccontext(arg, cpu_env); register_name = "TCContext"; break; case CP0_REG02__TCSCHEDULE: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_dmfc0_tcschedule(arg, cpu_env); register_name = "TCSchedule"; break; case CP0_REG02__TCSCHEFBACK: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_dmfc0_tcschefback(arg, cpu_env); register_name = "TCScheFBack"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_03: switch (sel) { case CP0_REG03__ENTRYLO1: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryLo1)); register_name = "EntryLo1"; break; case CP0_REG03__GLOBALNUM: CP0_CHECK(ctx->vp); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_GlobalNumber)); register_name = "GlobalNumber"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_04: switch (sel) { case CP0_REG04__CONTEXT: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_Context)); register_name = "Context"; break; case CP0_REG04__CONTEXTCONFIG: /* SmartMIPS ASE */ /* gen_helper_dmfc0_contextconfig(arg); */ register_name = "ContextConfig"; goto cp0_unimplemented; case CP0_REG04__USERLOCAL: CP0_CHECK(ctx->ulri); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, active_tc.CP0_UserLocal)); register_name = "UserLocal"; break; case CP0_REG04__MMID: CP0_CHECK(ctx->mi); gen_helper_mtc0_memorymapid(cpu_env, arg); register_name = "MMID"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_05: switch (sel) { case CP0_REG05__PAGEMASK: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageMask)); register_name = "PageMask"; break; case CP0_REG05__PAGEGRAIN: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PageGrain)); register_name = "PageGrain"; break; case CP0_REG05__SEGCTL0: CP0_CHECK(ctx->sc); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl0)); register_name = "SegCtl0"; break; case CP0_REG05__SEGCTL1: CP0_CHECK(ctx->sc); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl1)); register_name = "SegCtl1"; break; case CP0_REG05__SEGCTL2: CP0_CHECK(ctx->sc); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_SegCtl2)); register_name = "SegCtl2"; break; case CP0_REG05__PWBASE: check_pw(ctx); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_PWBase)); register_name = "PWBase"; break; case CP0_REG05__PWFIELD: check_pw(ctx); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_PWField)); register_name = "PWField"; break; case CP0_REG05__PWSIZE: check_pw(ctx); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_PWSize)); register_name = "PWSize"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_06: switch (sel) { case CP0_REG06__WIRED: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Wired)); register_name = "Wired"; break; case CP0_REG06__SRSCONF0: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf0)); register_name = "SRSConf0"; break; case CP0_REG06__SRSCONF1: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf1)); register_name = "SRSConf1"; break; case CP0_REG06__SRSCONF2: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf2)); register_name = "SRSConf2"; break; case CP0_REG06__SRSCONF3: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf3)); register_name = "SRSConf3"; break; case CP0_REG06__SRSCONF4: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSConf4)); register_name = "SRSConf4"; break; case CP0_REG06__PWCTL: check_pw(ctx); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PWCtl)); register_name = "PWCtl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_07: switch (sel) { case CP0_REG07__HWRENA: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_HWREna)); register_name = "HWREna"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_08: switch (sel) { case CP0_REG08__BADVADDR: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_BadVAddr)); register_name = "BadVAddr"; break; case CP0_REG08__BADINSTR: CP0_CHECK(ctx->bi); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstr)); register_name = "BadInstr"; break; case CP0_REG08__BADINSTRP: CP0_CHECK(ctx->bp); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstrP)); register_name = "BadInstrP"; break; case CP0_REG08__BADINSTRX: CP0_CHECK(ctx->bi); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_BadInstrX)); tcg_gen_andi_tl(arg, arg, ~0xffff); register_name = "BadInstrX"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_09: switch (sel) { case CP0_REG09__COUNT: /* Mark as an IO operation because we read the time. */ if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { gen_io_start(); } gen_helper_mfc0_count(arg, cpu_env); /* * Break the TB to be able to take timer interrupts immediately * after reading count. DISAS_STOP isn't sufficient, we need to * ensure we break completely out of translated code. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; register_name = "Count"; break; case CP0_REG09__SAARI: CP0_CHECK(ctx->saar); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SAARI)); register_name = "SAARI"; break; case CP0_REG09__SAAR: CP0_CHECK(ctx->saar); gen_helper_dmfc0_saar(arg, cpu_env); register_name = "SAAR"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_10: switch (sel) { case CP0_REG10__ENTRYHI: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EntryHi)); register_name = "EntryHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_11: switch (sel) { case CP0_REG11__COMPARE: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Compare)); register_name = "Compare"; break; /* 6,7 are implementation dependent */ default: goto cp0_unimplemented; } break; case CP0_REGISTER_12: switch (sel) { case CP0_REG12__STATUS: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Status)); register_name = "Status"; break; case CP0_REG12__INTCTL: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_IntCtl)); register_name = "IntCtl"; break; case CP0_REG12__SRSCTL: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSCtl)); register_name = "SRSCtl"; break; case CP0_REG12__SRSMAP: check_insn(ctx, ISA_MIPS_R2); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_SRSMap)); register_name = "SRSMap"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_13: switch (sel) { case CP0_REG13__CAUSE: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Cause)); register_name = "Cause"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_14: switch (sel) { case CP0_REG14__EPC: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EPC)); register_name = "EPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_15: switch (sel) { case CP0_REG15__PRID: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_PRid)); register_name = "PRid"; break; case CP0_REG15__EBASE: check_insn(ctx, ISA_MIPS_R2); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EBase)); register_name = "EBase"; break; case CP0_REG15__CMGCRBASE: check_insn(ctx, ISA_MIPS_R2); CP0_CHECK(ctx->cmgcr); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_CMGCRBase)); register_name = "CMGCRBase"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_16: switch (sel) { case CP0_REG16__CONFIG: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config0)); register_name = "Config"; break; case CP0_REG16__CONFIG1: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config1)); register_name = "Config1"; break; case CP0_REG16__CONFIG2: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config2)); register_name = "Config2"; break; case CP0_REG16__CONFIG3: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config3)); register_name = "Config3"; break; case CP0_REG16__CONFIG4: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config4)); register_name = "Config4"; break; case CP0_REG16__CONFIG5: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config5)); register_name = "Config5"; break; /* 6,7 are implementation dependent */ case CP0_REG16__CONFIG6: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config6)); register_name = "Config6"; break; case CP0_REG16__CONFIG7: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Config7)); register_name = "Config7"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_17: switch (sel) { case CP0_REG17__LLADDR: gen_helper_dmfc0_lladdr(arg, cpu_env); register_name = "LLAddr"; break; case CP0_REG17__MAAR: CP0_CHECK(ctx->mrp); gen_helper_dmfc0_maar(arg, cpu_env); register_name = "MAAR"; break; case CP0_REG17__MAARI: CP0_CHECK(ctx->mrp); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_MAARI)); register_name = "MAARI"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_18: switch (sel) { case CP0_REG18__WATCHLO0: case CP0_REG18__WATCHLO1: case CP0_REG18__WATCHLO2: case CP0_REG18__WATCHLO3: case CP0_REG18__WATCHLO4: case CP0_REG18__WATCHLO5: case CP0_REG18__WATCHLO6: case CP0_REG18__WATCHLO7: CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR)); gen_helper_1e0i(dmfc0_watchlo, arg, sel); register_name = "WatchLo"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_19: switch (sel) { case CP0_REG19__WATCHHI0: case CP0_REG19__WATCHHI1: case CP0_REG19__WATCHHI2: case CP0_REG19__WATCHHI3: case CP0_REG19__WATCHHI4: case CP0_REG19__WATCHHI5: case CP0_REG19__WATCHHI6: case CP0_REG19__WATCHHI7: CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR)); gen_helper_1e0i(dmfc0_watchhi, arg, sel); register_name = "WatchHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_20: switch (sel) { case CP0_REG20__XCONTEXT: check_insn(ctx, ISA_MIPS3); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_XContext)); register_name = "XContext"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_21: /* Officially reserved, but sel 0 is used for R1x000 framemask */ CP0_CHECK(!(ctx->insn_flags & ISA_MIPS_R6)); switch (sel) { case 0: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Framemask)); register_name = "Framemask"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_22: tcg_gen_movi_tl(arg, 0); /* unimplemented */ register_name = "'Diagnostic"; /* implementation dependent */ break; case CP0_REGISTER_23: switch (sel) { case CP0_REG23__DEBUG: gen_helper_mfc0_debug(arg, cpu_env); /* EJTAG support */ register_name = "Debug"; break; case CP0_REG23__TRACECONTROL: /* PDtrace support */ /* gen_helper_dmfc0_tracecontrol(arg, cpu_env); */ register_name = "TraceControl"; goto cp0_unimplemented; case CP0_REG23__TRACECONTROL2: /* PDtrace support */ /* gen_helper_dmfc0_tracecontrol2(arg, cpu_env); */ register_name = "TraceControl2"; goto cp0_unimplemented; case CP0_REG23__USERTRACEDATA1: /* PDtrace support */ /* gen_helper_dmfc0_usertracedata1(arg, cpu_env);*/ register_name = "UserTraceData1"; goto cp0_unimplemented; case CP0_REG23__TRACEIBPC: /* PDtrace support */ /* gen_helper_dmfc0_traceibpc(arg, cpu_env); */ register_name = "TraceIBPC"; goto cp0_unimplemented; case CP0_REG23__TRACEDBPC: /* PDtrace support */ /* gen_helper_dmfc0_tracedbpc(arg, cpu_env); */ register_name = "TraceDBPC"; goto cp0_unimplemented; default: goto cp0_unimplemented; } break; case CP0_REGISTER_24: switch (sel) { case CP0_REG24__DEPC: /* EJTAG support */ tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_DEPC)); register_name = "DEPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_25: switch (sel) { case CP0_REG25__PERFCTL0: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_Performance0)); register_name = "Performance0"; break; case CP0_REG25__PERFCNT0: /* gen_helper_dmfc0_performance1(arg); */ register_name = "Performance1"; goto cp0_unimplemented; case CP0_REG25__PERFCTL1: /* gen_helper_dmfc0_performance2(arg); */ register_name = "Performance2"; goto cp0_unimplemented; case CP0_REG25__PERFCNT1: /* gen_helper_dmfc0_performance3(arg); */ register_name = "Performance3"; goto cp0_unimplemented; case CP0_REG25__PERFCTL2: /* gen_helper_dmfc0_performance4(arg); */ register_name = "Performance4"; goto cp0_unimplemented; case CP0_REG25__PERFCNT2: /* gen_helper_dmfc0_performance5(arg); */ register_name = "Performance5"; goto cp0_unimplemented; case CP0_REG25__PERFCTL3: /* gen_helper_dmfc0_performance6(arg); */ register_name = "Performance6"; goto cp0_unimplemented; case CP0_REG25__PERFCNT3: /* gen_helper_dmfc0_performance7(arg); */ register_name = "Performance7"; goto cp0_unimplemented; default: goto cp0_unimplemented; } break; case CP0_REGISTER_26: switch (sel) { case CP0_REG26__ERRCTL: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_ErrCtl)); register_name = "ErrCtl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_27: switch (sel) { /* ignored */ case CP0_REG27__CACHERR: tcg_gen_movi_tl(arg, 0); /* unimplemented */ register_name = "CacheErr"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_28: switch (sel) { case CP0_REG28__TAGLO: case CP0_REG28__TAGLO1: case CP0_REG28__TAGLO2: case CP0_REG28__TAGLO3: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_TagLo)); register_name = "TagLo"; break; case CP0_REG28__DATALO: case CP0_REG28__DATALO1: case CP0_REG28__DATALO2: case CP0_REG28__DATALO3: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataLo)); register_name = "DataLo"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_29: switch (sel) { case CP0_REG29__TAGHI: case CP0_REG29__TAGHI1: case CP0_REG29__TAGHI2: case CP0_REG29__TAGHI3: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_TagHi)); register_name = "TagHi"; break; case CP0_REG29__DATAHI: case CP0_REG29__DATAHI1: case CP0_REG29__DATAHI2: case CP0_REG29__DATAHI3: gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DataHi)); register_name = "DataHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_30: switch (sel) { case CP0_REG30__ERROREPC: tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_ErrorEPC)); register_name = "ErrorEPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_31: switch (sel) { case CP0_REG31__DESAVE: /* EJTAG support */ gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_DESAVE)); register_name = "DESAVE"; break; case CP0_REG31__KSCRATCH1: case CP0_REG31__KSCRATCH2: case CP0_REG31__KSCRATCH3: case CP0_REG31__KSCRATCH4: case CP0_REG31__KSCRATCH5: case CP0_REG31__KSCRATCH6: CP0_CHECK(ctx->kscrexist & (1 << sel)); tcg_gen_ld_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_KScratch[sel - 2])); register_name = "KScratch"; break; default: goto cp0_unimplemented; } break; default: goto cp0_unimplemented; } trace_mips_translate_c0("dmfc0", register_name, reg, sel); return; cp0_unimplemented: qemu_log_mask(LOG_UNIMP, "dmfc0 %s (reg %d sel %d)\n", register_name, reg, sel); gen_mfc0_unimplemented(ctx, arg); } static void gen_dmtc0(DisasContext *ctx, TCGv arg, int reg, int sel) { const char *register_name = "invalid"; if (sel != 0) { check_insn(ctx, ISA_MIPS_R1); } if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { gen_io_start(); } switch (reg) { case CP0_REGISTER_00: switch (sel) { case CP0_REG00__INDEX: gen_helper_mtc0_index(cpu_env, arg); register_name = "Index"; break; case CP0_REG00__MVPCONTROL: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_mvpcontrol(cpu_env, arg); register_name = "MVPControl"; break; case CP0_REG00__MVPCONF0: CP0_CHECK(ctx->insn_flags & ASE_MT); /* ignored */ register_name = "MVPConf0"; break; case CP0_REG00__MVPCONF1: CP0_CHECK(ctx->insn_flags & ASE_MT); /* ignored */ register_name = "MVPConf1"; break; case CP0_REG00__VPCONTROL: CP0_CHECK(ctx->vp); /* ignored */ register_name = "VPControl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_01: switch (sel) { case CP0_REG01__RANDOM: /* ignored */ register_name = "Random"; break; case CP0_REG01__VPECONTROL: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_vpecontrol(cpu_env, arg); register_name = "VPEControl"; break; case CP0_REG01__VPECONF0: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_vpeconf0(cpu_env, arg); register_name = "VPEConf0"; break; case CP0_REG01__VPECONF1: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_vpeconf1(cpu_env, arg); register_name = "VPEConf1"; break; case CP0_REG01__YQMASK: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_yqmask(cpu_env, arg); register_name = "YQMask"; break; case CP0_REG01__VPESCHEDULE: CP0_CHECK(ctx->insn_flags & ASE_MT); tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPESchedule)); register_name = "VPESchedule"; break; case CP0_REG01__VPESCHEFBACK: CP0_CHECK(ctx->insn_flags & ASE_MT); tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_VPEScheFBack)); register_name = "VPEScheFBack"; break; case CP0_REG01__VPEOPT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_vpeopt(cpu_env, arg); register_name = "VPEOpt"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_02: switch (sel) { case CP0_REG02__ENTRYLO0: gen_helper_dmtc0_entrylo0(cpu_env, arg); register_name = "EntryLo0"; break; case CP0_REG02__TCSTATUS: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcstatus(cpu_env, arg); register_name = "TCStatus"; break; case CP0_REG02__TCBIND: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcbind(cpu_env, arg); register_name = "TCBind"; break; case CP0_REG02__TCRESTART: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcrestart(cpu_env, arg); register_name = "TCRestart"; break; case CP0_REG02__TCHALT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tchalt(cpu_env, arg); register_name = "TCHalt"; break; case CP0_REG02__TCCONTEXT: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tccontext(cpu_env, arg); register_name = "TCContext"; break; case CP0_REG02__TCSCHEDULE: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcschedule(cpu_env, arg); register_name = "TCSchedule"; break; case CP0_REG02__TCSCHEFBACK: CP0_CHECK(ctx->insn_flags & ASE_MT); gen_helper_mtc0_tcschefback(cpu_env, arg); register_name = "TCScheFBack"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_03: switch (sel) { case CP0_REG03__ENTRYLO1: gen_helper_dmtc0_entrylo1(cpu_env, arg); register_name = "EntryLo1"; break; case CP0_REG03__GLOBALNUM: CP0_CHECK(ctx->vp); /* ignored */ register_name = "GlobalNumber"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_04: switch (sel) { case CP0_REG04__CONTEXT: gen_helper_mtc0_context(cpu_env, arg); register_name = "Context"; break; case CP0_REG04__CONTEXTCONFIG: /* SmartMIPS ASE */ /* gen_helper_dmtc0_contextconfig(arg); */ register_name = "ContextConfig"; goto cp0_unimplemented; case CP0_REG04__USERLOCAL: CP0_CHECK(ctx->ulri); tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, active_tc.CP0_UserLocal)); register_name = "UserLocal"; break; case CP0_REG04__MMID: CP0_CHECK(ctx->mi); gen_mfc0_load32(arg, offsetof(CPUMIPSState, CP0_MemoryMapID)); register_name = "MMID"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_05: switch (sel) { case CP0_REG05__PAGEMASK: gen_helper_mtc0_pagemask(cpu_env, arg); register_name = "PageMask"; break; case CP0_REG05__PAGEGRAIN: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_pagegrain(cpu_env, arg); register_name = "PageGrain"; break; case CP0_REG05__SEGCTL0: CP0_CHECK(ctx->sc); gen_helper_mtc0_segctl0(cpu_env, arg); register_name = "SegCtl0"; break; case CP0_REG05__SEGCTL1: CP0_CHECK(ctx->sc); gen_helper_mtc0_segctl1(cpu_env, arg); register_name = "SegCtl1"; break; case CP0_REG05__SEGCTL2: CP0_CHECK(ctx->sc); gen_helper_mtc0_segctl2(cpu_env, arg); register_name = "SegCtl2"; break; case CP0_REG05__PWBASE: check_pw(ctx); tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_PWBase)); register_name = "PWBase"; break; case CP0_REG05__PWFIELD: check_pw(ctx); gen_helper_mtc0_pwfield(cpu_env, arg); register_name = "PWField"; break; case CP0_REG05__PWSIZE: check_pw(ctx); gen_helper_mtc0_pwsize(cpu_env, arg); register_name = "PWSize"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_06: switch (sel) { case CP0_REG06__WIRED: gen_helper_mtc0_wired(cpu_env, arg); register_name = "Wired"; break; case CP0_REG06__SRSCONF0: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf0(cpu_env, arg); register_name = "SRSConf0"; break; case CP0_REG06__SRSCONF1: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf1(cpu_env, arg); register_name = "SRSConf1"; break; case CP0_REG06__SRSCONF2: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf2(cpu_env, arg); register_name = "SRSConf2"; break; case CP0_REG06__SRSCONF3: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf3(cpu_env, arg); register_name = "SRSConf3"; break; case CP0_REG06__SRSCONF4: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsconf4(cpu_env, arg); register_name = "SRSConf4"; break; case CP0_REG06__PWCTL: check_pw(ctx); gen_helper_mtc0_pwctl(cpu_env, arg); register_name = "PWCtl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_07: switch (sel) { case CP0_REG07__HWRENA: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_hwrena(cpu_env, arg); ctx->base.is_jmp = DISAS_STOP; register_name = "HWREna"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_08: switch (sel) { case CP0_REG08__BADVADDR: /* ignored */ register_name = "BadVAddr"; break; case CP0_REG08__BADINSTR: /* ignored */ register_name = "BadInstr"; break; case CP0_REG08__BADINSTRP: /* ignored */ register_name = "BadInstrP"; break; case CP0_REG08__BADINSTRX: /* ignored */ register_name = "BadInstrX"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_09: switch (sel) { case CP0_REG09__COUNT: gen_helper_mtc0_count(cpu_env, arg); register_name = "Count"; break; case CP0_REG09__SAARI: CP0_CHECK(ctx->saar); gen_helper_mtc0_saari(cpu_env, arg); register_name = "SAARI"; break; case CP0_REG09__SAAR: CP0_CHECK(ctx->saar); gen_helper_mtc0_saar(cpu_env, arg); register_name = "SAAR"; break; default: goto cp0_unimplemented; } /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; case CP0_REGISTER_10: switch (sel) { case CP0_REG10__ENTRYHI: gen_helper_mtc0_entryhi(cpu_env, arg); register_name = "EntryHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_11: switch (sel) { case CP0_REG11__COMPARE: gen_helper_mtc0_compare(cpu_env, arg); register_name = "Compare"; break; /* 6,7 are implementation dependent */ default: goto cp0_unimplemented; } /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; case CP0_REGISTER_12: switch (sel) { case CP0_REG12__STATUS: save_cpu_state(ctx, 1); gen_helper_mtc0_status(cpu_env, arg); /* DISAS_STOP isn't good enough here, hflags may have changed. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; register_name = "Status"; break; case CP0_REG12__INTCTL: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_intctl(cpu_env, arg); /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "IntCtl"; break; case CP0_REG12__SRSCTL: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_srsctl(cpu_env, arg); /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "SRSCtl"; break; case CP0_REG12__SRSMAP: check_insn(ctx, ISA_MIPS_R2); gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_SRSMap)); /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "SRSMap"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_13: switch (sel) { case CP0_REG13__CAUSE: save_cpu_state(ctx, 1); gen_helper_mtc0_cause(cpu_env, arg); /* * Stop translation as we may have triggered an interrupt. * DISAS_STOP isn't sufficient, we need to ensure we break out of * translated code to check for pending interrupts. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; register_name = "Cause"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_14: switch (sel) { case CP0_REG14__EPC: tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_EPC)); register_name = "EPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_15: switch (sel) { case CP0_REG15__PRID: /* ignored */ register_name = "PRid"; break; case CP0_REG15__EBASE: check_insn(ctx, ISA_MIPS_R2); gen_helper_mtc0_ebase(cpu_env, arg); register_name = "EBase"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_16: switch (sel) { case CP0_REG16__CONFIG: gen_helper_mtc0_config0(cpu_env, arg); register_name = "Config"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; case CP0_REG16__CONFIG1: /* ignored, read only */ register_name = "Config1"; break; case CP0_REG16__CONFIG2: gen_helper_mtc0_config2(cpu_env, arg); register_name = "Config2"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; case CP0_REG16__CONFIG3: gen_helper_mtc0_config3(cpu_env, arg); register_name = "Config3"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; case CP0_REG16__CONFIG4: /* currently ignored */ register_name = "Config4"; break; case CP0_REG16__CONFIG5: gen_helper_mtc0_config5(cpu_env, arg); register_name = "Config5"; /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; break; /* 6,7 are implementation dependent */ default: register_name = "Invalid config selector"; goto cp0_unimplemented; } break; case CP0_REGISTER_17: switch (sel) { case CP0_REG17__LLADDR: gen_helper_mtc0_lladdr(cpu_env, arg); register_name = "LLAddr"; break; case CP0_REG17__MAAR: CP0_CHECK(ctx->mrp); gen_helper_mtc0_maar(cpu_env, arg); register_name = "MAAR"; break; case CP0_REG17__MAARI: CP0_CHECK(ctx->mrp); gen_helper_mtc0_maari(cpu_env, arg); register_name = "MAARI"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_18: switch (sel) { case CP0_REG18__WATCHLO0: case CP0_REG18__WATCHLO1: case CP0_REG18__WATCHLO2: case CP0_REG18__WATCHLO3: case CP0_REG18__WATCHLO4: case CP0_REG18__WATCHLO5: case CP0_REG18__WATCHLO6: case CP0_REG18__WATCHLO7: CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR)); gen_helper_0e1i(mtc0_watchlo, arg, sel); register_name = "WatchLo"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_19: switch (sel) { case CP0_REG19__WATCHHI0: case CP0_REG19__WATCHHI1: case CP0_REG19__WATCHHI2: case CP0_REG19__WATCHHI3: case CP0_REG19__WATCHHI4: case CP0_REG19__WATCHHI5: case CP0_REG19__WATCHHI6: case CP0_REG19__WATCHHI7: CP0_CHECK(ctx->CP0_Config1 & (1 << CP0C1_WR)); gen_helper_0e1i(mtc0_watchhi, arg, sel); register_name = "WatchHi"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_20: switch (sel) { case CP0_REG20__XCONTEXT: check_insn(ctx, ISA_MIPS3); gen_helper_mtc0_xcontext(cpu_env, arg); register_name = "XContext"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_21: /* Officially reserved, but sel 0 is used for R1x000 framemask */ CP0_CHECK(!(ctx->insn_flags & ISA_MIPS_R6)); switch (sel) { case 0: gen_helper_mtc0_framemask(cpu_env, arg); register_name = "Framemask"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_22: /* ignored */ register_name = "Diagnostic"; /* implementation dependent */ break; case CP0_REGISTER_23: switch (sel) { case CP0_REG23__DEBUG: gen_helper_mtc0_debug(cpu_env, arg); /* EJTAG support */ /* DISAS_STOP isn't good enough here, hflags may have changed. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; register_name = "Debug"; break; case CP0_REG23__TRACECONTROL: /* PDtrace support */ /* gen_helper_mtc0_tracecontrol(cpu_env, arg); */ /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "TraceControl"; goto cp0_unimplemented; case CP0_REG23__TRACECONTROL2: /* PDtrace support */ /* gen_helper_mtc0_tracecontrol2(cpu_env, arg); */ /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "TraceControl2"; goto cp0_unimplemented; case CP0_REG23__USERTRACEDATA1: /* PDtrace support */ /* gen_helper_mtc0_usertracedata1(cpu_env, arg);*/ /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "UserTraceData1"; goto cp0_unimplemented; case CP0_REG23__TRACEIBPC: /* PDtrace support */ /* gen_helper_mtc0_traceibpc(cpu_env, arg); */ /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "TraceIBPC"; goto cp0_unimplemented; case CP0_REG23__TRACEDBPC: /* PDtrace support */ /* gen_helper_mtc0_tracedbpc(cpu_env, arg); */ /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; register_name = "TraceDBPC"; goto cp0_unimplemented; default: goto cp0_unimplemented; } break; case CP0_REGISTER_24: switch (sel) { case CP0_REG24__DEPC: /* EJTAG support */ tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_DEPC)); register_name = "DEPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_25: switch (sel) { case CP0_REG25__PERFCTL0: gen_helper_mtc0_performance0(cpu_env, arg); register_name = "Performance0"; break; case CP0_REG25__PERFCNT0: /* gen_helper_mtc0_performance1(cpu_env, arg); */ register_name = "Performance1"; goto cp0_unimplemented; case CP0_REG25__PERFCTL1: /* gen_helper_mtc0_performance2(cpu_env, arg); */ register_name = "Performance2"; goto cp0_unimplemented; case CP0_REG25__PERFCNT1: /* gen_helper_mtc0_performance3(cpu_env, arg); */ register_name = "Performance3"; goto cp0_unimplemented; case CP0_REG25__PERFCTL2: /* gen_helper_mtc0_performance4(cpu_env, arg); */ register_name = "Performance4"; goto cp0_unimplemented; case CP0_REG25__PERFCNT2: /* gen_helper_mtc0_performance5(cpu_env, arg); */ register_name = "Performance5"; goto cp0_unimplemented; case CP0_REG25__PERFCTL3: /* gen_helper_mtc0_performance6(cpu_env, arg); */ register_name = "Performance6"; goto cp0_unimplemented; case CP0_REG25__PERFCNT3: /* gen_helper_mtc0_performance7(cpu_env, arg); */ register_name = "Performance7"; goto cp0_unimplemented; default: goto cp0_unimplemented; } break; case CP0_REGISTER_26: switch (sel) { case CP0_REG26__ERRCTL: gen_helper_mtc0_errctl(cpu_env, arg); ctx->base.is_jmp = DISAS_STOP; register_name = "ErrCtl"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_27: switch (sel) { case CP0_REG27__CACHERR: /* ignored */ register_name = "CacheErr"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_28: switch (sel) { case CP0_REG28__TAGLO: case CP0_REG28__TAGLO1: case CP0_REG28__TAGLO2: case CP0_REG28__TAGLO3: gen_helper_mtc0_taglo(cpu_env, arg); register_name = "TagLo"; break; case CP0_REG28__DATALO: case CP0_REG28__DATALO1: case CP0_REG28__DATALO2: case CP0_REG28__DATALO3: gen_helper_mtc0_datalo(cpu_env, arg); register_name = "DataLo"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_29: switch (sel) { case CP0_REG29__TAGHI: case CP0_REG29__TAGHI1: case CP0_REG29__TAGHI2: case CP0_REG29__TAGHI3: gen_helper_mtc0_taghi(cpu_env, arg); register_name = "TagHi"; break; case CP0_REG29__DATAHI: case CP0_REG29__DATAHI1: case CP0_REG29__DATAHI2: case CP0_REG29__DATAHI3: gen_helper_mtc0_datahi(cpu_env, arg); register_name = "DataHi"; break; default: register_name = "invalid sel"; goto cp0_unimplemented; } break; case CP0_REGISTER_30: switch (sel) { case CP0_REG30__ERROREPC: tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_ErrorEPC)); register_name = "ErrorEPC"; break; default: goto cp0_unimplemented; } break; case CP0_REGISTER_31: switch (sel) { case CP0_REG31__DESAVE: /* EJTAG support */ gen_mtc0_store32(arg, offsetof(CPUMIPSState, CP0_DESAVE)); register_name = "DESAVE"; break; case CP0_REG31__KSCRATCH1: case CP0_REG31__KSCRATCH2: case CP0_REG31__KSCRATCH3: case CP0_REG31__KSCRATCH4: case CP0_REG31__KSCRATCH5: case CP0_REG31__KSCRATCH6: CP0_CHECK(ctx->kscrexist & (1 << sel)); tcg_gen_st_tl(arg, cpu_env, offsetof(CPUMIPSState, CP0_KScratch[sel - 2])); register_name = "KScratch"; break; default: goto cp0_unimplemented; } break; default: goto cp0_unimplemented; } trace_mips_translate_c0("dmtc0", register_name, reg, sel); /* For simplicity assume that all writes can cause interrupts. */ if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { /* * DISAS_STOP isn't sufficient, we need to ensure we break out of * translated code to check for pending interrupts. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; } return; cp0_unimplemented: qemu_log_mask(LOG_UNIMP, "dmtc0 %s (reg %d sel %d)\n", register_name, reg, sel); } #endif /* TARGET_MIPS64 */ static void gen_mftr(CPUMIPSState *env, DisasContext *ctx, int rt, int rd, int u, int sel, int h) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); TCGv t0 = tcg_temp_local_new(); if ((env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) == 0 && ((env->tcs[other_tc].CP0_TCBind & (0xf << CP0TCBd_CurVPE)) != (env->active_tc.CP0_TCBind & (0xf << CP0TCBd_CurVPE)))) { tcg_gen_movi_tl(t0, -1); } else if ((env->CP0_VPEControl & (0xff << CP0VPECo_TargTC)) > (env->mvp->CP0_MVPConf0 & (0xff << CP0MVPC0_PTC))) { tcg_gen_movi_tl(t0, -1); } else if (u == 0) { switch (rt) { case 1: switch (sel) { case 1: gen_helper_mftc0_vpecontrol(t0, cpu_env); break; case 2: gen_helper_mftc0_vpeconf0(t0, cpu_env); break; default: goto die; break; } break; case 2: switch (sel) { case 1: gen_helper_mftc0_tcstatus(t0, cpu_env); break; case 2: gen_helper_mftc0_tcbind(t0, cpu_env); break; case 3: gen_helper_mftc0_tcrestart(t0, cpu_env); break; case 4: gen_helper_mftc0_tchalt(t0, cpu_env); break; case 5: gen_helper_mftc0_tccontext(t0, cpu_env); break; case 6: gen_helper_mftc0_tcschedule(t0, cpu_env); break; case 7: gen_helper_mftc0_tcschefback(t0, cpu_env); break; default: gen_mfc0(ctx, t0, rt, sel); break; } break; case 10: switch (sel) { case 0: gen_helper_mftc0_entryhi(t0, cpu_env); break; default: gen_mfc0(ctx, t0, rt, sel); break; } break; case 12: switch (sel) { case 0: gen_helper_mftc0_status(t0, cpu_env); break; default: gen_mfc0(ctx, t0, rt, sel); break; } break; case 13: switch (sel) { case 0: gen_helper_mftc0_cause(t0, cpu_env); break; default: goto die; break; } break; case 14: switch (sel) { case 0: gen_helper_mftc0_epc(t0, cpu_env); break; default: goto die; break; } break; case 15: switch (sel) { case 1: gen_helper_mftc0_ebase(t0, cpu_env); break; default: goto die; break; } break; case 16: switch (sel) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: gen_helper_mftc0_configx(t0, cpu_env, tcg_const_tl(sel)); break; default: goto die; break; } break; case 23: switch (sel) { case 0: gen_helper_mftc0_debug(t0, cpu_env); break; default: gen_mfc0(ctx, t0, rt, sel); break; } break; default: gen_mfc0(ctx, t0, rt, sel); } } else { switch (sel) { /* GPR registers. */ case 0: gen_helper_1e0i(mftgpr, t0, rt); break; /* Auxiliary CPU registers */ case 1: switch (rt) { case 0: gen_helper_1e0i(mftlo, t0, 0); break; case 1: gen_helper_1e0i(mfthi, t0, 0); break; case 2: gen_helper_1e0i(mftacx, t0, 0); break; case 4: gen_helper_1e0i(mftlo, t0, 1); break; case 5: gen_helper_1e0i(mfthi, t0, 1); break; case 6: gen_helper_1e0i(mftacx, t0, 1); break; case 8: gen_helper_1e0i(mftlo, t0, 2); break; case 9: gen_helper_1e0i(mfthi, t0, 2); break; case 10: gen_helper_1e0i(mftacx, t0, 2); break; case 12: gen_helper_1e0i(mftlo, t0, 3); break; case 13: gen_helper_1e0i(mfthi, t0, 3); break; case 14: gen_helper_1e0i(mftacx, t0, 3); break; case 16: gen_helper_mftdsp(t0, cpu_env); break; default: goto die; } break; /* Floating point (COP1). */ case 2: /* XXX: For now we support only a single FPU context. */ if (h == 0) { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, rt); tcg_gen_ext_i32_tl(t0, fp0); tcg_temp_free_i32(fp0); } else { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32h(ctx, fp0, rt); tcg_gen_ext_i32_tl(t0, fp0); tcg_temp_free_i32(fp0); } break; case 3: /* XXX: For now we support only a single FPU context. */ gen_helper_1e0i(cfc1, t0, rt); break; /* COP2: Not implemented. */ case 4: case 5: /* fall through */ default: goto die; } } trace_mips_translate_tr("mftr", rt, u, sel, h); gen_store_gpr(t0, rd); tcg_temp_free(t0); return; die: tcg_temp_free(t0); LOG_DISAS("mftr (reg %d u %d sel %d h %d)\n", rt, u, sel, h); gen_reserved_instruction(ctx); } static void gen_mttr(CPUMIPSState *env, DisasContext *ctx, int rd, int rt, int u, int sel, int h) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); TCGv t0 = tcg_temp_local_new(); gen_load_gpr(t0, rt); if ((env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) == 0 && ((env->tcs[other_tc].CP0_TCBind & (0xf << CP0TCBd_CurVPE)) != (env->active_tc.CP0_TCBind & (0xf << CP0TCBd_CurVPE)))) { /* NOP */ ; } else if ((env->CP0_VPEControl & (0xff << CP0VPECo_TargTC)) > (env->mvp->CP0_MVPConf0 & (0xff << CP0MVPC0_PTC))) { /* NOP */ ; } else if (u == 0) { switch (rd) { case 1: switch (sel) { case 1: gen_helper_mttc0_vpecontrol(cpu_env, t0); break; case 2: gen_helper_mttc0_vpeconf0(cpu_env, t0); break; default: goto die; break; } break; case 2: switch (sel) { case 1: gen_helper_mttc0_tcstatus(cpu_env, t0); break; case 2: gen_helper_mttc0_tcbind(cpu_env, t0); break; case 3: gen_helper_mttc0_tcrestart(cpu_env, t0); break; case 4: gen_helper_mttc0_tchalt(cpu_env, t0); break; case 5: gen_helper_mttc0_tccontext(cpu_env, t0); break; case 6: gen_helper_mttc0_tcschedule(cpu_env, t0); break; case 7: gen_helper_mttc0_tcschefback(cpu_env, t0); break; default: gen_mtc0(ctx, t0, rd, sel); break; } break; case 10: switch (sel) { case 0: gen_helper_mttc0_entryhi(cpu_env, t0); break; default: gen_mtc0(ctx, t0, rd, sel); break; } break; case 12: switch (sel) { case 0: gen_helper_mttc0_status(cpu_env, t0); break; default: gen_mtc0(ctx, t0, rd, sel); break; } break; case 13: switch (sel) { case 0: gen_helper_mttc0_cause(cpu_env, t0); break; default: goto die; break; } break; case 15: switch (sel) { case 1: gen_helper_mttc0_ebase(cpu_env, t0); break; default: goto die; break; } break; case 23: switch (sel) { case 0: gen_helper_mttc0_debug(cpu_env, t0); break; default: gen_mtc0(ctx, t0, rd, sel); break; } break; default: gen_mtc0(ctx, t0, rd, sel); } } else { switch (sel) { /* GPR registers. */ case 0: gen_helper_0e1i(mttgpr, t0, rd); break; /* Auxiliary CPU registers */ case 1: switch (rd) { case 0: gen_helper_0e1i(mttlo, t0, 0); break; case 1: gen_helper_0e1i(mtthi, t0, 0); break; case 2: gen_helper_0e1i(mttacx, t0, 0); break; case 4: gen_helper_0e1i(mttlo, t0, 1); break; case 5: gen_helper_0e1i(mtthi, t0, 1); break; case 6: gen_helper_0e1i(mttacx, t0, 1); break; case 8: gen_helper_0e1i(mttlo, t0, 2); break; case 9: gen_helper_0e1i(mtthi, t0, 2); break; case 10: gen_helper_0e1i(mttacx, t0, 2); break; case 12: gen_helper_0e1i(mttlo, t0, 3); break; case 13: gen_helper_0e1i(mtthi, t0, 3); break; case 14: gen_helper_0e1i(mttacx, t0, 3); break; case 16: gen_helper_mttdsp(cpu_env, t0); break; default: goto die; } break; /* Floating point (COP1). */ case 2: /* XXX: For now we support only a single FPU context. */ if (h == 0) { TCGv_i32 fp0 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(fp0, t0); gen_store_fpr32(ctx, fp0, rd); tcg_temp_free_i32(fp0); } else { TCGv_i32 fp0 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(fp0, t0); gen_store_fpr32h(ctx, fp0, rd); tcg_temp_free_i32(fp0); } break; case 3: /* XXX: For now we support only a single FPU context. */ { TCGv_i32 fs_tmp = tcg_const_i32(rd); gen_helper_0e2i(ctc1, t0, fs_tmp, rt); tcg_temp_free_i32(fs_tmp); } /* Stop translation as we may have changed hflags */ ctx->base.is_jmp = DISAS_STOP; break; /* COP2: Not implemented. */ case 4: case 5: /* fall through */ default: goto die; } } trace_mips_translate_tr("mttr", rd, u, sel, h); tcg_temp_free(t0); return; die: tcg_temp_free(t0); LOG_DISAS("mttr (reg %d u %d sel %d h %d)\n", rd, u, sel, h); gen_reserved_instruction(ctx); } static void gen_cp0(CPUMIPSState *env, DisasContext *ctx, uint32_t opc, int rt, int rd) { const char *opn = "ldst"; check_cp0_enabled(ctx); switch (opc) { case OPC_MFC0: if (rt == 0) { /* Treat as NOP. */ return; } gen_mfc0(ctx, cpu_gpr[rt], rd, ctx->opcode & 0x7); opn = "mfc0"; break; case OPC_MTC0: { TCGv t0 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_mtc0(ctx, t0, rd, ctx->opcode & 0x7); tcg_temp_free(t0); } opn = "mtc0"; break; #if defined(TARGET_MIPS64) case OPC_DMFC0: check_insn(ctx, ISA_MIPS3); if (rt == 0) { /* Treat as NOP. */ return; } gen_dmfc0(ctx, cpu_gpr[rt], rd, ctx->opcode & 0x7); opn = "dmfc0"; break; case OPC_DMTC0: check_insn(ctx, ISA_MIPS3); { TCGv t0 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_dmtc0(ctx, t0, rd, ctx->opcode & 0x7); tcg_temp_free(t0); } opn = "dmtc0"; break; #endif case OPC_MFHC0: check_mvh(ctx); if (rt == 0) { /* Treat as NOP. */ return; } gen_mfhc0(ctx, cpu_gpr[rt], rd, ctx->opcode & 0x7); opn = "mfhc0"; break; case OPC_MTHC0: check_mvh(ctx); { TCGv t0 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_mthc0(ctx, t0, rd, ctx->opcode & 0x7); tcg_temp_free(t0); } opn = "mthc0"; break; case OPC_MFTR: check_cp0_enabled(ctx); if (rd == 0) { /* Treat as NOP. */ return; } gen_mftr(env, ctx, rt, rd, (ctx->opcode >> 5) & 1, ctx->opcode & 0x7, (ctx->opcode >> 4) & 1); opn = "mftr"; break; case OPC_MTTR: check_cp0_enabled(ctx); gen_mttr(env, ctx, rd, rt, (ctx->opcode >> 5) & 1, ctx->opcode & 0x7, (ctx->opcode >> 4) & 1); opn = "mttr"; break; case OPC_TLBWI: opn = "tlbwi"; if (!env->tlb->helper_tlbwi) { goto die; } gen_helper_tlbwi(cpu_env); break; case OPC_TLBINV: opn = "tlbinv"; if (ctx->ie >= 2) { if (!env->tlb->helper_tlbinv) { goto die; } gen_helper_tlbinv(cpu_env); } /* treat as nop if TLBINV not supported */ break; case OPC_TLBINVF: opn = "tlbinvf"; if (ctx->ie >= 2) { if (!env->tlb->helper_tlbinvf) { goto die; } gen_helper_tlbinvf(cpu_env); } /* treat as nop if TLBINV not supported */ break; case OPC_TLBWR: opn = "tlbwr"; if (!env->tlb->helper_tlbwr) { goto die; } gen_helper_tlbwr(cpu_env); break; case OPC_TLBP: opn = "tlbp"; if (!env->tlb->helper_tlbp) { goto die; } gen_helper_tlbp(cpu_env); break; case OPC_TLBR: opn = "tlbr"; if (!env->tlb->helper_tlbr) { goto die; } gen_helper_tlbr(cpu_env); break; case OPC_ERET: /* OPC_ERETNC */ if ((ctx->insn_flags & ISA_MIPS_R6) && (ctx->hflags & MIPS_HFLAG_BMASK)) { goto die; } else { int bit_shift = (ctx->hflags & MIPS_HFLAG_M16) ? 16 : 6; if (ctx->opcode & (1 << bit_shift)) { /* OPC_ERETNC */ opn = "eretnc"; check_insn(ctx, ISA_MIPS_R5); gen_helper_eretnc(cpu_env); } else { /* OPC_ERET */ opn = "eret"; check_insn(ctx, ISA_MIPS2); gen_helper_eret(cpu_env); } ctx->base.is_jmp = DISAS_EXIT; } break; case OPC_DERET: opn = "deret"; check_insn(ctx, ISA_MIPS_R1); if ((ctx->insn_flags & ISA_MIPS_R6) && (ctx->hflags & MIPS_HFLAG_BMASK)) { goto die; } if (!(ctx->hflags & MIPS_HFLAG_DM)) { MIPS_INVAL(opn); gen_reserved_instruction(ctx); } else { gen_helper_deret(cpu_env); ctx->base.is_jmp = DISAS_EXIT; } break; case OPC_WAIT: opn = "wait"; check_insn(ctx, ISA_MIPS3 | ISA_MIPS_R1); if ((ctx->insn_flags & ISA_MIPS_R6) && (ctx->hflags & MIPS_HFLAG_BMASK)) { goto die; } /* If we get an exception, we want to restart at next instruction */ ctx->base.pc_next += 4; save_cpu_state(ctx, 1); ctx->base.pc_next -= 4; gen_helper_wait(cpu_env); ctx->base.is_jmp = DISAS_NORETURN; break; default: die: MIPS_INVAL(opn); gen_reserved_instruction(ctx); return; } (void)opn; /* avoid a compiler warning */ } #endif /* !CONFIG_USER_ONLY */ /* CP1 Branches (before delay slot) */ static void gen_compute_branch1(DisasContext *ctx, uint32_t op, int32_t cc, int32_t offset) { target_ulong btarget; TCGv_i32 t0 = tcg_temp_new_i32(); if ((ctx->insn_flags & ISA_MIPS_R6) && (ctx->hflags & MIPS_HFLAG_BMASK)) { gen_reserved_instruction(ctx); goto out; } if (cc != 0) { check_insn(ctx, ISA_MIPS4 | ISA_MIPS_R1); } btarget = ctx->base.pc_next + 4 + offset; switch (op) { case OPC_BC1F: tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc)); tcg_gen_not_i32(t0, t0); tcg_gen_andi_i32(t0, t0, 1); tcg_gen_extu_i32_tl(bcond, t0); goto not_likely; case OPC_BC1FL: tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc)); tcg_gen_not_i32(t0, t0); tcg_gen_andi_i32(t0, t0, 1); tcg_gen_extu_i32_tl(bcond, t0); goto likely; case OPC_BC1T: tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc)); tcg_gen_andi_i32(t0, t0, 1); tcg_gen_extu_i32_tl(bcond, t0); goto not_likely; case OPC_BC1TL: tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc)); tcg_gen_andi_i32(t0, t0, 1); tcg_gen_extu_i32_tl(bcond, t0); likely: ctx->hflags |= MIPS_HFLAG_BL; break; case OPC_BC1FANY2: { TCGv_i32 t1 = tcg_temp_new_i32(); tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc)); tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc + 1)); tcg_gen_nand_i32(t0, t0, t1); tcg_temp_free_i32(t1); tcg_gen_andi_i32(t0, t0, 1); tcg_gen_extu_i32_tl(bcond, t0); } goto not_likely; case OPC_BC1TANY2: { TCGv_i32 t1 = tcg_temp_new_i32(); tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc)); tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc + 1)); tcg_gen_or_i32(t0, t0, t1); tcg_temp_free_i32(t1); tcg_gen_andi_i32(t0, t0, 1); tcg_gen_extu_i32_tl(bcond, t0); } goto not_likely; case OPC_BC1FANY4: { TCGv_i32 t1 = tcg_temp_new_i32(); tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc)); tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc + 1)); tcg_gen_and_i32(t0, t0, t1); tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc + 2)); tcg_gen_and_i32(t0, t0, t1); tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc + 3)); tcg_gen_nand_i32(t0, t0, t1); tcg_temp_free_i32(t1); tcg_gen_andi_i32(t0, t0, 1); tcg_gen_extu_i32_tl(bcond, t0); } goto not_likely; case OPC_BC1TANY4: { TCGv_i32 t1 = tcg_temp_new_i32(); tcg_gen_shri_i32(t0, fpu_fcr31, get_fp_bit(cc)); tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc + 1)); tcg_gen_or_i32(t0, t0, t1); tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc + 2)); tcg_gen_or_i32(t0, t0, t1); tcg_gen_shri_i32(t1, fpu_fcr31, get_fp_bit(cc + 3)); tcg_gen_or_i32(t0, t0, t1); tcg_temp_free_i32(t1); tcg_gen_andi_i32(t0, t0, 1); tcg_gen_extu_i32_tl(bcond, t0); } not_likely: ctx->hflags |= MIPS_HFLAG_BC; break; default: MIPS_INVAL("cp1 cond branch"); gen_reserved_instruction(ctx); goto out; } ctx->btarget = btarget; ctx->hflags |= MIPS_HFLAG_BDS32; out: tcg_temp_free_i32(t0); } /* R6 CP1 Branches */ static void gen_compute_branch1_r6(DisasContext *ctx, uint32_t op, int32_t ft, int32_t offset, int delayslot_size) { target_ulong btarget; TCGv_i64 t0 = tcg_temp_new_i64(); if (ctx->hflags & MIPS_HFLAG_BMASK) { #ifdef MIPS_DEBUG_DISAS LOG_DISAS("Branch in delay / forbidden slot at PC 0x" TARGET_FMT_lx "\n", ctx->base.pc_next); #endif gen_reserved_instruction(ctx); goto out; } gen_load_fpr64(ctx, t0, ft); tcg_gen_andi_i64(t0, t0, 1); btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); switch (op) { case OPC_BC1EQZ: tcg_gen_xori_i64(t0, t0, 1); ctx->hflags |= MIPS_HFLAG_BC; break; case OPC_BC1NEZ: /* t0 already set */ ctx->hflags |= MIPS_HFLAG_BC; break; default: MIPS_INVAL("cp1 cond branch"); gen_reserved_instruction(ctx); goto out; } tcg_gen_trunc_i64_tl(bcond, t0); ctx->btarget = btarget; switch (delayslot_size) { case 2: ctx->hflags |= MIPS_HFLAG_BDS16; break; case 4: ctx->hflags |= MIPS_HFLAG_BDS32; break; } out: tcg_temp_free_i64(t0); } /* Coprocessor 1 (FPU) */ #define FOP(func, fmt) (((fmt) << 21) | (func)) enum fopcode { OPC_ADD_S = FOP(0, FMT_S), OPC_SUB_S = FOP(1, FMT_S), OPC_MUL_S = FOP(2, FMT_S), OPC_DIV_S = FOP(3, FMT_S), OPC_SQRT_S = FOP(4, FMT_S), OPC_ABS_S = FOP(5, FMT_S), OPC_MOV_S = FOP(6, FMT_S), OPC_NEG_S = FOP(7, FMT_S), OPC_ROUND_L_S = FOP(8, FMT_S), OPC_TRUNC_L_S = FOP(9, FMT_S), OPC_CEIL_L_S = FOP(10, FMT_S), OPC_FLOOR_L_S = FOP(11, FMT_S), OPC_ROUND_W_S = FOP(12, FMT_S), OPC_TRUNC_W_S = FOP(13, FMT_S), OPC_CEIL_W_S = FOP(14, FMT_S), OPC_FLOOR_W_S = FOP(15, FMT_S), OPC_SEL_S = FOP(16, FMT_S), OPC_MOVCF_S = FOP(17, FMT_S), OPC_MOVZ_S = FOP(18, FMT_S), OPC_MOVN_S = FOP(19, FMT_S), OPC_SELEQZ_S = FOP(20, FMT_S), OPC_RECIP_S = FOP(21, FMT_S), OPC_RSQRT_S = FOP(22, FMT_S), OPC_SELNEZ_S = FOP(23, FMT_S), OPC_MADDF_S = FOP(24, FMT_S), OPC_MSUBF_S = FOP(25, FMT_S), OPC_RINT_S = FOP(26, FMT_S), OPC_CLASS_S = FOP(27, FMT_S), OPC_MIN_S = FOP(28, FMT_S), OPC_RECIP2_S = FOP(28, FMT_S), OPC_MINA_S = FOP(29, FMT_S), OPC_RECIP1_S = FOP(29, FMT_S), OPC_MAX_S = FOP(30, FMT_S), OPC_RSQRT1_S = FOP(30, FMT_S), OPC_MAXA_S = FOP(31, FMT_S), OPC_RSQRT2_S = FOP(31, FMT_S), OPC_CVT_D_S = FOP(33, FMT_S), OPC_CVT_W_S = FOP(36, FMT_S), OPC_CVT_L_S = FOP(37, FMT_S), OPC_CVT_PS_S = FOP(38, FMT_S), OPC_CMP_F_S = FOP(48, FMT_S), OPC_CMP_UN_S = FOP(49, FMT_S), OPC_CMP_EQ_S = FOP(50, FMT_S), OPC_CMP_UEQ_S = FOP(51, FMT_S), OPC_CMP_OLT_S = FOP(52, FMT_S), OPC_CMP_ULT_S = FOP(53, FMT_S), OPC_CMP_OLE_S = FOP(54, FMT_S), OPC_CMP_ULE_S = FOP(55, FMT_S), OPC_CMP_SF_S = FOP(56, FMT_S), OPC_CMP_NGLE_S = FOP(57, FMT_S), OPC_CMP_SEQ_S = FOP(58, FMT_S), OPC_CMP_NGL_S = FOP(59, FMT_S), OPC_CMP_LT_S = FOP(60, FMT_S), OPC_CMP_NGE_S = FOP(61, FMT_S), OPC_CMP_LE_S = FOP(62, FMT_S), OPC_CMP_NGT_S = FOP(63, FMT_S), OPC_ADD_D = FOP(0, FMT_D), OPC_SUB_D = FOP(1, FMT_D), OPC_MUL_D = FOP(2, FMT_D), OPC_DIV_D = FOP(3, FMT_D), OPC_SQRT_D = FOP(4, FMT_D), OPC_ABS_D = FOP(5, FMT_D), OPC_MOV_D = FOP(6, FMT_D), OPC_NEG_D = FOP(7, FMT_D), OPC_ROUND_L_D = FOP(8, FMT_D), OPC_TRUNC_L_D = FOP(9, FMT_D), OPC_CEIL_L_D = FOP(10, FMT_D), OPC_FLOOR_L_D = FOP(11, FMT_D), OPC_ROUND_W_D = FOP(12, FMT_D), OPC_TRUNC_W_D = FOP(13, FMT_D), OPC_CEIL_W_D = FOP(14, FMT_D), OPC_FLOOR_W_D = FOP(15, FMT_D), OPC_SEL_D = FOP(16, FMT_D), OPC_MOVCF_D = FOP(17, FMT_D), OPC_MOVZ_D = FOP(18, FMT_D), OPC_MOVN_D = FOP(19, FMT_D), OPC_SELEQZ_D = FOP(20, FMT_D), OPC_RECIP_D = FOP(21, FMT_D), OPC_RSQRT_D = FOP(22, FMT_D), OPC_SELNEZ_D = FOP(23, FMT_D), OPC_MADDF_D = FOP(24, FMT_D), OPC_MSUBF_D = FOP(25, FMT_D), OPC_RINT_D = FOP(26, FMT_D), OPC_CLASS_D = FOP(27, FMT_D), OPC_MIN_D = FOP(28, FMT_D), OPC_RECIP2_D = FOP(28, FMT_D), OPC_MINA_D = FOP(29, FMT_D), OPC_RECIP1_D = FOP(29, FMT_D), OPC_MAX_D = FOP(30, FMT_D), OPC_RSQRT1_D = FOP(30, FMT_D), OPC_MAXA_D = FOP(31, FMT_D), OPC_RSQRT2_D = FOP(31, FMT_D), OPC_CVT_S_D = FOP(32, FMT_D), OPC_CVT_W_D = FOP(36, FMT_D), OPC_CVT_L_D = FOP(37, FMT_D), OPC_CMP_F_D = FOP(48, FMT_D), OPC_CMP_UN_D = FOP(49, FMT_D), OPC_CMP_EQ_D = FOP(50, FMT_D), OPC_CMP_UEQ_D = FOP(51, FMT_D), OPC_CMP_OLT_D = FOP(52, FMT_D), OPC_CMP_ULT_D = FOP(53, FMT_D), OPC_CMP_OLE_D = FOP(54, FMT_D), OPC_CMP_ULE_D = FOP(55, FMT_D), OPC_CMP_SF_D = FOP(56, FMT_D), OPC_CMP_NGLE_D = FOP(57, FMT_D), OPC_CMP_SEQ_D = FOP(58, FMT_D), OPC_CMP_NGL_D = FOP(59, FMT_D), OPC_CMP_LT_D = FOP(60, FMT_D), OPC_CMP_NGE_D = FOP(61, FMT_D), OPC_CMP_LE_D = FOP(62, FMT_D), OPC_CMP_NGT_D = FOP(63, FMT_D), OPC_CVT_S_W = FOP(32, FMT_W), OPC_CVT_D_W = FOP(33, FMT_W), OPC_CVT_S_L = FOP(32, FMT_L), OPC_CVT_D_L = FOP(33, FMT_L), OPC_CVT_PS_PW = FOP(38, FMT_W), OPC_ADD_PS = FOP(0, FMT_PS), OPC_SUB_PS = FOP(1, FMT_PS), OPC_MUL_PS = FOP(2, FMT_PS), OPC_DIV_PS = FOP(3, FMT_PS), OPC_ABS_PS = FOP(5, FMT_PS), OPC_MOV_PS = FOP(6, FMT_PS), OPC_NEG_PS = FOP(7, FMT_PS), OPC_MOVCF_PS = FOP(17, FMT_PS), OPC_MOVZ_PS = FOP(18, FMT_PS), OPC_MOVN_PS = FOP(19, FMT_PS), OPC_ADDR_PS = FOP(24, FMT_PS), OPC_MULR_PS = FOP(26, FMT_PS), OPC_RECIP2_PS = FOP(28, FMT_PS), OPC_RECIP1_PS = FOP(29, FMT_PS), OPC_RSQRT1_PS = FOP(30, FMT_PS), OPC_RSQRT2_PS = FOP(31, FMT_PS), OPC_CVT_S_PU = FOP(32, FMT_PS), OPC_CVT_PW_PS = FOP(36, FMT_PS), OPC_CVT_S_PL = FOP(40, FMT_PS), OPC_PLL_PS = FOP(44, FMT_PS), OPC_PLU_PS = FOP(45, FMT_PS), OPC_PUL_PS = FOP(46, FMT_PS), OPC_PUU_PS = FOP(47, FMT_PS), OPC_CMP_F_PS = FOP(48, FMT_PS), OPC_CMP_UN_PS = FOP(49, FMT_PS), OPC_CMP_EQ_PS = FOP(50, FMT_PS), OPC_CMP_UEQ_PS = FOP(51, FMT_PS), OPC_CMP_OLT_PS = FOP(52, FMT_PS), OPC_CMP_ULT_PS = FOP(53, FMT_PS), OPC_CMP_OLE_PS = FOP(54, FMT_PS), OPC_CMP_ULE_PS = FOP(55, FMT_PS), OPC_CMP_SF_PS = FOP(56, FMT_PS), OPC_CMP_NGLE_PS = FOP(57, FMT_PS), OPC_CMP_SEQ_PS = FOP(58, FMT_PS), OPC_CMP_NGL_PS = FOP(59, FMT_PS), OPC_CMP_LT_PS = FOP(60, FMT_PS), OPC_CMP_NGE_PS = FOP(61, FMT_PS), OPC_CMP_LE_PS = FOP(62, FMT_PS), OPC_CMP_NGT_PS = FOP(63, FMT_PS), }; enum r6_f_cmp_op { R6_OPC_CMP_AF_S = FOP(0, FMT_W), R6_OPC_CMP_UN_S = FOP(1, FMT_W), R6_OPC_CMP_EQ_S = FOP(2, FMT_W), R6_OPC_CMP_UEQ_S = FOP(3, FMT_W), R6_OPC_CMP_LT_S = FOP(4, FMT_W), R6_OPC_CMP_ULT_S = FOP(5, FMT_W), R6_OPC_CMP_LE_S = FOP(6, FMT_W), R6_OPC_CMP_ULE_S = FOP(7, FMT_W), R6_OPC_CMP_SAF_S = FOP(8, FMT_W), R6_OPC_CMP_SUN_S = FOP(9, FMT_W), R6_OPC_CMP_SEQ_S = FOP(10, FMT_W), R6_OPC_CMP_SEUQ_S = FOP(11, FMT_W), R6_OPC_CMP_SLT_S = FOP(12, FMT_W), R6_OPC_CMP_SULT_S = FOP(13, FMT_W), R6_OPC_CMP_SLE_S = FOP(14, FMT_W), R6_OPC_CMP_SULE_S = FOP(15, FMT_W), R6_OPC_CMP_OR_S = FOP(17, FMT_W), R6_OPC_CMP_UNE_S = FOP(18, FMT_W), R6_OPC_CMP_NE_S = FOP(19, FMT_W), R6_OPC_CMP_SOR_S = FOP(25, FMT_W), R6_OPC_CMP_SUNE_S = FOP(26, FMT_W), R6_OPC_CMP_SNE_S = FOP(27, FMT_W), R6_OPC_CMP_AF_D = FOP(0, FMT_L), R6_OPC_CMP_UN_D = FOP(1, FMT_L), R6_OPC_CMP_EQ_D = FOP(2, FMT_L), R6_OPC_CMP_UEQ_D = FOP(3, FMT_L), R6_OPC_CMP_LT_D = FOP(4, FMT_L), R6_OPC_CMP_ULT_D = FOP(5, FMT_L), R6_OPC_CMP_LE_D = FOP(6, FMT_L), R6_OPC_CMP_ULE_D = FOP(7, FMT_L), R6_OPC_CMP_SAF_D = FOP(8, FMT_L), R6_OPC_CMP_SUN_D = FOP(9, FMT_L), R6_OPC_CMP_SEQ_D = FOP(10, FMT_L), R6_OPC_CMP_SEUQ_D = FOP(11, FMT_L), R6_OPC_CMP_SLT_D = FOP(12, FMT_L), R6_OPC_CMP_SULT_D = FOP(13, FMT_L), R6_OPC_CMP_SLE_D = FOP(14, FMT_L), R6_OPC_CMP_SULE_D = FOP(15, FMT_L), R6_OPC_CMP_OR_D = FOP(17, FMT_L), R6_OPC_CMP_UNE_D = FOP(18, FMT_L), R6_OPC_CMP_NE_D = FOP(19, FMT_L), R6_OPC_CMP_SOR_D = FOP(25, FMT_L), R6_OPC_CMP_SUNE_D = FOP(26, FMT_L), R6_OPC_CMP_SNE_D = FOP(27, FMT_L), }; static void gen_cp1(DisasContext *ctx, uint32_t opc, int rt, int fs) { TCGv t0 = tcg_temp_new(); switch (opc) { case OPC_MFC1: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); tcg_gen_ext_i32_tl(t0, fp0); tcg_temp_free_i32(fp0); } gen_store_gpr(t0, rt); break; case OPC_MTC1: gen_load_gpr(t0, rt); { TCGv_i32 fp0 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(fp0, t0); gen_store_fpr32(ctx, fp0, fs); tcg_temp_free_i32(fp0); } break; case OPC_CFC1: gen_helper_1e0i(cfc1, t0, fs); gen_store_gpr(t0, rt); break; case OPC_CTC1: gen_load_gpr(t0, rt); save_cpu_state(ctx, 0); { TCGv_i32 fs_tmp = tcg_const_i32(fs); gen_helper_0e2i(ctc1, t0, fs_tmp, rt); tcg_temp_free_i32(fs_tmp); } /* Stop translation as we may have changed hflags */ ctx->base.is_jmp = DISAS_STOP; break; #if defined(TARGET_MIPS64) case OPC_DMFC1: gen_load_fpr64(ctx, t0, fs); gen_store_gpr(t0, rt); break; case OPC_DMTC1: gen_load_gpr(t0, rt); gen_store_fpr64(ctx, t0, fs); break; #endif case OPC_MFHC1: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32h(ctx, fp0, fs); tcg_gen_ext_i32_tl(t0, fp0); tcg_temp_free_i32(fp0); } gen_store_gpr(t0, rt); break; case OPC_MTHC1: gen_load_gpr(t0, rt); { TCGv_i32 fp0 = tcg_temp_new_i32(); tcg_gen_trunc_tl_i32(fp0, t0); gen_store_fpr32h(ctx, fp0, fs); tcg_temp_free_i32(fp0); } break; default: MIPS_INVAL("cp1 move"); gen_reserved_instruction(ctx); goto out; } out: tcg_temp_free(t0); } static void gen_movci(DisasContext *ctx, int rd, int rs, int cc, int tf) { TCGLabel *l1; TCGCond cond; TCGv_i32 t0; if (rd == 0) { /* Treat as NOP. */ return; } if (tf) { cond = TCG_COND_EQ; } else { cond = TCG_COND_NE; } l1 = gen_new_label(); t0 = tcg_temp_new_i32(); tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc)); tcg_gen_brcondi_i32(cond, t0, 0, l1); tcg_temp_free_i32(t0); if (rs == 0) { tcg_gen_movi_tl(cpu_gpr[rd], 0); } else { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]); } gen_set_label(l1); } static inline void gen_movcf_s(DisasContext *ctx, int fs, int fd, int cc, int tf) { int cond; TCGv_i32 t0 = tcg_temp_new_i32(); TCGLabel *l1 = gen_new_label(); if (tf) { cond = TCG_COND_EQ; } else { cond = TCG_COND_NE; } tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc)); tcg_gen_brcondi_i32(cond, t0, 0, l1); gen_load_fpr32(ctx, t0, fs); gen_store_fpr32(ctx, t0, fd); gen_set_label(l1); tcg_temp_free_i32(t0); } static inline void gen_movcf_d(DisasContext *ctx, int fs, int fd, int cc, int tf) { int cond; TCGv_i32 t0 = tcg_temp_new_i32(); TCGv_i64 fp0; TCGLabel *l1 = gen_new_label(); if (tf) { cond = TCG_COND_EQ; } else { cond = TCG_COND_NE; } tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc)); tcg_gen_brcondi_i32(cond, t0, 0, l1); tcg_temp_free_i32(t0); fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); gen_set_label(l1); } static inline void gen_movcf_ps(DisasContext *ctx, int fs, int fd, int cc, int tf) { int cond; TCGv_i32 t0 = tcg_temp_new_i32(); TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); if (tf) { cond = TCG_COND_EQ; } else { cond = TCG_COND_NE; } tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc)); tcg_gen_brcondi_i32(cond, t0, 0, l1); gen_load_fpr32(ctx, t0, fs); gen_store_fpr32(ctx, t0, fd); gen_set_label(l1); tcg_gen_andi_i32(t0, fpu_fcr31, 1 << get_fp_bit(cc + 1)); tcg_gen_brcondi_i32(cond, t0, 0, l2); gen_load_fpr32h(ctx, t0, fs); gen_store_fpr32h(ctx, t0, fd); tcg_temp_free_i32(t0); gen_set_label(l2); } static void gen_sel_s(DisasContext *ctx, enum fopcode op1, int fd, int ft, int fs) { TCGv_i32 t1 = tcg_const_i32(0); TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); TCGv_i32 fp2 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fd); gen_load_fpr32(ctx, fp1, ft); gen_load_fpr32(ctx, fp2, fs); switch (op1) { case OPC_SEL_S: tcg_gen_andi_i32(fp0, fp0, 1); tcg_gen_movcond_i32(TCG_COND_NE, fp0, fp0, t1, fp1, fp2); break; case OPC_SELEQZ_S: tcg_gen_andi_i32(fp1, fp1, 1); tcg_gen_movcond_i32(TCG_COND_EQ, fp0, fp1, t1, fp2, t1); break; case OPC_SELNEZ_S: tcg_gen_andi_i32(fp1, fp1, 1); tcg_gen_movcond_i32(TCG_COND_NE, fp0, fp1, t1, fp2, t1); break; default: MIPS_INVAL("gen_sel_s"); gen_reserved_instruction(ctx); break; } gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp2); tcg_temp_free_i32(fp1); tcg_temp_free_i32(fp0); tcg_temp_free_i32(t1); } static void gen_sel_d(DisasContext *ctx, enum fopcode op1, int fd, int ft, int fs) { TCGv_i64 t1 = tcg_const_i64(0); TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fd); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fs); switch (op1) { case OPC_SEL_D: tcg_gen_andi_i64(fp0, fp0, 1); tcg_gen_movcond_i64(TCG_COND_NE, fp0, fp0, t1, fp1, fp2); break; case OPC_SELEQZ_D: tcg_gen_andi_i64(fp1, fp1, 1); tcg_gen_movcond_i64(TCG_COND_EQ, fp0, fp1, t1, fp2, t1); break; case OPC_SELNEZ_D: tcg_gen_andi_i64(fp1, fp1, 1); tcg_gen_movcond_i64(TCG_COND_NE, fp0, fp1, t1, fp2, t1); break; default: MIPS_INVAL("gen_sel_d"); gen_reserved_instruction(ctx); break; } gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp2); tcg_temp_free_i64(fp1); tcg_temp_free_i64(fp0); tcg_temp_free_i64(t1); } static void gen_farith(DisasContext *ctx, enum fopcode op1, int ft, int fs, int fd, int cc) { uint32_t func = ctx->opcode & 0x3f; switch (op1) { case OPC_ADD_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_add_s(fp0, cpu_env, fp0, fp1); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_SUB_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_sub_s(fp0, cpu_env, fp0, fp1); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_MUL_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_mul_s(fp0, cpu_env, fp0, fp1); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_DIV_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_div_s(fp0, cpu_env, fp0, fp1); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_SQRT_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_helper_float_sqrt_s(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_ABS_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); if (ctx->abs2008) { tcg_gen_andi_i32(fp0, fp0, 0x7fffffffUL); } else { gen_helper_float_abs_s(fp0, fp0); } gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_MOV_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_NEG_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); if (ctx->abs2008) { tcg_gen_xori_i32(fp0, fp0, 1UL << 31); } else { gen_helper_float_chs_s(fp0, fp0); } gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_ROUND_L_S: check_cp1_64bitmode(ctx); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr32(ctx, fp32, fs); if (ctx->nan2008) { gen_helper_float_round_2008_l_s(fp64, cpu_env, fp32); } else { gen_helper_float_round_l_s(fp64, cpu_env, fp32); } tcg_temp_free_i32(fp32); gen_store_fpr64(ctx, fp64, fd); tcg_temp_free_i64(fp64); } break; case OPC_TRUNC_L_S: check_cp1_64bitmode(ctx); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr32(ctx, fp32, fs); if (ctx->nan2008) { gen_helper_float_trunc_2008_l_s(fp64, cpu_env, fp32); } else { gen_helper_float_trunc_l_s(fp64, cpu_env, fp32); } tcg_temp_free_i32(fp32); gen_store_fpr64(ctx, fp64, fd); tcg_temp_free_i64(fp64); } break; case OPC_CEIL_L_S: check_cp1_64bitmode(ctx); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr32(ctx, fp32, fs); if (ctx->nan2008) { gen_helper_float_ceil_2008_l_s(fp64, cpu_env, fp32); } else { gen_helper_float_ceil_l_s(fp64, cpu_env, fp32); } tcg_temp_free_i32(fp32); gen_store_fpr64(ctx, fp64, fd); tcg_temp_free_i64(fp64); } break; case OPC_FLOOR_L_S: check_cp1_64bitmode(ctx); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr32(ctx, fp32, fs); if (ctx->nan2008) { gen_helper_float_floor_2008_l_s(fp64, cpu_env, fp32); } else { gen_helper_float_floor_l_s(fp64, cpu_env, fp32); } tcg_temp_free_i32(fp32); gen_store_fpr64(ctx, fp64, fd); tcg_temp_free_i64(fp64); } break; case OPC_ROUND_W_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_round_2008_w_s(fp0, cpu_env, fp0); } else { gen_helper_float_round_w_s(fp0, cpu_env, fp0); } gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_TRUNC_W_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_trunc_2008_w_s(fp0, cpu_env, fp0); } else { gen_helper_float_trunc_w_s(fp0, cpu_env, fp0); } gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_CEIL_W_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_ceil_2008_w_s(fp0, cpu_env, fp0); } else { gen_helper_float_ceil_w_s(fp0, cpu_env, fp0); } gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_FLOOR_W_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_floor_2008_w_s(fp0, cpu_env, fp0); } else { gen_helper_float_floor_w_s(fp0, cpu_env, fp0); } gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_SEL_S: check_insn(ctx, ISA_MIPS_R6); gen_sel_s(ctx, op1, fd, ft, fs); break; case OPC_SELEQZ_S: check_insn(ctx, ISA_MIPS_R6); gen_sel_s(ctx, op1, fd, ft, fs); break; case OPC_SELNEZ_S: check_insn(ctx, ISA_MIPS_R6); gen_sel_s(ctx, op1, fd, ft, fs); break; case OPC_MOVCF_S: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_movcf_s(ctx, fs, fd, (ft >> 2) & 0x7, ft & 0x1); break; case OPC_MOVZ_S: check_insn_opc_removed(ctx, ISA_MIPS_R6); { TCGLabel *l1 = gen_new_label(); TCGv_i32 fp0; if (ft != 0) { tcg_gen_brcondi_tl(TCG_COND_NE, cpu_gpr[ft], 0, l1); } fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); gen_set_label(l1); } break; case OPC_MOVN_S: check_insn_opc_removed(ctx, ISA_MIPS_R6); { TCGLabel *l1 = gen_new_label(); TCGv_i32 fp0; if (ft != 0) { tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_gpr[ft], 0, l1); fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); gen_set_label(l1); } } break; case OPC_RECIP_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_helper_float_recip_s(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_RSQRT_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_helper_float_rsqrt_s(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_MADDF_S: check_insn(ctx, ISA_MIPS_R6); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); TCGv_i32 fp2 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_load_fpr32(ctx, fp2, fd); gen_helper_float_maddf_s(fp2, cpu_env, fp0, fp1, fp2); gen_store_fpr32(ctx, fp2, fd); tcg_temp_free_i32(fp2); tcg_temp_free_i32(fp1); tcg_temp_free_i32(fp0); } break; case OPC_MSUBF_S: check_insn(ctx, ISA_MIPS_R6); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); TCGv_i32 fp2 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_load_fpr32(ctx, fp2, fd); gen_helper_float_msubf_s(fp2, cpu_env, fp0, fp1, fp2); gen_store_fpr32(ctx, fp2, fd); tcg_temp_free_i32(fp2); tcg_temp_free_i32(fp1); tcg_temp_free_i32(fp0); } break; case OPC_RINT_S: check_insn(ctx, ISA_MIPS_R6); { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_helper_float_rint_s(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_CLASS_S: check_insn(ctx, ISA_MIPS_R6); { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_helper_float_class_s(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_MIN_S: /* OPC_RECIP2_S */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_MIN_S */ TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); TCGv_i32 fp2 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_min_s(fp2, cpu_env, fp0, fp1); gen_store_fpr32(ctx, fp2, fd); tcg_temp_free_i32(fp2); tcg_temp_free_i32(fp1); tcg_temp_free_i32(fp0); } else { /* OPC_RECIP2_S */ check_cp1_64bitmode(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_recip2_s(fp0, cpu_env, fp0, fp1); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } } break; case OPC_MINA_S: /* OPC_RECIP1_S */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_MINA_S */ TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); TCGv_i32 fp2 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_mina_s(fp2, cpu_env, fp0, fp1); gen_store_fpr32(ctx, fp2, fd); tcg_temp_free_i32(fp2); tcg_temp_free_i32(fp1); tcg_temp_free_i32(fp0); } else { /* OPC_RECIP1_S */ check_cp1_64bitmode(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_helper_float_recip1_s(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } } break; case OPC_MAX_S: /* OPC_RSQRT1_S */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_MAX_S */ TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_max_s(fp1, cpu_env, fp0, fp1); gen_store_fpr32(ctx, fp1, fd); tcg_temp_free_i32(fp1); tcg_temp_free_i32(fp0); } else { /* OPC_RSQRT1_S */ check_cp1_64bitmode(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_helper_float_rsqrt1_s(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } } break; case OPC_MAXA_S: /* OPC_RSQRT2_S */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_MAXA_S */ TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_maxa_s(fp1, cpu_env, fp0, fp1); gen_store_fpr32(ctx, fp1, fd); tcg_temp_free_i32(fp1); tcg_temp_free_i32(fp0); } else { /* OPC_RSQRT2_S */ check_cp1_64bitmode(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_helper_float_rsqrt2_s(fp0, cpu_env, fp0, fp1); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } } break; case OPC_CVT_D_S: check_cp1_registers(ctx, fd); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr32(ctx, fp32, fs); gen_helper_float_cvtd_s(fp64, cpu_env, fp32); tcg_temp_free_i32(fp32); gen_store_fpr64(ctx, fp64, fd); tcg_temp_free_i64(fp64); } break; case OPC_CVT_W_S: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_cvt_2008_w_s(fp0, cpu_env, fp0); } else { gen_helper_float_cvt_w_s(fp0, cpu_env, fp0); } gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_CVT_L_S: check_cp1_64bitmode(ctx); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr32(ctx, fp32, fs); if (ctx->nan2008) { gen_helper_float_cvt_2008_l_s(fp64, cpu_env, fp32); } else { gen_helper_float_cvt_l_s(fp64, cpu_env, fp32); } tcg_temp_free_i32(fp32); gen_store_fpr64(ctx, fp64, fd); tcg_temp_free_i64(fp64); } break; case OPC_CVT_PS_S: check_ps(ctx); { TCGv_i64 fp64 = tcg_temp_new_i64(); TCGv_i32 fp32_0 = tcg_temp_new_i32(); TCGv_i32 fp32_1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp32_0, fs); gen_load_fpr32(ctx, fp32_1, ft); tcg_gen_concat_i32_i64(fp64, fp32_1, fp32_0); tcg_temp_free_i32(fp32_1); tcg_temp_free_i32(fp32_0); gen_store_fpr64(ctx, fp64, fd); tcg_temp_free_i64(fp64); } break; case OPC_CMP_F_S: case OPC_CMP_UN_S: case OPC_CMP_EQ_S: case OPC_CMP_UEQ_S: case OPC_CMP_OLT_S: case OPC_CMP_ULT_S: case OPC_CMP_OLE_S: case OPC_CMP_ULE_S: case OPC_CMP_SF_S: case OPC_CMP_NGLE_S: case OPC_CMP_SEQ_S: case OPC_CMP_NGL_S: case OPC_CMP_LT_S: case OPC_CMP_NGE_S: case OPC_CMP_LE_S: case OPC_CMP_NGT_S: check_insn_opc_removed(ctx, ISA_MIPS_R6); if (ctx->opcode & (1 << 6)) { gen_cmpabs_s(ctx, func - 48, ft, fs, cc); } else { gen_cmp_s(ctx, func - 48, ft, fs, cc); } break; case OPC_ADD_D: check_cp1_registers(ctx, fs | ft | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_add_d(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_SUB_D: check_cp1_registers(ctx, fs | ft | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_sub_d(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_MUL_D: check_cp1_registers(ctx, fs | ft | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_mul_d(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_DIV_D: check_cp1_registers(ctx, fs | ft | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_div_d(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_SQRT_D: check_cp1_registers(ctx, fs | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_sqrt_d(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_ABS_D: check_cp1_registers(ctx, fs | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); if (ctx->abs2008) { tcg_gen_andi_i64(fp0, fp0, 0x7fffffffffffffffULL); } else { gen_helper_float_abs_d(fp0, fp0); } gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_MOV_D: check_cp1_registers(ctx, fs | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_NEG_D: check_cp1_registers(ctx, fs | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); if (ctx->abs2008) { tcg_gen_xori_i64(fp0, fp0, 1ULL << 63); } else { gen_helper_float_chs_d(fp0, fp0); } gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_ROUND_L_D: check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_round_2008_l_d(fp0, cpu_env, fp0); } else { gen_helper_float_round_l_d(fp0, cpu_env, fp0); } gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_TRUNC_L_D: check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_trunc_2008_l_d(fp0, cpu_env, fp0); } else { gen_helper_float_trunc_l_d(fp0, cpu_env, fp0); } gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_CEIL_L_D: check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_ceil_2008_l_d(fp0, cpu_env, fp0); } else { gen_helper_float_ceil_l_d(fp0, cpu_env, fp0); } gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_FLOOR_L_D: check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_floor_2008_l_d(fp0, cpu_env, fp0); } else { gen_helper_float_floor_l_d(fp0, cpu_env, fp0); } gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_ROUND_W_D: check_cp1_registers(ctx, fs); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp64, fs); if (ctx->nan2008) { gen_helper_float_round_2008_w_d(fp32, cpu_env, fp64); } else { gen_helper_float_round_w_d(fp32, cpu_env, fp64); } tcg_temp_free_i64(fp64); gen_store_fpr32(ctx, fp32, fd); tcg_temp_free_i32(fp32); } break; case OPC_TRUNC_W_D: check_cp1_registers(ctx, fs); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp64, fs); if (ctx->nan2008) { gen_helper_float_trunc_2008_w_d(fp32, cpu_env, fp64); } else { gen_helper_float_trunc_w_d(fp32, cpu_env, fp64); } tcg_temp_free_i64(fp64); gen_store_fpr32(ctx, fp32, fd); tcg_temp_free_i32(fp32); } break; case OPC_CEIL_W_D: check_cp1_registers(ctx, fs); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp64, fs); if (ctx->nan2008) { gen_helper_float_ceil_2008_w_d(fp32, cpu_env, fp64); } else { gen_helper_float_ceil_w_d(fp32, cpu_env, fp64); } tcg_temp_free_i64(fp64); gen_store_fpr32(ctx, fp32, fd); tcg_temp_free_i32(fp32); } break; case OPC_FLOOR_W_D: check_cp1_registers(ctx, fs); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp64, fs); if (ctx->nan2008) { gen_helper_float_floor_2008_w_d(fp32, cpu_env, fp64); } else { gen_helper_float_floor_w_d(fp32, cpu_env, fp64); } tcg_temp_free_i64(fp64); gen_store_fpr32(ctx, fp32, fd); tcg_temp_free_i32(fp32); } break; case OPC_SEL_D: check_insn(ctx, ISA_MIPS_R6); gen_sel_d(ctx, op1, fd, ft, fs); break; case OPC_SELEQZ_D: check_insn(ctx, ISA_MIPS_R6); gen_sel_d(ctx, op1, fd, ft, fs); break; case OPC_SELNEZ_D: check_insn(ctx, ISA_MIPS_R6); gen_sel_d(ctx, op1, fd, ft, fs); break; case OPC_MOVCF_D: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_movcf_d(ctx, fs, fd, (ft >> 2) & 0x7, ft & 0x1); break; case OPC_MOVZ_D: check_insn_opc_removed(ctx, ISA_MIPS_R6); { TCGLabel *l1 = gen_new_label(); TCGv_i64 fp0; if (ft != 0) { tcg_gen_brcondi_tl(TCG_COND_NE, cpu_gpr[ft], 0, l1); } fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); gen_set_label(l1); } break; case OPC_MOVN_D: check_insn_opc_removed(ctx, ISA_MIPS_R6); { TCGLabel *l1 = gen_new_label(); TCGv_i64 fp0; if (ft != 0) { tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_gpr[ft], 0, l1); fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); gen_set_label(l1); } } break; case OPC_RECIP_D: check_cp1_registers(ctx, fs | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_recip_d(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_RSQRT_D: check_cp1_registers(ctx, fs | fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_rsqrt_d(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_MADDF_D: check_insn(ctx, ISA_MIPS_R6); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fd); gen_helper_float_maddf_d(fp2, cpu_env, fp0, fp1, fp2); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); tcg_temp_free_i64(fp1); tcg_temp_free_i64(fp0); } break; case OPC_MSUBF_D: check_insn(ctx, ISA_MIPS_R6); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fd); gen_helper_float_msubf_d(fp2, cpu_env, fp0, fp1, fp2); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); tcg_temp_free_i64(fp1); tcg_temp_free_i64(fp0); } break; case OPC_RINT_D: check_insn(ctx, ISA_MIPS_R6); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_rint_d(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_CLASS_D: check_insn(ctx, ISA_MIPS_R6); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_class_d(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_MIN_D: /* OPC_RECIP2_D */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_MIN_D */ TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_min_d(fp1, cpu_env, fp0, fp1); gen_store_fpr64(ctx, fp1, fd); tcg_temp_free_i64(fp1); tcg_temp_free_i64(fp0); } else { /* OPC_RECIP2_D */ check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_recip2_d(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } } break; case OPC_MINA_D: /* OPC_RECIP1_D */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_MINA_D */ TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_mina_d(fp1, cpu_env, fp0, fp1); gen_store_fpr64(ctx, fp1, fd); tcg_temp_free_i64(fp1); tcg_temp_free_i64(fp0); } else { /* OPC_RECIP1_D */ check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_recip1_d(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } } break; case OPC_MAX_D: /* OPC_RSQRT1_D */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_MAX_D */ TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_max_d(fp1, cpu_env, fp0, fp1); gen_store_fpr64(ctx, fp1, fd); tcg_temp_free_i64(fp1); tcg_temp_free_i64(fp0); } else { /* OPC_RSQRT1_D */ check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_rsqrt1_d(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } } break; case OPC_MAXA_D: /* OPC_RSQRT2_D */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_MAXA_D */ TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_maxa_d(fp1, cpu_env, fp0, fp1); gen_store_fpr64(ctx, fp1, fd); tcg_temp_free_i64(fp1); tcg_temp_free_i64(fp0); } else { /* OPC_RSQRT2_D */ check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_rsqrt2_d(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } } break; case OPC_CMP_F_D: case OPC_CMP_UN_D: case OPC_CMP_EQ_D: case OPC_CMP_UEQ_D: case OPC_CMP_OLT_D: case OPC_CMP_ULT_D: case OPC_CMP_OLE_D: case OPC_CMP_ULE_D: case OPC_CMP_SF_D: case OPC_CMP_NGLE_D: case OPC_CMP_SEQ_D: case OPC_CMP_NGL_D: case OPC_CMP_LT_D: case OPC_CMP_NGE_D: case OPC_CMP_LE_D: case OPC_CMP_NGT_D: check_insn_opc_removed(ctx, ISA_MIPS_R6); if (ctx->opcode & (1 << 6)) { gen_cmpabs_d(ctx, func - 48, ft, fs, cc); } else { gen_cmp_d(ctx, func - 48, ft, fs, cc); } break; case OPC_CVT_S_D: check_cp1_registers(ctx, fs); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp64, fs); gen_helper_float_cvts_d(fp32, cpu_env, fp64); tcg_temp_free_i64(fp64); gen_store_fpr32(ctx, fp32, fd); tcg_temp_free_i32(fp32); } break; case OPC_CVT_W_D: check_cp1_registers(ctx, fs); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp64, fs); if (ctx->nan2008) { gen_helper_float_cvt_2008_w_d(fp32, cpu_env, fp64); } else { gen_helper_float_cvt_w_d(fp32, cpu_env, fp64); } tcg_temp_free_i64(fp64); gen_store_fpr32(ctx, fp32, fd); tcg_temp_free_i32(fp32); } break; case OPC_CVT_L_D: check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); if (ctx->nan2008) { gen_helper_float_cvt_2008_l_d(fp0, cpu_env, fp0); } else { gen_helper_float_cvt_l_d(fp0, cpu_env, fp0); } gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_CVT_S_W: { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_helper_float_cvts_w(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_CVT_D_W: check_cp1_registers(ctx, fd); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr32(ctx, fp32, fs); gen_helper_float_cvtd_w(fp64, cpu_env, fp32); tcg_temp_free_i32(fp32); gen_store_fpr64(ctx, fp64, fd); tcg_temp_free_i64(fp64); } break; case OPC_CVT_S_L: check_cp1_64bitmode(ctx); { TCGv_i32 fp32 = tcg_temp_new_i32(); TCGv_i64 fp64 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp64, fs); gen_helper_float_cvts_l(fp32, cpu_env, fp64); tcg_temp_free_i64(fp64); gen_store_fpr32(ctx, fp32, fd); tcg_temp_free_i32(fp32); } break; case OPC_CVT_D_L: check_cp1_64bitmode(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_cvtd_l(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_CVT_PS_PW: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_cvtps_pw(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_ADD_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_add_ps(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_SUB_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_sub_ps(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_MUL_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_mul_ps(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_ABS_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_abs_ps(fp0, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_MOV_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_NEG_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_chs_ps(fp0, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_MOVCF_PS: check_ps(ctx); gen_movcf_ps(ctx, fs, fd, (ft >> 2) & 0x7, ft & 0x1); break; case OPC_MOVZ_PS: check_ps(ctx); { TCGLabel *l1 = gen_new_label(); TCGv_i64 fp0; if (ft != 0) { tcg_gen_brcondi_tl(TCG_COND_NE, cpu_gpr[ft], 0, l1); } fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); gen_set_label(l1); } break; case OPC_MOVN_PS: check_ps(ctx); { TCGLabel *l1 = gen_new_label(); TCGv_i64 fp0; if (ft != 0) { tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_gpr[ft], 0, l1); fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); gen_set_label(l1); } } break; case OPC_ADDR_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, ft); gen_load_fpr64(ctx, fp1, fs); gen_helper_float_addr_ps(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_MULR_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, ft); gen_load_fpr64(ctx, fp1, fs); gen_helper_float_mulr_ps(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_RECIP2_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_recip2_ps(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_RECIP1_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_recip1_ps(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_RSQRT1_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_rsqrt1_ps(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_RSQRT2_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_helper_float_rsqrt2_ps(fp0, cpu_env, fp0, fp1); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_CVT_S_PU: check_cp1_64bitmode(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32h(ctx, fp0, fs); gen_helper_float_cvts_pu(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_CVT_PW_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_helper_float_cvtpw_ps(fp0, cpu_env, fp0); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_CVT_S_PL: check_cp1_64bitmode(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_helper_float_cvts_pl(fp0, cpu_env, fp0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_PLL_PS: check_ps(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_store_fpr32h(ctx, fp0, fd); gen_store_fpr32(ctx, fp1, fd); tcg_temp_free_i32(fp0); tcg_temp_free_i32(fp1); } break; case OPC_PLU_PS: check_ps(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32h(ctx, fp1, ft); gen_store_fpr32(ctx, fp1, fd); gen_store_fpr32h(ctx, fp0, fd); tcg_temp_free_i32(fp0); tcg_temp_free_i32(fp1); } break; case OPC_PUL_PS: check_ps(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32h(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_store_fpr32(ctx, fp1, fd); gen_store_fpr32h(ctx, fp0, fd); tcg_temp_free_i32(fp0); tcg_temp_free_i32(fp1); } break; case OPC_PUU_PS: check_ps(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); gen_load_fpr32h(ctx, fp0, fs); gen_load_fpr32h(ctx, fp1, ft); gen_store_fpr32(ctx, fp1, fd); gen_store_fpr32h(ctx, fp0, fd); tcg_temp_free_i32(fp0); tcg_temp_free_i32(fp1); } break; case OPC_CMP_F_PS: case OPC_CMP_UN_PS: case OPC_CMP_EQ_PS: case OPC_CMP_UEQ_PS: case OPC_CMP_OLT_PS: case OPC_CMP_ULT_PS: case OPC_CMP_OLE_PS: case OPC_CMP_ULE_PS: case OPC_CMP_SF_PS: case OPC_CMP_NGLE_PS: case OPC_CMP_SEQ_PS: case OPC_CMP_NGL_PS: case OPC_CMP_LT_PS: case OPC_CMP_NGE_PS: case OPC_CMP_LE_PS: case OPC_CMP_NGT_PS: if (ctx->opcode & (1 << 6)) { gen_cmpabs_ps(ctx, func - 48, ft, fs, cc); } else { gen_cmp_ps(ctx, func - 48, ft, fs, cc); } break; default: MIPS_INVAL("farith"); gen_reserved_instruction(ctx); return; } } /* Coprocessor 3 (FPU) */ static void gen_flt3_ldst(DisasContext *ctx, uint32_t opc, int fd, int fs, int base, int index) { TCGv t0 = tcg_temp_new(); if (base == 0) { gen_load_gpr(t0, index); } else if (index == 0) { gen_load_gpr(t0, base); } else { gen_op_addr_add(ctx, t0, cpu_gpr[base], cpu_gpr[index]); } /* * Don't do NOP if destination is zero: we must perform the actual * memory access. */ switch (opc) { case OPC_LWXC1: check_cop1x(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESL); tcg_gen_trunc_tl_i32(fp0, t0); gen_store_fpr32(ctx, fp0, fd); tcg_temp_free_i32(fp0); } break; case OPC_LDXC1: check_cop1x(ctx); check_cp1_registers(ctx, fd); { TCGv_i64 fp0 = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(fp0, t0, ctx->mem_idx, MO_TEQ); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_LUXC1: check_cp1_64bitmode(ctx); tcg_gen_andi_tl(t0, t0, ~0x7); { TCGv_i64 fp0 = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(fp0, t0, ctx->mem_idx, MO_TEQ); gen_store_fpr64(ctx, fp0, fd); tcg_temp_free_i64(fp0); } break; case OPC_SWXC1: check_cop1x(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); tcg_gen_qemu_st_i32(fp0, t0, ctx->mem_idx, MO_TEUL); tcg_temp_free_i32(fp0); } break; case OPC_SDXC1: check_cop1x(ctx); check_cp1_registers(ctx, fs); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); tcg_gen_qemu_st_i64(fp0, t0, ctx->mem_idx, MO_TEQ); tcg_temp_free_i64(fp0); } break; case OPC_SUXC1: check_cp1_64bitmode(ctx); tcg_gen_andi_tl(t0, t0, ~0x7); { TCGv_i64 fp0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); tcg_gen_qemu_st_i64(fp0, t0, ctx->mem_idx, MO_TEQ); tcg_temp_free_i64(fp0); } break; } tcg_temp_free(t0); } static void gen_flt3_arith(DisasContext *ctx, uint32_t opc, int fd, int fr, int fs, int ft) { switch (opc) { case OPC_ALNV_PS: check_ps(ctx); { TCGv t0 = tcg_temp_local_new(); TCGv_i32 fp = tcg_temp_new_i32(); TCGv_i32 fph = tcg_temp_new_i32(); TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); gen_load_gpr(t0, fr); tcg_gen_andi_tl(t0, t0, 0x7); tcg_gen_brcondi_tl(TCG_COND_NE, t0, 0, l1); gen_load_fpr32(ctx, fp, fs); gen_load_fpr32h(ctx, fph, fs); gen_store_fpr32(ctx, fp, fd); gen_store_fpr32h(ctx, fph, fd); tcg_gen_br(l2); gen_set_label(l1); tcg_gen_brcondi_tl(TCG_COND_NE, t0, 4, l2); tcg_temp_free(t0); #ifdef TARGET_WORDS_BIGENDIAN gen_load_fpr32(ctx, fp, fs); gen_load_fpr32h(ctx, fph, ft); gen_store_fpr32h(ctx, fp, fd); gen_store_fpr32(ctx, fph, fd); #else gen_load_fpr32h(ctx, fph, fs); gen_load_fpr32(ctx, fp, ft); gen_store_fpr32(ctx, fph, fd); gen_store_fpr32h(ctx, fp, fd); #endif gen_set_label(l2); tcg_temp_free_i32(fp); tcg_temp_free_i32(fph); } break; case OPC_MADD_S: check_cop1x(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); TCGv_i32 fp2 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_load_fpr32(ctx, fp2, fr); gen_helper_float_madd_s(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i32(fp0); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp2, fd); tcg_temp_free_i32(fp2); } break; case OPC_MADD_D: check_cop1x(ctx); check_cp1_registers(ctx, fd | fs | ft | fr); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fr); gen_helper_float_madd_d(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i64(fp0); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); } break; case OPC_MADD_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fr); gen_helper_float_madd_ps(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i64(fp0); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); } break; case OPC_MSUB_S: check_cop1x(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); TCGv_i32 fp2 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_load_fpr32(ctx, fp2, fr); gen_helper_float_msub_s(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i32(fp0); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp2, fd); tcg_temp_free_i32(fp2); } break; case OPC_MSUB_D: check_cop1x(ctx); check_cp1_registers(ctx, fd | fs | ft | fr); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fr); gen_helper_float_msub_d(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i64(fp0); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); } break; case OPC_MSUB_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fr); gen_helper_float_msub_ps(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i64(fp0); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); } break; case OPC_NMADD_S: check_cop1x(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); TCGv_i32 fp2 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_load_fpr32(ctx, fp2, fr); gen_helper_float_nmadd_s(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i32(fp0); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp2, fd); tcg_temp_free_i32(fp2); } break; case OPC_NMADD_D: check_cop1x(ctx); check_cp1_registers(ctx, fd | fs | ft | fr); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fr); gen_helper_float_nmadd_d(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i64(fp0); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); } break; case OPC_NMADD_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fr); gen_helper_float_nmadd_ps(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i64(fp0); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); } break; case OPC_NMSUB_S: check_cop1x(ctx); { TCGv_i32 fp0 = tcg_temp_new_i32(); TCGv_i32 fp1 = tcg_temp_new_i32(); TCGv_i32 fp2 = tcg_temp_new_i32(); gen_load_fpr32(ctx, fp0, fs); gen_load_fpr32(ctx, fp1, ft); gen_load_fpr32(ctx, fp2, fr); gen_helper_float_nmsub_s(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i32(fp0); tcg_temp_free_i32(fp1); gen_store_fpr32(ctx, fp2, fd); tcg_temp_free_i32(fp2); } break; case OPC_NMSUB_D: check_cop1x(ctx); check_cp1_registers(ctx, fd | fs | ft | fr); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fr); gen_helper_float_nmsub_d(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i64(fp0); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); } break; case OPC_NMSUB_PS: check_ps(ctx); { TCGv_i64 fp0 = tcg_temp_new_i64(); TCGv_i64 fp1 = tcg_temp_new_i64(); TCGv_i64 fp2 = tcg_temp_new_i64(); gen_load_fpr64(ctx, fp0, fs); gen_load_fpr64(ctx, fp1, ft); gen_load_fpr64(ctx, fp2, fr); gen_helper_float_nmsub_ps(fp2, cpu_env, fp0, fp1, fp2); tcg_temp_free_i64(fp0); tcg_temp_free_i64(fp1); gen_store_fpr64(ctx, fp2, fd); tcg_temp_free_i64(fp2); } break; default: MIPS_INVAL("flt3_arith"); gen_reserved_instruction(ctx); return; } } static void gen_rdhwr(DisasContext *ctx, int rt, int rd, int sel) { TCGv t0; #if !defined(CONFIG_USER_ONLY) /* * The Linux kernel will emulate rdhwr if it's not supported natively. * Therefore only check the ISA in system mode. */ check_insn(ctx, ISA_MIPS_R2); #endif t0 = tcg_temp_new(); switch (rd) { case 0: gen_helper_rdhwr_cpunum(t0, cpu_env); gen_store_gpr(t0, rt); break; case 1: gen_helper_rdhwr_synci_step(t0, cpu_env); gen_store_gpr(t0, rt); break; case 2: if (tb_cflags(ctx->base.tb) & CF_USE_ICOUNT) { gen_io_start(); } gen_helper_rdhwr_cc(t0, cpu_env); gen_store_gpr(t0, rt); /* * Break the TB to be able to take timer interrupts immediately * after reading count. DISAS_STOP isn't sufficient, we need to ensure * we break completely out of translated code. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; break; case 3: gen_helper_rdhwr_ccres(t0, cpu_env); gen_store_gpr(t0, rt); break; case 4: check_insn(ctx, ISA_MIPS_R6); if (sel != 0) { /* * Performance counter registers are not implemented other than * control register 0. */ generate_exception(ctx, EXCP_RI); } gen_helper_rdhwr_performance(t0, cpu_env); gen_store_gpr(t0, rt); break; case 5: check_insn(ctx, ISA_MIPS_R6); gen_helper_rdhwr_xnp(t0, cpu_env); gen_store_gpr(t0, rt); break; case 29: #if defined(CONFIG_USER_ONLY) tcg_gen_ld_tl(t0, cpu_env, offsetof(CPUMIPSState, active_tc.CP0_UserLocal)); gen_store_gpr(t0, rt); break; #else if ((ctx->hflags & MIPS_HFLAG_CP0) || (ctx->hflags & MIPS_HFLAG_HWRENA_ULR)) { tcg_gen_ld_tl(t0, cpu_env, offsetof(CPUMIPSState, active_tc.CP0_UserLocal)); gen_store_gpr(t0, rt); } else { gen_reserved_instruction(ctx); } break; #endif default: /* Invalid */ MIPS_INVAL("rdhwr"); gen_reserved_instruction(ctx); break; } tcg_temp_free(t0); } static inline void clear_branch_hflags(DisasContext *ctx) { ctx->hflags &= ~MIPS_HFLAG_BMASK; if (ctx->base.is_jmp == DISAS_NEXT) { save_cpu_state(ctx, 0); } else { /* * It is not safe to save ctx->hflags as hflags may be changed * in execution time by the instruction in delay / forbidden slot. */ tcg_gen_andi_i32(hflags, hflags, ~MIPS_HFLAG_BMASK); } } static void gen_branch(DisasContext *ctx, int insn_bytes) { if (ctx->hflags & MIPS_HFLAG_BMASK) { int proc_hflags = ctx->hflags & MIPS_HFLAG_BMASK; /* Branches completion */ clear_branch_hflags(ctx); ctx->base.is_jmp = DISAS_NORETURN; /* FIXME: Need to clear can_do_io. */ switch (proc_hflags & MIPS_HFLAG_BMASK_BASE) { case MIPS_HFLAG_FBNSLOT: gen_goto_tb(ctx, 0, ctx->base.pc_next + insn_bytes); break; case MIPS_HFLAG_B: /* unconditional branch */ if (proc_hflags & MIPS_HFLAG_BX) { tcg_gen_xori_i32(hflags, hflags, MIPS_HFLAG_M16); } gen_goto_tb(ctx, 0, ctx->btarget); break; case MIPS_HFLAG_BL: /* blikely taken case */ gen_goto_tb(ctx, 0, ctx->btarget); break; case MIPS_HFLAG_BC: /* Conditional branch */ { TCGLabel *l1 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_NE, bcond, 0, l1); gen_goto_tb(ctx, 1, ctx->base.pc_next + insn_bytes); gen_set_label(l1); gen_goto_tb(ctx, 0, ctx->btarget); } break; case MIPS_HFLAG_BR: /* unconditional branch to register */ if (ctx->insn_flags & (ASE_MIPS16 | ASE_MICROMIPS)) { TCGv t0 = tcg_temp_new(); TCGv_i32 t1 = tcg_temp_new_i32(); tcg_gen_andi_tl(t0, btarget, 0x1); tcg_gen_trunc_tl_i32(t1, t0); tcg_temp_free(t0); tcg_gen_andi_i32(hflags, hflags, ~(uint32_t)MIPS_HFLAG_M16); tcg_gen_shli_i32(t1, t1, MIPS_HFLAG_M16_SHIFT); tcg_gen_or_i32(hflags, hflags, t1); tcg_temp_free_i32(t1); tcg_gen_andi_tl(cpu_PC, btarget, ~(target_ulong)0x1); } else { tcg_gen_mov_tl(cpu_PC, btarget); } if (ctx->base.singlestep_enabled) { save_cpu_state(ctx, 0); gen_helper_raise_exception_debug(cpu_env); } tcg_gen_lookup_and_goto_ptr(); break; default: fprintf(stderr, "unknown branch 0x%x\n", proc_hflags); abort(); } } } /* Compact Branches */ static void gen_compute_compact_branch(DisasContext *ctx, uint32_t opc, int rs, int rt, int32_t offset) { int bcond_compute = 0; TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); int m16_lowbit = (ctx->hflags & MIPS_HFLAG_M16) != 0; if (ctx->hflags & MIPS_HFLAG_BMASK) { #ifdef MIPS_DEBUG_DISAS LOG_DISAS("Branch in delay / forbidden slot at PC 0x" TARGET_FMT_lx "\n", ctx->base.pc_next); #endif gen_reserved_instruction(ctx); goto out; } /* Load needed operands and calculate btarget */ switch (opc) { /* compact branch */ case OPC_BOVC: /* OPC_BEQZALC, OPC_BEQC */ case OPC_BNVC: /* OPC_BNEZALC, OPC_BNEC */ gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); bcond_compute = 1; ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); if (rs <= rt && rs == 0) { /* OPC_BEQZALC, OPC_BNEZALC */ tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4 + m16_lowbit); } break; case OPC_BLEZC: /* OPC_BGEZC, OPC_BGEC */ case OPC_BGTZC: /* OPC_BLTZC, OPC_BLTC */ gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); bcond_compute = 1; ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); break; case OPC_BLEZALC: /* OPC_BGEZALC, OPC_BGEUC */ case OPC_BGTZALC: /* OPC_BLTZALC, OPC_BLTUC */ if (rs == 0 || rs == rt) { /* OPC_BLEZALC, OPC_BGEZALC */ /* OPC_BGTZALC, OPC_BLTZALC */ tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4 + m16_lowbit); } gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); bcond_compute = 1; ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); break; case OPC_BC: case OPC_BALC: ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); break; case OPC_BEQZC: case OPC_BNEZC: if (rs != 0) { /* OPC_BEQZC, OPC_BNEZC */ gen_load_gpr(t0, rs); bcond_compute = 1; ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); } else { /* OPC_JIC, OPC_JIALC */ TCGv tbase = tcg_temp_new(); TCGv toffset = tcg_temp_new(); gen_load_gpr(tbase, rt); tcg_gen_movi_tl(toffset, offset); gen_op_addr_add(ctx, btarget, tbase, toffset); tcg_temp_free(tbase); tcg_temp_free(toffset); } break; default: MIPS_INVAL("Compact branch/jump"); gen_reserved_instruction(ctx); goto out; } if (bcond_compute == 0) { /* Uncoditional compact branch */ switch (opc) { case OPC_JIALC: tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4 + m16_lowbit); /* Fallthrough */ case OPC_JIC: ctx->hflags |= MIPS_HFLAG_BR; break; case OPC_BALC: tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4 + m16_lowbit); /* Fallthrough */ case OPC_BC: ctx->hflags |= MIPS_HFLAG_B; break; default: MIPS_INVAL("Compact branch/jump"); gen_reserved_instruction(ctx); goto out; } /* Generating branch here as compact branches don't have delay slot */ gen_branch(ctx, 4); } else { /* Conditional compact branch */ TCGLabel *fs = gen_new_label(); save_cpu_state(ctx, 0); switch (opc) { case OPC_BLEZALC: /* OPC_BGEZALC, OPC_BGEUC */ if (rs == 0 && rt != 0) { /* OPC_BLEZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LE), t1, 0, fs); } else if (rs != 0 && rt != 0 && rs == rt) { /* OPC_BGEZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GE), t1, 0, fs); } else { /* OPC_BGEUC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_GEU), t0, t1, fs); } break; case OPC_BGTZALC: /* OPC_BLTZALC, OPC_BLTUC */ if (rs == 0 && rt != 0) { /* OPC_BGTZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GT), t1, 0, fs); } else if (rs != 0 && rt != 0 && rs == rt) { /* OPC_BLTZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LT), t1, 0, fs); } else { /* OPC_BLTUC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_LTU), t0, t1, fs); } break; case OPC_BLEZC: /* OPC_BGEZC, OPC_BGEC */ if (rs == 0 && rt != 0) { /* OPC_BLEZC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LE), t1, 0, fs); } else if (rs != 0 && rt != 0 && rs == rt) { /* OPC_BGEZC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GE), t1, 0, fs); } else { /* OPC_BGEC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_GE), t0, t1, fs); } break; case OPC_BGTZC: /* OPC_BLTZC, OPC_BLTC */ if (rs == 0 && rt != 0) { /* OPC_BGTZC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GT), t1, 0, fs); } else if (rs != 0 && rt != 0 && rs == rt) { /* OPC_BLTZC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LT), t1, 0, fs); } else { /* OPC_BLTC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_LT), t0, t1, fs); } break; case OPC_BOVC: /* OPC_BEQZALC, OPC_BEQC */ case OPC_BNVC: /* OPC_BNEZALC, OPC_BNEC */ if (rs >= rt) { /* OPC_BOVC, OPC_BNVC */ TCGv t2 = tcg_temp_new(); TCGv t3 = tcg_temp_new(); TCGv t4 = tcg_temp_new(); TCGv input_overflow = tcg_temp_new(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); tcg_gen_ext32s_tl(t2, t0); tcg_gen_setcond_tl(TCG_COND_NE, input_overflow, t2, t0); tcg_gen_ext32s_tl(t3, t1); tcg_gen_setcond_tl(TCG_COND_NE, t4, t3, t1); tcg_gen_or_tl(input_overflow, input_overflow, t4); tcg_gen_add_tl(t4, t2, t3); tcg_gen_ext32s_tl(t4, t4); tcg_gen_xor_tl(t2, t2, t3); tcg_gen_xor_tl(t3, t4, t3); tcg_gen_andc_tl(t2, t3, t2); tcg_gen_setcondi_tl(TCG_COND_LT, t4, t2, 0); tcg_gen_or_tl(t4, t4, input_overflow); if (opc == OPC_BOVC) { /* OPC_BOVC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_NE), t4, 0, fs); } else { /* OPC_BNVC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_EQ), t4, 0, fs); } tcg_temp_free(input_overflow); tcg_temp_free(t4); tcg_temp_free(t3); tcg_temp_free(t2); } else if (rs < rt && rs == 0) { /* OPC_BEQZALC, OPC_BNEZALC */ if (opc == OPC_BEQZALC) { /* OPC_BEQZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_EQ), t1, 0, fs); } else { /* OPC_BNEZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_NE), t1, 0, fs); } } else { /* OPC_BEQC, OPC_BNEC */ if (opc == OPC_BEQC) { /* OPC_BEQC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_EQ), t0, t1, fs); } else { /* OPC_BNEC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_NE), t0, t1, fs); } } break; case OPC_BEQZC: tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_EQ), t0, 0, fs); break; case OPC_BNEZC: tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_NE), t0, 0, fs); break; default: MIPS_INVAL("Compact conditional branch/jump"); gen_reserved_instruction(ctx); goto out; } /* Generating branch here as compact branches don't have delay slot */ gen_goto_tb(ctx, 1, ctx->btarget); gen_set_label(fs); ctx->hflags |= MIPS_HFLAG_FBNSLOT; } out: tcg_temp_free(t0); tcg_temp_free(t1); } /* ISA extensions (ASEs) */ /* MIPS16 extension to MIPS32 */ /* MIPS16 major opcodes */ enum { M16_OPC_ADDIUSP = 0x00, M16_OPC_ADDIUPC = 0x01, M16_OPC_B = 0x02, M16_OPC_JAL = 0x03, M16_OPC_BEQZ = 0x04, M16_OPC_BNEQZ = 0x05, M16_OPC_SHIFT = 0x06, M16_OPC_LD = 0x07, M16_OPC_RRIA = 0x08, M16_OPC_ADDIU8 = 0x09, M16_OPC_SLTI = 0x0a, M16_OPC_SLTIU = 0x0b, M16_OPC_I8 = 0x0c, M16_OPC_LI = 0x0d, M16_OPC_CMPI = 0x0e, M16_OPC_SD = 0x0f, M16_OPC_LB = 0x10, M16_OPC_LH = 0x11, M16_OPC_LWSP = 0x12, M16_OPC_LW = 0x13, M16_OPC_LBU = 0x14, M16_OPC_LHU = 0x15, M16_OPC_LWPC = 0x16, M16_OPC_LWU = 0x17, M16_OPC_SB = 0x18, M16_OPC_SH = 0x19, M16_OPC_SWSP = 0x1a, M16_OPC_SW = 0x1b, M16_OPC_RRR = 0x1c, M16_OPC_RR = 0x1d, M16_OPC_EXTEND = 0x1e, M16_OPC_I64 = 0x1f }; /* I8 funct field */ enum { I8_BTEQZ = 0x0, I8_BTNEZ = 0x1, I8_SWRASP = 0x2, I8_ADJSP = 0x3, I8_SVRS = 0x4, I8_MOV32R = 0x5, I8_MOVR32 = 0x7 }; /* RRR f field */ enum { RRR_DADDU = 0x0, RRR_ADDU = 0x1, RRR_DSUBU = 0x2, RRR_SUBU = 0x3 }; /* RR funct field */ enum { RR_JR = 0x00, RR_SDBBP = 0x01, RR_SLT = 0x02, RR_SLTU = 0x03, RR_SLLV = 0x04, RR_BREAK = 0x05, RR_SRLV = 0x06, RR_SRAV = 0x07, RR_DSRL = 0x08, RR_CMP = 0x0a, RR_NEG = 0x0b, RR_AND = 0x0c, RR_OR = 0x0d, RR_XOR = 0x0e, RR_NOT = 0x0f, RR_MFHI = 0x10, RR_CNVT = 0x11, RR_MFLO = 0x12, RR_DSRA = 0x13, RR_DSLLV = 0x14, RR_DSRLV = 0x16, RR_DSRAV = 0x17, RR_MULT = 0x18, RR_MULTU = 0x19, RR_DIV = 0x1a, RR_DIVU = 0x1b, RR_DMULT = 0x1c, RR_DMULTU = 0x1d, RR_DDIV = 0x1e, RR_DDIVU = 0x1f }; /* I64 funct field */ enum { I64_LDSP = 0x0, I64_SDSP = 0x1, I64_SDRASP = 0x2, I64_DADJSP = 0x3, I64_LDPC = 0x4, I64_DADDIU5 = 0x5, I64_DADDIUPC = 0x6, I64_DADDIUSP = 0x7 }; /* RR ry field for CNVT */ enum { RR_RY_CNVT_ZEB = 0x0, RR_RY_CNVT_ZEH = 0x1, RR_RY_CNVT_ZEW = 0x2, RR_RY_CNVT_SEB = 0x4, RR_RY_CNVT_SEH = 0x5, RR_RY_CNVT_SEW = 0x6, }; static int xlat(int r) { static int map[] = { 16, 17, 2, 3, 4, 5, 6, 7 }; return map[r]; } static void gen_mips16_save(DisasContext *ctx, int xsregs, int aregs, int do_ra, int do_s0, int do_s1, int framesize) { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_temp_new(); int args, astatic; switch (aregs) { case 0: case 1: case 2: case 3: case 11: args = 0; break; case 4: case 5: case 6: case 7: args = 1; break; case 8: case 9: case 10: args = 2; break; case 12: case 13: args = 3; break; case 14: args = 4; break; default: gen_reserved_instruction(ctx); return; } switch (args) { case 4: gen_base_offset_addr(ctx, t0, 29, 12); gen_load_gpr(t1, 7); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); /* Fall through */ case 3: gen_base_offset_addr(ctx, t0, 29, 8); gen_load_gpr(t1, 6); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); /* Fall through */ case 2: gen_base_offset_addr(ctx, t0, 29, 4); gen_load_gpr(t1, 5); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); /* Fall through */ case 1: gen_base_offset_addr(ctx, t0, 29, 0); gen_load_gpr(t1, 4); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); } gen_load_gpr(t0, 29); #define DECR_AND_STORE(reg) do { \ tcg_gen_movi_tl(t2, -4); \ gen_op_addr_add(ctx, t0, t0, t2); \ gen_load_gpr(t1, reg); \ tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); \ } while (0) if (do_ra) { DECR_AND_STORE(31); } switch (xsregs) { case 7: DECR_AND_STORE(30); /* Fall through */ case 6: DECR_AND_STORE(23); /* Fall through */ case 5: DECR_AND_STORE(22); /* Fall through */ case 4: DECR_AND_STORE(21); /* Fall through */ case 3: DECR_AND_STORE(20); /* Fall through */ case 2: DECR_AND_STORE(19); /* Fall through */ case 1: DECR_AND_STORE(18); } if (do_s1) { DECR_AND_STORE(17); } if (do_s0) { DECR_AND_STORE(16); } switch (aregs) { case 0: case 4: case 8: case 12: case 14: astatic = 0; break; case 1: case 5: case 9: case 13: astatic = 1; break; case 2: case 6: case 10: astatic = 2; break; case 3: case 7: astatic = 3; break; case 11: astatic = 4; break; default: gen_reserved_instruction(ctx); return; } if (astatic > 0) { DECR_AND_STORE(7); if (astatic > 1) { DECR_AND_STORE(6); if (astatic > 2) { DECR_AND_STORE(5); if (astatic > 3) { DECR_AND_STORE(4); } } } } #undef DECR_AND_STORE tcg_gen_movi_tl(t2, -framesize); gen_op_addr_add(ctx, cpu_gpr[29], cpu_gpr[29], t2); tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(t2); } static void gen_mips16_restore(DisasContext *ctx, int xsregs, int aregs, int do_ra, int do_s0, int do_s1, int framesize) { int astatic; TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_temp_new(); tcg_gen_movi_tl(t2, framesize); gen_op_addr_add(ctx, t0, cpu_gpr[29], t2); #define DECR_AND_LOAD(reg) do { \ tcg_gen_movi_tl(t2, -4); \ gen_op_addr_add(ctx, t0, t0, t2); \ tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TESL); \ gen_store_gpr(t1, reg); \ } while (0) if (do_ra) { DECR_AND_LOAD(31); } switch (xsregs) { case 7: DECR_AND_LOAD(30); /* Fall through */ case 6: DECR_AND_LOAD(23); /* Fall through */ case 5: DECR_AND_LOAD(22); /* Fall through */ case 4: DECR_AND_LOAD(21); /* Fall through */ case 3: DECR_AND_LOAD(20); /* Fall through */ case 2: DECR_AND_LOAD(19); /* Fall through */ case 1: DECR_AND_LOAD(18); } if (do_s1) { DECR_AND_LOAD(17); } if (do_s0) { DECR_AND_LOAD(16); } switch (aregs) { case 0: case 4: case 8: case 12: case 14: astatic = 0; break; case 1: case 5: case 9: case 13: astatic = 1; break; case 2: case 6: case 10: astatic = 2; break; case 3: case 7: astatic = 3; break; case 11: astatic = 4; break; default: gen_reserved_instruction(ctx); return; } if (astatic > 0) { DECR_AND_LOAD(7); if (astatic > 1) { DECR_AND_LOAD(6); if (astatic > 2) { DECR_AND_LOAD(5); if (astatic > 3) { DECR_AND_LOAD(4); } } } } #undef DECR_AND_LOAD tcg_gen_movi_tl(t2, framesize); gen_op_addr_add(ctx, cpu_gpr[29], cpu_gpr[29], t2); tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(t2); } static void gen_addiupc(DisasContext *ctx, int rx, int imm, int is_64_bit, int extended) { TCGv t0; if (extended && (ctx->hflags & MIPS_HFLAG_BMASK)) { gen_reserved_instruction(ctx); return; } t0 = tcg_temp_new(); tcg_gen_movi_tl(t0, pc_relative_pc(ctx)); tcg_gen_addi_tl(cpu_gpr[rx], t0, imm); if (!is_64_bit) { tcg_gen_ext32s_tl(cpu_gpr[rx], cpu_gpr[rx]); } tcg_temp_free(t0); } static void gen_cache_operation(DisasContext *ctx, uint32_t op, int base, int16_t offset) { TCGv_i32 t0 = tcg_const_i32(op); TCGv t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t1, base, offset); gen_helper_cache(cpu_env, t1, t0); } #if defined(TARGET_MIPS64) static void decode_i64_mips16(DisasContext *ctx, int ry, int funct, int16_t offset, int extended) { switch (funct) { case I64_LDSP: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); offset = extended ? offset : offset << 3; gen_ld(ctx, OPC_LD, ry, 29, offset); break; case I64_SDSP: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); offset = extended ? offset : offset << 3; gen_st(ctx, OPC_SD, ry, 29, offset); break; case I64_SDRASP: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); offset = extended ? offset : (ctx->opcode & 0xff) << 3; gen_st(ctx, OPC_SD, 31, 29, offset); break; case I64_DADJSP: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); offset = extended ? offset : ((int8_t)ctx->opcode) << 3; gen_arith_imm(ctx, OPC_DADDIU, 29, 29, offset); break; case I64_LDPC: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); if (extended && (ctx->hflags & MIPS_HFLAG_BMASK)) { gen_reserved_instruction(ctx); } else { offset = extended ? offset : offset << 3; gen_ld(ctx, OPC_LDPC, ry, 0, offset); } break; case I64_DADDIU5: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); offset = extended ? offset : ((int8_t)(offset << 3)) >> 3; gen_arith_imm(ctx, OPC_DADDIU, ry, ry, offset); break; case I64_DADDIUPC: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); offset = extended ? offset : offset << 2; gen_addiupc(ctx, ry, offset, 1, extended); break; case I64_DADDIUSP: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); offset = extended ? offset : offset << 2; gen_arith_imm(ctx, OPC_DADDIU, ry, 29, offset); break; } } #endif static int decode_extended_mips16_opc(CPUMIPSState *env, DisasContext *ctx) { int extend = cpu_lduw_code(env, ctx->base.pc_next + 2); int op, rx, ry, funct, sa; int16_t imm, offset; ctx->opcode = (ctx->opcode << 16) | extend; op = (ctx->opcode >> 11) & 0x1f; sa = (ctx->opcode >> 22) & 0x1f; funct = (ctx->opcode >> 8) & 0x7; rx = xlat((ctx->opcode >> 8) & 0x7); ry = xlat((ctx->opcode >> 5) & 0x7); offset = imm = (int16_t) (((ctx->opcode >> 16) & 0x1f) << 11 | ((ctx->opcode >> 21) & 0x3f) << 5 | (ctx->opcode & 0x1f)); /* * The extended opcodes cleverly reuse the opcodes from their 16-bit * counterparts. */ switch (op) { case M16_OPC_ADDIUSP: gen_arith_imm(ctx, OPC_ADDIU, rx, 29, imm); break; case M16_OPC_ADDIUPC: gen_addiupc(ctx, rx, imm, 0, 1); break; case M16_OPC_B: gen_compute_branch(ctx, OPC_BEQ, 4, 0, 0, offset << 1, 0); /* No delay slot, so just process as a normal instruction */ break; case M16_OPC_BEQZ: gen_compute_branch(ctx, OPC_BEQ, 4, rx, 0, offset << 1, 0); /* No delay slot, so just process as a normal instruction */ break; case M16_OPC_BNEQZ: gen_compute_branch(ctx, OPC_BNE, 4, rx, 0, offset << 1, 0); /* No delay slot, so just process as a normal instruction */ break; case M16_OPC_SHIFT: switch (ctx->opcode & 0x3) { case 0x0: gen_shift_imm(ctx, OPC_SLL, rx, ry, sa); break; case 0x1: #if defined(TARGET_MIPS64) check_mips_64(ctx); gen_shift_imm(ctx, OPC_DSLL, rx, ry, sa); #else gen_reserved_instruction(ctx); #endif break; case 0x2: gen_shift_imm(ctx, OPC_SRL, rx, ry, sa); break; case 0x3: gen_shift_imm(ctx, OPC_SRA, rx, ry, sa); break; } break; #if defined(TARGET_MIPS64) case M16_OPC_LD: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_ld(ctx, OPC_LD, ry, rx, offset); break; #endif case M16_OPC_RRIA: imm = ctx->opcode & 0xf; imm = imm | ((ctx->opcode >> 20) & 0x7f) << 4; imm = imm | ((ctx->opcode >> 16) & 0xf) << 11; imm = (int16_t) (imm << 1) >> 1; if ((ctx->opcode >> 4) & 0x1) { #if defined(TARGET_MIPS64) check_mips_64(ctx); gen_arith_imm(ctx, OPC_DADDIU, ry, rx, imm); #else gen_reserved_instruction(ctx); #endif } else { gen_arith_imm(ctx, OPC_ADDIU, ry, rx, imm); } break; case M16_OPC_ADDIU8: gen_arith_imm(ctx, OPC_ADDIU, rx, rx, imm); break; case M16_OPC_SLTI: gen_slt_imm(ctx, OPC_SLTI, 24, rx, imm); break; case M16_OPC_SLTIU: gen_slt_imm(ctx, OPC_SLTIU, 24, rx, imm); break; case M16_OPC_I8: switch (funct) { case I8_BTEQZ: gen_compute_branch(ctx, OPC_BEQ, 4, 24, 0, offset << 1, 0); break; case I8_BTNEZ: gen_compute_branch(ctx, OPC_BNE, 4, 24, 0, offset << 1, 0); break; case I8_SWRASP: gen_st(ctx, OPC_SW, 31, 29, imm); break; case I8_ADJSP: gen_arith_imm(ctx, OPC_ADDIU, 29, 29, imm); break; case I8_SVRS: check_insn(ctx, ISA_MIPS_R1); { int xsregs = (ctx->opcode >> 24) & 0x7; int aregs = (ctx->opcode >> 16) & 0xf; int do_ra = (ctx->opcode >> 6) & 0x1; int do_s0 = (ctx->opcode >> 5) & 0x1; int do_s1 = (ctx->opcode >> 4) & 0x1; int framesize = (((ctx->opcode >> 20) & 0xf) << 4 | (ctx->opcode & 0xf)) << 3; if (ctx->opcode & (1 << 7)) { gen_mips16_save(ctx, xsregs, aregs, do_ra, do_s0, do_s1, framesize); } else { gen_mips16_restore(ctx, xsregs, aregs, do_ra, do_s0, do_s1, framesize); } } break; default: gen_reserved_instruction(ctx); break; } break; case M16_OPC_LI: tcg_gen_movi_tl(cpu_gpr[rx], (uint16_t) imm); break; case M16_OPC_CMPI: tcg_gen_xori_tl(cpu_gpr[24], cpu_gpr[rx], (uint16_t) imm); break; #if defined(TARGET_MIPS64) case M16_OPC_SD: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_st(ctx, OPC_SD, ry, rx, offset); break; #endif case M16_OPC_LB: gen_ld(ctx, OPC_LB, ry, rx, offset); break; case M16_OPC_LH: gen_ld(ctx, OPC_LH, ry, rx, offset); break; case M16_OPC_LWSP: gen_ld(ctx, OPC_LW, rx, 29, offset); break; case M16_OPC_LW: gen_ld(ctx, OPC_LW, ry, rx, offset); break; case M16_OPC_LBU: gen_ld(ctx, OPC_LBU, ry, rx, offset); break; case M16_OPC_LHU: gen_ld(ctx, OPC_LHU, ry, rx, offset); break; case M16_OPC_LWPC: gen_ld(ctx, OPC_LWPC, rx, 0, offset); break; #if defined(TARGET_MIPS64) case M16_OPC_LWU: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_ld(ctx, OPC_LWU, ry, rx, offset); break; #endif case M16_OPC_SB: gen_st(ctx, OPC_SB, ry, rx, offset); break; case M16_OPC_SH: gen_st(ctx, OPC_SH, ry, rx, offset); break; case M16_OPC_SWSP: gen_st(ctx, OPC_SW, rx, 29, offset); break; case M16_OPC_SW: gen_st(ctx, OPC_SW, ry, rx, offset); break; #if defined(TARGET_MIPS64) case M16_OPC_I64: decode_i64_mips16(ctx, ry, funct, offset, 1); break; #endif default: gen_reserved_instruction(ctx); break; } return 4; } static inline bool is_uhi(int sdbbp_code) { #ifdef CONFIG_USER_ONLY return false; #else return semihosting_enabled() && sdbbp_code == 1; #endif } #ifdef CONFIG_USER_ONLY /* The above should dead-code away any calls to this..*/ static inline void gen_helper_do_semihosting(void *env) { g_assert_not_reached(); } #endif static int decode_mips16_opc(CPUMIPSState *env, DisasContext *ctx) { int rx, ry; int sa; int op, cnvt_op, op1, offset; int funct; int n_bytes; op = (ctx->opcode >> 11) & 0x1f; sa = (ctx->opcode >> 2) & 0x7; sa = sa == 0 ? 8 : sa; rx = xlat((ctx->opcode >> 8) & 0x7); cnvt_op = (ctx->opcode >> 5) & 0x7; ry = xlat((ctx->opcode >> 5) & 0x7); op1 = offset = ctx->opcode & 0x1f; n_bytes = 2; switch (op) { case M16_OPC_ADDIUSP: { int16_t imm = ((uint8_t) ctx->opcode) << 2; gen_arith_imm(ctx, OPC_ADDIU, rx, 29, imm); } break; case M16_OPC_ADDIUPC: gen_addiupc(ctx, rx, ((uint8_t) ctx->opcode) << 2, 0, 0); break; case M16_OPC_B: offset = (ctx->opcode & 0x7ff) << 1; offset = (int16_t)(offset << 4) >> 4; gen_compute_branch(ctx, OPC_BEQ, 2, 0, 0, offset, 0); /* No delay slot, so just process as a normal instruction */ break; case M16_OPC_JAL: offset = cpu_lduw_code(env, ctx->base.pc_next + 2); offset = (((ctx->opcode & 0x1f) << 21) | ((ctx->opcode >> 5) & 0x1f) << 16 | offset) << 2; op = ((ctx->opcode >> 10) & 0x1) ? OPC_JALX : OPC_JAL; gen_compute_branch(ctx, op, 4, rx, ry, offset, 2); n_bytes = 4; break; case M16_OPC_BEQZ: gen_compute_branch(ctx, OPC_BEQ, 2, rx, 0, ((int8_t)ctx->opcode) << 1, 0); /* No delay slot, so just process as a normal instruction */ break; case M16_OPC_BNEQZ: gen_compute_branch(ctx, OPC_BNE, 2, rx, 0, ((int8_t)ctx->opcode) << 1, 0); /* No delay slot, so just process as a normal instruction */ break; case M16_OPC_SHIFT: switch (ctx->opcode & 0x3) { case 0x0: gen_shift_imm(ctx, OPC_SLL, rx, ry, sa); break; case 0x1: #if defined(TARGET_MIPS64) check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift_imm(ctx, OPC_DSLL, rx, ry, sa); #else gen_reserved_instruction(ctx); #endif break; case 0x2: gen_shift_imm(ctx, OPC_SRL, rx, ry, sa); break; case 0x3: gen_shift_imm(ctx, OPC_SRA, rx, ry, sa); break; } break; #if defined(TARGET_MIPS64) case M16_OPC_LD: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_ld(ctx, OPC_LD, ry, rx, offset << 3); break; #endif case M16_OPC_RRIA: { int16_t imm = (int8_t)((ctx->opcode & 0xf) << 4) >> 4; if ((ctx->opcode >> 4) & 1) { #if defined(TARGET_MIPS64) check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_arith_imm(ctx, OPC_DADDIU, ry, rx, imm); #else gen_reserved_instruction(ctx); #endif } else { gen_arith_imm(ctx, OPC_ADDIU, ry, rx, imm); } } break; case M16_OPC_ADDIU8: { int16_t imm = (int8_t) ctx->opcode; gen_arith_imm(ctx, OPC_ADDIU, rx, rx, imm); } break; case M16_OPC_SLTI: { int16_t imm = (uint8_t) ctx->opcode; gen_slt_imm(ctx, OPC_SLTI, 24, rx, imm); } break; case M16_OPC_SLTIU: { int16_t imm = (uint8_t) ctx->opcode; gen_slt_imm(ctx, OPC_SLTIU, 24, rx, imm); } break; case M16_OPC_I8: { int reg32; funct = (ctx->opcode >> 8) & 0x7; switch (funct) { case I8_BTEQZ: gen_compute_branch(ctx, OPC_BEQ, 2, 24, 0, ((int8_t)ctx->opcode) << 1, 0); break; case I8_BTNEZ: gen_compute_branch(ctx, OPC_BNE, 2, 24, 0, ((int8_t)ctx->opcode) << 1, 0); break; case I8_SWRASP: gen_st(ctx, OPC_SW, 31, 29, (ctx->opcode & 0xff) << 2); break; case I8_ADJSP: gen_arith_imm(ctx, OPC_ADDIU, 29, 29, ((int8_t)ctx->opcode) << 3); break; case I8_SVRS: check_insn(ctx, ISA_MIPS_R1); { int do_ra = ctx->opcode & (1 << 6); int do_s0 = ctx->opcode & (1 << 5); int do_s1 = ctx->opcode & (1 << 4); int framesize = ctx->opcode & 0xf; if (framesize == 0) { framesize = 128; } else { framesize = framesize << 3; } if (ctx->opcode & (1 << 7)) { gen_mips16_save(ctx, 0, 0, do_ra, do_s0, do_s1, framesize); } else { gen_mips16_restore(ctx, 0, 0, do_ra, do_s0, do_s1, framesize); } } break; case I8_MOV32R: { int rz = xlat(ctx->opcode & 0x7); reg32 = (((ctx->opcode >> 3) & 0x3) << 3) | ((ctx->opcode >> 5) & 0x7); gen_arith(ctx, OPC_ADDU, reg32, rz, 0); } break; case I8_MOVR32: reg32 = ctx->opcode & 0x1f; gen_arith(ctx, OPC_ADDU, ry, reg32, 0); break; default: gen_reserved_instruction(ctx); break; } } break; case M16_OPC_LI: { int16_t imm = (uint8_t) ctx->opcode; gen_arith_imm(ctx, OPC_ADDIU, rx, 0, imm); } break; case M16_OPC_CMPI: { int16_t imm = (uint8_t) ctx->opcode; gen_logic_imm(ctx, OPC_XORI, 24, rx, imm); } break; #if defined(TARGET_MIPS64) case M16_OPC_SD: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_st(ctx, OPC_SD, ry, rx, offset << 3); break; #endif case M16_OPC_LB: gen_ld(ctx, OPC_LB, ry, rx, offset); break; case M16_OPC_LH: gen_ld(ctx, OPC_LH, ry, rx, offset << 1); break; case M16_OPC_LWSP: gen_ld(ctx, OPC_LW, rx, 29, ((uint8_t)ctx->opcode) << 2); break; case M16_OPC_LW: gen_ld(ctx, OPC_LW, ry, rx, offset << 2); break; case M16_OPC_LBU: gen_ld(ctx, OPC_LBU, ry, rx, offset); break; case M16_OPC_LHU: gen_ld(ctx, OPC_LHU, ry, rx, offset << 1); break; case M16_OPC_LWPC: gen_ld(ctx, OPC_LWPC, rx, 0, ((uint8_t)ctx->opcode) << 2); break; #if defined(TARGET_MIPS64) case M16_OPC_LWU: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_ld(ctx, OPC_LWU, ry, rx, offset << 2); break; #endif case M16_OPC_SB: gen_st(ctx, OPC_SB, ry, rx, offset); break; case M16_OPC_SH: gen_st(ctx, OPC_SH, ry, rx, offset << 1); break; case M16_OPC_SWSP: gen_st(ctx, OPC_SW, rx, 29, ((uint8_t)ctx->opcode) << 2); break; case M16_OPC_SW: gen_st(ctx, OPC_SW, ry, rx, offset << 2); break; case M16_OPC_RRR: { int rz = xlat((ctx->opcode >> 2) & 0x7); int mips32_op; switch (ctx->opcode & 0x3) { case RRR_ADDU: mips32_op = OPC_ADDU; break; case RRR_SUBU: mips32_op = OPC_SUBU; break; #if defined(TARGET_MIPS64) case RRR_DADDU: mips32_op = OPC_DADDU; check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); break; case RRR_DSUBU: mips32_op = OPC_DSUBU; check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); break; #endif default: gen_reserved_instruction(ctx); goto done; } gen_arith(ctx, mips32_op, rz, rx, ry); done: ; } break; case M16_OPC_RR: switch (op1) { case RR_JR: { int nd = (ctx->opcode >> 7) & 0x1; int link = (ctx->opcode >> 6) & 0x1; int ra = (ctx->opcode >> 5) & 0x1; if (nd) { check_insn(ctx, ISA_MIPS_R1); } if (link) { op = OPC_JALR; } else { op = OPC_JR; } gen_compute_branch(ctx, op, 2, ra ? 31 : rx, 31, 0, (nd ? 0 : 2)); } break; case RR_SDBBP: if (is_uhi(extract32(ctx->opcode, 5, 6))) { gen_helper_do_semihosting(cpu_env); } else { /* * XXX: not clear which exception should be raised * when in debug mode... */ check_insn(ctx, ISA_MIPS_R1); generate_exception_end(ctx, EXCP_DBp); } break; case RR_SLT: gen_slt(ctx, OPC_SLT, 24, rx, ry); break; case RR_SLTU: gen_slt(ctx, OPC_SLTU, 24, rx, ry); break; case RR_BREAK: generate_exception_end(ctx, EXCP_BREAK); break; case RR_SLLV: gen_shift(ctx, OPC_SLLV, ry, rx, ry); break; case RR_SRLV: gen_shift(ctx, OPC_SRLV, ry, rx, ry); break; case RR_SRAV: gen_shift(ctx, OPC_SRAV, ry, rx, ry); break; #if defined(TARGET_MIPS64) case RR_DSRL: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift_imm(ctx, OPC_DSRL, ry, ry, sa); break; #endif case RR_CMP: gen_logic(ctx, OPC_XOR, 24, rx, ry); break; case RR_NEG: gen_arith(ctx, OPC_SUBU, rx, 0, ry); break; case RR_AND: gen_logic(ctx, OPC_AND, rx, rx, ry); break; case RR_OR: gen_logic(ctx, OPC_OR, rx, rx, ry); break; case RR_XOR: gen_logic(ctx, OPC_XOR, rx, rx, ry); break; case RR_NOT: gen_logic(ctx, OPC_NOR, rx, ry, 0); break; case RR_MFHI: gen_HILO(ctx, OPC_MFHI, 0, rx); break; case RR_CNVT: check_insn(ctx, ISA_MIPS_R1); switch (cnvt_op) { case RR_RY_CNVT_ZEB: tcg_gen_ext8u_tl(cpu_gpr[rx], cpu_gpr[rx]); break; case RR_RY_CNVT_ZEH: tcg_gen_ext16u_tl(cpu_gpr[rx], cpu_gpr[rx]); break; case RR_RY_CNVT_SEB: tcg_gen_ext8s_tl(cpu_gpr[rx], cpu_gpr[rx]); break; case RR_RY_CNVT_SEH: tcg_gen_ext16s_tl(cpu_gpr[rx], cpu_gpr[rx]); break; #if defined(TARGET_MIPS64) case RR_RY_CNVT_ZEW: check_insn(ctx, ISA_MIPS_R1); check_mips_64(ctx); tcg_gen_ext32u_tl(cpu_gpr[rx], cpu_gpr[rx]); break; case RR_RY_CNVT_SEW: check_insn(ctx, ISA_MIPS_R1); check_mips_64(ctx); tcg_gen_ext32s_tl(cpu_gpr[rx], cpu_gpr[rx]); break; #endif default: gen_reserved_instruction(ctx); break; } break; case RR_MFLO: gen_HILO(ctx, OPC_MFLO, 0, rx); break; #if defined(TARGET_MIPS64) case RR_DSRA: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift_imm(ctx, OPC_DSRA, ry, ry, sa); break; case RR_DSLLV: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift(ctx, OPC_DSLLV, ry, rx, ry); break; case RR_DSRLV: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift(ctx, OPC_DSRLV, ry, rx, ry); break; case RR_DSRAV: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift(ctx, OPC_DSRAV, ry, rx, ry); break; #endif case RR_MULT: gen_muldiv(ctx, OPC_MULT, 0, rx, ry); break; case RR_MULTU: gen_muldiv(ctx, OPC_MULTU, 0, rx, ry); break; case RR_DIV: gen_muldiv(ctx, OPC_DIV, 0, rx, ry); break; case RR_DIVU: gen_muldiv(ctx, OPC_DIVU, 0, rx, ry); break; #if defined(TARGET_MIPS64) case RR_DMULT: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_muldiv(ctx, OPC_DMULT, 0, rx, ry); break; case RR_DMULTU: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_muldiv(ctx, OPC_DMULTU, 0, rx, ry); break; case RR_DDIV: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_muldiv(ctx, OPC_DDIV, 0, rx, ry); break; case RR_DDIVU: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_muldiv(ctx, OPC_DDIVU, 0, rx, ry); break; #endif default: gen_reserved_instruction(ctx); break; } break; case M16_OPC_EXTEND: decode_extended_mips16_opc(env, ctx); n_bytes = 4; break; #if defined(TARGET_MIPS64) case M16_OPC_I64: funct = (ctx->opcode >> 8) & 0x7; decode_i64_mips16(ctx, ry, funct, offset, 0); break; #endif default: gen_reserved_instruction(ctx); break; } return n_bytes; } /* microMIPS extension to MIPS32/MIPS64 */ /* * microMIPS32/microMIPS64 major opcodes * * 1. MIPS Architecture for Programmers Volume II-B: * The microMIPS32 Instruction Set (Revision 3.05) * * Table 6.2 microMIPS32 Encoding of Major Opcode Field * * 2. MIPS Architecture For Programmers Volume II-A: * The MIPS64 Instruction Set (Revision 3.51) */ enum { POOL32A = 0x00, POOL16A = 0x01, LBU16 = 0x02, MOVE16 = 0x03, ADDI32 = 0x04, R6_LUI = 0x04, AUI = 0x04, LBU32 = 0x05, SB32 = 0x06, LB32 = 0x07, POOL32B = 0x08, POOL16B = 0x09, LHU16 = 0x0a, ANDI16 = 0x0b, ADDIU32 = 0x0c, LHU32 = 0x0d, SH32 = 0x0e, LH32 = 0x0f, POOL32I = 0x10, POOL16C = 0x11, LWSP16 = 0x12, POOL16D = 0x13, ORI32 = 0x14, POOL32F = 0x15, POOL32S = 0x16, /* MIPS64 */ DADDIU32 = 0x17, /* MIPS64 */ POOL32C = 0x18, LWGP16 = 0x19, LW16 = 0x1a, POOL16E = 0x1b, XORI32 = 0x1c, JALS32 = 0x1d, BOVC = 0x1d, BEQC = 0x1d, BEQZALC = 0x1d, ADDIUPC = 0x1e, PCREL = 0x1e, BNVC = 0x1f, BNEC = 0x1f, BNEZALC = 0x1f, R6_BEQZC = 0x20, JIC = 0x20, POOL16F = 0x21, SB16 = 0x22, BEQZ16 = 0x23, BEQZC16 = 0x23, SLTI32 = 0x24, BEQ32 = 0x25, BC = 0x25, SWC132 = 0x26, LWC132 = 0x27, /* 0x29 is reserved */ RES_29 = 0x29, R6_BNEZC = 0x28, JIALC = 0x28, SH16 = 0x2a, BNEZ16 = 0x2b, BNEZC16 = 0x2b, SLTIU32 = 0x2c, BNE32 = 0x2d, BALC = 0x2d, SDC132 = 0x2e, LDC132 = 0x2f, /* 0x31 is reserved */ RES_31 = 0x31, BLEZALC = 0x30, BGEZALC = 0x30, BGEUC = 0x30, SWSP16 = 0x32, B16 = 0x33, BC16 = 0x33, ANDI32 = 0x34, J32 = 0x35, BGTZC = 0x35, BLTZC = 0x35, BLTC = 0x35, SD32 = 0x36, /* MIPS64 */ LD32 = 0x37, /* MIPS64 */ /* 0x39 is reserved */ RES_39 = 0x39, BGTZALC = 0x38, BLTZALC = 0x38, BLTUC = 0x38, SW16 = 0x3a, LI16 = 0x3b, JALX32 = 0x3c, JAL32 = 0x3d, BLEZC = 0x3d, BGEZC = 0x3d, BGEC = 0x3d, SW32 = 0x3e, LW32 = 0x3f }; /* PCREL Instructions perform PC-Relative address calculation. bits 20..16 */ enum { ADDIUPC_00 = 0x00, ADDIUPC_01 = 0x01, ADDIUPC_02 = 0x02, ADDIUPC_03 = 0x03, ADDIUPC_04 = 0x04, ADDIUPC_05 = 0x05, ADDIUPC_06 = 0x06, ADDIUPC_07 = 0x07, AUIPC = 0x1e, ALUIPC = 0x1f, LWPC_08 = 0x08, LWPC_09 = 0x09, LWPC_0A = 0x0A, LWPC_0B = 0x0B, LWPC_0C = 0x0C, LWPC_0D = 0x0D, LWPC_0E = 0x0E, LWPC_0F = 0x0F, }; /* POOL32A encoding of minor opcode field */ enum { /* * These opcodes are distinguished only by bits 9..6; those bits are * what are recorded below. */ SLL32 = 0x0, SRL32 = 0x1, SRA = 0x2, ROTR = 0x3, SELEQZ = 0x5, SELNEZ = 0x6, R6_RDHWR = 0x7, SLLV = 0x0, SRLV = 0x1, SRAV = 0x2, ROTRV = 0x3, ADD = 0x4, ADDU32 = 0x5, SUB = 0x6, SUBU32 = 0x7, MUL = 0x8, AND = 0x9, OR32 = 0xa, NOR = 0xb, XOR32 = 0xc, SLT = 0xd, SLTU = 0xe, MOVN = 0x0, R6_MUL = 0x0, MOVZ = 0x1, MUH = 0x1, MULU = 0x2, MUHU = 0x3, LWXS = 0x4, R6_DIV = 0x4, MOD = 0x5, R6_DIVU = 0x6, MODU = 0x7, /* The following can be distinguished by their lower 6 bits. */ BREAK32 = 0x07, INS = 0x0c, LSA = 0x0f, ALIGN = 0x1f, EXT = 0x2c, POOL32AXF = 0x3c, SIGRIE = 0x3f }; /* POOL32AXF encoding of minor opcode field extension */ /* * 1. MIPS Architecture for Programmers Volume II-B: * The microMIPS32 Instruction Set (Revision 3.05) * * Table 6.5 POOL32Axf Encoding of Minor Opcode Extension Field * * 2. MIPS Architecture for Programmers VolumeIV-e: * The MIPS DSP Application-Specific Extension * to the microMIPS32 Architecture (Revision 2.34) * * Table 5.5 POOL32Axf Encoding of Minor Opcode Extension Field */ enum { /* bits 11..6 */ TEQ = 0x00, TGE = 0x08, TGEU = 0x10, TLT = 0x20, TLTU = 0x28, TNE = 0x30, MFC0 = 0x03, MTC0 = 0x0b, /* begin of microMIPS32 DSP */ /* bits 13..12 for 0x01 */ MFHI_ACC = 0x0, MFLO_ACC = 0x1, MTHI_ACC = 0x2, MTLO_ACC = 0x3, /* bits 13..12 for 0x2a */ MADD_ACC = 0x0, MADDU_ACC = 0x1, MSUB_ACC = 0x2, MSUBU_ACC = 0x3, /* bits 13..12 for 0x32 */ MULT_ACC = 0x0, MULTU_ACC = 0x1, /* end of microMIPS32 DSP */ /* bits 15..12 for 0x2c */ BITSWAP = 0x0, SEB = 0x2, SEH = 0x3, CLO = 0x4, CLZ = 0x5, RDHWR = 0x6, WSBH = 0x7, MULT = 0x8, MULTU = 0x9, DIV = 0xa, DIVU = 0xb, MADD = 0xc, MADDU = 0xd, MSUB = 0xe, MSUBU = 0xf, /* bits 15..12 for 0x34 */ MFC2 = 0x4, MTC2 = 0x5, MFHC2 = 0x8, MTHC2 = 0x9, CFC2 = 0xc, CTC2 = 0xd, /* bits 15..12 for 0x3c */ JALR = 0x0, JR = 0x0, /* alias */ JALRC = 0x0, JRC = 0x0, JALR_HB = 0x1, JALRC_HB = 0x1, JALRS = 0x4, JALRS_HB = 0x5, /* bits 15..12 for 0x05 */ RDPGPR = 0xe, WRPGPR = 0xf, /* bits 15..12 for 0x0d */ TLBP = 0x0, TLBR = 0x1, TLBWI = 0x2, TLBWR = 0x3, TLBINV = 0x4, TLBINVF = 0x5, WAIT = 0x9, IRET = 0xd, DERET = 0xe, ERET = 0xf, /* bits 15..12 for 0x15 */ DMT = 0x0, DVPE = 0x1, EMT = 0x2, EVPE = 0x3, /* bits 15..12 for 0x1d */ DI = 0x4, EI = 0x5, /* bits 15..12 for 0x2d */ SYNC = 0x6, SYSCALL = 0x8, SDBBP = 0xd, /* bits 15..12 for 0x35 */ MFHI32 = 0x0, MFLO32 = 0x1, MTHI32 = 0x2, MTLO32 = 0x3, }; /* POOL32B encoding of minor opcode field (bits 15..12) */ enum { LWC2 = 0x0, LWP = 0x1, LDP = 0x4, LWM32 = 0x5, CACHE = 0x6, LDM = 0x7, SWC2 = 0x8, SWP = 0x9, SDP = 0xc, SWM32 = 0xd, SDM = 0xf }; /* POOL32C encoding of minor opcode field (bits 15..12) */ enum { LWL = 0x0, SWL = 0x8, LWR = 0x1, SWR = 0x9, PREF = 0x2, ST_EVA = 0xa, LL = 0x3, SC = 0xb, LDL = 0x4, SDL = 0xc, LDR = 0x5, SDR = 0xd, LD_EVA = 0x6, LWU = 0xe, LLD = 0x7, SCD = 0xf }; /* POOL32C LD-EVA encoding of minor opcode field (bits 11..9) */ enum { LBUE = 0x0, LHUE = 0x1, LWLE = 0x2, LWRE = 0x3, LBE = 0x4, LHE = 0x5, LLE = 0x6, LWE = 0x7, }; /* POOL32C ST-EVA encoding of minor opcode field (bits 11..9) */ enum { SWLE = 0x0, SWRE = 0x1, PREFE = 0x2, CACHEE = 0x3, SBE = 0x4, SHE = 0x5, SCE = 0x6, SWE = 0x7, }; /* POOL32F encoding of minor opcode field (bits 5..0) */ enum { /* These are the bit 7..6 values */ ADD_FMT = 0x0, SUB_FMT = 0x1, MUL_FMT = 0x2, DIV_FMT = 0x3, /* These are the bit 8..6 values */ MOVN_FMT = 0x0, RSQRT2_FMT = 0x0, MOVF_FMT = 0x0, RINT_FMT = 0x0, SELNEZ_FMT = 0x0, MOVZ_FMT = 0x1, LWXC1 = 0x1, MOVT_FMT = 0x1, CLASS_FMT = 0x1, SELEQZ_FMT = 0x1, PLL_PS = 0x2, SWXC1 = 0x2, SEL_FMT = 0x2, PLU_PS = 0x3, LDXC1 = 0x3, MOVN_FMT_04 = 0x4, PUL_PS = 0x4, SDXC1 = 0x4, RECIP2_FMT = 0x4, MOVZ_FMT_05 = 0x05, PUU_PS = 0x5, LUXC1 = 0x5, CVT_PS_S = 0x6, SUXC1 = 0x6, ADDR_PS = 0x6, PREFX = 0x6, MADDF_FMT = 0x6, MULR_PS = 0x7, MSUBF_FMT = 0x7, MADD_S = 0x01, MADD_D = 0x09, MADD_PS = 0x11, ALNV_PS = 0x19, MSUB_S = 0x21, MSUB_D = 0x29, MSUB_PS = 0x31, NMADD_S = 0x02, NMADD_D = 0x0a, NMADD_PS = 0x12, NMSUB_S = 0x22, NMSUB_D = 0x2a, NMSUB_PS = 0x32, MIN_FMT = 0x3, MAX_FMT = 0xb, MINA_FMT = 0x23, MAXA_FMT = 0x2b, POOL32FXF = 0x3b, CABS_COND_FMT = 0x1c, /* MIPS3D */ C_COND_FMT = 0x3c, CMP_CONDN_S = 0x5, CMP_CONDN_D = 0x15 }; /* POOL32Fxf encoding of minor opcode extension field */ enum { CVT_L = 0x04, RSQRT_FMT = 0x08, FLOOR_L = 0x0c, CVT_PW_PS = 0x1c, CVT_W = 0x24, SQRT_FMT = 0x28, FLOOR_W = 0x2c, CVT_PS_PW = 0x3c, CFC1 = 0x40, RECIP_FMT = 0x48, CEIL_L = 0x4c, CTC1 = 0x60, CEIL_W = 0x6c, MFC1 = 0x80, CVT_S_PL = 0x84, TRUNC_L = 0x8c, MTC1 = 0xa0, CVT_S_PU = 0xa4, TRUNC_W = 0xac, MFHC1 = 0xc0, ROUND_L = 0xcc, MTHC1 = 0xe0, ROUND_W = 0xec, MOV_FMT = 0x01, MOVF = 0x05, ABS_FMT = 0x0d, RSQRT1_FMT = 0x1d, MOVT = 0x25, NEG_FMT = 0x2d, CVT_D = 0x4d, RECIP1_FMT = 0x5d, CVT_S = 0x6d }; /* POOL32I encoding of minor opcode field (bits 25..21) */ enum { BLTZ = 0x00, BLTZAL = 0x01, BGEZ = 0x02, BGEZAL = 0x03, BLEZ = 0x04, BNEZC = 0x05, BGTZ = 0x06, BEQZC = 0x07, TLTI = 0x08, BC1EQZC = 0x08, TGEI = 0x09, BC1NEZC = 0x09, TLTIU = 0x0a, BC2EQZC = 0x0a, TGEIU = 0x0b, BC2NEZC = 0x0a, TNEI = 0x0c, R6_SYNCI = 0x0c, LUI = 0x0d, TEQI = 0x0e, SYNCI = 0x10, BLTZALS = 0x11, BGEZALS = 0x13, BC2F = 0x14, BC2T = 0x15, BPOSGE64 = 0x1a, BPOSGE32 = 0x1b, /* These overlap and are distinguished by bit16 of the instruction */ BC1F = 0x1c, BC1T = 0x1d, BC1ANY2F = 0x1c, BC1ANY2T = 0x1d, BC1ANY4F = 0x1e, BC1ANY4T = 0x1f }; /* POOL16A encoding of minor opcode field */ enum { ADDU16 = 0x0, SUBU16 = 0x1 }; /* POOL16B encoding of minor opcode field */ enum { SLL16 = 0x0, SRL16 = 0x1 }; /* POOL16C encoding of minor opcode field */ enum { NOT16 = 0x00, XOR16 = 0x04, AND16 = 0x08, OR16 = 0x0c, LWM16 = 0x10, SWM16 = 0x14, JR16 = 0x18, JRC16 = 0x1a, JALR16 = 0x1c, JALR16S = 0x1e, MFHI16 = 0x20, MFLO16 = 0x24, BREAK16 = 0x28, SDBBP16 = 0x2c, JRADDIUSP = 0x30 }; /* R6 POOL16C encoding of minor opcode field (bits 0..5) */ enum { R6_NOT16 = 0x00, R6_AND16 = 0x01, R6_LWM16 = 0x02, R6_JRC16 = 0x03, MOVEP = 0x04, MOVEP_05 = 0x05, MOVEP_06 = 0x06, MOVEP_07 = 0x07, R6_XOR16 = 0x08, R6_OR16 = 0x09, R6_SWM16 = 0x0a, JALRC16 = 0x0b, MOVEP_0C = 0x0c, MOVEP_0D = 0x0d, MOVEP_0E = 0x0e, MOVEP_0F = 0x0f, JRCADDIUSP = 0x13, R6_BREAK16 = 0x1b, R6_SDBBP16 = 0x3b }; /* POOL16D encoding of minor opcode field */ enum { ADDIUS5 = 0x0, ADDIUSP = 0x1 }; /* POOL16E encoding of minor opcode field */ enum { ADDIUR2 = 0x0, ADDIUR1SP = 0x1 }; static int mmreg(int r) { static const int map[] = { 16, 17, 2, 3, 4, 5, 6, 7 }; return map[r]; } /* Used for 16-bit store instructions. */ static int mmreg2(int r) { static const int map[] = { 0, 17, 2, 3, 4, 5, 6, 7 }; return map[r]; } #define uMIPS_RD(op) ((op >> 7) & 0x7) #define uMIPS_RS(op) ((op >> 4) & 0x7) #define uMIPS_RS2(op) uMIPS_RS(op) #define uMIPS_RS1(op) ((op >> 1) & 0x7) #define uMIPS_RD5(op) ((op >> 5) & 0x1f) #define uMIPS_RS5(op) (op & 0x1f) /* Signed immediate */ #define SIMM(op, start, width) \ ((int32_t)(((op >> start) & ((~0U) >> (32 - width))) \ << (32 - width)) \ >> (32 - width)) /* Zero-extended immediate */ #define ZIMM(op, start, width) ((op >> start) & ((~0U) >> (32 - width))) static void gen_addiur1sp(DisasContext *ctx) { int rd = mmreg(uMIPS_RD(ctx->opcode)); gen_arith_imm(ctx, OPC_ADDIU, rd, 29, ((ctx->opcode >> 1) & 0x3f) << 2); } static void gen_addiur2(DisasContext *ctx) { static const int decoded_imm[] = { 1, 4, 8, 12, 16, 20, 24, -1 }; int rd = mmreg(uMIPS_RD(ctx->opcode)); int rs = mmreg(uMIPS_RS(ctx->opcode)); gen_arith_imm(ctx, OPC_ADDIU, rd, rs, decoded_imm[ZIMM(ctx->opcode, 1, 3)]); } static void gen_addiusp(DisasContext *ctx) { int encoded = ZIMM(ctx->opcode, 1, 9); int decoded; if (encoded <= 1) { decoded = 256 + encoded; } else if (encoded <= 255) { decoded = encoded; } else if (encoded <= 509) { decoded = encoded - 512; } else { decoded = encoded - 768; } gen_arith_imm(ctx, OPC_ADDIU, 29, 29, decoded << 2); } static void gen_addius5(DisasContext *ctx) { int imm = SIMM(ctx->opcode, 1, 4); int rd = (ctx->opcode >> 5) & 0x1f; gen_arith_imm(ctx, OPC_ADDIU, rd, rd, imm); } static void gen_andi16(DisasContext *ctx) { static const int decoded_imm[] = { 128, 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 255, 32768, 65535 }; int rd = mmreg(uMIPS_RD(ctx->opcode)); int rs = mmreg(uMIPS_RS(ctx->opcode)); int encoded = ZIMM(ctx->opcode, 0, 4); gen_logic_imm(ctx, OPC_ANDI, rd, rs, decoded_imm[encoded]); } static void gen_ldst_multiple(DisasContext *ctx, uint32_t opc, int reglist, int base, int16_t offset) { TCGv t0, t1; TCGv_i32 t2; if (ctx->hflags & MIPS_HFLAG_BMASK) { gen_reserved_instruction(ctx); return; } t0 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, base, offset); t1 = tcg_const_tl(reglist); t2 = tcg_const_i32(ctx->mem_idx); save_cpu_state(ctx, 1); switch (opc) { case LWM32: gen_helper_lwm(cpu_env, t0, t1, t2); break; case SWM32: gen_helper_swm(cpu_env, t0, t1, t2); break; #ifdef TARGET_MIPS64 case LDM: gen_helper_ldm(cpu_env, t0, t1, t2); break; case SDM: gen_helper_sdm(cpu_env, t0, t1, t2); break; #endif } tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free_i32(t2); } static void gen_pool16c_insn(DisasContext *ctx) { int rd = mmreg((ctx->opcode >> 3) & 0x7); int rs = mmreg(ctx->opcode & 0x7); switch (((ctx->opcode) >> 4) & 0x3f) { case NOT16 + 0: case NOT16 + 1: case NOT16 + 2: case NOT16 + 3: gen_logic(ctx, OPC_NOR, rd, rs, 0); break; case XOR16 + 0: case XOR16 + 1: case XOR16 + 2: case XOR16 + 3: gen_logic(ctx, OPC_XOR, rd, rd, rs); break; case AND16 + 0: case AND16 + 1: case AND16 + 2: case AND16 + 3: gen_logic(ctx, OPC_AND, rd, rd, rs); break; case OR16 + 0: case OR16 + 1: case OR16 + 2: case OR16 + 3: gen_logic(ctx, OPC_OR, rd, rd, rs); break; case LWM16 + 0: case LWM16 + 1: case LWM16 + 2: case LWM16 + 3: { static const int lwm_convert[] = { 0x11, 0x12, 0x13, 0x14 }; int offset = ZIMM(ctx->opcode, 0, 4); gen_ldst_multiple(ctx, LWM32, lwm_convert[(ctx->opcode >> 4) & 0x3], 29, offset << 2); } break; case SWM16 + 0: case SWM16 + 1: case SWM16 + 2: case SWM16 + 3: { static const int swm_convert[] = { 0x11, 0x12, 0x13, 0x14 }; int offset = ZIMM(ctx->opcode, 0, 4); gen_ldst_multiple(ctx, SWM32, swm_convert[(ctx->opcode >> 4) & 0x3], 29, offset << 2); } break; case JR16 + 0: case JR16 + 1: { int reg = ctx->opcode & 0x1f; gen_compute_branch(ctx, OPC_JR, 2, reg, 0, 0, 4); } break; case JRC16 + 0: case JRC16 + 1: { int reg = ctx->opcode & 0x1f; gen_compute_branch(ctx, OPC_JR, 2, reg, 0, 0, 0); /* * Let normal delay slot handling in our caller take us * to the branch target. */ } break; case JALR16 + 0: case JALR16 + 1: gen_compute_branch(ctx, OPC_JALR, 2, ctx->opcode & 0x1f, 31, 0, 4); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; break; case JALR16S + 0: case JALR16S + 1: gen_compute_branch(ctx, OPC_JALR, 2, ctx->opcode & 0x1f, 31, 0, 2); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; break; case MFHI16 + 0: case MFHI16 + 1: gen_HILO(ctx, OPC_MFHI, 0, uMIPS_RS5(ctx->opcode)); break; case MFLO16 + 0: case MFLO16 + 1: gen_HILO(ctx, OPC_MFLO, 0, uMIPS_RS5(ctx->opcode)); break; case BREAK16: generate_exception_end(ctx, EXCP_BREAK); break; case SDBBP16: if (is_uhi(extract32(ctx->opcode, 0, 4))) { gen_helper_do_semihosting(cpu_env); } else { /* * XXX: not clear which exception should be raised * when in debug mode... */ check_insn(ctx, ISA_MIPS_R1); generate_exception_end(ctx, EXCP_DBp); } break; case JRADDIUSP + 0: case JRADDIUSP + 1: { int imm = ZIMM(ctx->opcode, 0, 5); gen_compute_branch(ctx, OPC_JR, 2, 31, 0, 0, 0); gen_arith_imm(ctx, OPC_ADDIU, 29, 29, imm << 2); /* * Let normal delay slot handling in our caller take us * to the branch target. */ } break; default: gen_reserved_instruction(ctx); break; } } static inline void gen_movep(DisasContext *ctx, int enc_dest, int enc_rt, int enc_rs) { int rd, rs, re, rt; static const int rd_enc[] = { 5, 5, 6, 4, 4, 4, 4, 4 }; static const int re_enc[] = { 6, 7, 7, 21, 22, 5, 6, 7 }; static const int rs_rt_enc[] = { 0, 17, 2, 3, 16, 18, 19, 20 }; rd = rd_enc[enc_dest]; re = re_enc[enc_dest]; rs = rs_rt_enc[enc_rs]; rt = rs_rt_enc[enc_rt]; if (rs) { tcg_gen_mov_tl(cpu_gpr[rd], cpu_gpr[rs]); } else { tcg_gen_movi_tl(cpu_gpr[rd], 0); } if (rt) { tcg_gen_mov_tl(cpu_gpr[re], cpu_gpr[rt]); } else { tcg_gen_movi_tl(cpu_gpr[re], 0); } } static void gen_pool16c_r6_insn(DisasContext *ctx) { int rt = mmreg((ctx->opcode >> 7) & 0x7); int rs = mmreg((ctx->opcode >> 4) & 0x7); switch (ctx->opcode & 0xf) { case R6_NOT16: gen_logic(ctx, OPC_NOR, rt, rs, 0); break; case R6_AND16: gen_logic(ctx, OPC_AND, rt, rt, rs); break; case R6_LWM16: { int lwm_converted = 0x11 + extract32(ctx->opcode, 8, 2); int offset = extract32(ctx->opcode, 4, 4); gen_ldst_multiple(ctx, LWM32, lwm_converted, 29, offset << 2); } break; case R6_JRC16: /* JRCADDIUSP */ if ((ctx->opcode >> 4) & 1) { /* JRCADDIUSP */ int imm = extract32(ctx->opcode, 5, 5); gen_compute_branch(ctx, OPC_JR, 2, 31, 0, 0, 0); gen_arith_imm(ctx, OPC_ADDIU, 29, 29, imm << 2); } else { /* JRC16 */ rs = extract32(ctx->opcode, 5, 5); gen_compute_branch(ctx, OPC_JR, 2, rs, 0, 0, 0); } break; case MOVEP: case MOVEP_05: case MOVEP_06: case MOVEP_07: case MOVEP_0C: case MOVEP_0D: case MOVEP_0E: case MOVEP_0F: { int enc_dest = uMIPS_RD(ctx->opcode); int enc_rt = uMIPS_RS2(ctx->opcode); int enc_rs = (ctx->opcode & 3) | ((ctx->opcode >> 1) & 4); gen_movep(ctx, enc_dest, enc_rt, enc_rs); } break; case R6_XOR16: gen_logic(ctx, OPC_XOR, rt, rt, rs); break; case R6_OR16: gen_logic(ctx, OPC_OR, rt, rt, rs); break; case R6_SWM16: { int swm_converted = 0x11 + extract32(ctx->opcode, 8, 2); int offset = extract32(ctx->opcode, 4, 4); gen_ldst_multiple(ctx, SWM32, swm_converted, 29, offset << 2); } break; case JALRC16: /* BREAK16, SDBBP16 */ switch (ctx->opcode & 0x3f) { case JALRC16: case JALRC16 + 0x20: /* JALRC16 */ gen_compute_branch(ctx, OPC_JALR, 2, (ctx->opcode >> 5) & 0x1f, 31, 0, 0); break; case R6_BREAK16: /* BREAK16 */ generate_exception(ctx, EXCP_BREAK); break; case R6_SDBBP16: /* SDBBP16 */ if (is_uhi(extract32(ctx->opcode, 6, 4))) { gen_helper_do_semihosting(cpu_env); } else { if (ctx->hflags & MIPS_HFLAG_SBRI) { generate_exception(ctx, EXCP_RI); } else { generate_exception(ctx, EXCP_DBp); } } break; } break; default: generate_exception(ctx, EXCP_RI); break; } } static void gen_ldxs(DisasContext *ctx, int base, int index, int rd) { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); gen_load_gpr(t0, base); if (index != 0) { gen_load_gpr(t1, index); tcg_gen_shli_tl(t1, t1, 2); gen_op_addr_add(ctx, t0, t1, t0); } tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TESL); gen_store_gpr(t1, rd); tcg_temp_free(t0); tcg_temp_free(t1); } static void gen_ldst_pair(DisasContext *ctx, uint32_t opc, int rd, int base, int16_t offset) { TCGv t0, t1; if (ctx->hflags & MIPS_HFLAG_BMASK || rd == 31) { gen_reserved_instruction(ctx); return; } t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, base, offset); switch (opc) { case LWP: if (rd == base) { gen_reserved_instruction(ctx); return; } tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TESL); gen_store_gpr(t1, rd); tcg_gen_movi_tl(t1, 4); gen_op_addr_add(ctx, t0, t0, t1); tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TESL); gen_store_gpr(t1, rd + 1); break; case SWP: gen_load_gpr(t1, rd); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); tcg_gen_movi_tl(t1, 4); gen_op_addr_add(ctx, t0, t0, t1); gen_load_gpr(t1, rd + 1); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); break; #ifdef TARGET_MIPS64 case LDP: if (rd == base) { gen_reserved_instruction(ctx); return; } tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TEQ); gen_store_gpr(t1, rd); tcg_gen_movi_tl(t1, 8); gen_op_addr_add(ctx, t0, t0, t1); tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_TEQ); gen_store_gpr(t1, rd + 1); break; case SDP: gen_load_gpr(t1, rd); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEQ); tcg_gen_movi_tl(t1, 8); gen_op_addr_add(ctx, t0, t0, t1); gen_load_gpr(t1, rd + 1); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEQ); break; #endif } tcg_temp_free(t0); tcg_temp_free(t1); } static void gen_sync(int stype) { TCGBar tcg_mo = TCG_BAR_SC; switch (stype) { case 0x4: /* SYNC_WMB */ tcg_mo |= TCG_MO_ST_ST; break; case 0x10: /* SYNC_MB */ tcg_mo |= TCG_MO_ALL; break; case 0x11: /* SYNC_ACQUIRE */ tcg_mo |= TCG_MO_LD_LD | TCG_MO_LD_ST; break; case 0x12: /* SYNC_RELEASE */ tcg_mo |= TCG_MO_ST_ST | TCG_MO_LD_ST; break; case 0x13: /* SYNC_RMB */ tcg_mo |= TCG_MO_LD_LD; break; default: tcg_mo |= TCG_MO_ALL; break; } tcg_gen_mb(tcg_mo); } static void gen_pool32axf(CPUMIPSState *env, DisasContext *ctx, int rt, int rs) { int extension = (ctx->opcode >> 6) & 0x3f; int minor = (ctx->opcode >> 12) & 0xf; uint32_t mips32_op; switch (extension) { case TEQ: mips32_op = OPC_TEQ; goto do_trap; case TGE: mips32_op = OPC_TGE; goto do_trap; case TGEU: mips32_op = OPC_TGEU; goto do_trap; case TLT: mips32_op = OPC_TLT; goto do_trap; case TLTU: mips32_op = OPC_TLTU; goto do_trap; case TNE: mips32_op = OPC_TNE; do_trap: gen_trap(ctx, mips32_op, rs, rt, -1); break; #ifndef CONFIG_USER_ONLY case MFC0: case MFC0 + 32: check_cp0_enabled(ctx); if (rt == 0) { /* Treat as NOP. */ break; } gen_mfc0(ctx, cpu_gpr[rt], rs, (ctx->opcode >> 11) & 0x7); break; case MTC0: case MTC0 + 32: check_cp0_enabled(ctx); { TCGv t0 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_mtc0(ctx, t0, rs, (ctx->opcode >> 11) & 0x7); tcg_temp_free(t0); } break; #endif case 0x2a: switch (minor & 3) { case MADD_ACC: gen_muldiv(ctx, OPC_MADD, (ctx->opcode >> 14) & 3, rs, rt); break; case MADDU_ACC: gen_muldiv(ctx, OPC_MADDU, (ctx->opcode >> 14) & 3, rs, rt); break; case MSUB_ACC: gen_muldiv(ctx, OPC_MSUB, (ctx->opcode >> 14) & 3, rs, rt); break; case MSUBU_ACC: gen_muldiv(ctx, OPC_MSUBU, (ctx->opcode >> 14) & 3, rs, rt); break; default: goto pool32axf_invalid; } break; case 0x32: switch (minor & 3) { case MULT_ACC: gen_muldiv(ctx, OPC_MULT, (ctx->opcode >> 14) & 3, rs, rt); break; case MULTU_ACC: gen_muldiv(ctx, OPC_MULTU, (ctx->opcode >> 14) & 3, rs, rt); break; default: goto pool32axf_invalid; } break; case 0x2c: switch (minor) { case BITSWAP: check_insn(ctx, ISA_MIPS_R6); gen_bitswap(ctx, OPC_BITSWAP, rs, rt); break; case SEB: gen_bshfl(ctx, OPC_SEB, rs, rt); break; case SEH: gen_bshfl(ctx, OPC_SEH, rs, rt); break; case CLO: mips32_op = OPC_CLO; goto do_cl; case CLZ: mips32_op = OPC_CLZ; do_cl: check_insn(ctx, ISA_MIPS_R1); gen_cl(ctx, mips32_op, rt, rs); break; case RDHWR: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_rdhwr(ctx, rt, rs, 0); break; case WSBH: gen_bshfl(ctx, OPC_WSBH, rs, rt); break; case MULT: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MULT; goto do_mul; case MULTU: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MULTU; goto do_mul; case DIV: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_DIV; goto do_div; case DIVU: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_DIVU; goto do_div; do_div: check_insn(ctx, ISA_MIPS_R1); gen_muldiv(ctx, mips32_op, 0, rs, rt); break; case MADD: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MADD; goto do_mul; case MADDU: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MADDU; goto do_mul; case MSUB: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MSUB; goto do_mul; case MSUBU: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MSUBU; do_mul: check_insn(ctx, ISA_MIPS_R1); gen_muldiv(ctx, mips32_op, 0, rs, rt); break; default: goto pool32axf_invalid; } break; case 0x34: switch (minor) { case MFC2: case MTC2: case MFHC2: case MTHC2: case CFC2: case CTC2: generate_exception_err(ctx, EXCP_CpU, 2); break; default: goto pool32axf_invalid; } break; case 0x3c: switch (minor) { case JALR: /* JALRC */ case JALR_HB: /* JALRC_HB */ if (ctx->insn_flags & ISA_MIPS_R6) { /* JALRC, JALRC_HB */ gen_compute_branch(ctx, OPC_JALR, 4, rs, rt, 0, 0); } else { /* JALR, JALR_HB */ gen_compute_branch(ctx, OPC_JALR, 4, rs, rt, 0, 4); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; } break; case JALRS: case JALRS_HB: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, OPC_JALR, 4, rs, rt, 0, 2); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; break; default: goto pool32axf_invalid; } break; case 0x05: switch (minor) { case RDPGPR: check_cp0_enabled(ctx); check_insn(ctx, ISA_MIPS_R2); gen_load_srsgpr(rs, rt); break; case WRPGPR: check_cp0_enabled(ctx); check_insn(ctx, ISA_MIPS_R2); gen_store_srsgpr(rs, rt); break; default: goto pool32axf_invalid; } break; #ifndef CONFIG_USER_ONLY case 0x0d: switch (minor) { case TLBP: mips32_op = OPC_TLBP; goto do_cp0; case TLBR: mips32_op = OPC_TLBR; goto do_cp0; case TLBWI: mips32_op = OPC_TLBWI; goto do_cp0; case TLBWR: mips32_op = OPC_TLBWR; goto do_cp0; case TLBINV: mips32_op = OPC_TLBINV; goto do_cp0; case TLBINVF: mips32_op = OPC_TLBINVF; goto do_cp0; case WAIT: mips32_op = OPC_WAIT; goto do_cp0; case DERET: mips32_op = OPC_DERET; goto do_cp0; case ERET: mips32_op = OPC_ERET; do_cp0: gen_cp0(env, ctx, mips32_op, rt, rs); break; default: goto pool32axf_invalid; } break; case 0x1d: switch (minor) { case DI: check_cp0_enabled(ctx); { TCGv t0 = tcg_temp_new(); save_cpu_state(ctx, 1); gen_helper_di(t0, cpu_env); gen_store_gpr(t0, rs); /* * Stop translation as we may have switched the execution * mode. */ ctx->base.is_jmp = DISAS_STOP; tcg_temp_free(t0); } break; case EI: check_cp0_enabled(ctx); { TCGv t0 = tcg_temp_new(); save_cpu_state(ctx, 1); gen_helper_ei(t0, cpu_env); gen_store_gpr(t0, rs); /* * DISAS_STOP isn't sufficient, we need to ensure we break out * of translated code to check for pending interrupts. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; tcg_temp_free(t0); } break; default: goto pool32axf_invalid; } break; #endif case 0x2d: switch (minor) { case SYNC: gen_sync(extract32(ctx->opcode, 16, 5)); break; case SYSCALL: generate_exception_end(ctx, EXCP_SYSCALL); break; case SDBBP: if (is_uhi(extract32(ctx->opcode, 16, 10))) { gen_helper_do_semihosting(cpu_env); } else { check_insn(ctx, ISA_MIPS_R1); if (ctx->hflags & MIPS_HFLAG_SBRI) { gen_reserved_instruction(ctx); } else { generate_exception_end(ctx, EXCP_DBp); } } break; default: goto pool32axf_invalid; } break; case 0x01: switch (minor & 3) { case MFHI_ACC: gen_HILO(ctx, OPC_MFHI, minor >> 2, rs); break; case MFLO_ACC: gen_HILO(ctx, OPC_MFLO, minor >> 2, rs); break; case MTHI_ACC: gen_HILO(ctx, OPC_MTHI, minor >> 2, rs); break; case MTLO_ACC: gen_HILO(ctx, OPC_MTLO, minor >> 2, rs); break; default: goto pool32axf_invalid; } break; case 0x35: check_insn_opc_removed(ctx, ISA_MIPS_R6); switch (minor) { case MFHI32: gen_HILO(ctx, OPC_MFHI, 0, rs); break; case MFLO32: gen_HILO(ctx, OPC_MFLO, 0, rs); break; case MTHI32: gen_HILO(ctx, OPC_MTHI, 0, rs); break; case MTLO32: gen_HILO(ctx, OPC_MTLO, 0, rs); break; default: goto pool32axf_invalid; } break; default: pool32axf_invalid: MIPS_INVAL("pool32axf"); gen_reserved_instruction(ctx); break; } } /* * Values for microMIPS fmt field. Variable-width, depending on which * formats the instruction supports. */ enum { FMT_SD_S = 0, FMT_SD_D = 1, FMT_SDPS_S = 0, FMT_SDPS_D = 1, FMT_SDPS_PS = 2, FMT_SWL_S = 0, FMT_SWL_W = 1, FMT_SWL_L = 2, FMT_DWL_D = 0, FMT_DWL_W = 1, FMT_DWL_L = 2 }; static void gen_pool32fxf(DisasContext *ctx, int rt, int rs) { int extension = (ctx->opcode >> 6) & 0x3ff; uint32_t mips32_op; #define FLOAT_1BIT_FMT(opc, fmt) ((fmt << 8) | opc) #define FLOAT_2BIT_FMT(opc, fmt) ((fmt << 7) | opc) #define COND_FLOAT_MOV(opc, cond) ((cond << 7) | opc) switch (extension) { case FLOAT_1BIT_FMT(CFC1, 0): mips32_op = OPC_CFC1; goto do_cp1; case FLOAT_1BIT_FMT(CTC1, 0): mips32_op = OPC_CTC1; goto do_cp1; case FLOAT_1BIT_FMT(MFC1, 0): mips32_op = OPC_MFC1; goto do_cp1; case FLOAT_1BIT_FMT(MTC1, 0): mips32_op = OPC_MTC1; goto do_cp1; case FLOAT_1BIT_FMT(MFHC1, 0): mips32_op = OPC_MFHC1; goto do_cp1; case FLOAT_1BIT_FMT(MTHC1, 0): mips32_op = OPC_MTHC1; do_cp1: gen_cp1(ctx, mips32_op, rt, rs); break; /* Reciprocal square root */ case FLOAT_1BIT_FMT(RSQRT_FMT, FMT_SD_S): mips32_op = OPC_RSQRT_S; goto do_unaryfp; case FLOAT_1BIT_FMT(RSQRT_FMT, FMT_SD_D): mips32_op = OPC_RSQRT_D; goto do_unaryfp; /* Square root */ case FLOAT_1BIT_FMT(SQRT_FMT, FMT_SD_S): mips32_op = OPC_SQRT_S; goto do_unaryfp; case FLOAT_1BIT_FMT(SQRT_FMT, FMT_SD_D): mips32_op = OPC_SQRT_D; goto do_unaryfp; /* Reciprocal */ case FLOAT_1BIT_FMT(RECIP_FMT, FMT_SD_S): mips32_op = OPC_RECIP_S; goto do_unaryfp; case FLOAT_1BIT_FMT(RECIP_FMT, FMT_SD_D): mips32_op = OPC_RECIP_D; goto do_unaryfp; /* Floor */ case FLOAT_1BIT_FMT(FLOOR_L, FMT_SD_S): mips32_op = OPC_FLOOR_L_S; goto do_unaryfp; case FLOAT_1BIT_FMT(FLOOR_L, FMT_SD_D): mips32_op = OPC_FLOOR_L_D; goto do_unaryfp; case FLOAT_1BIT_FMT(FLOOR_W, FMT_SD_S): mips32_op = OPC_FLOOR_W_S; goto do_unaryfp; case FLOAT_1BIT_FMT(FLOOR_W, FMT_SD_D): mips32_op = OPC_FLOOR_W_D; goto do_unaryfp; /* Ceiling */ case FLOAT_1BIT_FMT(CEIL_L, FMT_SD_S): mips32_op = OPC_CEIL_L_S; goto do_unaryfp; case FLOAT_1BIT_FMT(CEIL_L, FMT_SD_D): mips32_op = OPC_CEIL_L_D; goto do_unaryfp; case FLOAT_1BIT_FMT(CEIL_W, FMT_SD_S): mips32_op = OPC_CEIL_W_S; goto do_unaryfp; case FLOAT_1BIT_FMT(CEIL_W, FMT_SD_D): mips32_op = OPC_CEIL_W_D; goto do_unaryfp; /* Truncation */ case FLOAT_1BIT_FMT(TRUNC_L, FMT_SD_S): mips32_op = OPC_TRUNC_L_S; goto do_unaryfp; case FLOAT_1BIT_FMT(TRUNC_L, FMT_SD_D): mips32_op = OPC_TRUNC_L_D; goto do_unaryfp; case FLOAT_1BIT_FMT(TRUNC_W, FMT_SD_S): mips32_op = OPC_TRUNC_W_S; goto do_unaryfp; case FLOAT_1BIT_FMT(TRUNC_W, FMT_SD_D): mips32_op = OPC_TRUNC_W_D; goto do_unaryfp; /* Round */ case FLOAT_1BIT_FMT(ROUND_L, FMT_SD_S): mips32_op = OPC_ROUND_L_S; goto do_unaryfp; case FLOAT_1BIT_FMT(ROUND_L, FMT_SD_D): mips32_op = OPC_ROUND_L_D; goto do_unaryfp; case FLOAT_1BIT_FMT(ROUND_W, FMT_SD_S): mips32_op = OPC_ROUND_W_S; goto do_unaryfp; case FLOAT_1BIT_FMT(ROUND_W, FMT_SD_D): mips32_op = OPC_ROUND_W_D; goto do_unaryfp; /* Integer to floating-point conversion */ case FLOAT_1BIT_FMT(CVT_L, FMT_SD_S): mips32_op = OPC_CVT_L_S; goto do_unaryfp; case FLOAT_1BIT_FMT(CVT_L, FMT_SD_D): mips32_op = OPC_CVT_L_D; goto do_unaryfp; case FLOAT_1BIT_FMT(CVT_W, FMT_SD_S): mips32_op = OPC_CVT_W_S; goto do_unaryfp; case FLOAT_1BIT_FMT(CVT_W, FMT_SD_D): mips32_op = OPC_CVT_W_D; goto do_unaryfp; /* Paired-foo conversions */ case FLOAT_1BIT_FMT(CVT_S_PL, 0): mips32_op = OPC_CVT_S_PL; goto do_unaryfp; case FLOAT_1BIT_FMT(CVT_S_PU, 0): mips32_op = OPC_CVT_S_PU; goto do_unaryfp; case FLOAT_1BIT_FMT(CVT_PW_PS, 0): mips32_op = OPC_CVT_PW_PS; goto do_unaryfp; case FLOAT_1BIT_FMT(CVT_PS_PW, 0): mips32_op = OPC_CVT_PS_PW; goto do_unaryfp; /* Floating-point moves */ case FLOAT_2BIT_FMT(MOV_FMT, FMT_SDPS_S): mips32_op = OPC_MOV_S; goto do_unaryfp; case FLOAT_2BIT_FMT(MOV_FMT, FMT_SDPS_D): mips32_op = OPC_MOV_D; goto do_unaryfp; case FLOAT_2BIT_FMT(MOV_FMT, FMT_SDPS_PS): mips32_op = OPC_MOV_PS; goto do_unaryfp; /* Absolute value */ case FLOAT_2BIT_FMT(ABS_FMT, FMT_SDPS_S): mips32_op = OPC_ABS_S; goto do_unaryfp; case FLOAT_2BIT_FMT(ABS_FMT, FMT_SDPS_D): mips32_op = OPC_ABS_D; goto do_unaryfp; case FLOAT_2BIT_FMT(ABS_FMT, FMT_SDPS_PS): mips32_op = OPC_ABS_PS; goto do_unaryfp; /* Negation */ case FLOAT_2BIT_FMT(NEG_FMT, FMT_SDPS_S): mips32_op = OPC_NEG_S; goto do_unaryfp; case FLOAT_2BIT_FMT(NEG_FMT, FMT_SDPS_D): mips32_op = OPC_NEG_D; goto do_unaryfp; case FLOAT_2BIT_FMT(NEG_FMT, FMT_SDPS_PS): mips32_op = OPC_NEG_PS; goto do_unaryfp; /* Reciprocal square root step */ case FLOAT_2BIT_FMT(RSQRT1_FMT, FMT_SDPS_S): mips32_op = OPC_RSQRT1_S; goto do_unaryfp; case FLOAT_2BIT_FMT(RSQRT1_FMT, FMT_SDPS_D): mips32_op = OPC_RSQRT1_D; goto do_unaryfp; case FLOAT_2BIT_FMT(RSQRT1_FMT, FMT_SDPS_PS): mips32_op = OPC_RSQRT1_PS; goto do_unaryfp; /* Reciprocal step */ case FLOAT_2BIT_FMT(RECIP1_FMT, FMT_SDPS_S): mips32_op = OPC_RECIP1_S; goto do_unaryfp; case FLOAT_2BIT_FMT(RECIP1_FMT, FMT_SDPS_D): mips32_op = OPC_RECIP1_S; goto do_unaryfp; case FLOAT_2BIT_FMT(RECIP1_FMT, FMT_SDPS_PS): mips32_op = OPC_RECIP1_PS; goto do_unaryfp; /* Conversions from double */ case FLOAT_2BIT_FMT(CVT_D, FMT_SWL_S): mips32_op = OPC_CVT_D_S; goto do_unaryfp; case FLOAT_2BIT_FMT(CVT_D, FMT_SWL_W): mips32_op = OPC_CVT_D_W; goto do_unaryfp; case FLOAT_2BIT_FMT(CVT_D, FMT_SWL_L): mips32_op = OPC_CVT_D_L; goto do_unaryfp; /* Conversions from single */ case FLOAT_2BIT_FMT(CVT_S, FMT_DWL_D): mips32_op = OPC_CVT_S_D; goto do_unaryfp; case FLOAT_2BIT_FMT(CVT_S, FMT_DWL_W): mips32_op = OPC_CVT_S_W; goto do_unaryfp; case FLOAT_2BIT_FMT(CVT_S, FMT_DWL_L): mips32_op = OPC_CVT_S_L; do_unaryfp: gen_farith(ctx, mips32_op, -1, rs, rt, 0); break; /* Conditional moves on floating-point codes */ case COND_FLOAT_MOV(MOVT, 0): case COND_FLOAT_MOV(MOVT, 1): case COND_FLOAT_MOV(MOVT, 2): case COND_FLOAT_MOV(MOVT, 3): case COND_FLOAT_MOV(MOVT, 4): case COND_FLOAT_MOV(MOVT, 5): case COND_FLOAT_MOV(MOVT, 6): case COND_FLOAT_MOV(MOVT, 7): check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_movci(ctx, rt, rs, (ctx->opcode >> 13) & 0x7, 1); break; case COND_FLOAT_MOV(MOVF, 0): case COND_FLOAT_MOV(MOVF, 1): case COND_FLOAT_MOV(MOVF, 2): case COND_FLOAT_MOV(MOVF, 3): case COND_FLOAT_MOV(MOVF, 4): case COND_FLOAT_MOV(MOVF, 5): case COND_FLOAT_MOV(MOVF, 6): case COND_FLOAT_MOV(MOVF, 7): check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_movci(ctx, rt, rs, (ctx->opcode >> 13) & 0x7, 0); break; default: MIPS_INVAL("pool32fxf"); gen_reserved_instruction(ctx); break; } } static void decode_micromips32_opc(CPUMIPSState *env, DisasContext *ctx) { int32_t offset; uint16_t insn; int rt, rs, rd, rr; int16_t imm; uint32_t op, minor, minor2, mips32_op; uint32_t cond, fmt, cc; insn = cpu_lduw_code(env, ctx->base.pc_next + 2); ctx->opcode = (ctx->opcode << 16) | insn; rt = (ctx->opcode >> 21) & 0x1f; rs = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; rr = (ctx->opcode >> 6) & 0x1f; imm = (int16_t) ctx->opcode; op = (ctx->opcode >> 26) & 0x3f; switch (op) { case POOL32A: minor = ctx->opcode & 0x3f; switch (minor) { case 0x00: minor = (ctx->opcode >> 6) & 0xf; switch (minor) { case SLL32: mips32_op = OPC_SLL; goto do_shifti; case SRA: mips32_op = OPC_SRA; goto do_shifti; case SRL32: mips32_op = OPC_SRL; goto do_shifti; case ROTR: mips32_op = OPC_ROTR; do_shifti: gen_shift_imm(ctx, mips32_op, rt, rs, rd); break; case SELEQZ: check_insn(ctx, ISA_MIPS_R6); gen_cond_move(ctx, OPC_SELEQZ, rd, rs, rt); break; case SELNEZ: check_insn(ctx, ISA_MIPS_R6); gen_cond_move(ctx, OPC_SELNEZ, rd, rs, rt); break; case R6_RDHWR: check_insn(ctx, ISA_MIPS_R6); gen_rdhwr(ctx, rt, rs, extract32(ctx->opcode, 11, 3)); break; default: goto pool32a_invalid; } break; case 0x10: minor = (ctx->opcode >> 6) & 0xf; switch (minor) { /* Arithmetic */ case ADD: mips32_op = OPC_ADD; goto do_arith; case ADDU32: mips32_op = OPC_ADDU; goto do_arith; case SUB: mips32_op = OPC_SUB; goto do_arith; case SUBU32: mips32_op = OPC_SUBU; goto do_arith; case MUL: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MUL; do_arith: gen_arith(ctx, mips32_op, rd, rs, rt); break; /* Shifts */ case SLLV: mips32_op = OPC_SLLV; goto do_shift; case SRLV: mips32_op = OPC_SRLV; goto do_shift; case SRAV: mips32_op = OPC_SRAV; goto do_shift; case ROTRV: mips32_op = OPC_ROTRV; do_shift: gen_shift(ctx, mips32_op, rd, rs, rt); break; /* Logical operations */ case AND: mips32_op = OPC_AND; goto do_logic; case OR32: mips32_op = OPC_OR; goto do_logic; case NOR: mips32_op = OPC_NOR; goto do_logic; case XOR32: mips32_op = OPC_XOR; do_logic: gen_logic(ctx, mips32_op, rd, rs, rt); break; /* Set less than */ case SLT: mips32_op = OPC_SLT; goto do_slt; case SLTU: mips32_op = OPC_SLTU; do_slt: gen_slt(ctx, mips32_op, rd, rs, rt); break; default: goto pool32a_invalid; } break; case 0x18: minor = (ctx->opcode >> 6) & 0xf; switch (minor) { /* Conditional moves */ case MOVN: /* MUL */ if (ctx->insn_flags & ISA_MIPS_R6) { /* MUL */ gen_r6_muldiv(ctx, R6_OPC_MUL, rd, rs, rt); } else { /* MOVN */ gen_cond_move(ctx, OPC_MOVN, rd, rs, rt); } break; case MOVZ: /* MUH */ if (ctx->insn_flags & ISA_MIPS_R6) { /* MUH */ gen_r6_muldiv(ctx, R6_OPC_MUH, rd, rs, rt); } else { /* MOVZ */ gen_cond_move(ctx, OPC_MOVZ, rd, rs, rt); } break; case MULU: check_insn(ctx, ISA_MIPS_R6); gen_r6_muldiv(ctx, R6_OPC_MULU, rd, rs, rt); break; case MUHU: check_insn(ctx, ISA_MIPS_R6); gen_r6_muldiv(ctx, R6_OPC_MUHU, rd, rs, rt); break; case LWXS: /* DIV */ if (ctx->insn_flags & ISA_MIPS_R6) { /* DIV */ gen_r6_muldiv(ctx, R6_OPC_DIV, rd, rs, rt); } else { /* LWXS */ gen_ldxs(ctx, rs, rt, rd); } break; case MOD: check_insn(ctx, ISA_MIPS_R6); gen_r6_muldiv(ctx, R6_OPC_MOD, rd, rs, rt); break; case R6_DIVU: check_insn(ctx, ISA_MIPS_R6); gen_r6_muldiv(ctx, R6_OPC_DIVU, rd, rs, rt); break; case MODU: check_insn(ctx, ISA_MIPS_R6); gen_r6_muldiv(ctx, R6_OPC_MODU, rd, rs, rt); break; default: goto pool32a_invalid; } break; case INS: gen_bitops(ctx, OPC_INS, rt, rs, rr, rd); return; case LSA: check_insn(ctx, ISA_MIPS_R6); gen_lsa(ctx, OPC_LSA, rd, rs, rt, extract32(ctx->opcode, 9, 2)); break; case ALIGN: check_insn(ctx, ISA_MIPS_R6); gen_align(ctx, 32, rd, rs, rt, extract32(ctx->opcode, 9, 2)); break; case EXT: gen_bitops(ctx, OPC_EXT, rt, rs, rr, rd); return; case POOL32AXF: gen_pool32axf(env, ctx, rt, rs); break; case BREAK32: generate_exception_end(ctx, EXCP_BREAK); break; case SIGRIE: check_insn(ctx, ISA_MIPS_R6); gen_reserved_instruction(ctx); break; default: pool32a_invalid: MIPS_INVAL("pool32a"); gen_reserved_instruction(ctx); break; } break; case POOL32B: minor = (ctx->opcode >> 12) & 0xf; switch (minor) { case CACHE: check_cp0_enabled(ctx); if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) { gen_cache_operation(ctx, rt, rs, imm); } break; case LWC2: case SWC2: /* COP2: Not implemented. */ generate_exception_err(ctx, EXCP_CpU, 2); break; #ifdef TARGET_MIPS64 case LDP: case SDP: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); #endif /* fall through */ case LWP: case SWP: gen_ldst_pair(ctx, minor, rt, rs, SIMM(ctx->opcode, 0, 12)); break; #ifdef TARGET_MIPS64 case LDM: case SDM: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); #endif /* fall through */ case LWM32: case SWM32: gen_ldst_multiple(ctx, minor, rt, rs, SIMM(ctx->opcode, 0, 12)); break; default: MIPS_INVAL("pool32b"); gen_reserved_instruction(ctx); break; } break; case POOL32F: if (ctx->CP0_Config1 & (1 << CP0C1_FP)) { minor = ctx->opcode & 0x3f; check_cp1_enabled(ctx); switch (minor) { case ALNV_PS: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_ALNV_PS; goto do_madd; case MADD_S: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MADD_S; goto do_madd; case MADD_D: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MADD_D; goto do_madd; case MADD_PS: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MADD_PS; goto do_madd; case MSUB_S: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MSUB_S; goto do_madd; case MSUB_D: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MSUB_D; goto do_madd; case MSUB_PS: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_MSUB_PS; goto do_madd; case NMADD_S: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_NMADD_S; goto do_madd; case NMADD_D: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_NMADD_D; goto do_madd; case NMADD_PS: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_NMADD_PS; goto do_madd; case NMSUB_S: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_NMSUB_S; goto do_madd; case NMSUB_D: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_NMSUB_D; goto do_madd; case NMSUB_PS: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_NMSUB_PS; do_madd: gen_flt3_arith(ctx, mips32_op, rd, rr, rs, rt); break; case CABS_COND_FMT: check_insn_opc_removed(ctx, ISA_MIPS_R6); cond = (ctx->opcode >> 6) & 0xf; cc = (ctx->opcode >> 13) & 0x7; fmt = (ctx->opcode >> 10) & 0x3; switch (fmt) { case 0x0: gen_cmpabs_s(ctx, cond, rt, rs, cc); break; case 0x1: gen_cmpabs_d(ctx, cond, rt, rs, cc); break; case 0x2: gen_cmpabs_ps(ctx, cond, rt, rs, cc); break; default: goto pool32f_invalid; } break; case C_COND_FMT: check_insn_opc_removed(ctx, ISA_MIPS_R6); cond = (ctx->opcode >> 6) & 0xf; cc = (ctx->opcode >> 13) & 0x7; fmt = (ctx->opcode >> 10) & 0x3; switch (fmt) { case 0x0: gen_cmp_s(ctx, cond, rt, rs, cc); break; case 0x1: gen_cmp_d(ctx, cond, rt, rs, cc); break; case 0x2: gen_cmp_ps(ctx, cond, rt, rs, cc); break; default: goto pool32f_invalid; } break; case CMP_CONDN_S: check_insn(ctx, ISA_MIPS_R6); gen_r6_cmp_s(ctx, (ctx->opcode >> 6) & 0x1f, rt, rs, rd); break; case CMP_CONDN_D: check_insn(ctx, ISA_MIPS_R6); gen_r6_cmp_d(ctx, (ctx->opcode >> 6) & 0x1f, rt, rs, rd); break; case POOL32FXF: gen_pool32fxf(ctx, rt, rs); break; case 0x00: /* PLL foo */ switch ((ctx->opcode >> 6) & 0x7) { case PLL_PS: mips32_op = OPC_PLL_PS; goto do_ps; case PLU_PS: mips32_op = OPC_PLU_PS; goto do_ps; case PUL_PS: mips32_op = OPC_PUL_PS; goto do_ps; case PUU_PS: mips32_op = OPC_PUU_PS; goto do_ps; case CVT_PS_S: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_CVT_PS_S; do_ps: gen_farith(ctx, mips32_op, rt, rs, rd, 0); break; default: goto pool32f_invalid; } break; case MIN_FMT: check_insn(ctx, ISA_MIPS_R6); switch ((ctx->opcode >> 9) & 0x3) { case FMT_SDPS_S: gen_farith(ctx, OPC_MIN_S, rt, rs, rd, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_MIN_D, rt, rs, rd, 0); break; default: goto pool32f_invalid; } break; case 0x08: /* [LS][WDU]XC1 */ switch ((ctx->opcode >> 6) & 0x7) { case LWXC1: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_LWXC1; goto do_ldst_cp1; case SWXC1: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_SWXC1; goto do_ldst_cp1; case LDXC1: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_LDXC1; goto do_ldst_cp1; case SDXC1: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_SDXC1; goto do_ldst_cp1; case LUXC1: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_LUXC1; goto do_ldst_cp1; case SUXC1: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_SUXC1; do_ldst_cp1: gen_flt3_ldst(ctx, mips32_op, rd, rd, rt, rs); break; default: goto pool32f_invalid; } break; case MAX_FMT: check_insn(ctx, ISA_MIPS_R6); switch ((ctx->opcode >> 9) & 0x3) { case FMT_SDPS_S: gen_farith(ctx, OPC_MAX_S, rt, rs, rd, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_MAX_D, rt, rs, rd, 0); break; default: goto pool32f_invalid; } break; case 0x18: /* 3D insns */ check_insn_opc_removed(ctx, ISA_MIPS_R6); fmt = (ctx->opcode >> 9) & 0x3; switch ((ctx->opcode >> 6) & 0x7) { case RSQRT2_FMT: switch (fmt) { case FMT_SDPS_S: mips32_op = OPC_RSQRT2_S; goto do_3d; case FMT_SDPS_D: mips32_op = OPC_RSQRT2_D; goto do_3d; case FMT_SDPS_PS: mips32_op = OPC_RSQRT2_PS; goto do_3d; default: goto pool32f_invalid; } break; case RECIP2_FMT: switch (fmt) { case FMT_SDPS_S: mips32_op = OPC_RECIP2_S; goto do_3d; case FMT_SDPS_D: mips32_op = OPC_RECIP2_D; goto do_3d; case FMT_SDPS_PS: mips32_op = OPC_RECIP2_PS; goto do_3d; default: goto pool32f_invalid; } break; case ADDR_PS: mips32_op = OPC_ADDR_PS; goto do_3d; case MULR_PS: mips32_op = OPC_MULR_PS; do_3d: gen_farith(ctx, mips32_op, rt, rs, rd, 0); break; default: goto pool32f_invalid; } break; case 0x20: /* MOV[FT].fmt, PREFX, RINT.fmt, CLASS.fmt*/ cc = (ctx->opcode >> 13) & 0x7; fmt = (ctx->opcode >> 9) & 0x3; switch ((ctx->opcode >> 6) & 0x7) { case MOVF_FMT: /* RINT_FMT */ if (ctx->insn_flags & ISA_MIPS_R6) { /* RINT_FMT */ switch (fmt) { case FMT_SDPS_S: gen_farith(ctx, OPC_RINT_S, 0, rt, rs, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_RINT_D, 0, rt, rs, 0); break; default: goto pool32f_invalid; } } else { /* MOVF_FMT */ switch (fmt) { case FMT_SDPS_S: gen_movcf_s(ctx, rs, rt, cc, 0); break; case FMT_SDPS_D: gen_movcf_d(ctx, rs, rt, cc, 0); break; case FMT_SDPS_PS: check_ps(ctx); gen_movcf_ps(ctx, rs, rt, cc, 0); break; default: goto pool32f_invalid; } } break; case MOVT_FMT: /* CLASS_FMT */ if (ctx->insn_flags & ISA_MIPS_R6) { /* CLASS_FMT */ switch (fmt) { case FMT_SDPS_S: gen_farith(ctx, OPC_CLASS_S, 0, rt, rs, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_CLASS_D, 0, rt, rs, 0); break; default: goto pool32f_invalid; } } else { /* MOVT_FMT */ switch (fmt) { case FMT_SDPS_S: gen_movcf_s(ctx, rs, rt, cc, 1); break; case FMT_SDPS_D: gen_movcf_d(ctx, rs, rt, cc, 1); break; case FMT_SDPS_PS: check_ps(ctx); gen_movcf_ps(ctx, rs, rt, cc, 1); break; default: goto pool32f_invalid; } } break; case PREFX: check_insn_opc_removed(ctx, ISA_MIPS_R6); break; default: goto pool32f_invalid; } break; #define FINSN_3ARG_SDPS(prfx) \ switch ((ctx->opcode >> 8) & 0x3) { \ case FMT_SDPS_S: \ mips32_op = OPC_##prfx##_S; \ goto do_fpop; \ case FMT_SDPS_D: \ mips32_op = OPC_##prfx##_D; \ goto do_fpop; \ case FMT_SDPS_PS: \ check_ps(ctx); \ mips32_op = OPC_##prfx##_PS; \ goto do_fpop; \ default: \ goto pool32f_invalid; \ } case MINA_FMT: check_insn(ctx, ISA_MIPS_R6); switch ((ctx->opcode >> 9) & 0x3) { case FMT_SDPS_S: gen_farith(ctx, OPC_MINA_S, rt, rs, rd, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_MINA_D, rt, rs, rd, 0); break; default: goto pool32f_invalid; } break; case MAXA_FMT: check_insn(ctx, ISA_MIPS_R6); switch ((ctx->opcode >> 9) & 0x3) { case FMT_SDPS_S: gen_farith(ctx, OPC_MAXA_S, rt, rs, rd, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_MAXA_D, rt, rs, rd, 0); break; default: goto pool32f_invalid; } break; case 0x30: /* regular FP ops */ switch ((ctx->opcode >> 6) & 0x3) { case ADD_FMT: FINSN_3ARG_SDPS(ADD); break; case SUB_FMT: FINSN_3ARG_SDPS(SUB); break; case MUL_FMT: FINSN_3ARG_SDPS(MUL); break; case DIV_FMT: fmt = (ctx->opcode >> 8) & 0x3; if (fmt == 1) { mips32_op = OPC_DIV_D; } else if (fmt == 0) { mips32_op = OPC_DIV_S; } else { goto pool32f_invalid; } goto do_fpop; default: goto pool32f_invalid; } break; case 0x38: /* cmovs */ switch ((ctx->opcode >> 6) & 0x7) { case MOVN_FMT: /* SELEQZ_FMT */ if (ctx->insn_flags & ISA_MIPS_R6) { /* SELEQZ_FMT */ switch ((ctx->opcode >> 9) & 0x3) { case FMT_SDPS_S: gen_sel_s(ctx, OPC_SELEQZ_S, rd, rt, rs); break; case FMT_SDPS_D: gen_sel_d(ctx, OPC_SELEQZ_D, rd, rt, rs); break; default: goto pool32f_invalid; } } else { /* MOVN_FMT */ FINSN_3ARG_SDPS(MOVN); } break; case MOVN_FMT_04: check_insn_opc_removed(ctx, ISA_MIPS_R6); FINSN_3ARG_SDPS(MOVN); break; case MOVZ_FMT: /* SELNEZ_FMT */ if (ctx->insn_flags & ISA_MIPS_R6) { /* SELNEZ_FMT */ switch ((ctx->opcode >> 9) & 0x3) { case FMT_SDPS_S: gen_sel_s(ctx, OPC_SELNEZ_S, rd, rt, rs); break; case FMT_SDPS_D: gen_sel_d(ctx, OPC_SELNEZ_D, rd, rt, rs); break; default: goto pool32f_invalid; } } else { /* MOVZ_FMT */ FINSN_3ARG_SDPS(MOVZ); } break; case MOVZ_FMT_05: check_insn_opc_removed(ctx, ISA_MIPS_R6); FINSN_3ARG_SDPS(MOVZ); break; case SEL_FMT: check_insn(ctx, ISA_MIPS_R6); switch ((ctx->opcode >> 9) & 0x3) { case FMT_SDPS_S: gen_sel_s(ctx, OPC_SEL_S, rd, rt, rs); break; case FMT_SDPS_D: gen_sel_d(ctx, OPC_SEL_D, rd, rt, rs); break; default: goto pool32f_invalid; } break; case MADDF_FMT: check_insn(ctx, ISA_MIPS_R6); switch ((ctx->opcode >> 9) & 0x3) { case FMT_SDPS_S: mips32_op = OPC_MADDF_S; goto do_fpop; case FMT_SDPS_D: mips32_op = OPC_MADDF_D; goto do_fpop; default: goto pool32f_invalid; } break; case MSUBF_FMT: check_insn(ctx, ISA_MIPS_R6); switch ((ctx->opcode >> 9) & 0x3) { case FMT_SDPS_S: mips32_op = OPC_MSUBF_S; goto do_fpop; case FMT_SDPS_D: mips32_op = OPC_MSUBF_D; goto do_fpop; default: goto pool32f_invalid; } break; default: goto pool32f_invalid; } break; do_fpop: gen_farith(ctx, mips32_op, rt, rs, rd, 0); break; default: pool32f_invalid: MIPS_INVAL("pool32f"); gen_reserved_instruction(ctx); break; } } else { generate_exception_err(ctx, EXCP_CpU, 1); } break; case POOL32I: minor = (ctx->opcode >> 21) & 0x1f; switch (minor) { case BLTZ: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, OPC_BLTZ, 4, rs, -1, imm << 1, 4); break; case BLTZAL: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, OPC_BLTZAL, 4, rs, -1, imm << 1, 4); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; break; case BLTZALS: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, OPC_BLTZAL, 4, rs, -1, imm << 1, 2); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; break; case BGEZ: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, OPC_BGEZ, 4, rs, -1, imm << 1, 4); break; case BGEZAL: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, OPC_BGEZAL, 4, rs, -1, imm << 1, 4); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; break; case BGEZALS: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, OPC_BGEZAL, 4, rs, -1, imm << 1, 2); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; break; case BLEZ: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, OPC_BLEZ, 4, rs, -1, imm << 1, 4); break; case BGTZ: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, OPC_BGTZ, 4, rs, -1, imm << 1, 4); break; /* Traps */ case TLTI: /* BC1EQZC */ if (ctx->insn_flags & ISA_MIPS_R6) { /* BC1EQZC */ check_cp1_enabled(ctx); gen_compute_branch1_r6(ctx, OPC_BC1EQZ, rs, imm << 1, 0); } else { /* TLTI */ mips32_op = OPC_TLTI; goto do_trapi; } break; case TGEI: /* BC1NEZC */ if (ctx->insn_flags & ISA_MIPS_R6) { /* BC1NEZC */ check_cp1_enabled(ctx); gen_compute_branch1_r6(ctx, OPC_BC1NEZ, rs, imm << 1, 0); } else { /* TGEI */ mips32_op = OPC_TGEI; goto do_trapi; } break; case TLTIU: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_TLTIU; goto do_trapi; case TGEIU: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_TGEIU; goto do_trapi; case TNEI: /* SYNCI */ if (ctx->insn_flags & ISA_MIPS_R6) { /* SYNCI */ /* * Break the TB to be able to sync copied instructions * immediately. */ ctx->base.is_jmp = DISAS_STOP; } else { /* TNEI */ mips32_op = OPC_TNEI; goto do_trapi; } break; case TEQI: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_TEQI; do_trapi: gen_trap(ctx, mips32_op, rs, -1, imm); break; case BNEZC: case BEQZC: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch(ctx, minor == BNEZC ? OPC_BNE : OPC_BEQ, 4, rs, 0, imm << 1, 0); /* * Compact branches don't have a delay slot, so just let * the normal delay slot handling take us to the branch * target. */ break; case LUI: check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_logic_imm(ctx, OPC_LUI, rs, 0, imm); break; case SYNCI: check_insn_opc_removed(ctx, ISA_MIPS_R6); /* * Break the TB to be able to sync copied instructions * immediately. */ ctx->base.is_jmp = DISAS_STOP; break; case BC2F: case BC2T: check_insn_opc_removed(ctx, ISA_MIPS_R6); /* COP2: Not implemented. */ generate_exception_err(ctx, EXCP_CpU, 2); break; case BC1F: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = (ctx->opcode & (1 << 16)) ? OPC_BC1FANY2 : OPC_BC1F; goto do_cp1branch; case BC1T: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = (ctx->opcode & (1 << 16)) ? OPC_BC1TANY2 : OPC_BC1T; goto do_cp1branch; case BC1ANY4F: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_BC1FANY4; goto do_cp1mips3d; case BC1ANY4T: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_BC1TANY4; do_cp1mips3d: check_cop1x(ctx); check_insn(ctx, ASE_MIPS3D); /* Fall through */ do_cp1branch: if (env->CP0_Config1 & (1 << CP0C1_FP)) { check_cp1_enabled(ctx); gen_compute_branch1(ctx, mips32_op, (ctx->opcode >> 18) & 0x7, imm << 1); } else { generate_exception_err(ctx, EXCP_CpU, 1); } break; case BPOSGE64: case BPOSGE32: /* MIPS DSP: not implemented */ /* Fall through */ default: MIPS_INVAL("pool32i"); gen_reserved_instruction(ctx); break; } break; case POOL32C: minor = (ctx->opcode >> 12) & 0xf; offset = sextract32(ctx->opcode, 0, (ctx->insn_flags & ISA_MIPS_R6) ? 9 : 12); switch (minor) { case LWL: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_LWL; goto do_ld_lr; case SWL: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_SWL; goto do_st_lr; case LWR: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_LWR; goto do_ld_lr; case SWR: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_SWR; goto do_st_lr; #if defined(TARGET_MIPS64) case LDL: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_LDL; goto do_ld_lr; case SDL: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_SDL; goto do_st_lr; case LDR: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_LDR; goto do_ld_lr; case SDR: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_SDR; goto do_st_lr; case LWU: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); mips32_op = OPC_LWU; goto do_ld_lr; case LLD: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); mips32_op = OPC_LLD; goto do_ld_lr; #endif case LL: mips32_op = OPC_LL; goto do_ld_lr; do_ld_lr: gen_ld(ctx, mips32_op, rt, rs, offset); break; do_st_lr: gen_st(ctx, mips32_op, rt, rs, offset); break; case SC: gen_st_cond(ctx, rt, rs, offset, MO_TESL, false); break; #if defined(TARGET_MIPS64) case SCD: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_st_cond(ctx, rt, rs, offset, MO_TEQ, false); break; #endif case LD_EVA: if (!ctx->eva) { MIPS_INVAL("pool32c ld-eva"); gen_reserved_instruction(ctx); break; } check_cp0_enabled(ctx); minor2 = (ctx->opcode >> 9) & 0x7; offset = sextract32(ctx->opcode, 0, 9); switch (minor2) { case LBUE: mips32_op = OPC_LBUE; goto do_ld_lr; case LHUE: mips32_op = OPC_LHUE; goto do_ld_lr; case LWLE: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_LWLE; goto do_ld_lr; case LWRE: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_LWRE; goto do_ld_lr; case LBE: mips32_op = OPC_LBE; goto do_ld_lr; case LHE: mips32_op = OPC_LHE; goto do_ld_lr; case LLE: mips32_op = OPC_LLE; goto do_ld_lr; case LWE: mips32_op = OPC_LWE; goto do_ld_lr; }; break; case ST_EVA: if (!ctx->eva) { MIPS_INVAL("pool32c st-eva"); gen_reserved_instruction(ctx); break; } check_cp0_enabled(ctx); minor2 = (ctx->opcode >> 9) & 0x7; offset = sextract32(ctx->opcode, 0, 9); switch (minor2) { case SWLE: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_SWLE; goto do_st_lr; case SWRE: check_insn_opc_removed(ctx, ISA_MIPS_R6); mips32_op = OPC_SWRE; goto do_st_lr; case PREFE: /* Treat as no-op */ if ((ctx->insn_flags & ISA_MIPS_R6) && (rt >= 24)) { /* hint codes 24-31 are reserved and signal RI */ generate_exception(ctx, EXCP_RI); } break; case CACHEE: /* Treat as no-op */ if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) { gen_cache_operation(ctx, rt, rs, offset); } break; case SBE: mips32_op = OPC_SBE; goto do_st_lr; case SHE: mips32_op = OPC_SHE; goto do_st_lr; case SCE: gen_st_cond(ctx, rt, rs, offset, MO_TESL, true); break; case SWE: mips32_op = OPC_SWE; goto do_st_lr; }; break; case PREF: /* Treat as no-op */ if ((ctx->insn_flags & ISA_MIPS_R6) && (rt >= 24)) { /* hint codes 24-31 are reserved and signal RI */ generate_exception(ctx, EXCP_RI); } break; default: MIPS_INVAL("pool32c"); gen_reserved_instruction(ctx); break; } break; case ADDI32: /* AUI, LUI */ if (ctx->insn_flags & ISA_MIPS_R6) { /* AUI, LUI */ gen_logic_imm(ctx, OPC_LUI, rt, rs, imm); } else { /* ADDI32 */ mips32_op = OPC_ADDI; goto do_addi; } break; case ADDIU32: mips32_op = OPC_ADDIU; do_addi: gen_arith_imm(ctx, mips32_op, rt, rs, imm); break; /* Logical operations */ case ORI32: mips32_op = OPC_ORI; goto do_logici; case XORI32: mips32_op = OPC_XORI; goto do_logici; case ANDI32: mips32_op = OPC_ANDI; do_logici: gen_logic_imm(ctx, mips32_op, rt, rs, imm); break; /* Set less than immediate */ case SLTI32: mips32_op = OPC_SLTI; goto do_slti; case SLTIU32: mips32_op = OPC_SLTIU; do_slti: gen_slt_imm(ctx, mips32_op, rt, rs, imm); break; case JALX32: check_insn_opc_removed(ctx, ISA_MIPS_R6); offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 2; gen_compute_branch(ctx, OPC_JALX, 4, rt, rs, offset, 4); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; break; case JALS32: /* BOVC, BEQC, BEQZALC */ if (ctx->insn_flags & ISA_MIPS_R6) { if (rs >= rt) { /* BOVC */ mips32_op = OPC_BOVC; } else if (rs < rt && rs == 0) { /* BEQZALC */ mips32_op = OPC_BEQZALC; } else { /* BEQC */ mips32_op = OPC_BEQC; } gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1); } else { /* JALS32 */ offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 1; gen_compute_branch(ctx, OPC_JAL, 4, rt, rs, offset, 2); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; } break; case BEQ32: /* BC */ if (ctx->insn_flags & ISA_MIPS_R6) { /* BC */ gen_compute_compact_branch(ctx, OPC_BC, 0, 0, sextract32(ctx->opcode << 1, 0, 27)); } else { /* BEQ32 */ gen_compute_branch(ctx, OPC_BEQ, 4, rt, rs, imm << 1, 4); } break; case BNE32: /* BALC */ if (ctx->insn_flags & ISA_MIPS_R6) { /* BALC */ gen_compute_compact_branch(ctx, OPC_BALC, 0, 0, sextract32(ctx->opcode << 1, 0, 27)); } else { /* BNE32 */ gen_compute_branch(ctx, OPC_BNE, 4, rt, rs, imm << 1, 4); } break; case J32: /* BGTZC, BLTZC, BLTC */ if (ctx->insn_flags & ISA_MIPS_R6) { if (rs == 0 && rt != 0) { /* BGTZC */ mips32_op = OPC_BGTZC; } else if (rs != 0 && rt != 0 && rs == rt) { /* BLTZC */ mips32_op = OPC_BLTZC; } else { /* BLTC */ mips32_op = OPC_BLTC; } gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1); } else { /* J32 */ gen_compute_branch(ctx, OPC_J, 4, rt, rs, (int32_t)(ctx->opcode & 0x3FFFFFF) << 1, 4); } break; case JAL32: /* BLEZC, BGEZC, BGEC */ if (ctx->insn_flags & ISA_MIPS_R6) { if (rs == 0 && rt != 0) { /* BLEZC */ mips32_op = OPC_BLEZC; } else if (rs != 0 && rt != 0 && rs == rt) { /* BGEZC */ mips32_op = OPC_BGEZC; } else { /* BGEC */ mips32_op = OPC_BGEC; } gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1); } else { /* JAL32 */ gen_compute_branch(ctx, OPC_JAL, 4, rt, rs, (int32_t)(ctx->opcode & 0x3FFFFFF) << 1, 4); ctx->hflags |= MIPS_HFLAG_BDS_STRICT; } break; /* Floating point (COP1) */ case LWC132: mips32_op = OPC_LWC1; goto do_cop1; case LDC132: mips32_op = OPC_LDC1; goto do_cop1; case SWC132: mips32_op = OPC_SWC1; goto do_cop1; case SDC132: mips32_op = OPC_SDC1; do_cop1: gen_cop1_ldst(ctx, mips32_op, rt, rs, imm); break; case ADDIUPC: /* PCREL: ADDIUPC, AUIPC, ALUIPC, LWPC */ if (ctx->insn_flags & ISA_MIPS_R6) { /* PCREL: ADDIUPC, AUIPC, ALUIPC, LWPC */ switch ((ctx->opcode >> 16) & 0x1f) { case ADDIUPC_00: case ADDIUPC_01: case ADDIUPC_02: case ADDIUPC_03: case ADDIUPC_04: case ADDIUPC_05: case ADDIUPC_06: case ADDIUPC_07: gen_pcrel(ctx, OPC_ADDIUPC, ctx->base.pc_next & ~0x3, rt); break; case AUIPC: gen_pcrel(ctx, OPC_AUIPC, ctx->base.pc_next, rt); break; case ALUIPC: gen_pcrel(ctx, OPC_ALUIPC, ctx->base.pc_next, rt); break; case LWPC_08: case LWPC_09: case LWPC_0A: case LWPC_0B: case LWPC_0C: case LWPC_0D: case LWPC_0E: case LWPC_0F: gen_pcrel(ctx, R6_OPC_LWPC, ctx->base.pc_next & ~0x3, rt); break; default: generate_exception(ctx, EXCP_RI); break; } } else { /* ADDIUPC */ int reg = mmreg(ZIMM(ctx->opcode, 23, 3)); offset = SIMM(ctx->opcode, 0, 23) << 2; gen_addiupc(ctx, reg, offset, 0, 0); } break; case BNVC: /* BNEC, BNEZALC */ check_insn(ctx, ISA_MIPS_R6); if (rs >= rt) { /* BNVC */ mips32_op = OPC_BNVC; } else if (rs < rt && rs == 0) { /* BNEZALC */ mips32_op = OPC_BNEZALC; } else { /* BNEC */ mips32_op = OPC_BNEC; } gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1); break; case R6_BNEZC: /* JIALC */ check_insn(ctx, ISA_MIPS_R6); if (rt != 0) { /* BNEZC */ gen_compute_compact_branch(ctx, OPC_BNEZC, rt, 0, sextract32(ctx->opcode << 1, 0, 22)); } else { /* JIALC */ gen_compute_compact_branch(ctx, OPC_JIALC, 0, rs, imm); } break; case R6_BEQZC: /* JIC */ check_insn(ctx, ISA_MIPS_R6); if (rt != 0) { /* BEQZC */ gen_compute_compact_branch(ctx, OPC_BEQZC, rt, 0, sextract32(ctx->opcode << 1, 0, 22)); } else { /* JIC */ gen_compute_compact_branch(ctx, OPC_JIC, 0, rs, imm); } break; case BLEZALC: /* BGEZALC, BGEUC */ check_insn(ctx, ISA_MIPS_R6); if (rs == 0 && rt != 0) { /* BLEZALC */ mips32_op = OPC_BLEZALC; } else if (rs != 0 && rt != 0 && rs == rt) { /* BGEZALC */ mips32_op = OPC_BGEZALC; } else { /* BGEUC */ mips32_op = OPC_BGEUC; } gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1); break; case BGTZALC: /* BLTZALC, BLTUC */ check_insn(ctx, ISA_MIPS_R6); if (rs == 0 && rt != 0) { /* BGTZALC */ mips32_op = OPC_BGTZALC; } else if (rs != 0 && rt != 0 && rs == rt) { /* BLTZALC */ mips32_op = OPC_BLTZALC; } else { /* BLTUC */ mips32_op = OPC_BLTUC; } gen_compute_compact_branch(ctx, mips32_op, rs, rt, imm << 1); break; /* Loads and stores */ case LB32: mips32_op = OPC_LB; goto do_ld; case LBU32: mips32_op = OPC_LBU; goto do_ld; case LH32: mips32_op = OPC_LH; goto do_ld; case LHU32: mips32_op = OPC_LHU; goto do_ld; case LW32: mips32_op = OPC_LW; goto do_ld; #ifdef TARGET_MIPS64 case LD32: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); mips32_op = OPC_LD; goto do_ld; case SD32: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); mips32_op = OPC_SD; goto do_st; #endif case SB32: mips32_op = OPC_SB; goto do_st; case SH32: mips32_op = OPC_SH; goto do_st; case SW32: mips32_op = OPC_SW; goto do_st; do_ld: gen_ld(ctx, mips32_op, rt, rs, imm); break; do_st: gen_st(ctx, mips32_op, rt, rs, imm); break; default: gen_reserved_instruction(ctx); break; } } static int decode_micromips_opc(CPUMIPSState *env, DisasContext *ctx) { uint32_t op; /* make sure instructions are on a halfword boundary */ if (ctx->base.pc_next & 0x1) { env->CP0_BadVAddr = ctx->base.pc_next; generate_exception_end(ctx, EXCP_AdEL); return 2; } op = (ctx->opcode >> 10) & 0x3f; /* Enforce properly-sized instructions in a delay slot */ if (ctx->hflags & MIPS_HFLAG_BDS_STRICT) { switch (op & 0x7) { /* MSB-3..MSB-5 */ case 0: /* POOL32A, POOL32B, POOL32I, POOL32C */ case 4: /* ADDI32, ADDIU32, ORI32, XORI32, SLTI32, SLTIU32, ANDI32, JALX32 */ case 5: /* LBU32, LHU32, POOL32F, JALS32, BEQ32, BNE32, J32, JAL32 */ case 6: /* SB32, SH32, ADDIUPC, SWC132, SDC132, SW32 */ case 7: /* LB32, LH32, LWC132, LDC132, LW32 */ if (ctx->hflags & MIPS_HFLAG_BDS16) { gen_reserved_instruction(ctx); return 2; } break; case 1: /* POOL16A, POOL16B, POOL16C, LWGP16, POOL16F */ case 2: /* LBU16, LHU16, LWSP16, LW16, SB16, SH16, SWSP16, SW16 */ case 3: /* MOVE16, ANDI16, POOL16D, POOL16E, BEQZ16, BNEZ16, B16, LI16 */ if (ctx->hflags & MIPS_HFLAG_BDS32) { gen_reserved_instruction(ctx); return 2; } break; } } switch (op) { case POOL16A: { int rd = mmreg(uMIPS_RD(ctx->opcode)); int rs1 = mmreg(uMIPS_RS1(ctx->opcode)); int rs2 = mmreg(uMIPS_RS2(ctx->opcode)); uint32_t opc = 0; switch (ctx->opcode & 0x1) { case ADDU16: opc = OPC_ADDU; break; case SUBU16: opc = OPC_SUBU; break; } if (ctx->insn_flags & ISA_MIPS_R6) { /* * In the Release 6, the register number location in * the instruction encoding has changed. */ gen_arith(ctx, opc, rs1, rd, rs2); } else { gen_arith(ctx, opc, rd, rs1, rs2); } } break; case POOL16B: { int rd = mmreg(uMIPS_RD(ctx->opcode)); int rs = mmreg(uMIPS_RS(ctx->opcode)); int amount = (ctx->opcode >> 1) & 0x7; uint32_t opc = 0; amount = amount == 0 ? 8 : amount; switch (ctx->opcode & 0x1) { case SLL16: opc = OPC_SLL; break; case SRL16: opc = OPC_SRL; break; } gen_shift_imm(ctx, opc, rd, rs, amount); } break; case POOL16C: if (ctx->insn_flags & ISA_MIPS_R6) { gen_pool16c_r6_insn(ctx); } else { gen_pool16c_insn(ctx); } break; case LWGP16: { int rd = mmreg(uMIPS_RD(ctx->opcode)); int rb = 28; /* GP */ int16_t offset = SIMM(ctx->opcode, 0, 7) << 2; gen_ld(ctx, OPC_LW, rd, rb, offset); } break; case POOL16F: check_insn_opc_removed(ctx, ISA_MIPS_R6); if (ctx->opcode & 1) { gen_reserved_instruction(ctx); } else { /* MOVEP */ int enc_dest = uMIPS_RD(ctx->opcode); int enc_rt = uMIPS_RS2(ctx->opcode); int enc_rs = uMIPS_RS1(ctx->opcode); gen_movep(ctx, enc_dest, enc_rt, enc_rs); } break; case LBU16: { int rd = mmreg(uMIPS_RD(ctx->opcode)); int rb = mmreg(uMIPS_RS(ctx->opcode)); int16_t offset = ZIMM(ctx->opcode, 0, 4); offset = (offset == 0xf ? -1 : offset); gen_ld(ctx, OPC_LBU, rd, rb, offset); } break; case LHU16: { int rd = mmreg(uMIPS_RD(ctx->opcode)); int rb = mmreg(uMIPS_RS(ctx->opcode)); int16_t offset = ZIMM(ctx->opcode, 0, 4) << 1; gen_ld(ctx, OPC_LHU, rd, rb, offset); } break; case LWSP16: { int rd = (ctx->opcode >> 5) & 0x1f; int rb = 29; /* SP */ int16_t offset = ZIMM(ctx->opcode, 0, 5) << 2; gen_ld(ctx, OPC_LW, rd, rb, offset); } break; case LW16: { int rd = mmreg(uMIPS_RD(ctx->opcode)); int rb = mmreg(uMIPS_RS(ctx->opcode)); int16_t offset = ZIMM(ctx->opcode, 0, 4) << 2; gen_ld(ctx, OPC_LW, rd, rb, offset); } break; case SB16: { int rd = mmreg2(uMIPS_RD(ctx->opcode)); int rb = mmreg(uMIPS_RS(ctx->opcode)); int16_t offset = ZIMM(ctx->opcode, 0, 4); gen_st(ctx, OPC_SB, rd, rb, offset); } break; case SH16: { int rd = mmreg2(uMIPS_RD(ctx->opcode)); int rb = mmreg(uMIPS_RS(ctx->opcode)); int16_t offset = ZIMM(ctx->opcode, 0, 4) << 1; gen_st(ctx, OPC_SH, rd, rb, offset); } break; case SWSP16: { int rd = (ctx->opcode >> 5) & 0x1f; int rb = 29; /* SP */ int16_t offset = ZIMM(ctx->opcode, 0, 5) << 2; gen_st(ctx, OPC_SW, rd, rb, offset); } break; case SW16: { int rd = mmreg2(uMIPS_RD(ctx->opcode)); int rb = mmreg(uMIPS_RS(ctx->opcode)); int16_t offset = ZIMM(ctx->opcode, 0, 4) << 2; gen_st(ctx, OPC_SW, rd, rb, offset); } break; case MOVE16: { int rd = uMIPS_RD5(ctx->opcode); int rs = uMIPS_RS5(ctx->opcode); gen_arith(ctx, OPC_ADDU, rd, rs, 0); } break; case ANDI16: gen_andi16(ctx); break; case POOL16D: switch (ctx->opcode & 0x1) { case ADDIUS5: gen_addius5(ctx); break; case ADDIUSP: gen_addiusp(ctx); break; } break; case POOL16E: switch (ctx->opcode & 0x1) { case ADDIUR2: gen_addiur2(ctx); break; case ADDIUR1SP: gen_addiur1sp(ctx); break; } break; case B16: /* BC16 */ gen_compute_branch(ctx, OPC_BEQ, 2, 0, 0, sextract32(ctx->opcode, 0, 10) << 1, (ctx->insn_flags & ISA_MIPS_R6) ? 0 : 4); break; case BNEZ16: /* BNEZC16 */ case BEQZ16: /* BEQZC16 */ gen_compute_branch(ctx, op == BNEZ16 ? OPC_BNE : OPC_BEQ, 2, mmreg(uMIPS_RD(ctx->opcode)), 0, sextract32(ctx->opcode, 0, 7) << 1, (ctx->insn_flags & ISA_MIPS_R6) ? 0 : 4); break; case LI16: { int reg = mmreg(uMIPS_RD(ctx->opcode)); int imm = ZIMM(ctx->opcode, 0, 7); imm = (imm == 0x7f ? -1 : imm); tcg_gen_movi_tl(cpu_gpr[reg], imm); } break; case RES_29: case RES_31: case RES_39: gen_reserved_instruction(ctx); break; default: decode_micromips32_opc(env, ctx); return 4; } return 2; } /* * * nanoMIPS opcodes * */ /* MAJOR, P16, and P32 pools opcodes */ enum { NM_P_ADDIU = 0x00, NM_ADDIUPC = 0x01, NM_MOVE_BALC = 0x02, NM_P16_MV = 0x04, NM_LW16 = 0x05, NM_BC16 = 0x06, NM_P16_SR = 0x07, NM_POOL32A = 0x08, NM_P_BAL = 0x0a, NM_P16_SHIFT = 0x0c, NM_LWSP16 = 0x0d, NM_BALC16 = 0x0e, NM_P16_4X4 = 0x0f, NM_P_GP_W = 0x10, NM_P_GP_BH = 0x11, NM_P_J = 0x12, NM_P16C = 0x14, NM_LWGP16 = 0x15, NM_P16_LB = 0x17, NM_P48I = 0x18, NM_P16_A1 = 0x1c, NM_LW4X4 = 0x1d, NM_P16_LH = 0x1f, NM_P_U12 = 0x20, NM_P_LS_U12 = 0x21, NM_P_BR1 = 0x22, NM_P16_A2 = 0x24, NM_SW16 = 0x25, NM_BEQZC16 = 0x26, NM_POOL32F = 0x28, NM_P_LS_S9 = 0x29, NM_P_BR2 = 0x2a, NM_P16_ADDU = 0x2c, NM_SWSP16 = 0x2d, NM_BNEZC16 = 0x2e, NM_MOVEP = 0x2f, NM_POOL32S = 0x30, NM_P_BRI = 0x32, NM_LI16 = 0x34, NM_SWGP16 = 0x35, NM_P16_BR = 0x36, NM_P_LUI = 0x38, NM_ANDI16 = 0x3c, NM_SW4X4 = 0x3d, NM_MOVEPREV = 0x3f, }; /* POOL32A instruction pool */ enum { NM_POOL32A0 = 0x00, NM_SPECIAL2 = 0x01, NM_COP2_1 = 0x02, NM_UDI = 0x03, NM_POOL32A5 = 0x05, NM_POOL32A7 = 0x07, }; /* P.GP.W instruction pool */ enum { NM_ADDIUGP_W = 0x00, NM_LWGP = 0x02, NM_SWGP = 0x03, }; /* P48I instruction pool */ enum { NM_LI48 = 0x00, NM_ADDIU48 = 0x01, NM_ADDIUGP48 = 0x02, NM_ADDIUPC48 = 0x03, NM_LWPC48 = 0x0b, NM_SWPC48 = 0x0f, }; /* P.U12 instruction pool */ enum { NM_ORI = 0x00, NM_XORI = 0x01, NM_ANDI = 0x02, NM_P_SR = 0x03, NM_SLTI = 0x04, NM_SLTIU = 0x05, NM_SEQI = 0x06, NM_ADDIUNEG = 0x08, NM_P_SHIFT = 0x0c, NM_P_ROTX = 0x0d, NM_P_INS = 0x0e, NM_P_EXT = 0x0f, }; /* POOL32F instruction pool */ enum { NM_POOL32F_0 = 0x00, NM_POOL32F_3 = 0x03, NM_POOL32F_5 = 0x05, }; /* POOL32S instruction pool */ enum { NM_POOL32S_0 = 0x00, NM_POOL32S_4 = 0x04, }; /* P.LUI instruction pool */ enum { NM_LUI = 0x00, NM_ALUIPC = 0x01, }; /* P.GP.BH instruction pool */ enum { NM_LBGP = 0x00, NM_SBGP = 0x01, NM_LBUGP = 0x02, NM_ADDIUGP_B = 0x03, NM_P_GP_LH = 0x04, NM_P_GP_SH = 0x05, NM_P_GP_CP1 = 0x06, }; /* P.LS.U12 instruction pool */ enum { NM_LB = 0x00, NM_SB = 0x01, NM_LBU = 0x02, NM_P_PREFU12 = 0x03, NM_LH = 0x04, NM_SH = 0x05, NM_LHU = 0x06, NM_LWU = 0x07, NM_LW = 0x08, NM_SW = 0x09, NM_LWC1 = 0x0a, NM_SWC1 = 0x0b, NM_LDC1 = 0x0e, NM_SDC1 = 0x0f, }; /* P.LS.S9 instruction pool */ enum { NM_P_LS_S0 = 0x00, NM_P_LS_S1 = 0x01, NM_P_LS_E0 = 0x02, NM_P_LS_WM = 0x04, NM_P_LS_UAWM = 0x05, }; /* P.BAL instruction pool */ enum { NM_BC = 0x00, NM_BALC = 0x01, }; /* P.J instruction pool */ enum { NM_JALRC = 0x00, NM_JALRC_HB = 0x01, NM_P_BALRSC = 0x08, }; /* P.BR1 instruction pool */ enum { NM_BEQC = 0x00, NM_P_BR3A = 0x01, NM_BGEC = 0x02, NM_BGEUC = 0x03, }; /* P.BR2 instruction pool */ enum { NM_BNEC = 0x00, NM_BLTC = 0x02, NM_BLTUC = 0x03, }; /* P.BRI instruction pool */ enum { NM_BEQIC = 0x00, NM_BBEQZC = 0x01, NM_BGEIC = 0x02, NM_BGEIUC = 0x03, NM_BNEIC = 0x04, NM_BBNEZC = 0x05, NM_BLTIC = 0x06, NM_BLTIUC = 0x07, }; /* P16.SHIFT instruction pool */ enum { NM_SLL16 = 0x00, NM_SRL16 = 0x01, }; /* POOL16C instruction pool */ enum { NM_POOL16C_0 = 0x00, NM_LWXS16 = 0x01, }; /* P16.A1 instruction pool */ enum { NM_ADDIUR1SP = 0x01, }; /* P16.A2 instruction pool */ enum { NM_ADDIUR2 = 0x00, NM_P_ADDIURS5 = 0x01, }; /* P16.ADDU instruction pool */ enum { NM_ADDU16 = 0x00, NM_SUBU16 = 0x01, }; /* P16.SR instruction pool */ enum { NM_SAVE16 = 0x00, NM_RESTORE_JRC16 = 0x01, }; /* P16.4X4 instruction pool */ enum { NM_ADDU4X4 = 0x00, NM_MUL4X4 = 0x01, }; /* P16.LB instruction pool */ enum { NM_LB16 = 0x00, NM_SB16 = 0x01, NM_LBU16 = 0x02, }; /* P16.LH instruction pool */ enum { NM_LH16 = 0x00, NM_SH16 = 0x01, NM_LHU16 = 0x02, }; /* P.RI instruction pool */ enum { NM_SIGRIE = 0x00, NM_P_SYSCALL = 0x01, NM_BREAK = 0x02, NM_SDBBP = 0x03, }; /* POOL32A0 instruction pool */ enum { NM_P_TRAP = 0x00, NM_SEB = 0x01, NM_SLLV = 0x02, NM_MUL = 0x03, NM_MFC0 = 0x06, NM_MFHC0 = 0x07, NM_SEH = 0x09, NM_SRLV = 0x0a, NM_MUH = 0x0b, NM_MTC0 = 0x0e, NM_MTHC0 = 0x0f, NM_SRAV = 0x12, NM_MULU = 0x13, NM_ROTRV = 0x1a, NM_MUHU = 0x1b, NM_ADD = 0x22, NM_DIV = 0x23, NM_ADDU = 0x2a, NM_MOD = 0x2b, NM_SUB = 0x32, NM_DIVU = 0x33, NM_RDHWR = 0x38, NM_SUBU = 0x3a, NM_MODU = 0x3b, NM_P_CMOVE = 0x42, NM_FORK = 0x45, NM_MFTR = 0x46, NM_MFHTR = 0x47, NM_AND = 0x4a, NM_YIELD = 0x4d, NM_MTTR = 0x4e, NM_MTHTR = 0x4f, NM_OR = 0x52, NM_D_E_MT_VPE = 0x56, NM_NOR = 0x5a, NM_XOR = 0x62, NM_SLT = 0x6a, NM_P_SLTU = 0x72, NM_SOV = 0x7a, }; /* CRC32 instruction pool */ enum { NM_CRC32B = 0x00, NM_CRC32H = 0x01, NM_CRC32W = 0x02, NM_CRC32CB = 0x04, NM_CRC32CH = 0x05, NM_CRC32CW = 0x06, }; /* POOL32A5 instruction pool */ enum { NM_CMP_EQ_PH = 0x00, NM_CMP_LT_PH = 0x08, NM_CMP_LE_PH = 0x10, NM_CMPGU_EQ_QB = 0x18, NM_CMPGU_LT_QB = 0x20, NM_CMPGU_LE_QB = 0x28, NM_CMPGDU_EQ_QB = 0x30, NM_CMPGDU_LT_QB = 0x38, NM_CMPGDU_LE_QB = 0x40, NM_CMPU_EQ_QB = 0x48, NM_CMPU_LT_QB = 0x50, NM_CMPU_LE_QB = 0x58, NM_ADDQ_S_W = 0x60, NM_SUBQ_S_W = 0x68, NM_ADDSC = 0x70, NM_ADDWC = 0x78, NM_ADDQ_S_PH = 0x01, NM_ADDQH_R_PH = 0x09, NM_ADDQH_R_W = 0x11, NM_ADDU_S_QB = 0x19, NM_ADDU_S_PH = 0x21, NM_ADDUH_R_QB = 0x29, NM_SHRAV_R_PH = 0x31, NM_SHRAV_R_QB = 0x39, NM_SUBQ_S_PH = 0x41, NM_SUBQH_R_PH = 0x49, NM_SUBQH_R_W = 0x51, NM_SUBU_S_QB = 0x59, NM_SUBU_S_PH = 0x61, NM_SUBUH_R_QB = 0x69, NM_SHLLV_S_PH = 0x71, NM_PRECR_SRA_R_PH_W = 0x79, NM_MULEU_S_PH_QBL = 0x12, NM_MULEU_S_PH_QBR = 0x1a, NM_MULQ_RS_PH = 0x22, NM_MULQ_S_PH = 0x2a, NM_MULQ_RS_W = 0x32, NM_MULQ_S_W = 0x3a, NM_APPEND = 0x42, NM_MODSUB = 0x52, NM_SHRAV_R_W = 0x5a, NM_SHRLV_PH = 0x62, NM_SHRLV_QB = 0x6a, NM_SHLLV_QB = 0x72, NM_SHLLV_S_W = 0x7a, NM_SHILO = 0x03, NM_MULEQ_S_W_PHL = 0x04, NM_MULEQ_S_W_PHR = 0x0c, NM_MUL_S_PH = 0x05, NM_PRECR_QB_PH = 0x0d, NM_PRECRQ_QB_PH = 0x15, NM_PRECRQ_PH_W = 0x1d, NM_PRECRQ_RS_PH_W = 0x25, NM_PRECRQU_S_QB_PH = 0x2d, NM_PACKRL_PH = 0x35, NM_PICK_QB = 0x3d, NM_PICK_PH = 0x45, NM_SHRA_R_W = 0x5e, NM_SHRA_R_PH = 0x66, NM_SHLL_S_PH = 0x76, NM_SHLL_S_W = 0x7e, NM_REPL_PH = 0x07 }; /* POOL32A7 instruction pool */ enum { NM_P_LSX = 0x00, NM_LSA = 0x01, NM_EXTW = 0x03, NM_POOL32AXF = 0x07, }; /* P.SR instruction pool */ enum { NM_PP_SR = 0x00, NM_P_SR_F = 0x01, }; /* P.SHIFT instruction pool */ enum { NM_P_SLL = 0x00, NM_SRL = 0x02, NM_SRA = 0x04, NM_ROTR = 0x06, }; /* P.ROTX instruction pool */ enum { NM_ROTX = 0x00, }; /* P.INS instruction pool */ enum { NM_INS = 0x00, }; /* P.EXT instruction pool */ enum { NM_EXT = 0x00, }; /* POOL32F_0 (fmt) instruction pool */ enum { NM_RINT_S = 0x04, NM_RINT_D = 0x44, NM_ADD_S = 0x06, NM_SELEQZ_S = 0x07, NM_SELEQZ_D = 0x47, NM_CLASS_S = 0x0c, NM_CLASS_D = 0x4c, NM_SUB_S = 0x0e, NM_SELNEZ_S = 0x0f, NM_SELNEZ_D = 0x4f, NM_MUL_S = 0x16, NM_SEL_S = 0x17, NM_SEL_D = 0x57, NM_DIV_S = 0x1e, NM_ADD_D = 0x26, NM_SUB_D = 0x2e, NM_MUL_D = 0x36, NM_MADDF_S = 0x37, NM_MADDF_D = 0x77, NM_DIV_D = 0x3e, NM_MSUBF_S = 0x3f, NM_MSUBF_D = 0x7f, }; /* POOL32F_3 instruction pool */ enum { NM_MIN_FMT = 0x00, NM_MAX_FMT = 0x01, NM_MINA_FMT = 0x04, NM_MAXA_FMT = 0x05, NM_POOL32FXF = 0x07, }; /* POOL32F_5 instruction pool */ enum { NM_CMP_CONDN_S = 0x00, NM_CMP_CONDN_D = 0x02, }; /* P.GP.LH instruction pool */ enum { NM_LHGP = 0x00, NM_LHUGP = 0x01, }; /* P.GP.SH instruction pool */ enum { NM_SHGP = 0x00, }; /* P.GP.CP1 instruction pool */ enum { NM_LWC1GP = 0x00, NM_SWC1GP = 0x01, NM_LDC1GP = 0x02, NM_SDC1GP = 0x03, }; /* P.LS.S0 instruction pool */ enum { NM_LBS9 = 0x00, NM_LHS9 = 0x04, NM_LWS9 = 0x08, NM_LDS9 = 0x0c, NM_SBS9 = 0x01, NM_SHS9 = 0x05, NM_SWS9 = 0x09, NM_SDS9 = 0x0d, NM_LBUS9 = 0x02, NM_LHUS9 = 0x06, NM_LWC1S9 = 0x0a, NM_LDC1S9 = 0x0e, NM_P_PREFS9 = 0x03, NM_LWUS9 = 0x07, NM_SWC1S9 = 0x0b, NM_SDC1S9 = 0x0f, }; /* P.LS.S1 instruction pool */ enum { NM_ASET_ACLR = 0x02, NM_UALH = 0x04, NM_UASH = 0x05, NM_CACHE = 0x07, NM_P_LL = 0x0a, NM_P_SC = 0x0b, }; /* P.LS.E0 instruction pool */ enum { NM_LBE = 0x00, NM_SBE = 0x01, NM_LBUE = 0x02, NM_P_PREFE = 0x03, NM_LHE = 0x04, NM_SHE = 0x05, NM_LHUE = 0x06, NM_CACHEE = 0x07, NM_LWE = 0x08, NM_SWE = 0x09, NM_P_LLE = 0x0a, NM_P_SCE = 0x0b, }; /* P.PREFE instruction pool */ enum { NM_SYNCIE = 0x00, NM_PREFE = 0x01, }; /* P.LLE instruction pool */ enum { NM_LLE = 0x00, NM_LLWPE = 0x01, }; /* P.SCE instruction pool */ enum { NM_SCE = 0x00, NM_SCWPE = 0x01, }; /* P.LS.WM instruction pool */ enum { NM_LWM = 0x00, NM_SWM = 0x01, }; /* P.LS.UAWM instruction pool */ enum { NM_UALWM = 0x00, NM_UASWM = 0x01, }; /* P.BR3A instruction pool */ enum { NM_BC1EQZC = 0x00, NM_BC1NEZC = 0x01, NM_BC2EQZC = 0x02, NM_BC2NEZC = 0x03, NM_BPOSGE32C = 0x04, }; /* P16.RI instruction pool */ enum { NM_P16_SYSCALL = 0x01, NM_BREAK16 = 0x02, NM_SDBBP16 = 0x03, }; /* POOL16C_0 instruction pool */ enum { NM_POOL16C_00 = 0x00, }; /* P16.JRC instruction pool */ enum { NM_JRC = 0x00, NM_JALRC16 = 0x01, }; /* P.SYSCALL instruction pool */ enum { NM_SYSCALL = 0x00, NM_HYPCALL = 0x01, }; /* P.TRAP instruction pool */ enum { NM_TEQ = 0x00, NM_TNE = 0x01, }; /* P.CMOVE instruction pool */ enum { NM_MOVZ = 0x00, NM_MOVN = 0x01, }; /* POOL32Axf instruction pool */ enum { NM_POOL32AXF_1 = 0x01, NM_POOL32AXF_2 = 0x02, NM_POOL32AXF_4 = 0x04, NM_POOL32AXF_5 = 0x05, NM_POOL32AXF_7 = 0x07, }; /* POOL32Axf_1 instruction pool */ enum { NM_POOL32AXF_1_0 = 0x00, NM_POOL32AXF_1_1 = 0x01, NM_POOL32AXF_1_3 = 0x03, NM_POOL32AXF_1_4 = 0x04, NM_POOL32AXF_1_5 = 0x05, NM_POOL32AXF_1_7 = 0x07, }; /* POOL32Axf_2 instruction pool */ enum { NM_POOL32AXF_2_0_7 = 0x00, NM_POOL32AXF_2_8_15 = 0x01, NM_POOL32AXF_2_16_23 = 0x02, NM_POOL32AXF_2_24_31 = 0x03, }; /* POOL32Axf_7 instruction pool */ enum { NM_SHRA_R_QB = 0x0, NM_SHRL_PH = 0x1, NM_REPL_QB = 0x2, }; /* POOL32Axf_1_0 instruction pool */ enum { NM_MFHI = 0x0, NM_MFLO = 0x1, NM_MTHI = 0x2, NM_MTLO = 0x3, }; /* POOL32Axf_1_1 instruction pool */ enum { NM_MTHLIP = 0x0, NM_SHILOV = 0x1, }; /* POOL32Axf_1_3 instruction pool */ enum { NM_RDDSP = 0x0, NM_WRDSP = 0x1, NM_EXTP = 0x2, NM_EXTPDP = 0x3, }; /* POOL32Axf_1_4 instruction pool */ enum { NM_SHLL_QB = 0x0, NM_SHRL_QB = 0x1, }; /* POOL32Axf_1_5 instruction pool */ enum { NM_MAQ_S_W_PHR = 0x0, NM_MAQ_S_W_PHL = 0x1, NM_MAQ_SA_W_PHR = 0x2, NM_MAQ_SA_W_PHL = 0x3, }; /* POOL32Axf_1_7 instruction pool */ enum { NM_EXTR_W = 0x0, NM_EXTR_R_W = 0x1, NM_EXTR_RS_W = 0x2, NM_EXTR_S_H = 0x3, }; /* POOL32Axf_2_0_7 instruction pool */ enum { NM_DPA_W_PH = 0x0, NM_DPAQ_S_W_PH = 0x1, NM_DPS_W_PH = 0x2, NM_DPSQ_S_W_PH = 0x3, NM_BALIGN = 0x4, NM_MADD = 0x5, NM_MULT = 0x6, NM_EXTRV_W = 0x7, }; /* POOL32Axf_2_8_15 instruction pool */ enum { NM_DPAX_W_PH = 0x0, NM_DPAQ_SA_L_W = 0x1, NM_DPSX_W_PH = 0x2, NM_DPSQ_SA_L_W = 0x3, NM_MADDU = 0x5, NM_MULTU = 0x6, NM_EXTRV_R_W = 0x7, }; /* POOL32Axf_2_16_23 instruction pool */ enum { NM_DPAU_H_QBL = 0x0, NM_DPAQX_S_W_PH = 0x1, NM_DPSU_H_QBL = 0x2, NM_DPSQX_S_W_PH = 0x3, NM_EXTPV = 0x4, NM_MSUB = 0x5, NM_MULSA_W_PH = 0x6, NM_EXTRV_RS_W = 0x7, }; /* POOL32Axf_2_24_31 instruction pool */ enum { NM_DPAU_H_QBR = 0x0, NM_DPAQX_SA_W_PH = 0x1, NM_DPSU_H_QBR = 0x2, NM_DPSQX_SA_W_PH = 0x3, NM_EXTPDPV = 0x4, NM_MSUBU = 0x5, NM_MULSAQ_S_W_PH = 0x6, NM_EXTRV_S_H = 0x7, }; /* POOL32Axf_{4, 5} instruction pool */ enum { NM_CLO = 0x25, NM_CLZ = 0x2d, NM_TLBP = 0x01, NM_TLBR = 0x09, NM_TLBWI = 0x11, NM_TLBWR = 0x19, NM_TLBINV = 0x03, NM_TLBINVF = 0x0b, NM_DI = 0x23, NM_EI = 0x2b, NM_RDPGPR = 0x70, NM_WRPGPR = 0x78, NM_WAIT = 0x61, NM_DERET = 0x71, NM_ERETX = 0x79, /* nanoMIPS DSP instructions */ NM_ABSQ_S_QB = 0x00, NM_ABSQ_S_PH = 0x08, NM_ABSQ_S_W = 0x10, NM_PRECEQ_W_PHL = 0x28, NM_PRECEQ_W_PHR = 0x30, NM_PRECEQU_PH_QBL = 0x38, NM_PRECEQU_PH_QBR = 0x48, NM_PRECEU_PH_QBL = 0x58, NM_PRECEU_PH_QBR = 0x68, NM_PRECEQU_PH_QBLA = 0x39, NM_PRECEQU_PH_QBRA = 0x49, NM_PRECEU_PH_QBLA = 0x59, NM_PRECEU_PH_QBRA = 0x69, NM_REPLV_PH = 0x01, NM_REPLV_QB = 0x09, NM_BITREV = 0x18, NM_INSV = 0x20, NM_RADDU_W_QB = 0x78, NM_BITSWAP = 0x05, NM_WSBH = 0x3d, }; /* PP.SR instruction pool */ enum { NM_SAVE = 0x00, NM_RESTORE = 0x02, NM_RESTORE_JRC = 0x03, }; /* P.SR.F instruction pool */ enum { NM_SAVEF = 0x00, NM_RESTOREF = 0x01, }; /* P16.SYSCALL instruction pool */ enum { NM_SYSCALL16 = 0x00, NM_HYPCALL16 = 0x01, }; /* POOL16C_00 instruction pool */ enum { NM_NOT16 = 0x00, NM_XOR16 = 0x01, NM_AND16 = 0x02, NM_OR16 = 0x03, }; /* PP.LSX and PP.LSXS instruction pool */ enum { NM_LBX = 0x00, NM_LHX = 0x04, NM_LWX = 0x08, NM_LDX = 0x0c, NM_SBX = 0x01, NM_SHX = 0x05, NM_SWX = 0x09, NM_SDX = 0x0d, NM_LBUX = 0x02, NM_LHUX = 0x06, NM_LWC1X = 0x0a, NM_LDC1X = 0x0e, NM_LWUX = 0x07, NM_SWC1X = 0x0b, NM_SDC1X = 0x0f, NM_LHXS = 0x04, NM_LWXS = 0x08, NM_LDXS = 0x0c, NM_SHXS = 0x05, NM_SWXS = 0x09, NM_SDXS = 0x0d, NM_LHUXS = 0x06, NM_LWC1XS = 0x0a, NM_LDC1XS = 0x0e, NM_LWUXS = 0x07, NM_SWC1XS = 0x0b, NM_SDC1XS = 0x0f, }; /* ERETx instruction pool */ enum { NM_ERET = 0x00, NM_ERETNC = 0x01, }; /* POOL32FxF_{0, 1} insturction pool */ enum { NM_CFC1 = 0x40, NM_CTC1 = 0x60, NM_MFC1 = 0x80, NM_MTC1 = 0xa0, NM_MFHC1 = 0xc0, NM_MTHC1 = 0xe0, NM_CVT_S_PL = 0x84, NM_CVT_S_PU = 0xa4, NM_CVT_L_S = 0x004, NM_CVT_L_D = 0x104, NM_CVT_W_S = 0x024, NM_CVT_W_D = 0x124, NM_RSQRT_S = 0x008, NM_RSQRT_D = 0x108, NM_SQRT_S = 0x028, NM_SQRT_D = 0x128, NM_RECIP_S = 0x048, NM_RECIP_D = 0x148, NM_FLOOR_L_S = 0x00c, NM_FLOOR_L_D = 0x10c, NM_FLOOR_W_S = 0x02c, NM_FLOOR_W_D = 0x12c, NM_CEIL_L_S = 0x04c, NM_CEIL_L_D = 0x14c, NM_CEIL_W_S = 0x06c, NM_CEIL_W_D = 0x16c, NM_TRUNC_L_S = 0x08c, NM_TRUNC_L_D = 0x18c, NM_TRUNC_W_S = 0x0ac, NM_TRUNC_W_D = 0x1ac, NM_ROUND_L_S = 0x0cc, NM_ROUND_L_D = 0x1cc, NM_ROUND_W_S = 0x0ec, NM_ROUND_W_D = 0x1ec, NM_MOV_S = 0x01, NM_MOV_D = 0x81, NM_ABS_S = 0x0d, NM_ABS_D = 0x8d, NM_NEG_S = 0x2d, NM_NEG_D = 0xad, NM_CVT_D_S = 0x04d, NM_CVT_D_W = 0x0cd, NM_CVT_D_L = 0x14d, NM_CVT_S_D = 0x06d, NM_CVT_S_W = 0x0ed, NM_CVT_S_L = 0x16d, }; /* P.LL instruction pool */ enum { NM_LL = 0x00, NM_LLWP = 0x01, }; /* P.SC instruction pool */ enum { NM_SC = 0x00, NM_SCWP = 0x01, }; /* P.DVP instruction pool */ enum { NM_DVP = 0x00, NM_EVP = 0x01, }; /* * * nanoMIPS decoding engine * */ /* extraction utilities */ #define NANOMIPS_EXTRACT_RT3(op) ((op >> 7) & 0x7) #define NANOMIPS_EXTRACT_RS3(op) ((op >> 4) & 0x7) #define NANOMIPS_EXTRACT_RD3(op) ((op >> 1) & 0x7) #define NANOMIPS_EXTRACT_RD5(op) ((op >> 5) & 0x1f) #define NANOMIPS_EXTRACT_RS5(op) (op & 0x1f) /* Implement nanoMIPS pseudocode decode_gpr(encoded_gpr, 'gpr3'). */ static inline int decode_gpr_gpr3(int r) { static const int map[] = { 16, 17, 18, 19, 4, 5, 6, 7 }; return map[r & 0x7]; } /* Implement nanoMIPS pseudocode decode_gpr(encoded_gpr, 'gpr3.src.store'). */ static inline int decode_gpr_gpr3_src_store(int r) { static const int map[] = { 0, 17, 18, 19, 4, 5, 6, 7 }; return map[r & 0x7]; } /* Implement nanoMIPS pseudocode decode_gpr(encoded_gpr, 'gpr4'). */ static inline int decode_gpr_gpr4(int r) { static const int map[] = { 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 }; return map[r & 0xf]; } /* Implement nanoMIPS pseudocode decode_gpr(encoded_gpr, 'gpr4.zero'). */ static inline int decode_gpr_gpr4_zero(int r) { static const int map[] = { 8, 9, 10, 0, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 }; return map[r & 0xf]; } static void gen_adjust_sp(DisasContext *ctx, int u) { gen_op_addr_addi(ctx, cpu_gpr[29], cpu_gpr[29], u); } static void gen_save(DisasContext *ctx, uint8_t rt, uint8_t count, uint8_t gp, uint16_t u) { int counter = 0; TCGv va = tcg_temp_new(); TCGv t0 = tcg_temp_new(); while (counter != count) { bool use_gp = gp && (counter == count - 1); int this_rt = use_gp ? 28 : (rt & 0x10) | ((rt + counter) & 0x1f); int this_offset = -((counter + 1) << 2); gen_base_offset_addr(ctx, va, 29, this_offset); gen_load_gpr(t0, this_rt); tcg_gen_qemu_st_tl(t0, va, ctx->mem_idx, (MO_TEUL | ctx->default_tcg_memop_mask)); counter++; } /* adjust stack pointer */ gen_adjust_sp(ctx, -u); tcg_temp_free(t0); tcg_temp_free(va); } static void gen_restore(DisasContext *ctx, uint8_t rt, uint8_t count, uint8_t gp, uint16_t u) { int counter = 0; TCGv va = tcg_temp_new(); TCGv t0 = tcg_temp_new(); while (counter != count) { bool use_gp = gp && (counter == count - 1); int this_rt = use_gp ? 28 : (rt & 0x10) | ((rt + counter) & 0x1f); int this_offset = u - ((counter + 1) << 2); gen_base_offset_addr(ctx, va, 29, this_offset); tcg_gen_qemu_ld_tl(t0, va, ctx->mem_idx, MO_TESL | ctx->default_tcg_memop_mask); tcg_gen_ext32s_tl(t0, t0); gen_store_gpr(t0, this_rt); counter++; } /* adjust stack pointer */ gen_adjust_sp(ctx, u); tcg_temp_free(t0); tcg_temp_free(va); } static void gen_pool16c_nanomips_insn(DisasContext *ctx) { int rt = decode_gpr_gpr3(NANOMIPS_EXTRACT_RT3(ctx->opcode)); int rs = decode_gpr_gpr3(NANOMIPS_EXTRACT_RS3(ctx->opcode)); switch (extract32(ctx->opcode, 2, 2)) { case NM_NOT16: gen_logic(ctx, OPC_NOR, rt, rs, 0); break; case NM_AND16: gen_logic(ctx, OPC_AND, rt, rt, rs); break; case NM_XOR16: gen_logic(ctx, OPC_XOR, rt, rt, rs); break; case NM_OR16: gen_logic(ctx, OPC_OR, rt, rt, rs); break; } } static void gen_pool32a0_nanomips_insn(CPUMIPSState *env, DisasContext *ctx) { int rt = extract32(ctx->opcode, 21, 5); int rs = extract32(ctx->opcode, 16, 5); int rd = extract32(ctx->opcode, 11, 5); switch (extract32(ctx->opcode, 3, 7)) { case NM_P_TRAP: switch (extract32(ctx->opcode, 10, 1)) { case NM_TEQ: check_nms(ctx); gen_trap(ctx, OPC_TEQ, rs, rt, -1); break; case NM_TNE: check_nms(ctx); gen_trap(ctx, OPC_TNE, rs, rt, -1); break; } break; case NM_RDHWR: check_nms(ctx); gen_rdhwr(ctx, rt, rs, extract32(ctx->opcode, 11, 3)); break; case NM_SEB: check_nms(ctx); gen_bshfl(ctx, OPC_SEB, rs, rt); break; case NM_SEH: gen_bshfl(ctx, OPC_SEH, rs, rt); break; case NM_SLLV: gen_shift(ctx, OPC_SLLV, rd, rt, rs); break; case NM_SRLV: gen_shift(ctx, OPC_SRLV, rd, rt, rs); break; case NM_SRAV: gen_shift(ctx, OPC_SRAV, rd, rt, rs); break; case NM_ROTRV: gen_shift(ctx, OPC_ROTRV, rd, rt, rs); break; case NM_ADD: gen_arith(ctx, OPC_ADD, rd, rs, rt); break; case NM_ADDU: gen_arith(ctx, OPC_ADDU, rd, rs, rt); break; case NM_SUB: check_nms(ctx); gen_arith(ctx, OPC_SUB, rd, rs, rt); break; case NM_SUBU: gen_arith(ctx, OPC_SUBU, rd, rs, rt); break; case NM_P_CMOVE: switch (extract32(ctx->opcode, 10, 1)) { case NM_MOVZ: gen_cond_move(ctx, OPC_MOVZ, rd, rs, rt); break; case NM_MOVN: gen_cond_move(ctx, OPC_MOVN, rd, rs, rt); break; } break; case NM_AND: gen_logic(ctx, OPC_AND, rd, rs, rt); break; case NM_OR: gen_logic(ctx, OPC_OR, rd, rs, rt); break; case NM_NOR: gen_logic(ctx, OPC_NOR, rd, rs, rt); break; case NM_XOR: gen_logic(ctx, OPC_XOR, rd, rs, rt); break; case NM_SLT: gen_slt(ctx, OPC_SLT, rd, rs, rt); break; case NM_P_SLTU: if (rd == 0) { /* P_DVP */ #ifndef CONFIG_USER_ONLY TCGv t0 = tcg_temp_new(); switch (extract32(ctx->opcode, 10, 1)) { case NM_DVP: if (ctx->vp) { check_cp0_enabled(ctx); gen_helper_dvp(t0, cpu_env); gen_store_gpr(t0, rt); } break; case NM_EVP: if (ctx->vp) { check_cp0_enabled(ctx); gen_helper_evp(t0, cpu_env); gen_store_gpr(t0, rt); } break; } tcg_temp_free(t0); #endif } else { gen_slt(ctx, OPC_SLTU, rd, rs, rt); } break; case NM_SOV: { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); TCGv t2 = tcg_temp_new(); gen_load_gpr(t1, rs); gen_load_gpr(t2, rt); tcg_gen_add_tl(t0, t1, t2); tcg_gen_ext32s_tl(t0, t0); tcg_gen_xor_tl(t1, t1, t2); tcg_gen_xor_tl(t2, t0, t2); tcg_gen_andc_tl(t1, t2, t1); /* operands of same sign, result different sign */ tcg_gen_setcondi_tl(TCG_COND_LT, t0, t1, 0); gen_store_gpr(t0, rd); tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(t2); } break; case NM_MUL: gen_r6_muldiv(ctx, R6_OPC_MUL, rd, rs, rt); break; case NM_MUH: gen_r6_muldiv(ctx, R6_OPC_MUH, rd, rs, rt); break; case NM_MULU: gen_r6_muldiv(ctx, R6_OPC_MULU, rd, rs, rt); break; case NM_MUHU: gen_r6_muldiv(ctx, R6_OPC_MUHU, rd, rs, rt); break; case NM_DIV: gen_r6_muldiv(ctx, R6_OPC_DIV, rd, rs, rt); break; case NM_MOD: gen_r6_muldiv(ctx, R6_OPC_MOD, rd, rs, rt); break; case NM_DIVU: gen_r6_muldiv(ctx, R6_OPC_DIVU, rd, rs, rt); break; case NM_MODU: gen_r6_muldiv(ctx, R6_OPC_MODU, rd, rs, rt); break; #ifndef CONFIG_USER_ONLY case NM_MFC0: check_cp0_enabled(ctx); if (rt == 0) { /* Treat as NOP. */ break; } gen_mfc0(ctx, cpu_gpr[rt], rs, extract32(ctx->opcode, 11, 3)); break; case NM_MTC0: check_cp0_enabled(ctx); { TCGv t0 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_mtc0(ctx, t0, rs, extract32(ctx->opcode, 11, 3)); tcg_temp_free(t0); } break; case NM_D_E_MT_VPE: { uint8_t sc = extract32(ctx->opcode, 10, 1); TCGv t0 = tcg_temp_new(); switch (sc) { case 0: if (rs == 1) { /* DMT */ check_cp0_mt(ctx); gen_helper_dmt(t0); gen_store_gpr(t0, rt); } else if (rs == 0) { /* DVPE */ check_cp0_mt(ctx); gen_helper_dvpe(t0, cpu_env); gen_store_gpr(t0, rt); } else { gen_reserved_instruction(ctx); } break; case 1: if (rs == 1) { /* EMT */ check_cp0_mt(ctx); gen_helper_emt(t0); gen_store_gpr(t0, rt); } else if (rs == 0) { /* EVPE */ check_cp0_mt(ctx); gen_helper_evpe(t0, cpu_env); gen_store_gpr(t0, rt); } else { gen_reserved_instruction(ctx); } break; } tcg_temp_free(t0); } break; case NM_FORK: check_mt(ctx); { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_load_gpr(t1, rs); gen_helper_fork(t0, t1); tcg_temp_free(t0); tcg_temp_free(t1); } break; case NM_MFTR: case NM_MFHTR: check_cp0_enabled(ctx); if (rd == 0) { /* Treat as NOP. */ return; } gen_mftr(env, ctx, rs, rt, extract32(ctx->opcode, 10, 1), extract32(ctx->opcode, 11, 5), extract32(ctx->opcode, 3, 1)); break; case NM_MTTR: case NM_MTHTR: check_cp0_enabled(ctx); gen_mttr(env, ctx, rs, rt, extract32(ctx->opcode, 10, 1), extract32(ctx->opcode, 11, 5), extract32(ctx->opcode, 3, 1)); break; case NM_YIELD: check_mt(ctx); { TCGv t0 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_helper_yield(t0, cpu_env, t0); gen_store_gpr(t0, rt); tcg_temp_free(t0); } break; #endif default: gen_reserved_instruction(ctx); break; } } /* dsp */ static void gen_pool32axf_1_5_nanomips_insn(DisasContext *ctx, uint32_t opc, int ret, int v1, int v2) { TCGv_i32 t0; TCGv v0_t; TCGv v1_t; t0 = tcg_temp_new_i32(); v0_t = tcg_temp_new(); v1_t = tcg_temp_new(); tcg_gen_movi_i32(t0, v2 >> 3); gen_load_gpr(v0_t, ret); gen_load_gpr(v1_t, v1); switch (opc) { case NM_MAQ_S_W_PHR: check_dsp(ctx); gen_helper_maq_s_w_phr(t0, v1_t, v0_t, cpu_env); break; case NM_MAQ_S_W_PHL: check_dsp(ctx); gen_helper_maq_s_w_phl(t0, v1_t, v0_t, cpu_env); break; case NM_MAQ_SA_W_PHR: check_dsp(ctx); gen_helper_maq_sa_w_phr(t0, v1_t, v0_t, cpu_env); break; case NM_MAQ_SA_W_PHL: check_dsp(ctx); gen_helper_maq_sa_w_phl(t0, v1_t, v0_t, cpu_env); break; default: gen_reserved_instruction(ctx); break; } tcg_temp_free_i32(t0); tcg_temp_free(v0_t); tcg_temp_free(v1_t); } static void gen_pool32axf_1_nanomips_insn(DisasContext *ctx, uint32_t opc, int ret, int v1, int v2) { int16_t imm; TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); TCGv v0_t = tcg_temp_new(); gen_load_gpr(v0_t, v1); switch (opc) { case NM_POOL32AXF_1_0: check_dsp(ctx); switch (extract32(ctx->opcode, 12, 2)) { case NM_MFHI: gen_HILO(ctx, OPC_MFHI, v2 >> 3, ret); break; case NM_MFLO: gen_HILO(ctx, OPC_MFLO, v2 >> 3, ret); break; case NM_MTHI: gen_HILO(ctx, OPC_MTHI, v2 >> 3, v1); break; case NM_MTLO: gen_HILO(ctx, OPC_MTLO, v2 >> 3, v1); break; } break; case NM_POOL32AXF_1_1: check_dsp(ctx); switch (extract32(ctx->opcode, 12, 2)) { case NM_MTHLIP: tcg_gen_movi_tl(t0, v2); gen_helper_mthlip(t0, v0_t, cpu_env); break; case NM_SHILOV: tcg_gen_movi_tl(t0, v2 >> 3); gen_helper_shilo(t0, v0_t, cpu_env); break; default: gen_reserved_instruction(ctx); break; } break; case NM_POOL32AXF_1_3: check_dsp(ctx); imm = extract32(ctx->opcode, 14, 7); switch (extract32(ctx->opcode, 12, 2)) { case NM_RDDSP: tcg_gen_movi_tl(t0, imm); gen_helper_rddsp(t0, t0, cpu_env); gen_store_gpr(t0, ret); break; case NM_WRDSP: gen_load_gpr(t0, ret); tcg_gen_movi_tl(t1, imm); gen_helper_wrdsp(t0, t1, cpu_env); break; case NM_EXTP: tcg_gen_movi_tl(t0, v2 >> 3); tcg_gen_movi_tl(t1, v1); gen_helper_extp(t0, t0, t1, cpu_env); gen_store_gpr(t0, ret); break; case NM_EXTPDP: tcg_gen_movi_tl(t0, v2 >> 3); tcg_gen_movi_tl(t1, v1); gen_helper_extpdp(t0, t0, t1, cpu_env); gen_store_gpr(t0, ret); break; } break; case NM_POOL32AXF_1_4: check_dsp(ctx); tcg_gen_movi_tl(t0, v2 >> 2); switch (extract32(ctx->opcode, 12, 1)) { case NM_SHLL_QB: gen_helper_shll_qb(t0, t0, v0_t, cpu_env); gen_store_gpr(t0, ret); break; case NM_SHRL_QB: gen_helper_shrl_qb(t0, t0, v0_t); gen_store_gpr(t0, ret); break; } break; case NM_POOL32AXF_1_5: opc = extract32(ctx->opcode, 12, 2); gen_pool32axf_1_5_nanomips_insn(ctx, opc, ret, v1, v2); break; case NM_POOL32AXF_1_7: check_dsp(ctx); tcg_gen_movi_tl(t0, v2 >> 3); tcg_gen_movi_tl(t1, v1); switch (extract32(ctx->opcode, 12, 2)) { case NM_EXTR_W: gen_helper_extr_w(t0, t0, t1, cpu_env); gen_store_gpr(t0, ret); break; case NM_EXTR_R_W: gen_helper_extr_r_w(t0, t0, t1, cpu_env); gen_store_gpr(t0, ret); break; case NM_EXTR_RS_W: gen_helper_extr_rs_w(t0, t0, t1, cpu_env); gen_store_gpr(t0, ret); break; case NM_EXTR_S_H: gen_helper_extr_s_h(t0, t0, t1, cpu_env); gen_store_gpr(t0, ret); break; } break; default: gen_reserved_instruction(ctx); break; } tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(v0_t); } static void gen_pool32axf_2_multiply(DisasContext *ctx, uint32_t opc, TCGv v0, TCGv v1, int rd) { TCGv_i32 t0; t0 = tcg_temp_new_i32(); tcg_gen_movi_i32(t0, rd >> 3); switch (opc) { case NM_POOL32AXF_2_0_7: switch (extract32(ctx->opcode, 9, 3)) { case NM_DPA_W_PH: check_dsp_r2(ctx); gen_helper_dpa_w_ph(t0, v1, v0, cpu_env); break; case NM_DPAQ_S_W_PH: check_dsp(ctx); gen_helper_dpaq_s_w_ph(t0, v1, v0, cpu_env); break; case NM_DPS_W_PH: check_dsp_r2(ctx); gen_helper_dps_w_ph(t0, v1, v0, cpu_env); break; case NM_DPSQ_S_W_PH: check_dsp(ctx); gen_helper_dpsq_s_w_ph(t0, v1, v0, cpu_env); break; default: gen_reserved_instruction(ctx); break; } break; case NM_POOL32AXF_2_8_15: switch (extract32(ctx->opcode, 9, 3)) { case NM_DPAX_W_PH: check_dsp_r2(ctx); gen_helper_dpax_w_ph(t0, v0, v1, cpu_env); break; case NM_DPAQ_SA_L_W: check_dsp(ctx); gen_helper_dpaq_sa_l_w(t0, v0, v1, cpu_env); break; case NM_DPSX_W_PH: check_dsp_r2(ctx); gen_helper_dpsx_w_ph(t0, v0, v1, cpu_env); break; case NM_DPSQ_SA_L_W: check_dsp(ctx); gen_helper_dpsq_sa_l_w(t0, v0, v1, cpu_env); break; default: gen_reserved_instruction(ctx); break; } break; case NM_POOL32AXF_2_16_23: switch (extract32(ctx->opcode, 9, 3)) { case NM_DPAU_H_QBL: check_dsp(ctx); gen_helper_dpau_h_qbl(t0, v0, v1, cpu_env); break; case NM_DPAQX_S_W_PH: check_dsp_r2(ctx); gen_helper_dpaqx_s_w_ph(t0, v0, v1, cpu_env); break; case NM_DPSU_H_QBL: check_dsp(ctx); gen_helper_dpsu_h_qbl(t0, v0, v1, cpu_env); break; case NM_DPSQX_S_W_PH: check_dsp_r2(ctx); gen_helper_dpsqx_s_w_ph(t0, v0, v1, cpu_env); break; case NM_MULSA_W_PH: check_dsp_r2(ctx); gen_helper_mulsa_w_ph(t0, v0, v1, cpu_env); break; default: gen_reserved_instruction(ctx); break; } break; case NM_POOL32AXF_2_24_31: switch (extract32(ctx->opcode, 9, 3)) { case NM_DPAU_H_QBR: check_dsp(ctx); gen_helper_dpau_h_qbr(t0, v1, v0, cpu_env); break; case NM_DPAQX_SA_W_PH: check_dsp_r2(ctx); gen_helper_dpaqx_sa_w_ph(t0, v1, v0, cpu_env); break; case NM_DPSU_H_QBR: check_dsp(ctx); gen_helper_dpsu_h_qbr(t0, v1, v0, cpu_env); break; case NM_DPSQX_SA_W_PH: check_dsp_r2(ctx); gen_helper_dpsqx_sa_w_ph(t0, v1, v0, cpu_env); break; case NM_MULSAQ_S_W_PH: check_dsp(ctx); gen_helper_mulsaq_s_w_ph(t0, v1, v0, cpu_env); break; default: gen_reserved_instruction(ctx); break; } break; default: gen_reserved_instruction(ctx); break; } tcg_temp_free_i32(t0); } static void gen_pool32axf_2_nanomips_insn(DisasContext *ctx, uint32_t opc, int rt, int rs, int rd) { int ret = rt; TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); TCGv v0_t = tcg_temp_new(); TCGv v1_t = tcg_temp_new(); gen_load_gpr(v0_t, rt); gen_load_gpr(v1_t, rs); switch (opc) { case NM_POOL32AXF_2_0_7: switch (extract32(ctx->opcode, 9, 3)) { case NM_DPA_W_PH: case NM_DPAQ_S_W_PH: case NM_DPS_W_PH: case NM_DPSQ_S_W_PH: gen_pool32axf_2_multiply(ctx, opc, v0_t, v1_t, rd); break; case NM_BALIGN: check_dsp_r2(ctx); if (rt != 0) { gen_load_gpr(t0, rs); rd &= 3; if (rd != 0 && rd != 2) { tcg_gen_shli_tl(cpu_gpr[ret], cpu_gpr[ret], 8 * rd); tcg_gen_ext32u_tl(t0, t0); tcg_gen_shri_tl(t0, t0, 8 * (4 - rd)); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); } tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]); } break; case NM_MADD: check_dsp(ctx); { int acc = extract32(ctx->opcode, 14, 2); TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); gen_load_gpr(t0, rt); gen_load_gpr(t1, rs); tcg_gen_ext_tl_i64(t2, t0); tcg_gen_ext_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_add_i64(t2, t2, t3); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); tcg_temp_free_i64(t2); } break; case NM_MULT: check_dsp(ctx); { int acc = extract32(ctx->opcode, 14, 2); TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_muls2_i32(t2, t3, t2, t3); tcg_gen_ext_i32_tl(cpu_LO[acc], t2); tcg_gen_ext_i32_tl(cpu_HI[acc], t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; case NM_EXTRV_W: check_dsp(ctx); gen_load_gpr(v1_t, rs); tcg_gen_movi_tl(t0, rd >> 3); gen_helper_extr_w(t0, t0, v1_t, cpu_env); gen_store_gpr(t0, ret); break; } break; case NM_POOL32AXF_2_8_15: switch (extract32(ctx->opcode, 9, 3)) { case NM_DPAX_W_PH: case NM_DPAQ_SA_L_W: case NM_DPSX_W_PH: case NM_DPSQ_SA_L_W: gen_pool32axf_2_multiply(ctx, opc, v0_t, v1_t, rd); break; case NM_MADDU: check_dsp(ctx); { int acc = extract32(ctx->opcode, 14, 2); TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_extu_tl_i64(t2, t0); tcg_gen_extu_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_add_i64(t2, t2, t3); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); tcg_temp_free_i64(t2); } break; case NM_MULTU: check_dsp(ctx); { int acc = extract32(ctx->opcode, 14, 2); TCGv_i32 t2 = tcg_temp_new_i32(); TCGv_i32 t3 = tcg_temp_new_i32(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); tcg_gen_trunc_tl_i32(t2, t0); tcg_gen_trunc_tl_i32(t3, t1); tcg_gen_mulu2_i32(t2, t3, t2, t3); tcg_gen_ext_i32_tl(cpu_LO[acc], t2); tcg_gen_ext_i32_tl(cpu_HI[acc], t3); tcg_temp_free_i32(t2); tcg_temp_free_i32(t3); } break; case NM_EXTRV_R_W: check_dsp(ctx); tcg_gen_movi_tl(t0, rd >> 3); gen_helper_extr_r_w(t0, t0, v1_t, cpu_env); gen_store_gpr(t0, ret); break; default: gen_reserved_instruction(ctx); break; } break; case NM_POOL32AXF_2_16_23: switch (extract32(ctx->opcode, 9, 3)) { case NM_DPAU_H_QBL: case NM_DPAQX_S_W_PH: case NM_DPSU_H_QBL: case NM_DPSQX_S_W_PH: case NM_MULSA_W_PH: gen_pool32axf_2_multiply(ctx, opc, v0_t, v1_t, rd); break; case NM_EXTPV: check_dsp(ctx); tcg_gen_movi_tl(t0, rd >> 3); gen_helper_extp(t0, t0, v1_t, cpu_env); gen_store_gpr(t0, ret); break; case NM_MSUB: check_dsp(ctx); { int acc = extract32(ctx->opcode, 14, 2); TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); tcg_gen_ext_tl_i64(t2, t0); tcg_gen_ext_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_sub_i64(t2, t3, t2); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); tcg_temp_free_i64(t2); } break; case NM_EXTRV_RS_W: check_dsp(ctx); tcg_gen_movi_tl(t0, rd >> 3); gen_helper_extr_rs_w(t0, t0, v1_t, cpu_env); gen_store_gpr(t0, ret); break; } break; case NM_POOL32AXF_2_24_31: switch (extract32(ctx->opcode, 9, 3)) { case NM_DPAU_H_QBR: case NM_DPAQX_SA_W_PH: case NM_DPSU_H_QBR: case NM_DPSQX_SA_W_PH: case NM_MULSAQ_S_W_PH: gen_pool32axf_2_multiply(ctx, opc, v0_t, v1_t, rd); break; case NM_EXTPDPV: check_dsp(ctx); tcg_gen_movi_tl(t0, rd >> 3); gen_helper_extpdp(t0, t0, v1_t, cpu_env); gen_store_gpr(t0, ret); break; case NM_MSUBU: check_dsp(ctx); { int acc = extract32(ctx->opcode, 14, 2); TCGv_i64 t2 = tcg_temp_new_i64(); TCGv_i64 t3 = tcg_temp_new_i64(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); tcg_gen_ext32u_tl(t0, t0); tcg_gen_ext32u_tl(t1, t1); tcg_gen_extu_tl_i64(t2, t0); tcg_gen_extu_tl_i64(t3, t1); tcg_gen_mul_i64(t2, t2, t3); tcg_gen_concat_tl_i64(t3, cpu_LO[acc], cpu_HI[acc]); tcg_gen_sub_i64(t2, t3, t2); tcg_temp_free_i64(t3); gen_move_low32(cpu_LO[acc], t2); gen_move_high32(cpu_HI[acc], t2); tcg_temp_free_i64(t2); } break; case NM_EXTRV_S_H: check_dsp(ctx); tcg_gen_movi_tl(t0, rd >> 3); gen_helper_extr_s_h(t0, t0, v0_t, cpu_env); gen_store_gpr(t0, ret); break; } break; default: gen_reserved_instruction(ctx); break; } tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(v0_t); tcg_temp_free(v1_t); } static void gen_pool32axf_4_nanomips_insn(DisasContext *ctx, uint32_t opc, int rt, int rs) { int ret = rt; TCGv t0 = tcg_temp_new(); TCGv v0_t = tcg_temp_new(); gen_load_gpr(v0_t, rs); switch (opc) { case NM_ABSQ_S_QB: check_dsp_r2(ctx); gen_helper_absq_s_qb(v0_t, v0_t, cpu_env); gen_store_gpr(v0_t, ret); break; case NM_ABSQ_S_PH: check_dsp(ctx); gen_helper_absq_s_ph(v0_t, v0_t, cpu_env); gen_store_gpr(v0_t, ret); break; case NM_ABSQ_S_W: check_dsp(ctx); gen_helper_absq_s_w(v0_t, v0_t, cpu_env); gen_store_gpr(v0_t, ret); break; case NM_PRECEQ_W_PHL: check_dsp(ctx); tcg_gen_andi_tl(v0_t, v0_t, 0xFFFF0000); tcg_gen_ext32s_tl(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_PRECEQ_W_PHR: check_dsp(ctx); tcg_gen_andi_tl(v0_t, v0_t, 0x0000FFFF); tcg_gen_shli_tl(v0_t, v0_t, 16); tcg_gen_ext32s_tl(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_PRECEQU_PH_QBL: check_dsp(ctx); gen_helper_precequ_ph_qbl(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_PRECEQU_PH_QBR: check_dsp(ctx); gen_helper_precequ_ph_qbr(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_PRECEQU_PH_QBLA: check_dsp(ctx); gen_helper_precequ_ph_qbla(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_PRECEQU_PH_QBRA: check_dsp(ctx); gen_helper_precequ_ph_qbra(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_PRECEU_PH_QBL: check_dsp(ctx); gen_helper_preceu_ph_qbl(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_PRECEU_PH_QBR: check_dsp(ctx); gen_helper_preceu_ph_qbr(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_PRECEU_PH_QBLA: check_dsp(ctx); gen_helper_preceu_ph_qbla(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_PRECEU_PH_QBRA: check_dsp(ctx); gen_helper_preceu_ph_qbra(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_REPLV_PH: check_dsp(ctx); tcg_gen_ext16u_tl(v0_t, v0_t); tcg_gen_shli_tl(t0, v0_t, 16); tcg_gen_or_tl(v0_t, v0_t, t0); tcg_gen_ext32s_tl(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_REPLV_QB: check_dsp(ctx); tcg_gen_ext8u_tl(v0_t, v0_t); tcg_gen_shli_tl(t0, v0_t, 8); tcg_gen_or_tl(v0_t, v0_t, t0); tcg_gen_shli_tl(t0, v0_t, 16); tcg_gen_or_tl(v0_t, v0_t, t0); tcg_gen_ext32s_tl(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_BITREV: check_dsp(ctx); gen_helper_bitrev(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_INSV: check_dsp(ctx); { TCGv tv0 = tcg_temp_new(); gen_load_gpr(tv0, rt); gen_helper_insv(v0_t, cpu_env, v0_t, tv0); gen_store_gpr(v0_t, ret); tcg_temp_free(tv0); } break; case NM_RADDU_W_QB: check_dsp(ctx); gen_helper_raddu_w_qb(v0_t, v0_t); gen_store_gpr(v0_t, ret); break; case NM_BITSWAP: gen_bitswap(ctx, OPC_BITSWAP, ret, rs); break; case NM_CLO: check_nms(ctx); gen_cl(ctx, OPC_CLO, ret, rs); break; case NM_CLZ: check_nms(ctx); gen_cl(ctx, OPC_CLZ, ret, rs); break; case NM_WSBH: gen_bshfl(ctx, OPC_WSBH, ret, rs); break; default: gen_reserved_instruction(ctx); break; } tcg_temp_free(v0_t); tcg_temp_free(t0); } static void gen_pool32axf_7_nanomips_insn(DisasContext *ctx, uint32_t opc, int rt, int rs, int rd) { TCGv t0 = tcg_temp_new(); TCGv rs_t = tcg_temp_new(); gen_load_gpr(rs_t, rs); switch (opc) { case NM_SHRA_R_QB: check_dsp_r2(ctx); tcg_gen_movi_tl(t0, rd >> 2); switch (extract32(ctx->opcode, 12, 1)) { case 0: /* NM_SHRA_QB */ gen_helper_shra_qb(t0, t0, rs_t); gen_store_gpr(t0, rt); break; case 1: /* NM_SHRA_R_QB */ gen_helper_shra_r_qb(t0, t0, rs_t); gen_store_gpr(t0, rt); break; } break; case NM_SHRL_PH: check_dsp_r2(ctx); tcg_gen_movi_tl(t0, rd >> 1); gen_helper_shrl_ph(t0, t0, rs_t); gen_store_gpr(t0, rt); break; case NM_REPL_QB: check_dsp(ctx); { int16_t imm; target_long result; imm = extract32(ctx->opcode, 13, 8); result = (uint32_t)imm << 24 | (uint32_t)imm << 16 | (uint32_t)imm << 8 | (uint32_t)imm; result = (int32_t)result; tcg_gen_movi_tl(t0, result); gen_store_gpr(t0, rt); } break; default: gen_reserved_instruction(ctx); break; } tcg_temp_free(t0); tcg_temp_free(rs_t); } static void gen_pool32axf_nanomips_insn(CPUMIPSState *env, DisasContext *ctx) { int rt = extract32(ctx->opcode, 21, 5); int rs = extract32(ctx->opcode, 16, 5); int rd = extract32(ctx->opcode, 11, 5); switch (extract32(ctx->opcode, 6, 3)) { case NM_POOL32AXF_1: { int32_t op1 = extract32(ctx->opcode, 9, 3); gen_pool32axf_1_nanomips_insn(ctx, op1, rt, rs, rd); } break; case NM_POOL32AXF_2: { int32_t op1 = extract32(ctx->opcode, 12, 2); gen_pool32axf_2_nanomips_insn(ctx, op1, rt, rs, rd); } break; case NM_POOL32AXF_4: { int32_t op1 = extract32(ctx->opcode, 9, 7); gen_pool32axf_4_nanomips_insn(ctx, op1, rt, rs); } break; case NM_POOL32AXF_5: switch (extract32(ctx->opcode, 9, 7)) { #ifndef CONFIG_USER_ONLY case NM_TLBP: gen_cp0(env, ctx, OPC_TLBP, 0, 0); break; case NM_TLBR: gen_cp0(env, ctx, OPC_TLBR, 0, 0); break; case NM_TLBWI: gen_cp0(env, ctx, OPC_TLBWI, 0, 0); break; case NM_TLBWR: gen_cp0(env, ctx, OPC_TLBWR, 0, 0); break; case NM_TLBINV: gen_cp0(env, ctx, OPC_TLBINV, 0, 0); break; case NM_TLBINVF: gen_cp0(env, ctx, OPC_TLBINVF, 0, 0); break; case NM_DI: check_cp0_enabled(ctx); { TCGv t0 = tcg_temp_new(); save_cpu_state(ctx, 1); gen_helper_di(t0, cpu_env); gen_store_gpr(t0, rt); /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; tcg_temp_free(t0); } break; case NM_EI: check_cp0_enabled(ctx); { TCGv t0 = tcg_temp_new(); save_cpu_state(ctx, 1); gen_helper_ei(t0, cpu_env); gen_store_gpr(t0, rt); /* Stop translation as we may have switched the execution mode */ ctx->base.is_jmp = DISAS_STOP; tcg_temp_free(t0); } break; case NM_RDPGPR: gen_load_srsgpr(rs, rt); break; case NM_WRPGPR: gen_store_srsgpr(rs, rt); break; case NM_WAIT: gen_cp0(env, ctx, OPC_WAIT, 0, 0); break; case NM_DERET: gen_cp0(env, ctx, OPC_DERET, 0, 0); break; case NM_ERETX: gen_cp0(env, ctx, OPC_ERET, 0, 0); break; #endif default: gen_reserved_instruction(ctx); break; } break; case NM_POOL32AXF_7: { int32_t op1 = extract32(ctx->opcode, 9, 3); gen_pool32axf_7_nanomips_insn(ctx, op1, rt, rs, rd); } break; default: gen_reserved_instruction(ctx); break; } } /* Immediate Value Compact Branches */ static void gen_compute_imm_branch(DisasContext *ctx, uint32_t opc, int rt, int32_t imm, int32_t offset) { TCGCond cond = TCG_COND_ALWAYS; TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); gen_load_gpr(t0, rt); tcg_gen_movi_tl(t1, imm); ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); /* Load needed operands and calculate btarget */ switch (opc) { case NM_BEQIC: if (rt == 0 && imm == 0) { /* Unconditional branch */ } else if (rt == 0 && imm != 0) { /* Treat as NOP */ goto out; } else { cond = TCG_COND_EQ; } break; case NM_BBEQZC: case NM_BBNEZC: check_nms(ctx); if (imm >= 32 && !(ctx->hflags & MIPS_HFLAG_64)) { gen_reserved_instruction(ctx); goto out; } else if (rt == 0 && opc == NM_BBEQZC) { /* Unconditional branch */ } else if (rt == 0 && opc == NM_BBNEZC) { /* Treat as NOP */ goto out; } else { tcg_gen_shri_tl(t0, t0, imm); tcg_gen_andi_tl(t0, t0, 1); tcg_gen_movi_tl(t1, 0); if (opc == NM_BBEQZC) { cond = TCG_COND_EQ; } else { cond = TCG_COND_NE; } } break; case NM_BNEIC: if (rt == 0 && imm == 0) { /* Treat as NOP */ goto out; } else if (rt == 0 && imm != 0) { /* Unconditional branch */ } else { cond = TCG_COND_NE; } break; case NM_BGEIC: if (rt == 0 && imm == 0) { /* Unconditional branch */ } else { cond = TCG_COND_GE; } break; case NM_BLTIC: cond = TCG_COND_LT; break; case NM_BGEIUC: if (rt == 0 && imm == 0) { /* Unconditional branch */ } else { cond = TCG_COND_GEU; } break; case NM_BLTIUC: cond = TCG_COND_LTU; break; default: MIPS_INVAL("Immediate Value Compact branch"); gen_reserved_instruction(ctx); goto out; } /* branch completion */ clear_branch_hflags(ctx); ctx->base.is_jmp = DISAS_NORETURN; if (cond == TCG_COND_ALWAYS) { /* Uncoditional compact branch */ gen_goto_tb(ctx, 0, ctx->btarget); } else { /* Conditional compact branch */ TCGLabel *fs = gen_new_label(); tcg_gen_brcond_tl(tcg_invert_cond(cond), t0, t1, fs); gen_goto_tb(ctx, 1, ctx->btarget); gen_set_label(fs); gen_goto_tb(ctx, 0, ctx->base.pc_next + 4); } out: tcg_temp_free(t0); tcg_temp_free(t1); } /* P.BALRSC type nanoMIPS R6 branches: BALRSC and BRSC */ static void gen_compute_nanomips_pbalrsc_branch(DisasContext *ctx, int rs, int rt) { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); /* load rs */ gen_load_gpr(t0, rs); /* link */ if (rt != 0) { tcg_gen_movi_tl(cpu_gpr[rt], ctx->base.pc_next + 4); } /* calculate btarget */ tcg_gen_shli_tl(t0, t0, 1); tcg_gen_movi_tl(t1, ctx->base.pc_next + 4); gen_op_addr_add(ctx, btarget, t1, t0); /* branch completion */ clear_branch_hflags(ctx); ctx->base.is_jmp = DISAS_NORETURN; /* unconditional branch to register */ tcg_gen_mov_tl(cpu_PC, btarget); tcg_gen_lookup_and_goto_ptr(); tcg_temp_free(t0); tcg_temp_free(t1); } /* nanoMIPS Branches */ static void gen_compute_compact_branch_nm(DisasContext *ctx, uint32_t opc, int rs, int rt, int32_t offset) { int bcond_compute = 0; TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); /* Load needed operands and calculate btarget */ switch (opc) { /* compact branch */ case OPC_BGEC: case OPC_BLTC: gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); bcond_compute = 1; ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); break; case OPC_BGEUC: case OPC_BLTUC: if (rs == 0 || rs == rt) { /* OPC_BLEZALC, OPC_BGEZALC */ /* OPC_BGTZALC, OPC_BLTZALC */ tcg_gen_movi_tl(cpu_gpr[31], ctx->base.pc_next + 4); } gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); bcond_compute = 1; ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); break; case OPC_BC: ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); break; case OPC_BEQZC: if (rs != 0) { /* OPC_BEQZC, OPC_BNEZC */ gen_load_gpr(t0, rs); bcond_compute = 1; ctx->btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); } else { /* OPC_JIC, OPC_JIALC */ TCGv tbase = tcg_temp_new(); TCGv toffset = tcg_temp_new(); gen_load_gpr(tbase, rt); tcg_gen_movi_tl(toffset, offset); gen_op_addr_add(ctx, btarget, tbase, toffset); tcg_temp_free(tbase); tcg_temp_free(toffset); } break; default: MIPS_INVAL("Compact branch/jump"); gen_reserved_instruction(ctx); goto out; } if (bcond_compute == 0) { /* Uncoditional compact branch */ switch (opc) { case OPC_BC: gen_goto_tb(ctx, 0, ctx->btarget); break; default: MIPS_INVAL("Compact branch/jump"); gen_reserved_instruction(ctx); goto out; } } else { /* Conditional compact branch */ TCGLabel *fs = gen_new_label(); switch (opc) { case OPC_BGEUC: if (rs == 0 && rt != 0) { /* OPC_BLEZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LE), t1, 0, fs); } else if (rs != 0 && rt != 0 && rs == rt) { /* OPC_BGEZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GE), t1, 0, fs); } else { /* OPC_BGEUC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_GEU), t0, t1, fs); } break; case OPC_BLTUC: if (rs == 0 && rt != 0) { /* OPC_BGTZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GT), t1, 0, fs); } else if (rs != 0 && rt != 0 && rs == rt) { /* OPC_BLTZALC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LT), t1, 0, fs); } else { /* OPC_BLTUC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_LTU), t0, t1, fs); } break; case OPC_BGEC: if (rs == 0 && rt != 0) { /* OPC_BLEZC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LE), t1, 0, fs); } else if (rs != 0 && rt != 0 && rs == rt) { /* OPC_BGEZC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GE), t1, 0, fs); } else { /* OPC_BGEC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_GE), t0, t1, fs); } break; case OPC_BLTC: if (rs == 0 && rt != 0) { /* OPC_BGTZC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_GT), t1, 0, fs); } else if (rs != 0 && rt != 0 && rs == rt) { /* OPC_BLTZC */ tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_LT), t1, 0, fs); } else { /* OPC_BLTC */ tcg_gen_brcond_tl(tcg_invert_cond(TCG_COND_LT), t0, t1, fs); } break; case OPC_BEQZC: tcg_gen_brcondi_tl(tcg_invert_cond(TCG_COND_EQ), t0, 0, fs); break; default: MIPS_INVAL("Compact conditional branch/jump"); gen_reserved_instruction(ctx); goto out; } /* branch completion */ clear_branch_hflags(ctx); ctx->base.is_jmp = DISAS_NORETURN; /* Generating branch here as compact branches don't have delay slot */ gen_goto_tb(ctx, 1, ctx->btarget); gen_set_label(fs); gen_goto_tb(ctx, 0, ctx->base.pc_next + 4); } out: tcg_temp_free(t0); tcg_temp_free(t1); } /* nanoMIPS CP1 Branches */ static void gen_compute_branch_cp1_nm(DisasContext *ctx, uint32_t op, int32_t ft, int32_t offset) { target_ulong btarget; TCGv_i64 t0 = tcg_temp_new_i64(); gen_load_fpr64(ctx, t0, ft); tcg_gen_andi_i64(t0, t0, 1); btarget = addr_add(ctx, ctx->base.pc_next + 4, offset); switch (op) { case NM_BC1EQZC: tcg_gen_xori_i64(t0, t0, 1); ctx->hflags |= MIPS_HFLAG_BC; break; case NM_BC1NEZC: /* t0 already set */ ctx->hflags |= MIPS_HFLAG_BC; break; default: MIPS_INVAL("cp1 cond branch"); gen_reserved_instruction(ctx); goto out; } tcg_gen_trunc_i64_tl(bcond, t0); ctx->btarget = btarget; out: tcg_temp_free_i64(t0); } static void gen_p_lsx(DisasContext *ctx, int rd, int rs, int rt) { TCGv t0, t1; t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); if ((extract32(ctx->opcode, 6, 1)) == 1) { /* PP.LSXS instructions require shifting */ switch (extract32(ctx->opcode, 7, 4)) { case NM_SHXS: check_nms(ctx); /* fall through */ case NM_LHXS: case NM_LHUXS: tcg_gen_shli_tl(t0, t0, 1); break; case NM_SWXS: check_nms(ctx); /* fall through */ case NM_LWXS: case NM_LWC1XS: case NM_SWC1XS: tcg_gen_shli_tl(t0, t0, 2); break; case NM_LDC1XS: case NM_SDC1XS: tcg_gen_shli_tl(t0, t0, 3); break; } } gen_op_addr_add(ctx, t0, t0, t1); switch (extract32(ctx->opcode, 7, 4)) { case NM_LBX: tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_SB); gen_store_gpr(t0, rd); break; case NM_LHX: /*case NM_LHXS:*/ tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESW); gen_store_gpr(t0, rd); break; case NM_LWX: /*case NM_LWXS:*/ tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESL); gen_store_gpr(t0, rd); break; case NM_LBUX: tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_UB); gen_store_gpr(t0, rd); break; case NM_LHUX: /*case NM_LHUXS:*/ tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEUW); gen_store_gpr(t0, rd); break; case NM_SBX: check_nms(ctx); gen_load_gpr(t1, rd); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_8); break; case NM_SHX: /*case NM_SHXS:*/ check_nms(ctx); gen_load_gpr(t1, rd); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUW); break; case NM_SWX: /*case NM_SWXS:*/ check_nms(ctx); gen_load_gpr(t1, rd); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); break; case NM_LWC1X: /*case NM_LWC1XS:*/ case NM_LDC1X: /*case NM_LDC1XS:*/ case NM_SWC1X: /*case NM_SWC1XS:*/ case NM_SDC1X: /*case NM_SDC1XS:*/ if (ctx->CP0_Config1 & (1 << CP0C1_FP)) { check_cp1_enabled(ctx); switch (extract32(ctx->opcode, 7, 4)) { case NM_LWC1X: /*case NM_LWC1XS:*/ gen_flt_ldst(ctx, OPC_LWC1, rd, t0); break; case NM_LDC1X: /*case NM_LDC1XS:*/ gen_flt_ldst(ctx, OPC_LDC1, rd, t0); break; case NM_SWC1X: /*case NM_SWC1XS:*/ gen_flt_ldst(ctx, OPC_SWC1, rd, t0); break; case NM_SDC1X: /*case NM_SDC1XS:*/ gen_flt_ldst(ctx, OPC_SDC1, rd, t0); break; } } else { generate_exception_err(ctx, EXCP_CpU, 1); } break; default: gen_reserved_instruction(ctx); break; } tcg_temp_free(t0); tcg_temp_free(t1); } static void gen_pool32f_nanomips_insn(DisasContext *ctx) { int rt, rs, rd; rt = extract32(ctx->opcode, 21, 5); rs = extract32(ctx->opcode, 16, 5); rd = extract32(ctx->opcode, 11, 5); if (!(ctx->CP0_Config1 & (1 << CP0C1_FP))) { gen_reserved_instruction(ctx); return; } check_cp1_enabled(ctx); switch (extract32(ctx->opcode, 0, 3)) { case NM_POOL32F_0: switch (extract32(ctx->opcode, 3, 7)) { case NM_RINT_S: gen_farith(ctx, OPC_RINT_S, 0, rt, rs, 0); break; case NM_RINT_D: gen_farith(ctx, OPC_RINT_D, 0, rt, rs, 0); break; case NM_CLASS_S: gen_farith(ctx, OPC_CLASS_S, 0, rt, rs, 0); break; case NM_CLASS_D: gen_farith(ctx, OPC_CLASS_D, 0, rt, rs, 0); break; case NM_ADD_S: gen_farith(ctx, OPC_ADD_S, rt, rs, rd, 0); break; case NM_ADD_D: gen_farith(ctx, OPC_ADD_D, rt, rs, rd, 0); break; case NM_SUB_S: gen_farith(ctx, OPC_SUB_S, rt, rs, rd, 0); break; case NM_SUB_D: gen_farith(ctx, OPC_SUB_D, rt, rs, rd, 0); break; case NM_MUL_S: gen_farith(ctx, OPC_MUL_S, rt, rs, rd, 0); break; case NM_MUL_D: gen_farith(ctx, OPC_MUL_D, rt, rs, rd, 0); break; case NM_DIV_S: gen_farith(ctx, OPC_DIV_S, rt, rs, rd, 0); break; case NM_DIV_D: gen_farith(ctx, OPC_DIV_D, rt, rs, rd, 0); break; case NM_SELEQZ_S: gen_sel_s(ctx, OPC_SELEQZ_S, rd, rt, rs); break; case NM_SELEQZ_D: gen_sel_d(ctx, OPC_SELEQZ_D, rd, rt, rs); break; case NM_SELNEZ_S: gen_sel_s(ctx, OPC_SELNEZ_S, rd, rt, rs); break; case NM_SELNEZ_D: gen_sel_d(ctx, OPC_SELNEZ_D, rd, rt, rs); break; case NM_SEL_S: gen_sel_s(ctx, OPC_SEL_S, rd, rt, rs); break; case NM_SEL_D: gen_sel_d(ctx, OPC_SEL_D, rd, rt, rs); break; case NM_MADDF_S: gen_farith(ctx, OPC_MADDF_S, rt, rs, rd, 0); break; case NM_MADDF_D: gen_farith(ctx, OPC_MADDF_D, rt, rs, rd, 0); break; case NM_MSUBF_S: gen_farith(ctx, OPC_MSUBF_S, rt, rs, rd, 0); break; case NM_MSUBF_D: gen_farith(ctx, OPC_MSUBF_D, rt, rs, rd, 0); break; default: gen_reserved_instruction(ctx); break; } break; case NM_POOL32F_3: switch (extract32(ctx->opcode, 3, 3)) { case NM_MIN_FMT: switch (extract32(ctx->opcode, 9, 1)) { case FMT_SDPS_S: gen_farith(ctx, OPC_MIN_S, rt, rs, rd, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_MIN_D, rt, rs, rd, 0); break; } break; case NM_MAX_FMT: switch (extract32(ctx->opcode, 9, 1)) { case FMT_SDPS_S: gen_farith(ctx, OPC_MAX_S, rt, rs, rd, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_MAX_D, rt, rs, rd, 0); break; } break; case NM_MINA_FMT: switch (extract32(ctx->opcode, 9, 1)) { case FMT_SDPS_S: gen_farith(ctx, OPC_MINA_S, rt, rs, rd, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_MINA_D, rt, rs, rd, 0); break; } break; case NM_MAXA_FMT: switch (extract32(ctx->opcode, 9, 1)) { case FMT_SDPS_S: gen_farith(ctx, OPC_MAXA_S, rt, rs, rd, 0); break; case FMT_SDPS_D: gen_farith(ctx, OPC_MAXA_D, rt, rs, rd, 0); break; } break; case NM_POOL32FXF: switch (extract32(ctx->opcode, 6, 8)) { case NM_CFC1: gen_cp1(ctx, OPC_CFC1, rt, rs); break; case NM_CTC1: gen_cp1(ctx, OPC_CTC1, rt, rs); break; case NM_MFC1: gen_cp1(ctx, OPC_MFC1, rt, rs); break; case NM_MTC1: gen_cp1(ctx, OPC_MTC1, rt, rs); break; case NM_MFHC1: gen_cp1(ctx, OPC_MFHC1, rt, rs); break; case NM_MTHC1: gen_cp1(ctx, OPC_MTHC1, rt, rs); break; case NM_CVT_S_PL: gen_farith(ctx, OPC_CVT_S_PL, -1, rs, rt, 0); break; case NM_CVT_S_PU: gen_farith(ctx, OPC_CVT_S_PU, -1, rs, rt, 0); break; default: switch (extract32(ctx->opcode, 6, 9)) { case NM_CVT_L_S: gen_farith(ctx, OPC_CVT_L_S, -1, rs, rt, 0); break; case NM_CVT_L_D: gen_farith(ctx, OPC_CVT_L_D, -1, rs, rt, 0); break; case NM_CVT_W_S: gen_farith(ctx, OPC_CVT_W_S, -1, rs, rt, 0); break; case NM_CVT_W_D: gen_farith(ctx, OPC_CVT_W_D, -1, rs, rt, 0); break; case NM_RSQRT_S: gen_farith(ctx, OPC_RSQRT_S, -1, rs, rt, 0); break; case NM_RSQRT_D: gen_farith(ctx, OPC_RSQRT_D, -1, rs, rt, 0); break; case NM_SQRT_S: gen_farith(ctx, OPC_SQRT_S, -1, rs, rt, 0); break; case NM_SQRT_D: gen_farith(ctx, OPC_SQRT_D, -1, rs, rt, 0); break; case NM_RECIP_S: gen_farith(ctx, OPC_RECIP_S, -1, rs, rt, 0); break; case NM_RECIP_D: gen_farith(ctx, OPC_RECIP_D, -1, rs, rt, 0); break; case NM_FLOOR_L_S: gen_farith(ctx, OPC_FLOOR_L_S, -1, rs, rt, 0); break; case NM_FLOOR_L_D: gen_farith(ctx, OPC_FLOOR_L_D, -1, rs, rt, 0); break; case NM_FLOOR_W_S: gen_farith(ctx, OPC_FLOOR_W_S, -1, rs, rt, 0); break; case NM_FLOOR_W_D: gen_farith(ctx, OPC_FLOOR_W_D, -1, rs, rt, 0); break; case NM_CEIL_L_S: gen_farith(ctx, OPC_CEIL_L_S, -1, rs, rt, 0); break; case NM_CEIL_L_D: gen_farith(ctx, OPC_CEIL_L_D, -1, rs, rt, 0); break; case NM_CEIL_W_S: gen_farith(ctx, OPC_CEIL_W_S, -1, rs, rt, 0); break; case NM_CEIL_W_D: gen_farith(ctx, OPC_CEIL_W_D, -1, rs, rt, 0); break; case NM_TRUNC_L_S: gen_farith(ctx, OPC_TRUNC_L_S, -1, rs, rt, 0); break; case NM_TRUNC_L_D: gen_farith(ctx, OPC_TRUNC_L_D, -1, rs, rt, 0); break; case NM_TRUNC_W_S: gen_farith(ctx, OPC_TRUNC_W_S, -1, rs, rt, 0); break; case NM_TRUNC_W_D: gen_farith(ctx, OPC_TRUNC_W_D, -1, rs, rt, 0); break; case NM_ROUND_L_S: gen_farith(ctx, OPC_ROUND_L_S, -1, rs, rt, 0); break; case NM_ROUND_L_D: gen_farith(ctx, OPC_ROUND_L_D, -1, rs, rt, 0); break; case NM_ROUND_W_S: gen_farith(ctx, OPC_ROUND_W_S, -1, rs, rt, 0); break; case NM_ROUND_W_D: gen_farith(ctx, OPC_ROUND_W_D, -1, rs, rt, 0); break; case NM_MOV_S: gen_farith(ctx, OPC_MOV_S, -1, rs, rt, 0); break; case NM_MOV_D: gen_farith(ctx, OPC_MOV_D, -1, rs, rt, 0); break; case NM_ABS_S: gen_farith(ctx, OPC_ABS_S, -1, rs, rt, 0); break; case NM_ABS_D: gen_farith(ctx, OPC_ABS_D, -1, rs, rt, 0); break; case NM_NEG_S: gen_farith(ctx, OPC_NEG_S, -1, rs, rt, 0); break; case NM_NEG_D: gen_farith(ctx, OPC_NEG_D, -1, rs, rt, 0); break; case NM_CVT_D_S: gen_farith(ctx, OPC_CVT_D_S, -1, rs, rt, 0); break; case NM_CVT_D_W: gen_farith(ctx, OPC_CVT_D_W, -1, rs, rt, 0); break; case NM_CVT_D_L: gen_farith(ctx, OPC_CVT_D_L, -1, rs, rt, 0); break; case NM_CVT_S_D: gen_farith(ctx, OPC_CVT_S_D, -1, rs, rt, 0); break; case NM_CVT_S_W: gen_farith(ctx, OPC_CVT_S_W, -1, rs, rt, 0); break; case NM_CVT_S_L: gen_farith(ctx, OPC_CVT_S_L, -1, rs, rt, 0); break; default: gen_reserved_instruction(ctx); break; } break; } break; } break; case NM_POOL32F_5: switch (extract32(ctx->opcode, 3, 3)) { case NM_CMP_CONDN_S: gen_r6_cmp_s(ctx, extract32(ctx->opcode, 6, 5), rt, rs, rd); break; case NM_CMP_CONDN_D: gen_r6_cmp_d(ctx, extract32(ctx->opcode, 6, 5), rt, rs, rd); break; default: gen_reserved_instruction(ctx); break; } break; default: gen_reserved_instruction(ctx); break; } } static void gen_pool32a5_nanomips_insn(DisasContext *ctx, int opc, int rd, int rs, int rt) { int ret = rd; TCGv t0 = tcg_temp_new(); TCGv v1_t = tcg_temp_new(); TCGv v2_t = tcg_temp_new(); gen_load_gpr(v1_t, rs); gen_load_gpr(v2_t, rt); switch (opc) { case NM_CMP_EQ_PH: check_dsp(ctx); gen_helper_cmp_eq_ph(v1_t, v2_t, cpu_env); break; case NM_CMP_LT_PH: check_dsp(ctx); gen_helper_cmp_lt_ph(v1_t, v2_t, cpu_env); break; case NM_CMP_LE_PH: check_dsp(ctx); gen_helper_cmp_le_ph(v1_t, v2_t, cpu_env); break; case NM_CMPU_EQ_QB: check_dsp(ctx); gen_helper_cmpu_eq_qb(v1_t, v2_t, cpu_env); break; case NM_CMPU_LT_QB: check_dsp(ctx); gen_helper_cmpu_lt_qb(v1_t, v2_t, cpu_env); break; case NM_CMPU_LE_QB: check_dsp(ctx); gen_helper_cmpu_le_qb(v1_t, v2_t, cpu_env); break; case NM_CMPGU_EQ_QB: check_dsp(ctx); gen_helper_cmpgu_eq_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_CMPGU_LT_QB: check_dsp(ctx); gen_helper_cmpgu_lt_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_CMPGU_LE_QB: check_dsp(ctx); gen_helper_cmpgu_le_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_CMPGDU_EQ_QB: check_dsp_r2(ctx); gen_helper_cmpgu_eq_qb(v1_t, v1_t, v2_t); tcg_gen_deposit_tl(cpu_dspctrl, cpu_dspctrl, v1_t, 24, 4); gen_store_gpr(v1_t, ret); break; case NM_CMPGDU_LT_QB: check_dsp_r2(ctx); gen_helper_cmpgu_lt_qb(v1_t, v1_t, v2_t); tcg_gen_deposit_tl(cpu_dspctrl, cpu_dspctrl, v1_t, 24, 4); gen_store_gpr(v1_t, ret); break; case NM_CMPGDU_LE_QB: check_dsp_r2(ctx); gen_helper_cmpgu_le_qb(v1_t, v1_t, v2_t); tcg_gen_deposit_tl(cpu_dspctrl, cpu_dspctrl, v1_t, 24, 4); gen_store_gpr(v1_t, ret); break; case NM_PACKRL_PH: check_dsp(ctx); gen_helper_packrl_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_PICK_QB: check_dsp(ctx); gen_helper_pick_qb(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_PICK_PH: check_dsp(ctx); gen_helper_pick_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_ADDQ_S_W: check_dsp(ctx); gen_helper_addq_s_w(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_SUBQ_S_W: check_dsp(ctx); gen_helper_subq_s_w(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_ADDSC: check_dsp(ctx); gen_helper_addsc(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_ADDWC: check_dsp(ctx); gen_helper_addwc(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_ADDQ_S_PH: check_dsp(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* ADDQ_PH */ gen_helper_addq_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case 1: /* ADDQ_S_PH */ gen_helper_addq_s_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; } break; case NM_ADDQH_R_PH: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* ADDQH_PH */ gen_helper_addqh_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case 1: /* ADDQH_R_PH */ gen_helper_addqh_r_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; } break; case NM_ADDQH_R_W: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* ADDQH_W */ gen_helper_addqh_w(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case 1: /* ADDQH_R_W */ gen_helper_addqh_r_w(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; } break; case NM_ADDU_S_QB: check_dsp(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* ADDU_QB */ gen_helper_addu_qb(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case 1: /* ADDU_S_QB */ gen_helper_addu_s_qb(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; } break; case NM_ADDU_S_PH: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* ADDU_PH */ gen_helper_addu_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case 1: /* ADDU_S_PH */ gen_helper_addu_s_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; } break; case NM_ADDUH_R_QB: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* ADDUH_QB */ gen_helper_adduh_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case 1: /* ADDUH_R_QB */ gen_helper_adduh_r_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; } break; case NM_SHRAV_R_PH: check_dsp(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SHRAV_PH */ gen_helper_shra_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case 1: /* SHRAV_R_PH */ gen_helper_shra_r_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; } break; case NM_SHRAV_R_QB: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SHRAV_QB */ gen_helper_shra_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case 1: /* SHRAV_R_QB */ gen_helper_shra_r_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; } break; case NM_SUBQ_S_PH: check_dsp(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SUBQ_PH */ gen_helper_subq_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case 1: /* SUBQ_S_PH */ gen_helper_subq_s_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; } break; case NM_SUBQH_R_PH: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SUBQH_PH */ gen_helper_subqh_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case 1: /* SUBQH_R_PH */ gen_helper_subqh_r_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; } break; case NM_SUBQH_R_W: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SUBQH_W */ gen_helper_subqh_w(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case 1: /* SUBQH_R_W */ gen_helper_subqh_r_w(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; } break; case NM_SUBU_S_QB: check_dsp(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SUBU_QB */ gen_helper_subu_qb(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case 1: /* SUBU_S_QB */ gen_helper_subu_s_qb(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; } break; case NM_SUBU_S_PH: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SUBU_PH */ gen_helper_subu_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case 1: /* SUBU_S_PH */ gen_helper_subu_s_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; } break; case NM_SUBUH_R_QB: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SUBUH_QB */ gen_helper_subuh_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case 1: /* SUBUH_R_QB */ gen_helper_subuh_r_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; } break; case NM_SHLLV_S_PH: check_dsp(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SHLLV_PH */ gen_helper_shll_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case 1: /* SHLLV_S_PH */ gen_helper_shll_s_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; } break; case NM_PRECR_SRA_R_PH_W: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* PRECR_SRA_PH_W */ { TCGv_i32 sa_t = tcg_const_i32(rd); gen_helper_precr_sra_ph_w(v1_t, sa_t, v1_t, cpu_gpr[rt]); gen_store_gpr(v1_t, rt); tcg_temp_free_i32(sa_t); } break; case 1: /* PRECR_SRA_R_PH_W */ { TCGv_i32 sa_t = tcg_const_i32(rd); gen_helper_precr_sra_r_ph_w(v1_t, sa_t, v1_t, cpu_gpr[rt]); gen_store_gpr(v1_t, rt); tcg_temp_free_i32(sa_t); } break; } break; case NM_MULEU_S_PH_QBL: check_dsp(ctx); gen_helper_muleu_s_ph_qbl(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_MULEU_S_PH_QBR: check_dsp(ctx); gen_helper_muleu_s_ph_qbr(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_MULQ_RS_PH: check_dsp(ctx); gen_helper_mulq_rs_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_MULQ_S_PH: check_dsp_r2(ctx); gen_helper_mulq_s_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_MULQ_RS_W: check_dsp_r2(ctx); gen_helper_mulq_rs_w(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_MULQ_S_W: check_dsp_r2(ctx); gen_helper_mulq_s_w(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_APPEND: check_dsp_r2(ctx); gen_load_gpr(t0, rs); if (rd != 0) { tcg_gen_deposit_tl(cpu_gpr[rt], t0, cpu_gpr[rt], rd, 32 - rd); } tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]); break; case NM_MODSUB: check_dsp(ctx); gen_helper_modsub(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_SHRAV_R_W: check_dsp(ctx); gen_helper_shra_r_w(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_SHRLV_PH: check_dsp_r2(ctx); gen_helper_shrl_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_SHRLV_QB: check_dsp(ctx); gen_helper_shrl_qb(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_SHLLV_QB: check_dsp(ctx); gen_helper_shll_qb(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_SHLLV_S_W: check_dsp(ctx); gen_helper_shll_s_w(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_SHILO: check_dsp(ctx); { TCGv tv0 = tcg_temp_new(); TCGv tv1 = tcg_temp_new(); int16_t imm = extract32(ctx->opcode, 16, 7); tcg_gen_movi_tl(tv0, rd >> 3); tcg_gen_movi_tl(tv1, imm); gen_helper_shilo(tv0, tv1, cpu_env); } break; case NM_MULEQ_S_W_PHL: check_dsp(ctx); gen_helper_muleq_s_w_phl(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_MULEQ_S_W_PHR: check_dsp(ctx); gen_helper_muleq_s_w_phr(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_MUL_S_PH: check_dsp_r2(ctx); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* MUL_PH */ gen_helper_mul_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case 1: /* MUL_S_PH */ gen_helper_mul_s_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; } break; case NM_PRECR_QB_PH: check_dsp_r2(ctx); gen_helper_precr_qb_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_PRECRQ_QB_PH: check_dsp(ctx); gen_helper_precrq_qb_ph(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_PRECRQ_PH_W: check_dsp(ctx); gen_helper_precrq_ph_w(v1_t, v1_t, v2_t); gen_store_gpr(v1_t, ret); break; case NM_PRECRQ_RS_PH_W: check_dsp(ctx); gen_helper_precrq_rs_ph_w(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_PRECRQU_S_QB_PH: check_dsp(ctx); gen_helper_precrqu_s_qb_ph(v1_t, v1_t, v2_t, cpu_env); gen_store_gpr(v1_t, ret); break; case NM_SHRA_R_W: check_dsp(ctx); tcg_gen_movi_tl(t0, rd); gen_helper_shra_r_w(v1_t, t0, v1_t); gen_store_gpr(v1_t, rt); break; case NM_SHRA_R_PH: check_dsp(ctx); tcg_gen_movi_tl(t0, rd >> 1); switch (extract32(ctx->opcode, 10, 1)) { case 0: /* SHRA_PH */ gen_helper_shra_ph(v1_t, t0, v1_t); gen_store_gpr(v1_t, rt); break; case 1: /* SHRA_R_PH */ gen_helper_shra_r_ph(v1_t, t0, v1_t); gen_store_gpr(v1_t, rt); break; } break; case NM_SHLL_S_PH: check_dsp(ctx); tcg_gen_movi_tl(t0, rd >> 1); switch (extract32(ctx->opcode, 10, 2)) { case 0: /* SHLL_PH */ gen_helper_shll_ph(v1_t, t0, v1_t, cpu_env); gen_store_gpr(v1_t, rt); break; case 2: /* SHLL_S_PH */ gen_helper_shll_s_ph(v1_t, t0, v1_t, cpu_env); gen_store_gpr(v1_t, rt); break; default: gen_reserved_instruction(ctx); break; } break; case NM_SHLL_S_W: check_dsp(ctx); tcg_gen_movi_tl(t0, rd); gen_helper_shll_s_w(v1_t, t0, v1_t, cpu_env); gen_store_gpr(v1_t, rt); break; case NM_REPL_PH: check_dsp(ctx); { int16_t imm; imm = sextract32(ctx->opcode, 11, 11); imm = (int16_t)(imm << 6) >> 6; if (rt != 0) { tcg_gen_movi_tl(cpu_gpr[rt], dup_const(MO_16, imm)); } } break; default: gen_reserved_instruction(ctx); break; } } static int decode_nanomips_32_48_opc(CPUMIPSState *env, DisasContext *ctx) { uint16_t insn; uint32_t op; int rt, rs, rd; int offset; int imm; insn = cpu_lduw_code(env, ctx->base.pc_next + 2); ctx->opcode = (ctx->opcode << 16) | insn; rt = extract32(ctx->opcode, 21, 5); rs = extract32(ctx->opcode, 16, 5); rd = extract32(ctx->opcode, 11, 5); op = extract32(ctx->opcode, 26, 6); switch (op) { case NM_P_ADDIU: if (rt == 0) { /* P.RI */ switch (extract32(ctx->opcode, 19, 2)) { case NM_SIGRIE: default: gen_reserved_instruction(ctx); break; case NM_P_SYSCALL: if ((extract32(ctx->opcode, 18, 1)) == NM_SYSCALL) { generate_exception_end(ctx, EXCP_SYSCALL); } else { gen_reserved_instruction(ctx); } break; case NM_BREAK: generate_exception_end(ctx, EXCP_BREAK); break; case NM_SDBBP: if (is_uhi(extract32(ctx->opcode, 0, 19))) { gen_helper_do_semihosting(cpu_env); } else { if (ctx->hflags & MIPS_HFLAG_SBRI) { gen_reserved_instruction(ctx); } else { generate_exception_end(ctx, EXCP_DBp); } } break; } } else { /* NM_ADDIU */ imm = extract32(ctx->opcode, 0, 16); if (rs != 0) { tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rs], imm); } else { tcg_gen_movi_tl(cpu_gpr[rt], imm); } tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]); } break; case NM_ADDIUPC: if (rt != 0) { offset = sextract32(ctx->opcode, 0, 1) << 21 | extract32(ctx->opcode, 1, 20) << 1; target_long addr = addr_add(ctx, ctx->base.pc_next + 4, offset); tcg_gen_movi_tl(cpu_gpr[rt], addr); } break; case NM_POOL32A: switch (ctx->opcode & 0x07) { case NM_POOL32A0: gen_pool32a0_nanomips_insn(env, ctx); break; case NM_POOL32A5: { int32_t op1 = extract32(ctx->opcode, 3, 7); gen_pool32a5_nanomips_insn(ctx, op1, rd, rs, rt); } break; case NM_POOL32A7: switch (extract32(ctx->opcode, 3, 3)) { case NM_P_LSX: gen_p_lsx(ctx, rd, rs, rt); break; case NM_LSA: /* * In nanoMIPS, the shift field directly encodes the shift * amount, meaning that the supported shift values are in * the range 0 to 3 (instead of 1 to 4 in MIPSR6). */ gen_lsa(ctx, OPC_LSA, rd, rs, rt, extract32(ctx->opcode, 9, 2) - 1); break; case NM_EXTW: gen_ext(ctx, 32, rd, rs, rt, extract32(ctx->opcode, 6, 5)); break; case NM_POOL32AXF: gen_pool32axf_nanomips_insn(env, ctx); break; default: gen_reserved_instruction(ctx); break; } break; default: gen_reserved_instruction(ctx); break; } break; case NM_P_GP_W: switch (ctx->opcode & 0x03) { case NM_ADDIUGP_W: if (rt != 0) { offset = extract32(ctx->opcode, 0, 21); gen_op_addr_addi(ctx, cpu_gpr[rt], cpu_gpr[28], offset); } break; case NM_LWGP: gen_ld(ctx, OPC_LW, rt, 28, extract32(ctx->opcode, 2, 19) << 2); break; case NM_SWGP: gen_st(ctx, OPC_SW, rt, 28, extract32(ctx->opcode, 2, 19) << 2); break; default: gen_reserved_instruction(ctx); break; } break; case NM_P48I: { insn = cpu_lduw_code(env, ctx->base.pc_next + 4); target_long addr_off = extract32(ctx->opcode, 0, 16) | insn << 16; switch (extract32(ctx->opcode, 16, 5)) { case NM_LI48: check_nms(ctx); if (rt != 0) { tcg_gen_movi_tl(cpu_gpr[rt], addr_off); } break; case NM_ADDIU48: check_nms(ctx); if (rt != 0) { tcg_gen_addi_tl(cpu_gpr[rt], cpu_gpr[rt], addr_off); tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]); } break; case NM_ADDIUGP48: check_nms(ctx); if (rt != 0) { gen_op_addr_addi(ctx, cpu_gpr[rt], cpu_gpr[28], addr_off); } break; case NM_ADDIUPC48: check_nms(ctx); if (rt != 0) { target_long addr = addr_add(ctx, ctx->base.pc_next + 6, addr_off); tcg_gen_movi_tl(cpu_gpr[rt], addr); } break; case NM_LWPC48: check_nms(ctx); if (rt != 0) { TCGv t0; t0 = tcg_temp_new(); target_long addr = addr_add(ctx, ctx->base.pc_next + 6, addr_off); tcg_gen_movi_tl(t0, addr); tcg_gen_qemu_ld_tl(cpu_gpr[rt], t0, ctx->mem_idx, MO_TESL); tcg_temp_free(t0); } break; case NM_SWPC48: check_nms(ctx); { TCGv t0, t1; t0 = tcg_temp_new(); t1 = tcg_temp_new(); target_long addr = addr_add(ctx, ctx->base.pc_next + 6, addr_off); tcg_gen_movi_tl(t0, addr); gen_load_gpr(t1, rt); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUL); tcg_temp_free(t0); tcg_temp_free(t1); } break; default: gen_reserved_instruction(ctx); break; } return 6; } case NM_P_U12: switch (extract32(ctx->opcode, 12, 4)) { case NM_ORI: gen_logic_imm(ctx, OPC_ORI, rt, rs, extract32(ctx->opcode, 0, 12)); break; case NM_XORI: gen_logic_imm(ctx, OPC_XORI, rt, rs, extract32(ctx->opcode, 0, 12)); break; case NM_ANDI: gen_logic_imm(ctx, OPC_ANDI, rt, rs, extract32(ctx->opcode, 0, 12)); break; case NM_P_SR: switch (extract32(ctx->opcode, 20, 1)) { case NM_PP_SR: switch (ctx->opcode & 3) { case NM_SAVE: gen_save(ctx, rt, extract32(ctx->opcode, 16, 4), extract32(ctx->opcode, 2, 1), extract32(ctx->opcode, 3, 9) << 3); break; case NM_RESTORE: case NM_RESTORE_JRC: gen_restore(ctx, rt, extract32(ctx->opcode, 16, 4), extract32(ctx->opcode, 2, 1), extract32(ctx->opcode, 3, 9) << 3); if ((ctx->opcode & 3) == NM_RESTORE_JRC) { gen_compute_branch_nm(ctx, OPC_JR, 2, 31, 0, 0); } break; default: gen_reserved_instruction(ctx); break; } break; case NM_P_SR_F: gen_reserved_instruction(ctx); break; } break; case NM_SLTI: gen_slt_imm(ctx, OPC_SLTI, rt, rs, extract32(ctx->opcode, 0, 12)); break; case NM_SLTIU: gen_slt_imm(ctx, OPC_SLTIU, rt, rs, extract32(ctx->opcode, 0, 12)); break; case NM_SEQI: { TCGv t0 = tcg_temp_new(); imm = extract32(ctx->opcode, 0, 12); gen_load_gpr(t0, rs); tcg_gen_setcondi_tl(TCG_COND_EQ, t0, t0, imm); gen_store_gpr(t0, rt); tcg_temp_free(t0); } break; case NM_ADDIUNEG: imm = (int16_t) extract32(ctx->opcode, 0, 12); gen_arith_imm(ctx, OPC_ADDIU, rt, rs, -imm); break; case NM_P_SHIFT: { int shift = extract32(ctx->opcode, 0, 5); switch (extract32(ctx->opcode, 5, 4)) { case NM_P_SLL: if (rt == 0 && shift == 0) { /* NOP */ } else if (rt == 0 && shift == 3) { /* EHB - treat as NOP */ } else if (rt == 0 && shift == 5) { /* PAUSE - treat as NOP */ } else if (rt == 0 && shift == 6) { /* SYNC */ gen_sync(extract32(ctx->opcode, 16, 5)); } else { /* SLL */ gen_shift_imm(ctx, OPC_SLL, rt, rs, extract32(ctx->opcode, 0, 5)); } break; case NM_SRL: gen_shift_imm(ctx, OPC_SRL, rt, rs, extract32(ctx->opcode, 0, 5)); break; case NM_SRA: gen_shift_imm(ctx, OPC_SRA, rt, rs, extract32(ctx->opcode, 0, 5)); break; case NM_ROTR: gen_shift_imm(ctx, OPC_ROTR, rt, rs, extract32(ctx->opcode, 0, 5)); break; } } break; case NM_P_ROTX: check_nms(ctx); if (rt != 0) { TCGv t0 = tcg_temp_new(); TCGv_i32 shift = tcg_const_i32(extract32(ctx->opcode, 0, 5)); TCGv_i32 shiftx = tcg_const_i32(extract32(ctx->opcode, 7, 4) << 1); TCGv_i32 stripe = tcg_const_i32(extract32(ctx->opcode, 6, 1)); gen_load_gpr(t0, rs); gen_helper_rotx(cpu_gpr[rt], t0, shift, shiftx, stripe); tcg_temp_free(t0); tcg_temp_free_i32(shift); tcg_temp_free_i32(shiftx); tcg_temp_free_i32(stripe); } break; case NM_P_INS: switch (((ctx->opcode >> 10) & 2) | (extract32(ctx->opcode, 5, 1))) { case NM_INS: check_nms(ctx); gen_bitops(ctx, OPC_INS, rt, rs, extract32(ctx->opcode, 0, 5), extract32(ctx->opcode, 6, 5)); break; default: gen_reserved_instruction(ctx); break; } break; case NM_P_EXT: switch (((ctx->opcode >> 10) & 2) | (extract32(ctx->opcode, 5, 1))) { case NM_EXT: check_nms(ctx); gen_bitops(ctx, OPC_EXT, rt, rs, extract32(ctx->opcode, 0, 5), extract32(ctx->opcode, 6, 5)); break; default: gen_reserved_instruction(ctx); break; } break; default: gen_reserved_instruction(ctx); break; } break; case NM_POOL32F: gen_pool32f_nanomips_insn(ctx); break; case NM_POOL32S: break; case NM_P_LUI: switch (extract32(ctx->opcode, 1, 1)) { case NM_LUI: if (rt != 0) { tcg_gen_movi_tl(cpu_gpr[rt], sextract32(ctx->opcode, 0, 1) << 31 | extract32(ctx->opcode, 2, 10) << 21 | extract32(ctx->opcode, 12, 9) << 12); } break; case NM_ALUIPC: if (rt != 0) { offset = sextract32(ctx->opcode, 0, 1) << 31 | extract32(ctx->opcode, 2, 10) << 21 | extract32(ctx->opcode, 12, 9) << 12; target_long addr; addr = ~0xFFF & addr_add(ctx, ctx->base.pc_next + 4, offset); tcg_gen_movi_tl(cpu_gpr[rt], addr); } break; } break; case NM_P_GP_BH: { uint32_t u = extract32(ctx->opcode, 0, 18); switch (extract32(ctx->opcode, 18, 3)) { case NM_LBGP: gen_ld(ctx, OPC_LB, rt, 28, u); break; case NM_SBGP: gen_st(ctx, OPC_SB, rt, 28, u); break; case NM_LBUGP: gen_ld(ctx, OPC_LBU, rt, 28, u); break; case NM_ADDIUGP_B: if (rt != 0) { gen_op_addr_addi(ctx, cpu_gpr[rt], cpu_gpr[28], u); } break; case NM_P_GP_LH: u &= ~1; switch (ctx->opcode & 1) { case NM_LHGP: gen_ld(ctx, OPC_LH, rt, 28, u); break; case NM_LHUGP: gen_ld(ctx, OPC_LHU, rt, 28, u); break; } break; case NM_P_GP_SH: u &= ~1; switch (ctx->opcode & 1) { case NM_SHGP: gen_st(ctx, OPC_SH, rt, 28, u); break; default: gen_reserved_instruction(ctx); break; } break; case NM_P_GP_CP1: u &= ~0x3; switch (ctx->opcode & 0x3) { case NM_LWC1GP: gen_cop1_ldst(ctx, OPC_LWC1, rt, 28, u); break; case NM_LDC1GP: gen_cop1_ldst(ctx, OPC_LDC1, rt, 28, u); break; case NM_SWC1GP: gen_cop1_ldst(ctx, OPC_SWC1, rt, 28, u); break; case NM_SDC1GP: gen_cop1_ldst(ctx, OPC_SDC1, rt, 28, u); break; } break; default: gen_reserved_instruction(ctx); break; } } break; case NM_P_LS_U12: { uint32_t u = extract32(ctx->opcode, 0, 12); switch (extract32(ctx->opcode, 12, 4)) { case NM_P_PREFU12: if (rt == 31) { /* SYNCI */ /* * Break the TB to be able to sync copied instructions * immediately. */ ctx->base.is_jmp = DISAS_STOP; } else { /* PREF */ /* Treat as NOP. */ } break; case NM_LB: gen_ld(ctx, OPC_LB, rt, rs, u); break; case NM_LH: gen_ld(ctx, OPC_LH, rt, rs, u); break; case NM_LW: gen_ld(ctx, OPC_LW, rt, rs, u); break; case NM_LBU: gen_ld(ctx, OPC_LBU, rt, rs, u); break; case NM_LHU: gen_ld(ctx, OPC_LHU, rt, rs, u); break; case NM_SB: gen_st(ctx, OPC_SB, rt, rs, u); break; case NM_SH: gen_st(ctx, OPC_SH, rt, rs, u); break; case NM_SW: gen_st(ctx, OPC_SW, rt, rs, u); break; case NM_LWC1: gen_cop1_ldst(ctx, OPC_LWC1, rt, rs, u); break; case NM_LDC1: gen_cop1_ldst(ctx, OPC_LDC1, rt, rs, u); break; case NM_SWC1: gen_cop1_ldst(ctx, OPC_SWC1, rt, rs, u); break; case NM_SDC1: gen_cop1_ldst(ctx, OPC_SDC1, rt, rs, u); break; default: gen_reserved_instruction(ctx); break; } } break; case NM_P_LS_S9: { int32_t s = (sextract32(ctx->opcode, 15, 1) << 8) | extract32(ctx->opcode, 0, 8); switch (extract32(ctx->opcode, 8, 3)) { case NM_P_LS_S0: switch (extract32(ctx->opcode, 11, 4)) { case NM_LBS9: gen_ld(ctx, OPC_LB, rt, rs, s); break; case NM_LHS9: gen_ld(ctx, OPC_LH, rt, rs, s); break; case NM_LWS9: gen_ld(ctx, OPC_LW, rt, rs, s); break; case NM_LBUS9: gen_ld(ctx, OPC_LBU, rt, rs, s); break; case NM_LHUS9: gen_ld(ctx, OPC_LHU, rt, rs, s); break; case NM_SBS9: gen_st(ctx, OPC_SB, rt, rs, s); break; case NM_SHS9: gen_st(ctx, OPC_SH, rt, rs, s); break; case NM_SWS9: gen_st(ctx, OPC_SW, rt, rs, s); break; case NM_LWC1S9: gen_cop1_ldst(ctx, OPC_LWC1, rt, rs, s); break; case NM_LDC1S9: gen_cop1_ldst(ctx, OPC_LDC1, rt, rs, s); break; case NM_SWC1S9: gen_cop1_ldst(ctx, OPC_SWC1, rt, rs, s); break; case NM_SDC1S9: gen_cop1_ldst(ctx, OPC_SDC1, rt, rs, s); break; case NM_P_PREFS9: if (rt == 31) { /* SYNCI */ /* * Break the TB to be able to sync copied instructions * immediately. */ ctx->base.is_jmp = DISAS_STOP; } else { /* PREF */ /* Treat as NOP. */ } break; default: gen_reserved_instruction(ctx); break; } break; case NM_P_LS_S1: switch (extract32(ctx->opcode, 11, 4)) { case NM_UALH: case NM_UASH: check_nms(ctx); { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); gen_base_offset_addr(ctx, t0, rs, s); switch (extract32(ctx->opcode, 11, 4)) { case NM_UALH: tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESW | MO_UNALN); gen_store_gpr(t0, rt); break; case NM_UASH: gen_load_gpr(t1, rt); tcg_gen_qemu_st_tl(t1, t0, ctx->mem_idx, MO_TEUW | MO_UNALN); break; } tcg_temp_free(t0); tcg_temp_free(t1); } break; case NM_P_LL: switch (ctx->opcode & 0x03) { case NM_LL: gen_ld(ctx, OPC_LL, rt, rs, s); break; case NM_LLWP: check_xnp(ctx); gen_llwp(ctx, rs, 0, rt, extract32(ctx->opcode, 3, 5)); break; } break; case NM_P_SC: switch (ctx->opcode & 0x03) { case NM_SC: gen_st_cond(ctx, rt, rs, s, MO_TESL, false); break; case NM_SCWP: check_xnp(ctx); gen_scwp(ctx, rs, 0, rt, extract32(ctx->opcode, 3, 5), false); break; } break; case NM_CACHE: check_cp0_enabled(ctx); if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) { gen_cache_operation(ctx, rt, rs, s); } break; } break; case NM_P_LS_E0: switch (extract32(ctx->opcode, 11, 4)) { case NM_LBE: check_eva(ctx); check_cp0_enabled(ctx); gen_ld(ctx, OPC_LBE, rt, rs, s); break; case NM_SBE: check_eva(ctx); check_cp0_enabled(ctx); gen_st(ctx, OPC_SBE, rt, rs, s); break; case NM_LBUE: check_eva(ctx); check_cp0_enabled(ctx); gen_ld(ctx, OPC_LBUE, rt, rs, s); break; case NM_P_PREFE: if (rt == 31) { /* case NM_SYNCIE */ check_eva(ctx); check_cp0_enabled(ctx); /* * Break the TB to be able to sync copied instructions * immediately. */ ctx->base.is_jmp = DISAS_STOP; } else { /* case NM_PREFE */ check_eva(ctx); check_cp0_enabled(ctx); /* Treat as NOP. */ } break; case NM_LHE: check_eva(ctx); check_cp0_enabled(ctx); gen_ld(ctx, OPC_LHE, rt, rs, s); break; case NM_SHE: check_eva(ctx); check_cp0_enabled(ctx); gen_st(ctx, OPC_SHE, rt, rs, s); break; case NM_LHUE: check_eva(ctx); check_cp0_enabled(ctx); gen_ld(ctx, OPC_LHUE, rt, rs, s); break; case NM_CACHEE: check_nms_dl_il_sl_tl_l2c(ctx); gen_cache_operation(ctx, rt, rs, s); break; case NM_LWE: check_eva(ctx); check_cp0_enabled(ctx); gen_ld(ctx, OPC_LWE, rt, rs, s); break; case NM_SWE: check_eva(ctx); check_cp0_enabled(ctx); gen_st(ctx, OPC_SWE, rt, rs, s); break; case NM_P_LLE: switch (extract32(ctx->opcode, 2, 2)) { case NM_LLE: check_xnp(ctx); check_eva(ctx); check_cp0_enabled(ctx); gen_ld(ctx, OPC_LLE, rt, rs, s); break; case NM_LLWPE: check_xnp(ctx); check_eva(ctx); check_cp0_enabled(ctx); gen_llwp(ctx, rs, 0, rt, extract32(ctx->opcode, 3, 5)); break; default: gen_reserved_instruction(ctx); break; } break; case NM_P_SCE: switch (extract32(ctx->opcode, 2, 2)) { case NM_SCE: check_xnp(ctx); check_eva(ctx); check_cp0_enabled(ctx); gen_st_cond(ctx, rt, rs, s, MO_TESL, true); break; case NM_SCWPE: check_xnp(ctx); check_eva(ctx); check_cp0_enabled(ctx); gen_scwp(ctx, rs, 0, rt, extract32(ctx->opcode, 3, 5), true); break; default: gen_reserved_instruction(ctx); break; } break; } break; case NM_P_LS_WM: case NM_P_LS_UAWM: check_nms(ctx); { int count = extract32(ctx->opcode, 12, 3); int counter = 0; offset = sextract32(ctx->opcode, 15, 1) << 8 | extract32(ctx->opcode, 0, 8); TCGv va = tcg_temp_new(); TCGv t1 = tcg_temp_new(); MemOp memop = (extract32(ctx->opcode, 8, 3)) == NM_P_LS_UAWM ? MO_UNALN : 0; count = (count == 0) ? 8 : count; while (counter != count) { int this_rt = ((rt + counter) & 0x1f) | (rt & 0x10); int this_offset = offset + (counter << 2); gen_base_offset_addr(ctx, va, rs, this_offset); switch (extract32(ctx->opcode, 11, 1)) { case NM_LWM: tcg_gen_qemu_ld_tl(t1, va, ctx->mem_idx, memop | MO_TESL); gen_store_gpr(t1, this_rt); if ((this_rt == rs) && (counter != (count - 1))) { /* UNPREDICTABLE */ } break; case NM_SWM: this_rt = (rt == 0) ? 0 : this_rt; gen_load_gpr(t1, this_rt); tcg_gen_qemu_st_tl(t1, va, ctx->mem_idx, memop | MO_TEUL); break; } counter++; } tcg_temp_free(va); tcg_temp_free(t1); } break; default: gen_reserved_instruction(ctx); break; } } break; case NM_MOVE_BALC: check_nms(ctx); { TCGv t0 = tcg_temp_new(); int32_t s = sextract32(ctx->opcode, 0, 1) << 21 | extract32(ctx->opcode, 1, 20) << 1; rd = (extract32(ctx->opcode, 24, 1)) == 0 ? 4 : 5; rt = decode_gpr_gpr4_zero(extract32(ctx->opcode, 25, 1) << 3 | extract32(ctx->opcode, 21, 3)); gen_load_gpr(t0, rt); tcg_gen_mov_tl(cpu_gpr[rd], t0); gen_compute_branch_nm(ctx, OPC_BGEZAL, 4, 0, 0, s); tcg_temp_free(t0); } break; case NM_P_BAL: { int32_t s = sextract32(ctx->opcode, 0, 1) << 25 | extract32(ctx->opcode, 1, 24) << 1; if ((extract32(ctx->opcode, 25, 1)) == 0) { /* BC */ gen_compute_branch_nm(ctx, OPC_BEQ, 4, 0, 0, s); } else { /* BALC */ gen_compute_branch_nm(ctx, OPC_BGEZAL, 4, 0, 0, s); } } break; case NM_P_J: switch (extract32(ctx->opcode, 12, 4)) { case NM_JALRC: case NM_JALRC_HB: gen_compute_branch_nm(ctx, OPC_JALR, 4, rs, rt, 0); break; case NM_P_BALRSC: gen_compute_nanomips_pbalrsc_branch(ctx, rs, rt); break; default: gen_reserved_instruction(ctx); break; } break; case NM_P_BR1: { int32_t s = sextract32(ctx->opcode, 0, 1) << 14 | extract32(ctx->opcode, 1, 13) << 1; switch (extract32(ctx->opcode, 14, 2)) { case NM_BEQC: check_nms(ctx); gen_compute_branch_nm(ctx, OPC_BEQ, 4, rs, rt, s); break; case NM_P_BR3A: s = sextract32(ctx->opcode, 0, 1) << 14 | extract32(ctx->opcode, 1, 13) << 1; check_cp1_enabled(ctx); switch (extract32(ctx->opcode, 16, 5)) { case NM_BC1EQZC: gen_compute_branch_cp1_nm(ctx, OPC_BC1EQZ, rt, s); break; case NM_BC1NEZC: gen_compute_branch_cp1_nm(ctx, OPC_BC1NEZ, rt, s); break; case NM_BPOSGE32C: check_dsp_r3(ctx); { int32_t imm = extract32(ctx->opcode, 1, 13) | extract32(ctx->opcode, 0, 1) << 13; gen_compute_branch_nm(ctx, OPC_BPOSGE32, 4, -1, -2, imm); } break; default: gen_reserved_instruction(ctx); break; } break; case NM_BGEC: if (rs == rt) { gen_compute_compact_branch_nm(ctx, OPC_BC, rs, rt, s); } else { gen_compute_compact_branch_nm(ctx, OPC_BGEC, rs, rt, s); } break; case NM_BGEUC: if (rs == rt || rt == 0) { gen_compute_compact_branch_nm(ctx, OPC_BC, 0, 0, s); } else if (rs == 0) { gen_compute_compact_branch_nm(ctx, OPC_BEQZC, rt, 0, s); } else { gen_compute_compact_branch_nm(ctx, OPC_BGEUC, rs, rt, s); } break; } } break; case NM_P_BR2: { int32_t s = sextract32(ctx->opcode, 0, 1) << 14 | extract32(ctx->opcode, 1, 13) << 1; switch (extract32(ctx->opcode, 14, 2)) { case NM_BNEC: check_nms(ctx); gen_compute_branch_nm(ctx, OPC_BNE, 4, rs, rt, s); break; case NM_BLTC: if (rs != 0 && rt != 0 && rs == rt) { /* NOP */ ctx->hflags |= MIPS_HFLAG_FBNSLOT; } else { gen_compute_compact_branch_nm(ctx, OPC_BLTC, rs, rt, s); } break; case NM_BLTUC: if (rs == 0 || rs == rt) { /* NOP */ ctx->hflags |= MIPS_HFLAG_FBNSLOT; } else { gen_compute_compact_branch_nm(ctx, OPC_BLTUC, rs, rt, s); } break; default: gen_reserved_instruction(ctx); break; } } break; case NM_P_BRI: { int32_t s = sextract32(ctx->opcode, 0, 1) << 11 | extract32(ctx->opcode, 1, 10) << 1; uint32_t u = extract32(ctx->opcode, 11, 7); gen_compute_imm_branch(ctx, extract32(ctx->opcode, 18, 3), rt, u, s); } break; default: gen_reserved_instruction(ctx); break; } return 4; } static int decode_nanomips_opc(CPUMIPSState *env, DisasContext *ctx) { uint32_t op; int rt = decode_gpr_gpr3(NANOMIPS_EXTRACT_RT3(ctx->opcode)); int rs = decode_gpr_gpr3(NANOMIPS_EXTRACT_RS3(ctx->opcode)); int rd = decode_gpr_gpr3(NANOMIPS_EXTRACT_RD3(ctx->opcode)); int offset; int imm; /* make sure instructions are on a halfword boundary */ if (ctx->base.pc_next & 0x1) { TCGv tmp = tcg_const_tl(ctx->base.pc_next); tcg_gen_st_tl(tmp, cpu_env, offsetof(CPUMIPSState, CP0_BadVAddr)); tcg_temp_free(tmp); generate_exception_end(ctx, EXCP_AdEL); return 2; } op = extract32(ctx->opcode, 10, 6); switch (op) { case NM_P16_MV: rt = NANOMIPS_EXTRACT_RD5(ctx->opcode); if (rt != 0) { /* MOVE */ rs = NANOMIPS_EXTRACT_RS5(ctx->opcode); gen_arith(ctx, OPC_ADDU, rt, rs, 0); } else { /* P16.RI */ switch (extract32(ctx->opcode, 3, 2)) { case NM_P16_SYSCALL: if (extract32(ctx->opcode, 2, 1) == 0) { generate_exception_end(ctx, EXCP_SYSCALL); } else { gen_reserved_instruction(ctx); } break; case NM_BREAK16: generate_exception_end(ctx, EXCP_BREAK); break; case NM_SDBBP16: if (is_uhi(extract32(ctx->opcode, 0, 3))) { gen_helper_do_semihosting(cpu_env); } else { if (ctx->hflags & MIPS_HFLAG_SBRI) { gen_reserved_instruction(ctx); } else { generate_exception_end(ctx, EXCP_DBp); } } break; default: gen_reserved_instruction(ctx); break; } } break; case NM_P16_SHIFT: { int shift = extract32(ctx->opcode, 0, 3); uint32_t opc = 0; shift = (shift == 0) ? 8 : shift; switch (extract32(ctx->opcode, 3, 1)) { case NM_SLL16: opc = OPC_SLL; break; case NM_SRL16: opc = OPC_SRL; break; } gen_shift_imm(ctx, opc, rt, rs, shift); } break; case NM_P16C: switch (ctx->opcode & 1) { case NM_POOL16C_0: gen_pool16c_nanomips_insn(ctx); break; case NM_LWXS16: gen_ldxs(ctx, rt, rs, rd); break; } break; case NM_P16_A1: switch (extract32(ctx->opcode, 6, 1)) { case NM_ADDIUR1SP: imm = extract32(ctx->opcode, 0, 6) << 2; gen_arith_imm(ctx, OPC_ADDIU, rt, 29, imm); break; default: gen_reserved_instruction(ctx); break; } break; case NM_P16_A2: switch (extract32(ctx->opcode, 3, 1)) { case NM_ADDIUR2: imm = extract32(ctx->opcode, 0, 3) << 2; gen_arith_imm(ctx, OPC_ADDIU, rt, rs, imm); break; case NM_P_ADDIURS5: rt = extract32(ctx->opcode, 5, 5); if (rt != 0) { /* imm = sign_extend(s[3] . s[2:0] , from_nbits = 4) */ imm = (sextract32(ctx->opcode, 4, 1) << 3) | (extract32(ctx->opcode, 0, 3)); gen_arith_imm(ctx, OPC_ADDIU, rt, rt, imm); } break; } break; case NM_P16_ADDU: switch (ctx->opcode & 0x1) { case NM_ADDU16: gen_arith(ctx, OPC_ADDU, rd, rs, rt); break; case NM_SUBU16: gen_arith(ctx, OPC_SUBU, rd, rs, rt); break; } break; case NM_P16_4X4: rt = (extract32(ctx->opcode, 9, 1) << 3) | extract32(ctx->opcode, 5, 3); rs = (extract32(ctx->opcode, 4, 1) << 3) | extract32(ctx->opcode, 0, 3); rt = decode_gpr_gpr4(rt); rs = decode_gpr_gpr4(rs); switch ((extract32(ctx->opcode, 7, 2) & 0x2) | (extract32(ctx->opcode, 3, 1))) { case NM_ADDU4X4: check_nms(ctx); gen_arith(ctx, OPC_ADDU, rt, rs, rt); break; case NM_MUL4X4: check_nms(ctx); gen_r6_muldiv(ctx, R6_OPC_MUL, rt, rs, rt); break; default: gen_reserved_instruction(ctx); break; } break; case NM_LI16: { int imm = extract32(ctx->opcode, 0, 7); imm = (imm == 0x7f ? -1 : imm); if (rt != 0) { tcg_gen_movi_tl(cpu_gpr[rt], imm); } } break; case NM_ANDI16: { uint32_t u = extract32(ctx->opcode, 0, 4); u = (u == 12) ? 0xff : (u == 13) ? 0xffff : u; gen_logic_imm(ctx, OPC_ANDI, rt, rs, u); } break; case NM_P16_LB: offset = extract32(ctx->opcode, 0, 2); switch (extract32(ctx->opcode, 2, 2)) { case NM_LB16: gen_ld(ctx, OPC_LB, rt, rs, offset); break; case NM_SB16: rt = decode_gpr_gpr3_src_store( NANOMIPS_EXTRACT_RT3(ctx->opcode)); gen_st(ctx, OPC_SB, rt, rs, offset); break; case NM_LBU16: gen_ld(ctx, OPC_LBU, rt, rs, offset); break; default: gen_reserved_instruction(ctx); break; } break; case NM_P16_LH: offset = extract32(ctx->opcode, 1, 2) << 1; switch ((extract32(ctx->opcode, 3, 1) << 1) | (ctx->opcode & 1)) { case NM_LH16: gen_ld(ctx, OPC_LH, rt, rs, offset); break; case NM_SH16: rt = decode_gpr_gpr3_src_store( NANOMIPS_EXTRACT_RT3(ctx->opcode)); gen_st(ctx, OPC_SH, rt, rs, offset); break; case NM_LHU16: gen_ld(ctx, OPC_LHU, rt, rs, offset); break; default: gen_reserved_instruction(ctx); break; } break; case NM_LW16: offset = extract32(ctx->opcode, 0, 4) << 2; gen_ld(ctx, OPC_LW, rt, rs, offset); break; case NM_LWSP16: rt = NANOMIPS_EXTRACT_RD5(ctx->opcode); offset = extract32(ctx->opcode, 0, 5) << 2; gen_ld(ctx, OPC_LW, rt, 29, offset); break; case NM_LW4X4: check_nms(ctx); rt = (extract32(ctx->opcode, 9, 1) << 3) | extract32(ctx->opcode, 5, 3); rs = (extract32(ctx->opcode, 4, 1) << 3) | extract32(ctx->opcode, 0, 3); offset = (extract32(ctx->opcode, 3, 1) << 3) | (extract32(ctx->opcode, 8, 1) << 2); rt = decode_gpr_gpr4(rt); rs = decode_gpr_gpr4(rs); gen_ld(ctx, OPC_LW, rt, rs, offset); break; case NM_SW4X4: check_nms(ctx); rt = (extract32(ctx->opcode, 9, 1) << 3) | extract32(ctx->opcode, 5, 3); rs = (extract32(ctx->opcode, 4, 1) << 3) | extract32(ctx->opcode, 0, 3); offset = (extract32(ctx->opcode, 3, 1) << 3) | (extract32(ctx->opcode, 8, 1) << 2); rt = decode_gpr_gpr4_zero(rt); rs = decode_gpr_gpr4(rs); gen_st(ctx, OPC_SW, rt, rs, offset); break; case NM_LWGP16: offset = extract32(ctx->opcode, 0, 7) << 2; gen_ld(ctx, OPC_LW, rt, 28, offset); break; case NM_SWSP16: rt = NANOMIPS_EXTRACT_RD5(ctx->opcode); offset = extract32(ctx->opcode, 0, 5) << 2; gen_st(ctx, OPC_SW, rt, 29, offset); break; case NM_SW16: rt = decode_gpr_gpr3_src_store( NANOMIPS_EXTRACT_RT3(ctx->opcode)); rs = decode_gpr_gpr3(NANOMIPS_EXTRACT_RS3(ctx->opcode)); offset = extract32(ctx->opcode, 0, 4) << 2; gen_st(ctx, OPC_SW, rt, rs, offset); break; case NM_SWGP16: rt = decode_gpr_gpr3_src_store( NANOMIPS_EXTRACT_RT3(ctx->opcode)); offset = extract32(ctx->opcode, 0, 7) << 2; gen_st(ctx, OPC_SW, rt, 28, offset); break; case NM_BC16: gen_compute_branch_nm(ctx, OPC_BEQ, 2, 0, 0, (sextract32(ctx->opcode, 0, 1) << 10) | (extract32(ctx->opcode, 1, 9) << 1)); break; case NM_BALC16: gen_compute_branch_nm(ctx, OPC_BGEZAL, 2, 0, 0, (sextract32(ctx->opcode, 0, 1) << 10) | (extract32(ctx->opcode, 1, 9) << 1)); break; case NM_BEQZC16: gen_compute_branch_nm(ctx, OPC_BEQ, 2, rt, 0, (sextract32(ctx->opcode, 0, 1) << 7) | (extract32(ctx->opcode, 1, 6) << 1)); break; case NM_BNEZC16: gen_compute_branch_nm(ctx, OPC_BNE, 2, rt, 0, (sextract32(ctx->opcode, 0, 1) << 7) | (extract32(ctx->opcode, 1, 6) << 1)); break; case NM_P16_BR: switch (ctx->opcode & 0xf) { case 0: /* P16.JRC */ switch (extract32(ctx->opcode, 4, 1)) { case NM_JRC: gen_compute_branch_nm(ctx, OPC_JR, 2, extract32(ctx->opcode, 5, 5), 0, 0); break; case NM_JALRC16: gen_compute_branch_nm(ctx, OPC_JALR, 2, extract32(ctx->opcode, 5, 5), 31, 0); break; } break; default: { /* P16.BRI */ uint32_t opc = extract32(ctx->opcode, 4, 3) < extract32(ctx->opcode, 7, 3) ? OPC_BEQ : OPC_BNE; gen_compute_branch_nm(ctx, opc, 2, rs, rt, extract32(ctx->opcode, 0, 4) << 1); } break; } break; case NM_P16_SR: { int count = extract32(ctx->opcode, 0, 4); int u = extract32(ctx->opcode, 4, 4) << 4; rt = 30 + extract32(ctx->opcode, 9, 1); switch (extract32(ctx->opcode, 8, 1)) { case NM_SAVE16: gen_save(ctx, rt, count, 0, u); break; case NM_RESTORE_JRC16: gen_restore(ctx, rt, count, 0, u); gen_compute_branch_nm(ctx, OPC_JR, 2, 31, 0, 0); break; } } break; case NM_MOVEP: case NM_MOVEPREV: check_nms(ctx); { static const int gpr2reg1[] = {4, 5, 6, 7}; static const int gpr2reg2[] = {5, 6, 7, 8}; int re; int rd2 = extract32(ctx->opcode, 3, 1) << 1 | extract32(ctx->opcode, 8, 1); int r1 = gpr2reg1[rd2]; int r2 = gpr2reg2[rd2]; int r3 = extract32(ctx->opcode, 4, 1) << 3 | extract32(ctx->opcode, 0, 3); int r4 = extract32(ctx->opcode, 9, 1) << 3 | extract32(ctx->opcode, 5, 3); TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); if (op == NM_MOVEP) { rd = r1; re = r2; rs = decode_gpr_gpr4_zero(r3); rt = decode_gpr_gpr4_zero(r4); } else { rd = decode_gpr_gpr4(r3); re = decode_gpr_gpr4(r4); rs = r1; rt = r2; } gen_load_gpr(t0, rs); gen_load_gpr(t1, rt); tcg_gen_mov_tl(cpu_gpr[rd], t0); tcg_gen_mov_tl(cpu_gpr[re], t1); tcg_temp_free(t0); tcg_temp_free(t1); } break; default: return decode_nanomips_32_48_opc(env, ctx); } return 2; } /* SmartMIPS extension to MIPS32 */ #if defined(TARGET_MIPS64) /* MDMX extension to MIPS64 */ #endif /* MIPSDSP functions. */ static void gen_mipsdsp_ld(DisasContext *ctx, uint32_t opc, int rd, int base, int offset) { TCGv t0; check_dsp(ctx); t0 = tcg_temp_new(); if (base == 0) { gen_load_gpr(t0, offset); } else if (offset == 0) { gen_load_gpr(t0, base); } else { gen_op_addr_add(ctx, t0, cpu_gpr[base], cpu_gpr[offset]); } switch (opc) { case OPC_LBUX: tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_UB); gen_store_gpr(t0, rd); break; case OPC_LHX: tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESW); gen_store_gpr(t0, rd); break; case OPC_LWX: tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TESL); gen_store_gpr(t0, rd); break; #if defined(TARGET_MIPS64) case OPC_LDX: tcg_gen_qemu_ld_tl(t0, t0, ctx->mem_idx, MO_TEQ); gen_store_gpr(t0, rd); break; #endif } tcg_temp_free(t0); } static void gen_mipsdsp_arith(DisasContext *ctx, uint32_t op1, uint32_t op2, int ret, int v1, int v2) { TCGv v1_t; TCGv v2_t; if (ret == 0) { /* Treat as NOP. */ return; } v1_t = tcg_temp_new(); v2_t = tcg_temp_new(); gen_load_gpr(v1_t, v1); gen_load_gpr(v2_t, v2); switch (op1) { /* OPC_MULT_G_2E is equal OPC_ADDUH_QB_DSP */ case OPC_MULT_G_2E: check_dsp_r2(ctx); switch (op2) { case OPC_ADDUH_QB: gen_helper_adduh_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_ADDUH_R_QB: gen_helper_adduh_r_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_ADDQH_PH: gen_helper_addqh_ph(cpu_gpr[ret], v1_t, v2_t); break; case OPC_ADDQH_R_PH: gen_helper_addqh_r_ph(cpu_gpr[ret], v1_t, v2_t); break; case OPC_ADDQH_W: gen_helper_addqh_w(cpu_gpr[ret], v1_t, v2_t); break; case OPC_ADDQH_R_W: gen_helper_addqh_r_w(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SUBUH_QB: gen_helper_subuh_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SUBUH_R_QB: gen_helper_subuh_r_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SUBQH_PH: gen_helper_subqh_ph(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SUBQH_R_PH: gen_helper_subqh_r_ph(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SUBQH_W: gen_helper_subqh_w(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SUBQH_R_W: gen_helper_subqh_r_w(cpu_gpr[ret], v1_t, v2_t); break; } break; case OPC_ABSQ_S_PH_DSP: switch (op2) { case OPC_ABSQ_S_QB: check_dsp_r2(ctx); gen_helper_absq_s_qb(cpu_gpr[ret], v2_t, cpu_env); break; case OPC_ABSQ_S_PH: check_dsp(ctx); gen_helper_absq_s_ph(cpu_gpr[ret], v2_t, cpu_env); break; case OPC_ABSQ_S_W: check_dsp(ctx); gen_helper_absq_s_w(cpu_gpr[ret], v2_t, cpu_env); break; case OPC_PRECEQ_W_PHL: check_dsp(ctx); tcg_gen_andi_tl(cpu_gpr[ret], v2_t, 0xFFFF0000); tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]); break; case OPC_PRECEQ_W_PHR: check_dsp(ctx); tcg_gen_andi_tl(cpu_gpr[ret], v2_t, 0x0000FFFF); tcg_gen_shli_tl(cpu_gpr[ret], cpu_gpr[ret], 16); tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]); break; case OPC_PRECEQU_PH_QBL: check_dsp(ctx); gen_helper_precequ_ph_qbl(cpu_gpr[ret], v2_t); break; case OPC_PRECEQU_PH_QBR: check_dsp(ctx); gen_helper_precequ_ph_qbr(cpu_gpr[ret], v2_t); break; case OPC_PRECEQU_PH_QBLA: check_dsp(ctx); gen_helper_precequ_ph_qbla(cpu_gpr[ret], v2_t); break; case OPC_PRECEQU_PH_QBRA: check_dsp(ctx); gen_helper_precequ_ph_qbra(cpu_gpr[ret], v2_t); break; case OPC_PRECEU_PH_QBL: check_dsp(ctx); gen_helper_preceu_ph_qbl(cpu_gpr[ret], v2_t); break; case OPC_PRECEU_PH_QBR: check_dsp(ctx); gen_helper_preceu_ph_qbr(cpu_gpr[ret], v2_t); break; case OPC_PRECEU_PH_QBLA: check_dsp(ctx); gen_helper_preceu_ph_qbla(cpu_gpr[ret], v2_t); break; case OPC_PRECEU_PH_QBRA: check_dsp(ctx); gen_helper_preceu_ph_qbra(cpu_gpr[ret], v2_t); break; } break; case OPC_ADDU_QB_DSP: switch (op2) { case OPC_ADDQ_PH: check_dsp(ctx); gen_helper_addq_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDQ_S_PH: check_dsp(ctx); gen_helper_addq_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDQ_S_W: check_dsp(ctx); gen_helper_addq_s_w(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDU_QB: check_dsp(ctx); gen_helper_addu_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDU_S_QB: check_dsp(ctx); gen_helper_addu_s_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDU_PH: check_dsp_r2(ctx); gen_helper_addu_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDU_S_PH: check_dsp_r2(ctx); gen_helper_addu_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBQ_PH: check_dsp(ctx); gen_helper_subq_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBQ_S_PH: check_dsp(ctx); gen_helper_subq_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBQ_S_W: check_dsp(ctx); gen_helper_subq_s_w(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBU_QB: check_dsp(ctx); gen_helper_subu_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBU_S_QB: check_dsp(ctx); gen_helper_subu_s_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBU_PH: check_dsp_r2(ctx); gen_helper_subu_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBU_S_PH: check_dsp_r2(ctx); gen_helper_subu_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDSC: check_dsp(ctx); gen_helper_addsc(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDWC: check_dsp(ctx); gen_helper_addwc(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MODSUB: check_dsp(ctx); gen_helper_modsub(cpu_gpr[ret], v1_t, v2_t); break; case OPC_RADDU_W_QB: check_dsp(ctx); gen_helper_raddu_w_qb(cpu_gpr[ret], v1_t); break; } break; case OPC_CMPU_EQ_QB_DSP: switch (op2) { case OPC_PRECR_QB_PH: check_dsp_r2(ctx); gen_helper_precr_qb_ph(cpu_gpr[ret], v1_t, v2_t); break; case OPC_PRECRQ_QB_PH: check_dsp(ctx); gen_helper_precrq_qb_ph(cpu_gpr[ret], v1_t, v2_t); break; case OPC_PRECR_SRA_PH_W: check_dsp_r2(ctx); { TCGv_i32 sa_t = tcg_const_i32(v2); gen_helper_precr_sra_ph_w(cpu_gpr[ret], sa_t, v1_t, cpu_gpr[ret]); tcg_temp_free_i32(sa_t); break; } case OPC_PRECR_SRA_R_PH_W: check_dsp_r2(ctx); { TCGv_i32 sa_t = tcg_const_i32(v2); gen_helper_precr_sra_r_ph_w(cpu_gpr[ret], sa_t, v1_t, cpu_gpr[ret]); tcg_temp_free_i32(sa_t); break; } case OPC_PRECRQ_PH_W: check_dsp(ctx); gen_helper_precrq_ph_w(cpu_gpr[ret], v1_t, v2_t); break; case OPC_PRECRQ_RS_PH_W: check_dsp(ctx); gen_helper_precrq_rs_ph_w(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_PRECRQU_S_QB_PH: check_dsp(ctx); gen_helper_precrqu_s_qb_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; } break; #ifdef TARGET_MIPS64 case OPC_ABSQ_S_QH_DSP: switch (op2) { case OPC_PRECEQ_L_PWL: check_dsp(ctx); tcg_gen_andi_tl(cpu_gpr[ret], v2_t, 0xFFFFFFFF00000000ull); break; case OPC_PRECEQ_L_PWR: check_dsp(ctx); tcg_gen_shli_tl(cpu_gpr[ret], v2_t, 32); break; case OPC_PRECEQ_PW_QHL: check_dsp(ctx); gen_helper_preceq_pw_qhl(cpu_gpr[ret], v2_t); break; case OPC_PRECEQ_PW_QHR: check_dsp(ctx); gen_helper_preceq_pw_qhr(cpu_gpr[ret], v2_t); break; case OPC_PRECEQ_PW_QHLA: check_dsp(ctx); gen_helper_preceq_pw_qhla(cpu_gpr[ret], v2_t); break; case OPC_PRECEQ_PW_QHRA: check_dsp(ctx); gen_helper_preceq_pw_qhra(cpu_gpr[ret], v2_t); break; case OPC_PRECEQU_QH_OBL: check_dsp(ctx); gen_helper_precequ_qh_obl(cpu_gpr[ret], v2_t); break; case OPC_PRECEQU_QH_OBR: check_dsp(ctx); gen_helper_precequ_qh_obr(cpu_gpr[ret], v2_t); break; case OPC_PRECEQU_QH_OBLA: check_dsp(ctx); gen_helper_precequ_qh_obla(cpu_gpr[ret], v2_t); break; case OPC_PRECEQU_QH_OBRA: check_dsp(ctx); gen_helper_precequ_qh_obra(cpu_gpr[ret], v2_t); break; case OPC_PRECEU_QH_OBL: check_dsp(ctx); gen_helper_preceu_qh_obl(cpu_gpr[ret], v2_t); break; case OPC_PRECEU_QH_OBR: check_dsp(ctx); gen_helper_preceu_qh_obr(cpu_gpr[ret], v2_t); break; case OPC_PRECEU_QH_OBLA: check_dsp(ctx); gen_helper_preceu_qh_obla(cpu_gpr[ret], v2_t); break; case OPC_PRECEU_QH_OBRA: check_dsp(ctx); gen_helper_preceu_qh_obra(cpu_gpr[ret], v2_t); break; case OPC_ABSQ_S_OB: check_dsp_r2(ctx); gen_helper_absq_s_ob(cpu_gpr[ret], v2_t, cpu_env); break; case OPC_ABSQ_S_PW: check_dsp(ctx); gen_helper_absq_s_pw(cpu_gpr[ret], v2_t, cpu_env); break; case OPC_ABSQ_S_QH: check_dsp(ctx); gen_helper_absq_s_qh(cpu_gpr[ret], v2_t, cpu_env); break; } break; case OPC_ADDU_OB_DSP: switch (op2) { case OPC_RADDU_L_OB: check_dsp(ctx); gen_helper_raddu_l_ob(cpu_gpr[ret], v1_t); break; case OPC_SUBQ_PW: check_dsp(ctx); gen_helper_subq_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBQ_S_PW: check_dsp(ctx); gen_helper_subq_s_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBQ_QH: check_dsp(ctx); gen_helper_subq_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBQ_S_QH: check_dsp(ctx); gen_helper_subq_s_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBU_OB: check_dsp(ctx); gen_helper_subu_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBU_S_OB: check_dsp(ctx); gen_helper_subu_s_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBU_QH: check_dsp_r2(ctx); gen_helper_subu_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBU_S_QH: check_dsp_r2(ctx); gen_helper_subu_s_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SUBUH_OB: check_dsp_r2(ctx); gen_helper_subuh_ob(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SUBUH_R_OB: check_dsp_r2(ctx); gen_helper_subuh_r_ob(cpu_gpr[ret], v1_t, v2_t); break; case OPC_ADDQ_PW: check_dsp(ctx); gen_helper_addq_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDQ_S_PW: check_dsp(ctx); gen_helper_addq_s_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDQ_QH: check_dsp(ctx); gen_helper_addq_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDQ_S_QH: check_dsp(ctx); gen_helper_addq_s_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDU_OB: check_dsp(ctx); gen_helper_addu_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDU_S_OB: check_dsp(ctx); gen_helper_addu_s_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDU_QH: check_dsp_r2(ctx); gen_helper_addu_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDU_S_QH: check_dsp_r2(ctx); gen_helper_addu_s_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_ADDUH_OB: check_dsp_r2(ctx); gen_helper_adduh_ob(cpu_gpr[ret], v1_t, v2_t); break; case OPC_ADDUH_R_OB: check_dsp_r2(ctx); gen_helper_adduh_r_ob(cpu_gpr[ret], v1_t, v2_t); break; } break; case OPC_CMPU_EQ_OB_DSP: switch (op2) { case OPC_PRECR_OB_QH: check_dsp_r2(ctx); gen_helper_precr_ob_qh(cpu_gpr[ret], v1_t, v2_t); break; case OPC_PRECR_SRA_QH_PW: check_dsp_r2(ctx); { TCGv_i32 ret_t = tcg_const_i32(ret); gen_helper_precr_sra_qh_pw(v2_t, v1_t, v2_t, ret_t); tcg_temp_free_i32(ret_t); break; } case OPC_PRECR_SRA_R_QH_PW: check_dsp_r2(ctx); { TCGv_i32 sa_v = tcg_const_i32(ret); gen_helper_precr_sra_r_qh_pw(v2_t, v1_t, v2_t, sa_v); tcg_temp_free_i32(sa_v); break; } case OPC_PRECRQ_OB_QH: check_dsp(ctx); gen_helper_precrq_ob_qh(cpu_gpr[ret], v1_t, v2_t); break; case OPC_PRECRQ_PW_L: check_dsp(ctx); gen_helper_precrq_pw_l(cpu_gpr[ret], v1_t, v2_t); break; case OPC_PRECRQ_QH_PW: check_dsp(ctx); gen_helper_precrq_qh_pw(cpu_gpr[ret], v1_t, v2_t); break; case OPC_PRECRQ_RS_QH_PW: check_dsp(ctx); gen_helper_precrq_rs_qh_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_PRECRQU_S_OB_QH: check_dsp(ctx); gen_helper_precrqu_s_ob_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; } break; #endif } tcg_temp_free(v1_t); tcg_temp_free(v2_t); } static void gen_mipsdsp_shift(DisasContext *ctx, uint32_t opc, int ret, int v1, int v2) { uint32_t op2; TCGv t0; TCGv v1_t; TCGv v2_t; if (ret == 0) { /* Treat as NOP. */ return; } t0 = tcg_temp_new(); v1_t = tcg_temp_new(); v2_t = tcg_temp_new(); tcg_gen_movi_tl(t0, v1); gen_load_gpr(v1_t, v1); gen_load_gpr(v2_t, v2); switch (opc) { case OPC_SHLL_QB_DSP: { op2 = MASK_SHLL_QB(ctx->opcode); switch (op2) { case OPC_SHLL_QB: check_dsp(ctx); gen_helper_shll_qb(cpu_gpr[ret], t0, v2_t, cpu_env); break; case OPC_SHLLV_QB: check_dsp(ctx); gen_helper_shll_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SHLL_PH: check_dsp(ctx); gen_helper_shll_ph(cpu_gpr[ret], t0, v2_t, cpu_env); break; case OPC_SHLLV_PH: check_dsp(ctx); gen_helper_shll_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SHLL_S_PH: check_dsp(ctx); gen_helper_shll_s_ph(cpu_gpr[ret], t0, v2_t, cpu_env); break; case OPC_SHLLV_S_PH: check_dsp(ctx); gen_helper_shll_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SHLL_S_W: check_dsp(ctx); gen_helper_shll_s_w(cpu_gpr[ret], t0, v2_t, cpu_env); break; case OPC_SHLLV_S_W: check_dsp(ctx); gen_helper_shll_s_w(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_SHRL_QB: check_dsp(ctx); gen_helper_shrl_qb(cpu_gpr[ret], t0, v2_t); break; case OPC_SHRLV_QB: check_dsp(ctx); gen_helper_shrl_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SHRL_PH: check_dsp_r2(ctx); gen_helper_shrl_ph(cpu_gpr[ret], t0, v2_t); break; case OPC_SHRLV_PH: check_dsp_r2(ctx); gen_helper_shrl_ph(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SHRA_QB: check_dsp_r2(ctx); gen_helper_shra_qb(cpu_gpr[ret], t0, v2_t); break; case OPC_SHRA_R_QB: check_dsp_r2(ctx); gen_helper_shra_r_qb(cpu_gpr[ret], t0, v2_t); break; case OPC_SHRAV_QB: check_dsp_r2(ctx); gen_helper_shra_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SHRAV_R_QB: check_dsp_r2(ctx); gen_helper_shra_r_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SHRA_PH: check_dsp(ctx); gen_helper_shra_ph(cpu_gpr[ret], t0, v2_t); break; case OPC_SHRA_R_PH: check_dsp(ctx); gen_helper_shra_r_ph(cpu_gpr[ret], t0, v2_t); break; case OPC_SHRAV_PH: check_dsp(ctx); gen_helper_shra_ph(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SHRAV_R_PH: check_dsp(ctx); gen_helper_shra_r_ph(cpu_gpr[ret], v1_t, v2_t); break; case OPC_SHRA_R_W: check_dsp(ctx); gen_helper_shra_r_w(cpu_gpr[ret], t0, v2_t); break; case OPC_SHRAV_R_W: check_dsp(ctx); gen_helper_shra_r_w(cpu_gpr[ret], v1_t, v2_t); break; default: /* Invalid */ MIPS_INVAL("MASK SHLL.QB"); gen_reserved_instruction(ctx); break; } break; } #ifdef TARGET_MIPS64 case OPC_SHLL_OB_DSP: op2 = MASK_SHLL_OB(ctx->opcode); switch (op2) { case OPC_SHLL_PW: check_dsp(ctx); gen_helper_shll_pw(cpu_gpr[ret], v2_t, t0, cpu_env); break; case OPC_SHLLV_PW: check_dsp(ctx); gen_helper_shll_pw(cpu_gpr[ret], v2_t, v1_t, cpu_env); break; case OPC_SHLL_S_PW: check_dsp(ctx); gen_helper_shll_s_pw(cpu_gpr[ret], v2_t, t0, cpu_env); break; case OPC_SHLLV_S_PW: check_dsp(ctx); gen_helper_shll_s_pw(cpu_gpr[ret], v2_t, v1_t, cpu_env); break; case OPC_SHLL_OB: check_dsp(ctx); gen_helper_shll_ob(cpu_gpr[ret], v2_t, t0, cpu_env); break; case OPC_SHLLV_OB: check_dsp(ctx); gen_helper_shll_ob(cpu_gpr[ret], v2_t, v1_t, cpu_env); break; case OPC_SHLL_QH: check_dsp(ctx); gen_helper_shll_qh(cpu_gpr[ret], v2_t, t0, cpu_env); break; case OPC_SHLLV_QH: check_dsp(ctx); gen_helper_shll_qh(cpu_gpr[ret], v2_t, v1_t, cpu_env); break; case OPC_SHLL_S_QH: check_dsp(ctx); gen_helper_shll_s_qh(cpu_gpr[ret], v2_t, t0, cpu_env); break; case OPC_SHLLV_S_QH: check_dsp(ctx); gen_helper_shll_s_qh(cpu_gpr[ret], v2_t, v1_t, cpu_env); break; case OPC_SHRA_OB: check_dsp_r2(ctx); gen_helper_shra_ob(cpu_gpr[ret], v2_t, t0); break; case OPC_SHRAV_OB: check_dsp_r2(ctx); gen_helper_shra_ob(cpu_gpr[ret], v2_t, v1_t); break; case OPC_SHRA_R_OB: check_dsp_r2(ctx); gen_helper_shra_r_ob(cpu_gpr[ret], v2_t, t0); break; case OPC_SHRAV_R_OB: check_dsp_r2(ctx); gen_helper_shra_r_ob(cpu_gpr[ret], v2_t, v1_t); break; case OPC_SHRA_PW: check_dsp(ctx); gen_helper_shra_pw(cpu_gpr[ret], v2_t, t0); break; case OPC_SHRAV_PW: check_dsp(ctx); gen_helper_shra_pw(cpu_gpr[ret], v2_t, v1_t); break; case OPC_SHRA_R_PW: check_dsp(ctx); gen_helper_shra_r_pw(cpu_gpr[ret], v2_t, t0); break; case OPC_SHRAV_R_PW: check_dsp(ctx); gen_helper_shra_r_pw(cpu_gpr[ret], v2_t, v1_t); break; case OPC_SHRA_QH: check_dsp(ctx); gen_helper_shra_qh(cpu_gpr[ret], v2_t, t0); break; case OPC_SHRAV_QH: check_dsp(ctx); gen_helper_shra_qh(cpu_gpr[ret], v2_t, v1_t); break; case OPC_SHRA_R_QH: check_dsp(ctx); gen_helper_shra_r_qh(cpu_gpr[ret], v2_t, t0); break; case OPC_SHRAV_R_QH: check_dsp(ctx); gen_helper_shra_r_qh(cpu_gpr[ret], v2_t, v1_t); break; case OPC_SHRL_OB: check_dsp(ctx); gen_helper_shrl_ob(cpu_gpr[ret], v2_t, t0); break; case OPC_SHRLV_OB: check_dsp(ctx); gen_helper_shrl_ob(cpu_gpr[ret], v2_t, v1_t); break; case OPC_SHRL_QH: check_dsp_r2(ctx); gen_helper_shrl_qh(cpu_gpr[ret], v2_t, t0); break; case OPC_SHRLV_QH: check_dsp_r2(ctx); gen_helper_shrl_qh(cpu_gpr[ret], v2_t, v1_t); break; default: /* Invalid */ MIPS_INVAL("MASK SHLL.OB"); gen_reserved_instruction(ctx); break; } break; #endif } tcg_temp_free(t0); tcg_temp_free(v1_t); tcg_temp_free(v2_t); } static void gen_mipsdsp_multiply(DisasContext *ctx, uint32_t op1, uint32_t op2, int ret, int v1, int v2, int check_ret) { TCGv_i32 t0; TCGv v1_t; TCGv v2_t; if ((ret == 0) && (check_ret == 1)) { /* Treat as NOP. */ return; } t0 = tcg_temp_new_i32(); v1_t = tcg_temp_new(); v2_t = tcg_temp_new(); tcg_gen_movi_i32(t0, ret); gen_load_gpr(v1_t, v1); gen_load_gpr(v2_t, v2); switch (op1) { /* * OPC_MULT_G_2E, OPC_ADDUH_QB_DSP, OPC_MUL_PH_DSP have * the same mask and op1. */ case OPC_MULT_G_2E: check_dsp_r2(ctx); switch (op2) { case OPC_MUL_PH: gen_helper_mul_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MUL_S_PH: gen_helper_mul_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULQ_S_W: gen_helper_mulq_s_w(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULQ_RS_W: gen_helper_mulq_rs_w(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; } break; case OPC_DPA_W_PH_DSP: switch (op2) { case OPC_DPAU_H_QBL: check_dsp(ctx); gen_helper_dpau_h_qbl(t0, v1_t, v2_t, cpu_env); break; case OPC_DPAU_H_QBR: check_dsp(ctx); gen_helper_dpau_h_qbr(t0, v1_t, v2_t, cpu_env); break; case OPC_DPSU_H_QBL: check_dsp(ctx); gen_helper_dpsu_h_qbl(t0, v1_t, v2_t, cpu_env); break; case OPC_DPSU_H_QBR: check_dsp(ctx); gen_helper_dpsu_h_qbr(t0, v1_t, v2_t, cpu_env); break; case OPC_DPA_W_PH: check_dsp_r2(ctx); gen_helper_dpa_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPAX_W_PH: check_dsp_r2(ctx); gen_helper_dpax_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPAQ_S_W_PH: check_dsp(ctx); gen_helper_dpaq_s_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPAQX_S_W_PH: check_dsp_r2(ctx); gen_helper_dpaqx_s_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPAQX_SA_W_PH: check_dsp_r2(ctx); gen_helper_dpaqx_sa_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPS_W_PH: check_dsp_r2(ctx); gen_helper_dps_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPSX_W_PH: check_dsp_r2(ctx); gen_helper_dpsx_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPSQ_S_W_PH: check_dsp(ctx); gen_helper_dpsq_s_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPSQX_S_W_PH: check_dsp_r2(ctx); gen_helper_dpsqx_s_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPSQX_SA_W_PH: check_dsp_r2(ctx); gen_helper_dpsqx_sa_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_MULSAQ_S_W_PH: check_dsp(ctx); gen_helper_mulsaq_s_w_ph(t0, v1_t, v2_t, cpu_env); break; case OPC_DPAQ_SA_L_W: check_dsp(ctx); gen_helper_dpaq_sa_l_w(t0, v1_t, v2_t, cpu_env); break; case OPC_DPSQ_SA_L_W: check_dsp(ctx); gen_helper_dpsq_sa_l_w(t0, v1_t, v2_t, cpu_env); break; case OPC_MAQ_S_W_PHL: check_dsp(ctx); gen_helper_maq_s_w_phl(t0, v1_t, v2_t, cpu_env); break; case OPC_MAQ_S_W_PHR: check_dsp(ctx); gen_helper_maq_s_w_phr(t0, v1_t, v2_t, cpu_env); break; case OPC_MAQ_SA_W_PHL: check_dsp(ctx); gen_helper_maq_sa_w_phl(t0, v1_t, v2_t, cpu_env); break; case OPC_MAQ_SA_W_PHR: check_dsp(ctx); gen_helper_maq_sa_w_phr(t0, v1_t, v2_t, cpu_env); break; case OPC_MULSA_W_PH: check_dsp_r2(ctx); gen_helper_mulsa_w_ph(t0, v1_t, v2_t, cpu_env); break; } break; #ifdef TARGET_MIPS64 case OPC_DPAQ_W_QH_DSP: { int ac = ret & 0x03; tcg_gen_movi_i32(t0, ac); switch (op2) { case OPC_DMADD: check_dsp(ctx); gen_helper_dmadd(v1_t, v2_t, t0, cpu_env); break; case OPC_DMADDU: check_dsp(ctx); gen_helper_dmaddu(v1_t, v2_t, t0, cpu_env); break; case OPC_DMSUB: check_dsp(ctx); gen_helper_dmsub(v1_t, v2_t, t0, cpu_env); break; case OPC_DMSUBU: check_dsp(ctx); gen_helper_dmsubu(v1_t, v2_t, t0, cpu_env); break; case OPC_DPA_W_QH: check_dsp_r2(ctx); gen_helper_dpa_w_qh(v1_t, v2_t, t0, cpu_env); break; case OPC_DPAQ_S_W_QH: check_dsp(ctx); gen_helper_dpaq_s_w_qh(v1_t, v2_t, t0, cpu_env); break; case OPC_DPAQ_SA_L_PW: check_dsp(ctx); gen_helper_dpaq_sa_l_pw(v1_t, v2_t, t0, cpu_env); break; case OPC_DPAU_H_OBL: check_dsp(ctx); gen_helper_dpau_h_obl(v1_t, v2_t, t0, cpu_env); break; case OPC_DPAU_H_OBR: check_dsp(ctx); gen_helper_dpau_h_obr(v1_t, v2_t, t0, cpu_env); break; case OPC_DPS_W_QH: check_dsp_r2(ctx); gen_helper_dps_w_qh(v1_t, v2_t, t0, cpu_env); break; case OPC_DPSQ_S_W_QH: check_dsp(ctx); gen_helper_dpsq_s_w_qh(v1_t, v2_t, t0, cpu_env); break; case OPC_DPSQ_SA_L_PW: check_dsp(ctx); gen_helper_dpsq_sa_l_pw(v1_t, v2_t, t0, cpu_env); break; case OPC_DPSU_H_OBL: check_dsp(ctx); gen_helper_dpsu_h_obl(v1_t, v2_t, t0, cpu_env); break; case OPC_DPSU_H_OBR: check_dsp(ctx); gen_helper_dpsu_h_obr(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_S_L_PWL: check_dsp(ctx); gen_helper_maq_s_l_pwl(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_S_L_PWR: check_dsp(ctx); gen_helper_maq_s_l_pwr(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_S_W_QHLL: check_dsp(ctx); gen_helper_maq_s_w_qhll(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_SA_W_QHLL: check_dsp(ctx); gen_helper_maq_sa_w_qhll(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_S_W_QHLR: check_dsp(ctx); gen_helper_maq_s_w_qhlr(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_SA_W_QHLR: check_dsp(ctx); gen_helper_maq_sa_w_qhlr(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_S_W_QHRL: check_dsp(ctx); gen_helper_maq_s_w_qhrl(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_SA_W_QHRL: check_dsp(ctx); gen_helper_maq_sa_w_qhrl(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_S_W_QHRR: check_dsp(ctx); gen_helper_maq_s_w_qhrr(v1_t, v2_t, t0, cpu_env); break; case OPC_MAQ_SA_W_QHRR: check_dsp(ctx); gen_helper_maq_sa_w_qhrr(v1_t, v2_t, t0, cpu_env); break; case OPC_MULSAQ_S_L_PW: check_dsp(ctx); gen_helper_mulsaq_s_l_pw(v1_t, v2_t, t0, cpu_env); break; case OPC_MULSAQ_S_W_QH: check_dsp(ctx); gen_helper_mulsaq_s_w_qh(v1_t, v2_t, t0, cpu_env); break; } } break; #endif case OPC_ADDU_QB_DSP: switch (op2) { case OPC_MULEU_S_PH_QBL: check_dsp(ctx); gen_helper_muleu_s_ph_qbl(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULEU_S_PH_QBR: check_dsp(ctx); gen_helper_muleu_s_ph_qbr(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULQ_RS_PH: check_dsp(ctx); gen_helper_mulq_rs_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULEQ_S_W_PHL: check_dsp(ctx); gen_helper_muleq_s_w_phl(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULEQ_S_W_PHR: check_dsp(ctx); gen_helper_muleq_s_w_phr(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULQ_S_PH: check_dsp_r2(ctx); gen_helper_mulq_s_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; } break; #ifdef TARGET_MIPS64 case OPC_ADDU_OB_DSP: switch (op2) { case OPC_MULEQ_S_PW_QHL: check_dsp(ctx); gen_helper_muleq_s_pw_qhl(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULEQ_S_PW_QHR: check_dsp(ctx); gen_helper_muleq_s_pw_qhr(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULEU_S_QH_OBL: check_dsp(ctx); gen_helper_muleu_s_qh_obl(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULEU_S_QH_OBR: check_dsp(ctx); gen_helper_muleu_s_qh_obr(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_MULQ_RS_QH: check_dsp(ctx); gen_helper_mulq_rs_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; } break; #endif } tcg_temp_free_i32(t0); tcg_temp_free(v1_t); tcg_temp_free(v2_t); } static void gen_mipsdsp_bitinsn(DisasContext *ctx, uint32_t op1, uint32_t op2, int ret, int val) { int16_t imm; TCGv t0; TCGv val_t; if (ret == 0) { /* Treat as NOP. */ return; } t0 = tcg_temp_new(); val_t = tcg_temp_new(); gen_load_gpr(val_t, val); switch (op1) { case OPC_ABSQ_S_PH_DSP: switch (op2) { case OPC_BITREV: check_dsp(ctx); gen_helper_bitrev(cpu_gpr[ret], val_t); break; case OPC_REPL_QB: check_dsp(ctx); { target_long result; imm = (ctx->opcode >> 16) & 0xFF; result = (uint32_t)imm << 24 | (uint32_t)imm << 16 | (uint32_t)imm << 8 | (uint32_t)imm; result = (int32_t)result; tcg_gen_movi_tl(cpu_gpr[ret], result); } break; case OPC_REPLV_QB: check_dsp(ctx); tcg_gen_ext8u_tl(cpu_gpr[ret], val_t); tcg_gen_shli_tl(t0, cpu_gpr[ret], 8); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); tcg_gen_shli_tl(t0, cpu_gpr[ret], 16); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]); break; case OPC_REPL_PH: check_dsp(ctx); { imm = (ctx->opcode >> 16) & 0x03FF; imm = (int16_t)(imm << 6) >> 6; tcg_gen_movi_tl(cpu_gpr[ret], \ (target_long)((int32_t)imm << 16 | \ (uint16_t)imm)); } break; case OPC_REPLV_PH: check_dsp(ctx); tcg_gen_ext16u_tl(cpu_gpr[ret], val_t); tcg_gen_shli_tl(t0, cpu_gpr[ret], 16); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); tcg_gen_ext32s_tl(cpu_gpr[ret], cpu_gpr[ret]); break; } break; #ifdef TARGET_MIPS64 case OPC_ABSQ_S_QH_DSP: switch (op2) { case OPC_REPL_OB: check_dsp(ctx); { target_long temp; imm = (ctx->opcode >> 16) & 0xFF; temp = ((uint64_t)imm << 8) | (uint64_t)imm; temp = (temp << 16) | temp; temp = (temp << 32) | temp; tcg_gen_movi_tl(cpu_gpr[ret], temp); break; } case OPC_REPL_PW: check_dsp(ctx); { target_long temp; imm = (ctx->opcode >> 16) & 0x03FF; imm = (int16_t)(imm << 6) >> 6; temp = ((target_long)imm << 32) \ | ((target_long)imm & 0xFFFFFFFF); tcg_gen_movi_tl(cpu_gpr[ret], temp); break; } case OPC_REPL_QH: check_dsp(ctx); { target_long temp; imm = (ctx->opcode >> 16) & 0x03FF; imm = (int16_t)(imm << 6) >> 6; temp = ((uint64_t)(uint16_t)imm << 48) | ((uint64_t)(uint16_t)imm << 32) | ((uint64_t)(uint16_t)imm << 16) | (uint64_t)(uint16_t)imm; tcg_gen_movi_tl(cpu_gpr[ret], temp); break; } case OPC_REPLV_OB: check_dsp(ctx); tcg_gen_ext8u_tl(cpu_gpr[ret], val_t); tcg_gen_shli_tl(t0, cpu_gpr[ret], 8); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); tcg_gen_shli_tl(t0, cpu_gpr[ret], 16); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); tcg_gen_shli_tl(t0, cpu_gpr[ret], 32); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); break; case OPC_REPLV_PW: check_dsp(ctx); tcg_gen_ext32u_i64(cpu_gpr[ret], val_t); tcg_gen_shli_tl(t0, cpu_gpr[ret], 32); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); break; case OPC_REPLV_QH: check_dsp(ctx); tcg_gen_ext16u_tl(cpu_gpr[ret], val_t); tcg_gen_shli_tl(t0, cpu_gpr[ret], 16); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); tcg_gen_shli_tl(t0, cpu_gpr[ret], 32); tcg_gen_or_tl(cpu_gpr[ret], cpu_gpr[ret], t0); break; } break; #endif } tcg_temp_free(t0); tcg_temp_free(val_t); } static void gen_mipsdsp_add_cmp_pick(DisasContext *ctx, uint32_t op1, uint32_t op2, int ret, int v1, int v2, int check_ret) { TCGv t1; TCGv v1_t; TCGv v2_t; if ((ret == 0) && (check_ret == 1)) { /* Treat as NOP. */ return; } t1 = tcg_temp_new(); v1_t = tcg_temp_new(); v2_t = tcg_temp_new(); gen_load_gpr(v1_t, v1); gen_load_gpr(v2_t, v2); switch (op1) { case OPC_CMPU_EQ_QB_DSP: switch (op2) { case OPC_CMPU_EQ_QB: check_dsp(ctx); gen_helper_cmpu_eq_qb(v1_t, v2_t, cpu_env); break; case OPC_CMPU_LT_QB: check_dsp(ctx); gen_helper_cmpu_lt_qb(v1_t, v2_t, cpu_env); break; case OPC_CMPU_LE_QB: check_dsp(ctx); gen_helper_cmpu_le_qb(v1_t, v2_t, cpu_env); break; case OPC_CMPGU_EQ_QB: check_dsp(ctx); gen_helper_cmpgu_eq_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_CMPGU_LT_QB: check_dsp(ctx); gen_helper_cmpgu_lt_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_CMPGU_LE_QB: check_dsp(ctx); gen_helper_cmpgu_le_qb(cpu_gpr[ret], v1_t, v2_t); break; case OPC_CMPGDU_EQ_QB: check_dsp_r2(ctx); gen_helper_cmpgu_eq_qb(t1, v1_t, v2_t); tcg_gen_mov_tl(cpu_gpr[ret], t1); tcg_gen_andi_tl(cpu_dspctrl, cpu_dspctrl, 0xF0FFFFFF); tcg_gen_shli_tl(t1, t1, 24); tcg_gen_or_tl(cpu_dspctrl, cpu_dspctrl, t1); break; case OPC_CMPGDU_LT_QB: check_dsp_r2(ctx); gen_helper_cmpgu_lt_qb(t1, v1_t, v2_t); tcg_gen_mov_tl(cpu_gpr[ret], t1); tcg_gen_andi_tl(cpu_dspctrl, cpu_dspctrl, 0xF0FFFFFF); tcg_gen_shli_tl(t1, t1, 24); tcg_gen_or_tl(cpu_dspctrl, cpu_dspctrl, t1); break; case OPC_CMPGDU_LE_QB: check_dsp_r2(ctx); gen_helper_cmpgu_le_qb(t1, v1_t, v2_t); tcg_gen_mov_tl(cpu_gpr[ret], t1); tcg_gen_andi_tl(cpu_dspctrl, cpu_dspctrl, 0xF0FFFFFF); tcg_gen_shli_tl(t1, t1, 24); tcg_gen_or_tl(cpu_dspctrl, cpu_dspctrl, t1); break; case OPC_CMP_EQ_PH: check_dsp(ctx); gen_helper_cmp_eq_ph(v1_t, v2_t, cpu_env); break; case OPC_CMP_LT_PH: check_dsp(ctx); gen_helper_cmp_lt_ph(v1_t, v2_t, cpu_env); break; case OPC_CMP_LE_PH: check_dsp(ctx); gen_helper_cmp_le_ph(v1_t, v2_t, cpu_env); break; case OPC_PICK_QB: check_dsp(ctx); gen_helper_pick_qb(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_PICK_PH: check_dsp(ctx); gen_helper_pick_ph(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_PACKRL_PH: check_dsp(ctx); gen_helper_packrl_ph(cpu_gpr[ret], v1_t, v2_t); break; } break; #ifdef TARGET_MIPS64 case OPC_CMPU_EQ_OB_DSP: switch (op2) { case OPC_CMP_EQ_PW: check_dsp(ctx); gen_helper_cmp_eq_pw(v1_t, v2_t, cpu_env); break; case OPC_CMP_LT_PW: check_dsp(ctx); gen_helper_cmp_lt_pw(v1_t, v2_t, cpu_env); break; case OPC_CMP_LE_PW: check_dsp(ctx); gen_helper_cmp_le_pw(v1_t, v2_t, cpu_env); break; case OPC_CMP_EQ_QH: check_dsp(ctx); gen_helper_cmp_eq_qh(v1_t, v2_t, cpu_env); break; case OPC_CMP_LT_QH: check_dsp(ctx); gen_helper_cmp_lt_qh(v1_t, v2_t, cpu_env); break; case OPC_CMP_LE_QH: check_dsp(ctx); gen_helper_cmp_le_qh(v1_t, v2_t, cpu_env); break; case OPC_CMPGDU_EQ_OB: check_dsp_r2(ctx); gen_helper_cmpgdu_eq_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_CMPGDU_LT_OB: check_dsp_r2(ctx); gen_helper_cmpgdu_lt_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_CMPGDU_LE_OB: check_dsp_r2(ctx); gen_helper_cmpgdu_le_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_CMPGU_EQ_OB: check_dsp(ctx); gen_helper_cmpgu_eq_ob(cpu_gpr[ret], v1_t, v2_t); break; case OPC_CMPGU_LT_OB: check_dsp(ctx); gen_helper_cmpgu_lt_ob(cpu_gpr[ret], v1_t, v2_t); break; case OPC_CMPGU_LE_OB: check_dsp(ctx); gen_helper_cmpgu_le_ob(cpu_gpr[ret], v1_t, v2_t); break; case OPC_CMPU_EQ_OB: check_dsp(ctx); gen_helper_cmpu_eq_ob(v1_t, v2_t, cpu_env); break; case OPC_CMPU_LT_OB: check_dsp(ctx); gen_helper_cmpu_lt_ob(v1_t, v2_t, cpu_env); break; case OPC_CMPU_LE_OB: check_dsp(ctx); gen_helper_cmpu_le_ob(v1_t, v2_t, cpu_env); break; case OPC_PACKRL_PW: check_dsp(ctx); gen_helper_packrl_pw(cpu_gpr[ret], v1_t, v2_t); break; case OPC_PICK_OB: check_dsp(ctx); gen_helper_pick_ob(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_PICK_PW: check_dsp(ctx); gen_helper_pick_pw(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; case OPC_PICK_QH: check_dsp(ctx); gen_helper_pick_qh(cpu_gpr[ret], v1_t, v2_t, cpu_env); break; } break; #endif } tcg_temp_free(t1); tcg_temp_free(v1_t); tcg_temp_free(v2_t); } static void gen_mipsdsp_append(CPUMIPSState *env, DisasContext *ctx, uint32_t op1, int rt, int rs, int sa) { TCGv t0; check_dsp_r2(ctx); if (rt == 0) { /* Treat as NOP. */ return; } t0 = tcg_temp_new(); gen_load_gpr(t0, rs); switch (op1) { case OPC_APPEND_DSP: switch (MASK_APPEND(ctx->opcode)) { case OPC_APPEND: if (sa != 0) { tcg_gen_deposit_tl(cpu_gpr[rt], t0, cpu_gpr[rt], sa, 32 - sa); } tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]); break; case OPC_PREPEND: if (sa != 0) { tcg_gen_ext32u_tl(cpu_gpr[rt], cpu_gpr[rt]); tcg_gen_shri_tl(cpu_gpr[rt], cpu_gpr[rt], sa); tcg_gen_shli_tl(t0, t0, 32 - sa); tcg_gen_or_tl(cpu_gpr[rt], cpu_gpr[rt], t0); } tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]); break; case OPC_BALIGN: sa &= 3; if (sa != 0 && sa != 2) { tcg_gen_shli_tl(cpu_gpr[rt], cpu_gpr[rt], 8 * sa); tcg_gen_ext32u_tl(t0, t0); tcg_gen_shri_tl(t0, t0, 8 * (4 - sa)); tcg_gen_or_tl(cpu_gpr[rt], cpu_gpr[rt], t0); } tcg_gen_ext32s_tl(cpu_gpr[rt], cpu_gpr[rt]); break; default: /* Invalid */ MIPS_INVAL("MASK APPEND"); gen_reserved_instruction(ctx); break; } break; #ifdef TARGET_MIPS64 case OPC_DAPPEND_DSP: switch (MASK_DAPPEND(ctx->opcode)) { case OPC_DAPPEND: if (sa != 0) { tcg_gen_deposit_tl(cpu_gpr[rt], t0, cpu_gpr[rt], sa, 64 - sa); } break; case OPC_PREPENDD: tcg_gen_shri_tl(cpu_gpr[rt], cpu_gpr[rt], 0x20 | sa); tcg_gen_shli_tl(t0, t0, 64 - (0x20 | sa)); tcg_gen_or_tl(cpu_gpr[rt], t0, t0); break; case OPC_PREPENDW: if (sa != 0) { tcg_gen_shri_tl(cpu_gpr[rt], cpu_gpr[rt], sa); tcg_gen_shli_tl(t0, t0, 64 - sa); tcg_gen_or_tl(cpu_gpr[rt], cpu_gpr[rt], t0); } break; case OPC_DBALIGN: sa &= 7; if (sa != 0 && sa != 2 && sa != 4) { tcg_gen_shli_tl(cpu_gpr[rt], cpu_gpr[rt], 8 * sa); tcg_gen_shri_tl(t0, t0, 8 * (8 - sa)); tcg_gen_or_tl(cpu_gpr[rt], cpu_gpr[rt], t0); } break; default: /* Invalid */ MIPS_INVAL("MASK DAPPEND"); gen_reserved_instruction(ctx); break; } break; #endif } tcg_temp_free(t0); } static void gen_mipsdsp_accinsn(DisasContext *ctx, uint32_t op1, uint32_t op2, int ret, int v1, int v2, int check_ret) { TCGv t0; TCGv t1; TCGv v1_t; TCGv v2_t; int16_t imm; if ((ret == 0) && (check_ret == 1)) { /* Treat as NOP. */ return; } t0 = tcg_temp_new(); t1 = tcg_temp_new(); v1_t = tcg_temp_new(); v2_t = tcg_temp_new(); gen_load_gpr(v1_t, v1); gen_load_gpr(v2_t, v2); switch (op1) { case OPC_EXTR_W_DSP: check_dsp(ctx); switch (op2) { case OPC_EXTR_W: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_extr_w(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_EXTR_R_W: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_extr_r_w(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_EXTR_RS_W: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_extr_rs_w(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_EXTR_S_H: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_extr_s_h(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_EXTRV_S_H: tcg_gen_movi_tl(t0, v2); gen_helper_extr_s_h(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_EXTRV_W: tcg_gen_movi_tl(t0, v2); gen_helper_extr_w(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_EXTRV_R_W: tcg_gen_movi_tl(t0, v2); gen_helper_extr_r_w(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_EXTRV_RS_W: tcg_gen_movi_tl(t0, v2); gen_helper_extr_rs_w(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_EXTP: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_extp(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_EXTPV: tcg_gen_movi_tl(t0, v2); gen_helper_extp(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_EXTPDP: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_extpdp(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_EXTPDPV: tcg_gen_movi_tl(t0, v2); gen_helper_extpdp(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_SHILO: imm = (ctx->opcode >> 20) & 0x3F; tcg_gen_movi_tl(t0, ret); tcg_gen_movi_tl(t1, imm); gen_helper_shilo(t0, t1, cpu_env); break; case OPC_SHILOV: tcg_gen_movi_tl(t0, ret); gen_helper_shilo(t0, v1_t, cpu_env); break; case OPC_MTHLIP: tcg_gen_movi_tl(t0, ret); gen_helper_mthlip(t0, v1_t, cpu_env); break; case OPC_WRDSP: imm = (ctx->opcode >> 11) & 0x3FF; tcg_gen_movi_tl(t0, imm); gen_helper_wrdsp(v1_t, t0, cpu_env); break; case OPC_RDDSP: imm = (ctx->opcode >> 16) & 0x03FF; tcg_gen_movi_tl(t0, imm); gen_helper_rddsp(cpu_gpr[ret], t0, cpu_env); break; } break; #ifdef TARGET_MIPS64 case OPC_DEXTR_W_DSP: check_dsp(ctx); switch (op2) { case OPC_DMTHLIP: tcg_gen_movi_tl(t0, ret); gen_helper_dmthlip(v1_t, t0, cpu_env); break; case OPC_DSHILO: { int shift = (ctx->opcode >> 19) & 0x7F; int ac = (ctx->opcode >> 11) & 0x03; tcg_gen_movi_tl(t0, shift); tcg_gen_movi_tl(t1, ac); gen_helper_dshilo(t0, t1, cpu_env); break; } case OPC_DSHILOV: { int ac = (ctx->opcode >> 11) & 0x03; tcg_gen_movi_tl(t0, ac); gen_helper_dshilo(v1_t, t0, cpu_env); break; } case OPC_DEXTP: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextp(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTPV: tcg_gen_movi_tl(t0, v2); gen_helper_dextp(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_DEXTPDP: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextpdp(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTPDPV: tcg_gen_movi_tl(t0, v2); gen_helper_dextpdp(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_DEXTR_L: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextr_l(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTR_R_L: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextr_r_l(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTR_RS_L: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextr_rs_l(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTR_W: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextr_w(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTR_R_W: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextr_r_w(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTR_RS_W: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextr_rs_w(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTR_S_H: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextr_s_h(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTRV_S_H: tcg_gen_movi_tl(t0, v2); tcg_gen_movi_tl(t1, v1); gen_helper_dextr_s_h(cpu_gpr[ret], t0, t1, cpu_env); break; case OPC_DEXTRV_L: tcg_gen_movi_tl(t0, v2); gen_helper_dextr_l(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_DEXTRV_R_L: tcg_gen_movi_tl(t0, v2); gen_helper_dextr_r_l(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_DEXTRV_RS_L: tcg_gen_movi_tl(t0, v2); gen_helper_dextr_rs_l(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_DEXTRV_W: tcg_gen_movi_tl(t0, v2); gen_helper_dextr_w(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_DEXTRV_R_W: tcg_gen_movi_tl(t0, v2); gen_helper_dextr_r_w(cpu_gpr[ret], t0, v1_t, cpu_env); break; case OPC_DEXTRV_RS_W: tcg_gen_movi_tl(t0, v2); gen_helper_dextr_rs_w(cpu_gpr[ret], t0, v1_t, cpu_env); break; } break; #endif } tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(v1_t); tcg_temp_free(v2_t); } /* End MIPSDSP functions. */ static void decode_opc_special_r6(CPUMIPSState *env, DisasContext *ctx) { int rs, rt, rd, sa; uint32_t op1, op2; rs = (ctx->opcode >> 21) & 0x1f; rt = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; sa = (ctx->opcode >> 6) & 0x1f; op1 = MASK_SPECIAL(ctx->opcode); switch (op1) { case OPC_LSA: gen_lsa(ctx, op1, rd, rs, rt, extract32(ctx->opcode, 6, 2)); break; case OPC_MULT: case OPC_MULTU: case OPC_DIV: case OPC_DIVU: op2 = MASK_R6_MULDIV(ctx->opcode); switch (op2) { case R6_OPC_MUL: case R6_OPC_MUH: case R6_OPC_MULU: case R6_OPC_MUHU: case R6_OPC_DIV: case R6_OPC_MOD: case R6_OPC_DIVU: case R6_OPC_MODU: gen_r6_muldiv(ctx, op2, rd, rs, rt); break; default: MIPS_INVAL("special_r6 muldiv"); gen_reserved_instruction(ctx); break; } break; case OPC_SELEQZ: case OPC_SELNEZ: gen_cond_move(ctx, op1, rd, rs, rt); break; case R6_OPC_CLO: case R6_OPC_CLZ: if (rt == 0 && sa == 1) { /* * Major opcode and function field is shared with preR6 MFHI/MTHI. * We need additionally to check other fields. */ gen_cl(ctx, op1, rd, rs); } else { gen_reserved_instruction(ctx); } break; case R6_OPC_SDBBP: if (is_uhi(extract32(ctx->opcode, 6, 20))) { gen_helper_do_semihosting(cpu_env); } else { if (ctx->hflags & MIPS_HFLAG_SBRI) { gen_reserved_instruction(ctx); } else { generate_exception_end(ctx, EXCP_DBp); } } break; #if defined(TARGET_MIPS64) case OPC_DLSA: check_mips_64(ctx); gen_lsa(ctx, op1, rd, rs, rt, extract32(ctx->opcode, 6, 2)); break; case R6_OPC_DCLO: case R6_OPC_DCLZ: if (rt == 0 && sa == 1) { /* * Major opcode and function field is shared with preR6 MFHI/MTHI. * We need additionally to check other fields. */ check_mips_64(ctx); gen_cl(ctx, op1, rd, rs); } else { gen_reserved_instruction(ctx); } break; case OPC_DMULT: case OPC_DMULTU: case OPC_DDIV: case OPC_DDIVU: op2 = MASK_R6_MULDIV(ctx->opcode); switch (op2) { case R6_OPC_DMUL: case R6_OPC_DMUH: case R6_OPC_DMULU: case R6_OPC_DMUHU: case R6_OPC_DDIV: case R6_OPC_DMOD: case R6_OPC_DDIVU: case R6_OPC_DMODU: check_mips_64(ctx); gen_r6_muldiv(ctx, op2, rd, rs, rt); break; default: MIPS_INVAL("special_r6 muldiv"); gen_reserved_instruction(ctx); break; } break; #endif default: /* Invalid */ MIPS_INVAL("special_r6"); gen_reserved_instruction(ctx); break; } } static void decode_opc_special_tx79(CPUMIPSState *env, DisasContext *ctx) { int rs = extract32(ctx->opcode, 21, 5); int rt = extract32(ctx->opcode, 16, 5); int rd = extract32(ctx->opcode, 11, 5); uint32_t op1 = MASK_SPECIAL(ctx->opcode); switch (op1) { case OPC_MOVN: /* Conditional move */ case OPC_MOVZ: gen_cond_move(ctx, op1, rd, rs, rt); break; case OPC_MFHI: /* Move from HI/LO */ case OPC_MFLO: gen_HILO(ctx, op1, 0, rd); break; case OPC_MTHI: case OPC_MTLO: /* Move to HI/LO */ gen_HILO(ctx, op1, 0, rs); break; case OPC_MULT: case OPC_MULTU: gen_mul_txx9(ctx, op1, rd, rs, rt); break; case OPC_DIV: case OPC_DIVU: gen_muldiv(ctx, op1, 0, rs, rt); break; #if defined(TARGET_MIPS64) case OPC_DMULT: case OPC_DMULTU: case OPC_DDIV: case OPC_DDIVU: check_insn_opc_user_only(ctx, INSN_R5900); gen_muldiv(ctx, op1, 0, rs, rt); break; #endif case OPC_JR: gen_compute_branch(ctx, op1, 4, rs, 0, 0, 4); break; default: /* Invalid */ MIPS_INVAL("special_tx79"); gen_reserved_instruction(ctx); break; } } static void decode_opc_special_legacy(CPUMIPSState *env, DisasContext *ctx) { int rs, rt, rd, sa; uint32_t op1; rs = (ctx->opcode >> 21) & 0x1f; rt = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; sa = (ctx->opcode >> 6) & 0x1f; op1 = MASK_SPECIAL(ctx->opcode); switch (op1) { case OPC_MOVN: /* Conditional move */ case OPC_MOVZ: check_insn(ctx, ISA_MIPS4 | ISA_MIPS_R1 | INSN_LOONGSON2E | INSN_LOONGSON2F); gen_cond_move(ctx, op1, rd, rs, rt); break; case OPC_MFHI: /* Move from HI/LO */ case OPC_MFLO: gen_HILO(ctx, op1, rs & 3, rd); break; case OPC_MTHI: case OPC_MTLO: /* Move to HI/LO */ gen_HILO(ctx, op1, rd & 3, rs); break; case OPC_MOVCI: check_insn(ctx, ISA_MIPS4 | ISA_MIPS_R1); if (env->CP0_Config1 & (1 << CP0C1_FP)) { check_cp1_enabled(ctx); gen_movci(ctx, rd, rs, (ctx->opcode >> 18) & 0x7, (ctx->opcode >> 16) & 1); } else { generate_exception_err(ctx, EXCP_CpU, 1); } break; case OPC_MULT: case OPC_MULTU: if (sa) { check_insn(ctx, INSN_VR54XX); op1 = MASK_MUL_VR54XX(ctx->opcode); gen_mul_vr54xx(ctx, op1, rd, rs, rt); } else { gen_muldiv(ctx, op1, rd & 3, rs, rt); } break; case OPC_DIV: case OPC_DIVU: gen_muldiv(ctx, op1, 0, rs, rt); break; #if defined(TARGET_MIPS64) case OPC_DMULT: case OPC_DMULTU: case OPC_DDIV: case OPC_DDIVU: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_muldiv(ctx, op1, 0, rs, rt); break; #endif case OPC_JR: gen_compute_branch(ctx, op1, 4, rs, rd, sa, 4); break; case OPC_SPIM: #ifdef MIPS_STRICT_STANDARD MIPS_INVAL("SPIM"); gen_reserved_instruction(ctx); #else /* Implemented as RI exception for now. */ MIPS_INVAL("spim (unofficial)"); gen_reserved_instruction(ctx); #endif break; default: /* Invalid */ MIPS_INVAL("special_legacy"); gen_reserved_instruction(ctx); break; } } static void decode_opc_special(CPUMIPSState *env, DisasContext *ctx) { int rs, rt, rd, sa; uint32_t op1; rs = (ctx->opcode >> 21) & 0x1f; rt = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; sa = (ctx->opcode >> 6) & 0x1f; op1 = MASK_SPECIAL(ctx->opcode); switch (op1) { case OPC_SLL: /* Shift with immediate */ if (sa == 5 && rd == 0 && rs == 0 && rt == 0) { /* PAUSE */ if ((ctx->insn_flags & ISA_MIPS_R6) && (ctx->hflags & MIPS_HFLAG_BMASK)) { gen_reserved_instruction(ctx); break; } } /* Fallthrough */ case OPC_SRA: gen_shift_imm(ctx, op1, rd, rt, sa); break; case OPC_SRL: switch ((ctx->opcode >> 21) & 0x1f) { case 1: /* rotr is decoded as srl on non-R2 CPUs */ if (ctx->insn_flags & ISA_MIPS_R2) { op1 = OPC_ROTR; } /* Fallthrough */ case 0: gen_shift_imm(ctx, op1, rd, rt, sa); break; default: gen_reserved_instruction(ctx); break; } break; case OPC_ADD: case OPC_ADDU: case OPC_SUB: case OPC_SUBU: gen_arith(ctx, op1, rd, rs, rt); break; case OPC_SLLV: /* Shifts */ case OPC_SRAV: gen_shift(ctx, op1, rd, rs, rt); break; case OPC_SRLV: switch ((ctx->opcode >> 6) & 0x1f) { case 1: /* rotrv is decoded as srlv on non-R2 CPUs */ if (ctx->insn_flags & ISA_MIPS_R2) { op1 = OPC_ROTRV; } /* Fallthrough */ case 0: gen_shift(ctx, op1, rd, rs, rt); break; default: gen_reserved_instruction(ctx); break; } break; case OPC_SLT: /* Set on less than */ case OPC_SLTU: gen_slt(ctx, op1, rd, rs, rt); break; case OPC_AND: /* Logic*/ case OPC_OR: case OPC_NOR: case OPC_XOR: gen_logic(ctx, op1, rd, rs, rt); break; case OPC_JALR: gen_compute_branch(ctx, op1, 4, rs, rd, sa, 4); break; case OPC_TGE: /* Traps */ case OPC_TGEU: case OPC_TLT: case OPC_TLTU: case OPC_TEQ: case OPC_TNE: check_insn(ctx, ISA_MIPS2); gen_trap(ctx, op1, rs, rt, -1); break; case OPC_LSA: /* OPC_PMON */ if ((ctx->insn_flags & ISA_MIPS_R6) || (env->CP0_Config3 & (1 << CP0C3_MSAP))) { decode_opc_special_r6(env, ctx); } else { /* Pmon entry point, also R4010 selsl */ #ifdef MIPS_STRICT_STANDARD MIPS_INVAL("PMON / selsl"); gen_reserved_instruction(ctx); #else gen_helper_0e0i(pmon, sa); #endif } break; case OPC_SYSCALL: generate_exception_end(ctx, EXCP_SYSCALL); break; case OPC_BREAK: generate_exception_end(ctx, EXCP_BREAK); break; case OPC_SYNC: check_insn(ctx, ISA_MIPS2); gen_sync(extract32(ctx->opcode, 6, 5)); break; #if defined(TARGET_MIPS64) /* MIPS64 specific opcodes */ case OPC_DSLL: case OPC_DSRA: case OPC_DSLL32: case OPC_DSRA32: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift_imm(ctx, op1, rd, rt, sa); break; case OPC_DSRL: switch ((ctx->opcode >> 21) & 0x1f) { case 1: /* drotr is decoded as dsrl on non-R2 CPUs */ if (ctx->insn_flags & ISA_MIPS_R2) { op1 = OPC_DROTR; } /* Fallthrough */ case 0: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift_imm(ctx, op1, rd, rt, sa); break; default: gen_reserved_instruction(ctx); break; } break; case OPC_DSRL32: switch ((ctx->opcode >> 21) & 0x1f) { case 1: /* drotr32 is decoded as dsrl32 on non-R2 CPUs */ if (ctx->insn_flags & ISA_MIPS_R2) { op1 = OPC_DROTR32; } /* Fallthrough */ case 0: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift_imm(ctx, op1, rd, rt, sa); break; default: gen_reserved_instruction(ctx); break; } break; case OPC_DADD: case OPC_DADDU: case OPC_DSUB: case OPC_DSUBU: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_arith(ctx, op1, rd, rs, rt); break; case OPC_DSLLV: case OPC_DSRAV: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift(ctx, op1, rd, rs, rt); break; case OPC_DSRLV: switch ((ctx->opcode >> 6) & 0x1f) { case 1: /* drotrv is decoded as dsrlv on non-R2 CPUs */ if (ctx->insn_flags & ISA_MIPS_R2) { op1 = OPC_DROTRV; } /* Fallthrough */ case 0: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_shift(ctx, op1, rd, rs, rt); break; default: gen_reserved_instruction(ctx); break; } break; case OPC_DLSA: if ((ctx->insn_flags & ISA_MIPS_R6) || (env->CP0_Config3 & (1 << CP0C3_MSAP))) { decode_opc_special_r6(env, ctx); } break; #endif default: if (ctx->insn_flags & ISA_MIPS_R6) { decode_opc_special_r6(env, ctx); } else if (ctx->insn_flags & INSN_R5900) { decode_opc_special_tx79(env, ctx); } else { decode_opc_special_legacy(env, ctx); } } } #if defined(TARGET_MIPS64) /* * * MMI (MultiMedia Interface) ASE instructions * =========================================== */ /* * MMI instructions category: data communication * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * PCPYH PEXCH PEXTLB PINTH PPACB PEXT5 PREVH * PCPYLD PEXCW PEXTLH PINTEH PPACH PPAC5 PROT3W * PCPYUD PEXEH PEXTLW PPACW * PEXEW PEXTUB * PEXTUH * PEXTUW */ /* * PCPYH rd, rt * * Parallel Copy Halfword * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---------+---------+-----------+ * | MMI |0 0 0 0 0| rt | rd | PCPYH | MMI3 | * +-----------+---------+---------+---------+---------+-----------+ */ static void gen_mmi_pcpyh(DisasContext *ctx) { uint32_t pd, rt, rd; uint32_t opcode; opcode = ctx->opcode; pd = extract32(opcode, 21, 5); rt = extract32(opcode, 16, 5); rd = extract32(opcode, 11, 5); if (unlikely(pd != 0)) { gen_reserved_instruction(ctx); } else if (rd == 0) { /* nop */ } else if (rt == 0) { tcg_gen_movi_i64(cpu_gpr[rd], 0); tcg_gen_movi_i64(cpu_mmr[rd], 0); } else { TCGv_i64 t0 = tcg_temp_new(); TCGv_i64 t1 = tcg_temp_new(); uint64_t mask = (1ULL << 16) - 1; tcg_gen_andi_i64(t0, cpu_gpr[rt], mask); tcg_gen_movi_i64(t1, 0); tcg_gen_or_i64(t1, t0, t1); tcg_gen_shli_i64(t0, t0, 16); tcg_gen_or_i64(t1, t0, t1); tcg_gen_shli_i64(t0, t0, 16); tcg_gen_or_i64(t1, t0, t1); tcg_gen_shli_i64(t0, t0, 16); tcg_gen_or_i64(t1, t0, t1); tcg_gen_mov_i64(cpu_gpr[rd], t1); tcg_gen_andi_i64(t0, cpu_mmr[rt], mask); tcg_gen_movi_i64(t1, 0); tcg_gen_or_i64(t1, t0, t1); tcg_gen_shli_i64(t0, t0, 16); tcg_gen_or_i64(t1, t0, t1); tcg_gen_shli_i64(t0, t0, 16); tcg_gen_or_i64(t1, t0, t1); tcg_gen_shli_i64(t0, t0, 16); tcg_gen_or_i64(t1, t0, t1); tcg_gen_mov_i64(cpu_mmr[rd], t1); tcg_temp_free(t0); tcg_temp_free(t1); } } /* * PCPYLD rd, rs, rt * * Parallel Copy Lower Doubleword * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---------+---------+-----------+ * | MMI | rs | rt | rd | PCPYLD | MMI2 | * +-----------+---------+---------+---------+---------+-----------+ */ static void gen_mmi_pcpyld(DisasContext *ctx) { uint32_t rs, rt, rd; uint32_t opcode; opcode = ctx->opcode; rs = extract32(opcode, 21, 5); rt = extract32(opcode, 16, 5); rd = extract32(opcode, 11, 5); if (rd == 0) { /* nop */ } else { if (rs == 0) { tcg_gen_movi_i64(cpu_mmr[rd], 0); } else { tcg_gen_mov_i64(cpu_mmr[rd], cpu_gpr[rs]); } if (rt == 0) { tcg_gen_movi_i64(cpu_gpr[rd], 0); } else { if (rd != rt) { tcg_gen_mov_i64(cpu_gpr[rd], cpu_gpr[rt]); } } } } /* * PCPYUD rd, rs, rt * * Parallel Copy Upper Doubleword * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---------+---------+-----------+ * | MMI | rs | rt | rd | PCPYUD | MMI3 | * +-----------+---------+---------+---------+---------+-----------+ */ static void gen_mmi_pcpyud(DisasContext *ctx) { uint32_t rs, rt, rd; uint32_t opcode; opcode = ctx->opcode; rs = extract32(opcode, 21, 5); rt = extract32(opcode, 16, 5); rd = extract32(opcode, 11, 5); if (rd == 0) { /* nop */ } else { if (rs == 0) { tcg_gen_movi_i64(cpu_gpr[rd], 0); } else { tcg_gen_mov_i64(cpu_gpr[rd], cpu_mmr[rs]); } if (rt == 0) { tcg_gen_movi_i64(cpu_mmr[rd], 0); } else { if (rd != rt) { tcg_gen_mov_i64(cpu_mmr[rd], cpu_mmr[rt]); } } } } #endif #if !defined(TARGET_MIPS64) /* MXU accumulate add/subtract 1-bit pattern 'aptn1' */ #define MXU_APTN1_A 0 #define MXU_APTN1_S 1 /* MXU accumulate add/subtract 2-bit pattern 'aptn2' */ #define MXU_APTN2_AA 0 #define MXU_APTN2_AS 1 #define MXU_APTN2_SA 2 #define MXU_APTN2_SS 3 /* MXU execute add/subtract 2-bit pattern 'eptn2' */ #define MXU_EPTN2_AA 0 #define MXU_EPTN2_AS 1 #define MXU_EPTN2_SA 2 #define MXU_EPTN2_SS 3 /* MXU operand getting pattern 'optn2' */ #define MXU_OPTN2_PTN0 0 #define MXU_OPTN2_PTN1 1 #define MXU_OPTN2_PTN2 2 #define MXU_OPTN2_PTN3 3 /* alternative naming scheme for 'optn2' */ #define MXU_OPTN2_WW 0 #define MXU_OPTN2_LW 1 #define MXU_OPTN2_HW 2 #define MXU_OPTN2_XW 3 /* MXU operand getting pattern 'optn3' */ #define MXU_OPTN3_PTN0 0 #define MXU_OPTN3_PTN1 1 #define MXU_OPTN3_PTN2 2 #define MXU_OPTN3_PTN3 3 #define MXU_OPTN3_PTN4 4 #define MXU_OPTN3_PTN5 5 #define MXU_OPTN3_PTN6 6 #define MXU_OPTN3_PTN7 7 /* * S32I2M XRa, rb - Register move from GRF to XRF */ static void gen_mxu_s32i2m(DisasContext *ctx) { TCGv t0; uint32_t XRa, Rb; t0 = tcg_temp_new(); XRa = extract32(ctx->opcode, 6, 5); Rb = extract32(ctx->opcode, 16, 5); gen_load_gpr(t0, Rb); if (XRa <= 15) { gen_store_mxu_gpr(t0, XRa); } else if (XRa == 16) { gen_store_mxu_cr(t0); } tcg_temp_free(t0); } /* * S32M2I XRa, rb - Register move from XRF to GRF */ static void gen_mxu_s32m2i(DisasContext *ctx) { TCGv t0; uint32_t XRa, Rb; t0 = tcg_temp_new(); XRa = extract32(ctx->opcode, 6, 5); Rb = extract32(ctx->opcode, 16, 5); if (XRa <= 15) { gen_load_mxu_gpr(t0, XRa); } else if (XRa == 16) { gen_load_mxu_cr(t0); } gen_store_gpr(t0, Rb); tcg_temp_free(t0); } /* * S8LDD XRa, Rb, s8, optn3 - Load a byte from memory to XRF */ static void gen_mxu_s8ldd(DisasContext *ctx) { TCGv t0, t1; uint32_t XRa, Rb, s8, optn3; t0 = tcg_temp_new(); t1 = tcg_temp_new(); XRa = extract32(ctx->opcode, 6, 4); s8 = extract32(ctx->opcode, 10, 8); optn3 = extract32(ctx->opcode, 18, 3); Rb = extract32(ctx->opcode, 21, 5); gen_load_gpr(t0, Rb); tcg_gen_addi_tl(t0, t0, (int8_t)s8); switch (optn3) { /* XRa[7:0] = tmp8 */ case MXU_OPTN3_PTN0: tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); gen_load_mxu_gpr(t0, XRa); tcg_gen_deposit_tl(t0, t0, t1, 0, 8); break; /* XRa[15:8] = tmp8 */ case MXU_OPTN3_PTN1: tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); gen_load_mxu_gpr(t0, XRa); tcg_gen_deposit_tl(t0, t0, t1, 8, 8); break; /* XRa[23:16] = tmp8 */ case MXU_OPTN3_PTN2: tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); gen_load_mxu_gpr(t0, XRa); tcg_gen_deposit_tl(t0, t0, t1, 16, 8); break; /* XRa[31:24] = tmp8 */ case MXU_OPTN3_PTN3: tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); gen_load_mxu_gpr(t0, XRa); tcg_gen_deposit_tl(t0, t0, t1, 24, 8); break; /* XRa = {8'b0, tmp8, 8'b0, tmp8} */ case MXU_OPTN3_PTN4: tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); tcg_gen_deposit_tl(t0, t1, t1, 16, 16); break; /* XRa = {tmp8, 8'b0, tmp8, 8'b0} */ case MXU_OPTN3_PTN5: tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); tcg_gen_shli_tl(t1, t1, 8); tcg_gen_deposit_tl(t0, t1, t1, 16, 16); break; /* XRa = {{8{sign of tmp8}}, tmp8, {8{sign of tmp8}}, tmp8} */ case MXU_OPTN3_PTN6: tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_SB); tcg_gen_mov_tl(t0, t1); tcg_gen_andi_tl(t0, t0, 0xFF00FFFF); tcg_gen_shli_tl(t1, t1, 16); tcg_gen_or_tl(t0, t0, t1); break; /* XRa = {tmp8, tmp8, tmp8, tmp8} */ case MXU_OPTN3_PTN7: tcg_gen_qemu_ld_tl(t1, t0, ctx->mem_idx, MO_UB); tcg_gen_deposit_tl(t1, t1, t1, 8, 8); tcg_gen_deposit_tl(t0, t1, t1, 16, 16); break; } gen_store_mxu_gpr(t0, XRa); tcg_temp_free(t0); tcg_temp_free(t1); } /* * D16MUL XRa, XRb, XRc, XRd, optn2 - Signed 16 bit pattern multiplication */ static void gen_mxu_d16mul(DisasContext *ctx) { TCGv t0, t1, t2, t3; uint32_t XRa, XRb, XRc, XRd, optn2; t0 = tcg_temp_new(); t1 = tcg_temp_new(); t2 = tcg_temp_new(); t3 = tcg_temp_new(); XRa = extract32(ctx->opcode, 6, 4); XRb = extract32(ctx->opcode, 10, 4); XRc = extract32(ctx->opcode, 14, 4); XRd = extract32(ctx->opcode, 18, 4); optn2 = extract32(ctx->opcode, 22, 2); gen_load_mxu_gpr(t1, XRb); tcg_gen_sextract_tl(t0, t1, 0, 16); tcg_gen_sextract_tl(t1, t1, 16, 16); gen_load_mxu_gpr(t3, XRc); tcg_gen_sextract_tl(t2, t3, 0, 16); tcg_gen_sextract_tl(t3, t3, 16, 16); switch (optn2) { case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */ tcg_gen_mul_tl(t3, t1, t3); tcg_gen_mul_tl(t2, t0, t2); break; case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */ tcg_gen_mul_tl(t3, t0, t3); tcg_gen_mul_tl(t2, t0, t2); break; case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */ tcg_gen_mul_tl(t3, t1, t3); tcg_gen_mul_tl(t2, t1, t2); break; case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */ tcg_gen_mul_tl(t3, t0, t3); tcg_gen_mul_tl(t2, t1, t2); break; } gen_store_mxu_gpr(t3, XRa); gen_store_mxu_gpr(t2, XRd); tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(t2); tcg_temp_free(t3); } /* * D16MAC XRa, XRb, XRc, XRd, aptn2, optn2 - Signed 16 bit pattern multiply * and accumulate */ static void gen_mxu_d16mac(DisasContext *ctx) { TCGv t0, t1, t2, t3; uint32_t XRa, XRb, XRc, XRd, optn2, aptn2; t0 = tcg_temp_new(); t1 = tcg_temp_new(); t2 = tcg_temp_new(); t3 = tcg_temp_new(); XRa = extract32(ctx->opcode, 6, 4); XRb = extract32(ctx->opcode, 10, 4); XRc = extract32(ctx->opcode, 14, 4); XRd = extract32(ctx->opcode, 18, 4); optn2 = extract32(ctx->opcode, 22, 2); aptn2 = extract32(ctx->opcode, 24, 2); gen_load_mxu_gpr(t1, XRb); tcg_gen_sextract_tl(t0, t1, 0, 16); tcg_gen_sextract_tl(t1, t1, 16, 16); gen_load_mxu_gpr(t3, XRc); tcg_gen_sextract_tl(t2, t3, 0, 16); tcg_gen_sextract_tl(t3, t3, 16, 16); switch (optn2) { case MXU_OPTN2_WW: /* XRB.H*XRC.H == lop, XRB.L*XRC.L == rop */ tcg_gen_mul_tl(t3, t1, t3); tcg_gen_mul_tl(t2, t0, t2); break; case MXU_OPTN2_LW: /* XRB.L*XRC.H == lop, XRB.L*XRC.L == rop */ tcg_gen_mul_tl(t3, t0, t3); tcg_gen_mul_tl(t2, t0, t2); break; case MXU_OPTN2_HW: /* XRB.H*XRC.H == lop, XRB.H*XRC.L == rop */ tcg_gen_mul_tl(t3, t1, t3); tcg_gen_mul_tl(t2, t1, t2); break; case MXU_OPTN2_XW: /* XRB.L*XRC.H == lop, XRB.H*XRC.L == rop */ tcg_gen_mul_tl(t3, t0, t3); tcg_gen_mul_tl(t2, t1, t2); break; } gen_load_mxu_gpr(t0, XRa); gen_load_mxu_gpr(t1, XRd); switch (aptn2) { case MXU_APTN2_AA: tcg_gen_add_tl(t3, t0, t3); tcg_gen_add_tl(t2, t1, t2); break; case MXU_APTN2_AS: tcg_gen_add_tl(t3, t0, t3); tcg_gen_sub_tl(t2, t1, t2); break; case MXU_APTN2_SA: tcg_gen_sub_tl(t3, t0, t3); tcg_gen_add_tl(t2, t1, t2); break; case MXU_APTN2_SS: tcg_gen_sub_tl(t3, t0, t3); tcg_gen_sub_tl(t2, t1, t2); break; } gen_store_mxu_gpr(t3, XRa); gen_store_mxu_gpr(t2, XRd); tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(t2); tcg_temp_free(t3); } /* * Q8MUL XRa, XRb, XRc, XRd - Parallel unsigned 8 bit pattern multiply * Q8MULSU XRa, XRb, XRc, XRd - Parallel signed 8 bit pattern multiply */ static void gen_mxu_q8mul_q8mulsu(DisasContext *ctx) { TCGv t0, t1, t2, t3, t4, t5, t6, t7; uint32_t XRa, XRb, XRc, XRd, sel; t0 = tcg_temp_new(); t1 = tcg_temp_new(); t2 = tcg_temp_new(); t3 = tcg_temp_new(); t4 = tcg_temp_new(); t5 = tcg_temp_new(); t6 = tcg_temp_new(); t7 = tcg_temp_new(); XRa = extract32(ctx->opcode, 6, 4); XRb = extract32(ctx->opcode, 10, 4); XRc = extract32(ctx->opcode, 14, 4); XRd = extract32(ctx->opcode, 18, 4); sel = extract32(ctx->opcode, 22, 2); gen_load_mxu_gpr(t3, XRb); gen_load_mxu_gpr(t7, XRc); if (sel == 0x2) { /* Q8MULSU */ tcg_gen_ext8s_tl(t0, t3); tcg_gen_shri_tl(t3, t3, 8); tcg_gen_ext8s_tl(t1, t3); tcg_gen_shri_tl(t3, t3, 8); tcg_gen_ext8s_tl(t2, t3); tcg_gen_shri_tl(t3, t3, 8); tcg_gen_ext8s_tl(t3, t3); } else { /* Q8MUL */ tcg_gen_ext8u_tl(t0, t3); tcg_gen_shri_tl(t3, t3, 8); tcg_gen_ext8u_tl(t1, t3); tcg_gen_shri_tl(t3, t3, 8); tcg_gen_ext8u_tl(t2, t3); tcg_gen_shri_tl(t3, t3, 8); tcg_gen_ext8u_tl(t3, t3); } tcg_gen_ext8u_tl(t4, t7); tcg_gen_shri_tl(t7, t7, 8); tcg_gen_ext8u_tl(t5, t7); tcg_gen_shri_tl(t7, t7, 8); tcg_gen_ext8u_tl(t6, t7); tcg_gen_shri_tl(t7, t7, 8); tcg_gen_ext8u_tl(t7, t7); tcg_gen_mul_tl(t0, t0, t4); tcg_gen_mul_tl(t1, t1, t5); tcg_gen_mul_tl(t2, t2, t6); tcg_gen_mul_tl(t3, t3, t7); tcg_gen_andi_tl(t0, t0, 0xFFFF); tcg_gen_andi_tl(t1, t1, 0xFFFF); tcg_gen_andi_tl(t2, t2, 0xFFFF); tcg_gen_andi_tl(t3, t3, 0xFFFF); tcg_gen_shli_tl(t1, t1, 16); tcg_gen_shli_tl(t3, t3, 16); tcg_gen_or_tl(t0, t0, t1); tcg_gen_or_tl(t1, t2, t3); gen_store_mxu_gpr(t0, XRd); gen_store_mxu_gpr(t1, XRa); tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(t2); tcg_temp_free(t3); tcg_temp_free(t4); tcg_temp_free(t5); tcg_temp_free(t6); tcg_temp_free(t7); } /* * S32LDD XRa, Rb, S12 - Load a word from memory to XRF * S32LDDR XRa, Rb, S12 - Load a word from memory to XRF, reversed byte seq. */ static void gen_mxu_s32ldd_s32lddr(DisasContext *ctx) { TCGv t0, t1; uint32_t XRa, Rb, s12, sel; t0 = tcg_temp_new(); t1 = tcg_temp_new(); XRa = extract32(ctx->opcode, 6, 4); s12 = extract32(ctx->opcode, 10, 10); sel = extract32(ctx->opcode, 20, 1); Rb = extract32(ctx->opcode, 21, 5); gen_load_gpr(t0, Rb); tcg_gen_movi_tl(t1, s12); tcg_gen_shli_tl(t1, t1, 2); if (s12 & 0x200) { tcg_gen_ori_tl(t1, t1, 0xFFFFF000); } tcg_gen_add_tl(t1, t0, t1); tcg_gen_qemu_ld_tl(t1, t1, ctx->mem_idx, MO_SL); if (sel == 1) { /* S32LDDR */ tcg_gen_bswap32_tl(t1, t1); } gen_store_mxu_gpr(t1, XRa); tcg_temp_free(t0); tcg_temp_free(t1); } /* * MXU instruction category: logic * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * S32NOR S32AND S32OR S32XOR */ /* * S32NOR XRa, XRb, XRc * Update XRa with the result of logical bitwise 'nor' operation * applied to the content of XRb and XRc. * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL16| * +-----------+---------+-----+-------+-------+-------+-----------+ */ static void gen_mxu_S32NOR(DisasContext *ctx) { uint32_t pad, XRc, XRb, XRa; pad = extract32(ctx->opcode, 21, 5); XRc = extract32(ctx->opcode, 14, 4); XRb = extract32(ctx->opcode, 10, 4); XRa = extract32(ctx->opcode, 6, 4); if (unlikely(pad != 0)) { /* opcode padding incorrect -> do nothing */ } else if (unlikely(XRa == 0)) { /* destination is zero register -> do nothing */ } else if (unlikely((XRb == 0) && (XRc == 0))) { /* both operands zero registers -> just set destination to all 1s */ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0xFFFFFFFF); } else if (unlikely(XRb == 0)) { /* XRb zero register -> just set destination to the negation of XRc */ tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]); } else if (unlikely(XRc == 0)) { /* XRa zero register -> just set destination to the negation of XRb */ tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } else if (unlikely(XRb == XRc)) { /* both operands same -> just set destination to the negation of XRb */ tcg_gen_not_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } else { /* the most general case */ tcg_gen_nor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]); } } /* * S32AND XRa, XRb, XRc * Update XRa with the result of logical bitwise 'and' operation * applied to the content of XRb and XRc. * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL16| * +-----------+---------+-----+-------+-------+-------+-----------+ */ static void gen_mxu_S32AND(DisasContext *ctx) { uint32_t pad, XRc, XRb, XRa; pad = extract32(ctx->opcode, 21, 5); XRc = extract32(ctx->opcode, 14, 4); XRb = extract32(ctx->opcode, 10, 4); XRa = extract32(ctx->opcode, 6, 4); if (unlikely(pad != 0)) { /* opcode padding incorrect -> do nothing */ } else if (unlikely(XRa == 0)) { /* destination is zero register -> do nothing */ } else if (unlikely((XRb == 0) || (XRc == 0))) { /* one of operands zero register -> just set destination to all 0s */ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0); } else if (unlikely(XRb == XRc)) { /* both operands same -> just set destination to one of them */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } else { /* the most general case */ tcg_gen_and_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]); } } /* * S32OR XRa, XRb, XRc * Update XRa with the result of logical bitwise 'or' operation * applied to the content of XRb and XRc. * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL16| * +-----------+---------+-----+-------+-------+-------+-----------+ */ static void gen_mxu_S32OR(DisasContext *ctx) { uint32_t pad, XRc, XRb, XRa; pad = extract32(ctx->opcode, 21, 5); XRc = extract32(ctx->opcode, 14, 4); XRb = extract32(ctx->opcode, 10, 4); XRa = extract32(ctx->opcode, 6, 4); if (unlikely(pad != 0)) { /* opcode padding incorrect -> do nothing */ } else if (unlikely(XRa == 0)) { /* destination is zero register -> do nothing */ } else if (unlikely((XRb == 0) && (XRc == 0))) { /* both operands zero registers -> just set destination to all 0s */ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0); } else if (unlikely(XRb == 0)) { /* XRb zero register -> just set destination to the content of XRc */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]); } else if (unlikely(XRc == 0)) { /* XRc zero register -> just set destination to the content of XRb */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } else if (unlikely(XRb == XRc)) { /* both operands same -> just set destination to one of them */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } else { /* the most general case */ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]); } } /* * S32XOR XRa, XRb, XRc * Update XRa with the result of logical bitwise 'xor' operation * applied to the content of XRb and XRc. * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL16| * +-----------+---------+-----+-------+-------+-------+-----------+ */ static void gen_mxu_S32XOR(DisasContext *ctx) { uint32_t pad, XRc, XRb, XRa; pad = extract32(ctx->opcode, 21, 5); XRc = extract32(ctx->opcode, 14, 4); XRb = extract32(ctx->opcode, 10, 4); XRa = extract32(ctx->opcode, 6, 4); if (unlikely(pad != 0)) { /* opcode padding incorrect -> do nothing */ } else if (unlikely(XRa == 0)) { /* destination is zero register -> do nothing */ } else if (unlikely((XRb == 0) && (XRc == 0))) { /* both operands zero registers -> just set destination to all 0s */ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0); } else if (unlikely(XRb == 0)) { /* XRb zero register -> just set destination to the content of XRc */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]); } else if (unlikely(XRc == 0)) { /* XRc zero register -> just set destination to the content of XRb */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } else if (unlikely(XRb == XRc)) { /* both operands same -> just set destination to all 0s */ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0); } else { /* the most general case */ tcg_gen_xor_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]); } } /* * MXU instruction category max/min * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * S32MAX D16MAX Q8MAX * S32MIN D16MIN Q8MIN */ /* * S32MAX XRa, XRb, XRc * Update XRa with the maximum of signed 32-bit integers contained * in XRb and XRc. * * S32MIN XRa, XRb, XRc * Update XRa with the minimum of signed 32-bit integers contained * in XRb and XRc. * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL00| * +-----------+---------+-----+-------+-------+-------+-----------+ */ static void gen_mxu_S32MAX_S32MIN(DisasContext *ctx) { uint32_t pad, opc, XRc, XRb, XRa; pad = extract32(ctx->opcode, 21, 5); opc = extract32(ctx->opcode, 18, 3); XRc = extract32(ctx->opcode, 14, 4); XRb = extract32(ctx->opcode, 10, 4); XRa = extract32(ctx->opcode, 6, 4); if (unlikely(pad != 0)) { /* opcode padding incorrect -> do nothing */ } else if (unlikely(XRa == 0)) { /* destination is zero register -> do nothing */ } else if (unlikely((XRb == 0) && (XRc == 0))) { /* both operands zero registers -> just set destination to zero */ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0); } else if (unlikely((XRb == 0) || (XRc == 0))) { /* exactly one operand is zero register - find which one is not...*/ uint32_t XRx = XRb ? XRb : XRc; /* ...and do max/min operation with one operand 0 */ if (opc == OPC_MXU_S32MAX) { tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0); } else { tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRx - 1], 0); } } else if (unlikely(XRb == XRc)) { /* both operands same -> just set destination to one of them */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } else { /* the most general case */ if (opc == OPC_MXU_S32MAX) { tcg_gen_smax_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]); } else { tcg_gen_smin_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], mxu_gpr[XRc - 1]); } } } /* * D16MAX * Update XRa with the 16-bit-wise maximums of signed integers * contained in XRb and XRc. * * D16MIN * Update XRa with the 16-bit-wise minimums of signed integers * contained in XRb and XRc. * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL00| * +-----------+---------+-----+-------+-------+-------+-----------+ */ static void gen_mxu_D16MAX_D16MIN(DisasContext *ctx) { uint32_t pad, opc, XRc, XRb, XRa; pad = extract32(ctx->opcode, 21, 5); opc = extract32(ctx->opcode, 18, 3); XRc = extract32(ctx->opcode, 14, 4); XRb = extract32(ctx->opcode, 10, 4); XRa = extract32(ctx->opcode, 6, 4); if (unlikely(pad != 0)) { /* opcode padding incorrect -> do nothing */ } else if (unlikely(XRc == 0)) { /* destination is zero register -> do nothing */ } else if (unlikely((XRb == 0) && (XRa == 0))) { /* both operands zero registers -> just set destination to zero */ tcg_gen_movi_i32(mxu_gpr[XRc - 1], 0); } else if (unlikely((XRb == 0) || (XRa == 0))) { /* exactly one operand is zero register - find which one is not...*/ uint32_t XRx = XRb ? XRb : XRc; /* ...and do half-word-wise max/min with one operand 0 */ TCGv_i32 t0 = tcg_temp_new(); TCGv_i32 t1 = tcg_const_i32(0); /* the left half-word first */ tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFFFF0000); if (opc == OPC_MXU_D16MAX) { tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1); } else { tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1); } /* the right half-word */ tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0x0000FFFF); /* move half-words to the leftmost position */ tcg_gen_shli_i32(t0, t0, 16); /* t0 will be max/min of t0 and t1 */ if (opc == OPC_MXU_D16MAX) { tcg_gen_smax_i32(t0, t0, t1); } else { tcg_gen_smin_i32(t0, t0, t1); } /* return resulting half-words to its original position */ tcg_gen_shri_i32(t0, t0, 16); /* finally update the destination */ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0); tcg_temp_free(t1); tcg_temp_free(t0); } else if (unlikely(XRb == XRc)) { /* both operands same -> just set destination to one of them */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } else { /* the most general case */ TCGv_i32 t0 = tcg_temp_new(); TCGv_i32 t1 = tcg_temp_new(); /* the left half-word first */ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFFFF0000); tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000); if (opc == OPC_MXU_D16MAX) { tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1); } else { tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1); } /* the right half-word */ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF); tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0x0000FFFF); /* move half-words to the leftmost position */ tcg_gen_shli_i32(t0, t0, 16); tcg_gen_shli_i32(t1, t1, 16); /* t0 will be max/min of t0 and t1 */ if (opc == OPC_MXU_D16MAX) { tcg_gen_smax_i32(t0, t0, t1); } else { tcg_gen_smin_i32(t0, t0, t1); } /* return resulting half-words to its original position */ tcg_gen_shri_i32(t0, t0, 16); /* finally update the destination */ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0); tcg_temp_free(t1); tcg_temp_free(t0); } } /* * Q8MAX * Update XRa with the 8-bit-wise maximums of signed integers * contained in XRb and XRc. * * Q8MIN * Update XRa with the 8-bit-wise minimums of signed integers * contained in XRb and XRc. * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0| opc | XRc | XRb | XRa |MXU__POOL00| * +-----------+---------+-----+-------+-------+-------+-----------+ */ static void gen_mxu_Q8MAX_Q8MIN(DisasContext *ctx) { uint32_t pad, opc, XRc, XRb, XRa; pad = extract32(ctx->opcode, 21, 5); opc = extract32(ctx->opcode, 18, 3); XRc = extract32(ctx->opcode, 14, 4); XRb = extract32(ctx->opcode, 10, 4); XRa = extract32(ctx->opcode, 6, 4); if (unlikely(pad != 0)) { /* opcode padding incorrect -> do nothing */ } else if (unlikely(XRa == 0)) { /* destination is zero register -> do nothing */ } else if (unlikely((XRb == 0) && (XRc == 0))) { /* both operands zero registers -> just set destination to zero */ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0); } else if (unlikely((XRb == 0) || (XRc == 0))) { /* exactly one operand is zero register - make it be the first...*/ uint32_t XRx = XRb ? XRb : XRc; /* ...and do byte-wise max/min with one operand 0 */ TCGv_i32 t0 = tcg_temp_new(); TCGv_i32 t1 = tcg_const_i32(0); int32_t i; /* the leftmost byte (byte 3) first */ tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF000000); if (opc == OPC_MXU_Q8MAX) { tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1); } else { tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1); } /* bytes 2, 1, 0 */ for (i = 2; i >= 0; i--) { /* extract the byte */ tcg_gen_andi_i32(t0, mxu_gpr[XRx - 1], 0xFF << (8 * i)); /* move the byte to the leftmost position */ tcg_gen_shli_i32(t0, t0, 8 * (3 - i)); /* t0 will be max/min of t0 and t1 */ if (opc == OPC_MXU_Q8MAX) { tcg_gen_smax_i32(t0, t0, t1); } else { tcg_gen_smin_i32(t0, t0, t1); } /* return resulting byte to its original position */ tcg_gen_shri_i32(t0, t0, 8 * (3 - i)); /* finally update the destination */ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0); } tcg_temp_free(t1); tcg_temp_free(t0); } else if (unlikely(XRb == XRc)) { /* both operands same -> just set destination to one of them */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } else { /* the most general case */ TCGv_i32 t0 = tcg_temp_new(); TCGv_i32 t1 = tcg_temp_new(); int32_t i; /* the leftmost bytes (bytes 3) first */ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF000000); tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000); if (opc == OPC_MXU_Q8MAX) { tcg_gen_smax_i32(mxu_gpr[XRa - 1], t0, t1); } else { tcg_gen_smin_i32(mxu_gpr[XRa - 1], t0, t1); } /* bytes 2, 1, 0 */ for (i = 2; i >= 0; i--) { /* extract corresponding bytes */ tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0xFF << (8 * i)); tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF << (8 * i)); /* move the bytes to the leftmost position */ tcg_gen_shli_i32(t0, t0, 8 * (3 - i)); tcg_gen_shli_i32(t1, t1, 8 * (3 - i)); /* t0 will be max/min of t0 and t1 */ if (opc == OPC_MXU_Q8MAX) { tcg_gen_smax_i32(t0, t0, t1); } else { tcg_gen_smin_i32(t0, t0, t1); } /* return resulting byte to its original position */ tcg_gen_shri_i32(t0, t0, 8 * (3 - i)); /* finally update the destination */ tcg_gen_or_i32(mxu_gpr[XRa - 1], mxu_gpr[XRa - 1], t0); } tcg_temp_free(t1); tcg_temp_free(t0); } } /* * MXU instruction category: align * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * S32ALN S32ALNI */ /* * S32ALNI XRc, XRb, XRa, optn3 * Arrange bytes from XRb and XRc according to one of five sets of * rules determined by optn3, and place the result in XRa. * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+-----+---+-----+-------+-------+-------+-----------+ * | SPECIAL2 |optn3|0 0|x x x| XRc | XRb | XRa |MXU__POOL16| * +-----------+-----+---+-----+-------+-------+-------+-----------+ * */ static void gen_mxu_S32ALNI(DisasContext *ctx) { uint32_t optn3, pad, XRc, XRb, XRa; optn3 = extract32(ctx->opcode, 23, 3); pad = extract32(ctx->opcode, 21, 2); XRc = extract32(ctx->opcode, 14, 4); XRb = extract32(ctx->opcode, 10, 4); XRa = extract32(ctx->opcode, 6, 4); if (unlikely(pad != 0)) { /* opcode padding incorrect -> do nothing */ } else if (unlikely(XRa == 0)) { /* destination is zero register -> do nothing */ } else if (unlikely((XRb == 0) && (XRc == 0))) { /* both operands zero registers -> just set destination to all 0s */ tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0); } else if (unlikely(XRb == 0)) { /* XRb zero register -> just appropriatelly shift XRc into XRa */ switch (optn3) { case MXU_OPTN3_PTN0: tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0); break; case MXU_OPTN3_PTN1: case MXU_OPTN3_PTN2: case MXU_OPTN3_PTN3: tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1], 8 * (4 - optn3)); break; case MXU_OPTN3_PTN4: tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]); break; } } else if (unlikely(XRc == 0)) { /* XRc zero register -> just appropriatelly shift XRb into XRa */ switch (optn3) { case MXU_OPTN3_PTN0: tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); break; case MXU_OPTN3_PTN1: case MXU_OPTN3_PTN2: case MXU_OPTN3_PTN3: tcg_gen_shri_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3); break; case MXU_OPTN3_PTN4: tcg_gen_movi_i32(mxu_gpr[XRa - 1], 0); break; } } else if (unlikely(XRb == XRc)) { /* both operands same -> just rotation or moving from any of them */ switch (optn3) { case MXU_OPTN3_PTN0: case MXU_OPTN3_PTN4: tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); break; case MXU_OPTN3_PTN1: case MXU_OPTN3_PTN2: case MXU_OPTN3_PTN3: tcg_gen_rotli_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1], 8 * optn3); break; } } else { /* the most general case */ switch (optn3) { case MXU_OPTN3_PTN0: { /* */ /* XRb XRc */ /* +---------------+ */ /* | A B C D | E F G H */ /* +-------+-------+ */ /* | */ /* XRa */ /* */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRb - 1]); } break; case MXU_OPTN3_PTN1: { /* */ /* XRb XRc */ /* +-------------------+ */ /* A | B C D E | F G H */ /* +---------+---------+ */ /* | */ /* XRa */ /* */ TCGv_i32 t0 = tcg_temp_new(); TCGv_i32 t1 = tcg_temp_new(); tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x00FFFFFF); tcg_gen_shli_i32(t0, t0, 8); tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFF000000); tcg_gen_shri_i32(t1, t1, 24); tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1); tcg_temp_free(t1); tcg_temp_free(t0); } break; case MXU_OPTN3_PTN2: { /* */ /* XRb XRc */ /* +-------------------+ */ /* A B | C D E F | G H */ /* +---------+---------+ */ /* | */ /* XRa */ /* */ TCGv_i32 t0 = tcg_temp_new(); TCGv_i32 t1 = tcg_temp_new(); tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x0000FFFF); tcg_gen_shli_i32(t0, t0, 16); tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFF0000); tcg_gen_shri_i32(t1, t1, 16); tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1); tcg_temp_free(t1); tcg_temp_free(t0); } break; case MXU_OPTN3_PTN3: { /* */ /* XRb XRc */ /* +-------------------+ */ /* A B C | D E F G | H */ /* +---------+---------+ */ /* | */ /* XRa */ /* */ TCGv_i32 t0 = tcg_temp_new(); TCGv_i32 t1 = tcg_temp_new(); tcg_gen_andi_i32(t0, mxu_gpr[XRb - 1], 0x000000FF); tcg_gen_shli_i32(t0, t0, 24); tcg_gen_andi_i32(t1, mxu_gpr[XRc - 1], 0xFFFFFF00); tcg_gen_shri_i32(t1, t1, 8); tcg_gen_or_i32(mxu_gpr[XRa - 1], t0, t1); tcg_temp_free(t1); tcg_temp_free(t0); } break; case MXU_OPTN3_PTN4: { /* */ /* XRb XRc */ /* +---------------+ */ /* A B C D | E F G H | */ /* +-------+-------+ */ /* | */ /* XRa */ /* */ tcg_gen_mov_i32(mxu_gpr[XRa - 1], mxu_gpr[XRc - 1]); } break; } } } /* * Decoding engine for MXU * ======================= */ /* * * Decode MXU pool00 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL00| * +-----------+---------+-----+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool00(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 18, 3); switch (opcode) { case OPC_MXU_S32MAX: case OPC_MXU_S32MIN: gen_mxu_S32MAX_S32MIN(ctx); break; case OPC_MXU_D16MAX: case OPC_MXU_D16MIN: gen_mxu_D16MAX_D16MIN(ctx); break; case OPC_MXU_Q8MAX: case OPC_MXU_Q8MIN: gen_mxu_Q8MAX_Q8MIN(ctx); break; case OPC_MXU_Q8SLT: /* TODO: Implement emulation of Q8SLT instruction. */ MIPS_INVAL("OPC_MXU_Q8SLT"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q8SLTU: /* TODO: Implement emulation of Q8SLTU instruction. */ MIPS_INVAL("OPC_MXU_Q8SLTU"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool01 * * S32SLT, D16SLT, D16AVG, D16AVGR, Q8AVG, Q8AVGR: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL01| * +-----------+---------+-----+-------+-------+-------+-----------+ * * Q8ADD: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---+-----+-----+-------+-------+-------+-----------+ * | SPECIAL2 |en2|0 0 0|x x x| XRc | XRb | XRa |MXU__POOL01| * +-----------+---+-----+-----+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool01(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 18, 3); switch (opcode) { case OPC_MXU_S32SLT: /* TODO: Implement emulation of S32SLT instruction. */ MIPS_INVAL("OPC_MXU_S32SLT"); gen_reserved_instruction(ctx); break; case OPC_MXU_D16SLT: /* TODO: Implement emulation of D16SLT instruction. */ MIPS_INVAL("OPC_MXU_D16SLT"); gen_reserved_instruction(ctx); break; case OPC_MXU_D16AVG: /* TODO: Implement emulation of D16AVG instruction. */ MIPS_INVAL("OPC_MXU_D16AVG"); gen_reserved_instruction(ctx); break; case OPC_MXU_D16AVGR: /* TODO: Implement emulation of D16AVGR instruction. */ MIPS_INVAL("OPC_MXU_D16AVGR"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q8AVG: /* TODO: Implement emulation of Q8AVG instruction. */ MIPS_INVAL("OPC_MXU_Q8AVG"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q8AVGR: /* TODO: Implement emulation of Q8AVGR instruction. */ MIPS_INVAL("OPC_MXU_Q8AVGR"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q8ADD: /* TODO: Implement emulation of Q8ADD instruction. */ MIPS_INVAL("OPC_MXU_Q8ADD"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool02 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL02| * +-----------+---------+-----+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool02(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 18, 3); switch (opcode) { case OPC_MXU_S32CPS: /* TODO: Implement emulation of S32CPS instruction. */ MIPS_INVAL("OPC_MXU_S32CPS"); gen_reserved_instruction(ctx); break; case OPC_MXU_D16CPS: /* TODO: Implement emulation of D16CPS instruction. */ MIPS_INVAL("OPC_MXU_D16CPS"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q8ABD: /* TODO: Implement emulation of Q8ABD instruction. */ MIPS_INVAL("OPC_MXU_Q8ABD"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q16SAT: /* TODO: Implement emulation of Q16SAT instruction. */ MIPS_INVAL("OPC_MXU_Q16SAT"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool03 * * D16MULF: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---+---+-------+-------+-------+-------+-----------+ * | SPECIAL2 |x x|on2|0 0 0 0| XRc | XRb | XRa |MXU__POOL03| * +-----------+---+---+-------+-------+-------+-------+-----------+ * * D16MULE: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---+---+-------+-------+-------+-------+-----------+ * | SPECIAL2 |x x|on2| Xd | XRc | XRb | XRa |MXU__POOL03| * +-----------+---+---+-------+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool03(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 24, 2); switch (opcode) { case OPC_MXU_D16MULF: /* TODO: Implement emulation of D16MULF instruction. */ MIPS_INVAL("OPC_MXU_D16MULF"); gen_reserved_instruction(ctx); break; case OPC_MXU_D16MULE: /* TODO: Implement emulation of D16MULE instruction. */ MIPS_INVAL("OPC_MXU_D16MULE"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool04 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-+-------------------+-------+-----------+ * | SPECIAL2 | rb |x| s12 | XRa |MXU__POOL04| * +-----------+---------+-+-------------------+-------+-----------+ * */ static void decode_opc_mxu__pool04(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 20, 1); switch (opcode) { case OPC_MXU_S32LDD: case OPC_MXU_S32LDDR: gen_mxu_s32ldd_s32lddr(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool05 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-+-------------------+-------+-----------+ * | SPECIAL2 | rb |x| s12 | XRa |MXU__POOL05| * +-----------+---------+-+-------------------+-------+-----------+ * */ static void decode_opc_mxu__pool05(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 20, 1); switch (opcode) { case OPC_MXU_S32STD: /* TODO: Implement emulation of S32STD instruction. */ MIPS_INVAL("OPC_MXU_S32STD"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32STDR: /* TODO: Implement emulation of S32STDR instruction. */ MIPS_INVAL("OPC_MXU_S32STDR"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool06 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---+-------+-------+-----------+ * | SPECIAL2 | rb | rc |st2|x x x x| XRa |MXU__POOL06| * +-----------+---------+---------+---+-------+-------+-----------+ * */ static void decode_opc_mxu__pool06(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 10, 4); switch (opcode) { case OPC_MXU_S32LDDV: /* TODO: Implement emulation of S32LDDV instruction. */ MIPS_INVAL("OPC_MXU_S32LDDV"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32LDDVR: /* TODO: Implement emulation of S32LDDVR instruction. */ MIPS_INVAL("OPC_MXU_S32LDDVR"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool07 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---+-------+-------+-----------+ * | SPECIAL2 | rb | rc |st2|x x x x| XRa |MXU__POOL07| * +-----------+---------+---------+---+-------+-------+-----------+ * */ static void decode_opc_mxu__pool07(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 10, 4); switch (opcode) { case OPC_MXU_S32STDV: /* TODO: Implement emulation of S32TDV instruction. */ MIPS_INVAL("OPC_MXU_S32TDV"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32STDVR: /* TODO: Implement emulation of S32TDVR instruction. */ MIPS_INVAL("OPC_MXU_S32TDVR"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool08 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-+-------------------+-------+-----------+ * | SPECIAL2 | rb |x| s12 | XRa |MXU__POOL08| * +-----------+---------+-+-------------------+-------+-----------+ * */ static void decode_opc_mxu__pool08(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 20, 1); switch (opcode) { case OPC_MXU_S32LDI: /* TODO: Implement emulation of S32LDI instruction. */ MIPS_INVAL("OPC_MXU_S32LDI"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32LDIR: /* TODO: Implement emulation of S32LDIR instruction. */ MIPS_INVAL("OPC_MXU_S32LDIR"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool09 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-+-------------------+-------+-----------+ * | SPECIAL2 | rb |x| s12 | XRa |MXU__POOL09| * +-----------+---------+-+-------------------+-------+-----------+ * */ static void decode_opc_mxu__pool09(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 5, 0); switch (opcode) { case OPC_MXU_S32SDI: /* TODO: Implement emulation of S32SDI instruction. */ MIPS_INVAL("OPC_MXU_S32SDI"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32SDIR: /* TODO: Implement emulation of S32SDIR instruction. */ MIPS_INVAL("OPC_MXU_S32SDIR"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool10 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---+-------+-------+-----------+ * | SPECIAL2 | rb | rc |st2|x x x x| XRa |MXU__POOL10| * +-----------+---------+---------+---+-------+-------+-----------+ * */ static void decode_opc_mxu__pool10(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 5, 0); switch (opcode) { case OPC_MXU_S32LDIV: /* TODO: Implement emulation of S32LDIV instruction. */ MIPS_INVAL("OPC_MXU_S32LDIV"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32LDIVR: /* TODO: Implement emulation of S32LDIVR instruction. */ MIPS_INVAL("OPC_MXU_S32LDIVR"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool11 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---+-------+-------+-----------+ * | SPECIAL2 | rb | rc |st2|x x x x| XRa |MXU__POOL11| * +-----------+---------+---------+---+-------+-------+-----------+ * */ static void decode_opc_mxu__pool11(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 10, 4); switch (opcode) { case OPC_MXU_S32SDIV: /* TODO: Implement emulation of S32SDIV instruction. */ MIPS_INVAL("OPC_MXU_S32SDIV"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32SDIVR: /* TODO: Implement emulation of S32SDIVR instruction. */ MIPS_INVAL("OPC_MXU_S32SDIVR"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool12 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---+---+-------+-------+-------+-------+-----------+ * | SPECIAL2 |an2|x x| Xd | XRc | XRb | XRa |MXU__POOL12| * +-----------+---+---+-------+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool12(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 22, 2); switch (opcode) { case OPC_MXU_D32ACC: /* TODO: Implement emulation of D32ACC instruction. */ MIPS_INVAL("OPC_MXU_D32ACC"); gen_reserved_instruction(ctx); break; case OPC_MXU_D32ACCM: /* TODO: Implement emulation of D32ACCM instruction. */ MIPS_INVAL("OPC_MXU_D32ACCM"); gen_reserved_instruction(ctx); break; case OPC_MXU_D32ASUM: /* TODO: Implement emulation of D32ASUM instruction. */ MIPS_INVAL("OPC_MXU_D32ASUM"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool13 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---+---+-------+-------+-------+-------+-----------+ * | SPECIAL2 |en2|x x|0 0 0 0| XRc | XRb | XRa |MXU__POOL13| * +-----------+---+---+-------+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool13(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 22, 2); switch (opcode) { case OPC_MXU_Q16ACC: /* TODO: Implement emulation of Q16ACC instruction. */ MIPS_INVAL("OPC_MXU_Q16ACC"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q16ACCM: /* TODO: Implement emulation of Q16ACCM instruction. */ MIPS_INVAL("OPC_MXU_Q16ACCM"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q16ASUM: /* TODO: Implement emulation of Q16ASUM instruction. */ MIPS_INVAL("OPC_MXU_Q16ASUM"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool14 * * Q8ADDE, Q8ACCE: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---+---+-------+-------+-------+-------+-----------+ * | SPECIAL2 |0 0|x x| XRd | XRc | XRb | XRa |MXU__POOL14| * +-----------+---+---+-------+-------+-------+-------+-----------+ * * D8SUM, D8SUMC: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---+---+-------+-------+-------+-------+-----------+ * | SPECIAL2 |en2|x x|0 0 0 0| XRc | XRb | XRa |MXU__POOL14| * +-----------+---+---+-------+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool14(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 22, 2); switch (opcode) { case OPC_MXU_Q8ADDE: /* TODO: Implement emulation of Q8ADDE instruction. */ MIPS_INVAL("OPC_MXU_Q8ADDE"); gen_reserved_instruction(ctx); break; case OPC_MXU_D8SUM: /* TODO: Implement emulation of D8SUM instruction. */ MIPS_INVAL("OPC_MXU_D8SUM"); gen_reserved_instruction(ctx); break; case OPC_MXU_D8SUMC: /* TODO: Implement emulation of D8SUMC instruction. */ MIPS_INVAL("OPC_MXU_D8SUMC"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool15 * * S32MUL, S32MULU, S32EXTRV: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---+-------+-------+-----------+ * | SPECIAL2 | rs | rt |x x| XRd | XRa |MXU__POOL15| * +-----------+---------+---------+---+-------+-------+-----------+ * * S32EXTR: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---+-------+-------+-----------+ * | SPECIAL2 | rb | sft5 |x x| XRd | XRa |MXU__POOL15| * +-----------+---------+---------+---+-------+-------+-----------+ * */ static void decode_opc_mxu__pool15(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 14, 2); switch (opcode) { case OPC_MXU_S32MUL: /* TODO: Implement emulation of S32MUL instruction. */ MIPS_INVAL("OPC_MXU_S32MUL"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32MULU: /* TODO: Implement emulation of S32MULU instruction. */ MIPS_INVAL("OPC_MXU_S32MULU"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32EXTR: /* TODO: Implement emulation of S32EXTR instruction. */ MIPS_INVAL("OPC_MXU_S32EXTR"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32EXTRV: /* TODO: Implement emulation of S32EXTRV instruction. */ MIPS_INVAL("OPC_MXU_S32EXTRV"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool16 * * D32SARW: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 | rb |x x x| XRc | XRb | XRa |MXU__POOL16| * +-----------+---------+-----+-------+-------+-------+-----------+ * * S32ALN: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 | rs |x x x| XRc | XRb | XRa |MXU__POOL16| * +-----------+---------+-----+-------+-------+-------+-----------+ * * S32ALNI: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+-----+---+-----+-------+-------+-------+-----------+ * | SPECIAL2 | s3 |0 0|x x x| XRc | XRb | XRa |MXU__POOL16| * +-----------+-----+---+-----+-------+-------+-------+-----------+ * * S32LUI: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+-----+---+-----+-------+---------------+-----------+ * | SPECIAL2 |optn3|0 0|x x x| XRc | s8 |MXU__POOL16| * +-----------+-----+---+-----+-------+---------------+-----------+ * * S32NOR, S32AND, S32OR, S32XOR: * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL16| * +-----------+---------+-----+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool16(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 18, 3); switch (opcode) { case OPC_MXU_D32SARW: /* TODO: Implement emulation of D32SARW instruction. */ MIPS_INVAL("OPC_MXU_D32SARW"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32ALN: /* TODO: Implement emulation of S32ALN instruction. */ MIPS_INVAL("OPC_MXU_S32ALN"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32ALNI: gen_mxu_S32ALNI(ctx); break; case OPC_MXU_S32LUI: /* TODO: Implement emulation of S32LUI instruction. */ MIPS_INVAL("OPC_MXU_S32LUI"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32NOR: gen_mxu_S32NOR(ctx); break; case OPC_MXU_S32AND: gen_mxu_S32AND(ctx); break; case OPC_MXU_S32OR: gen_mxu_S32OR(ctx); break; case OPC_MXU_S32XOR: gen_mxu_S32XOR(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool17 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+---------+---+---------+-----+-----------+ * | SPECIAL2 | rs | rt |0 0| rd |x x x|MXU__POOL15| * +-----------+---------+---------+---+---------+-----+-----------+ * */ static void decode_opc_mxu__pool17(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 6, 2); switch (opcode) { case OPC_MXU_LXW: /* TODO: Implement emulation of LXW instruction. */ MIPS_INVAL("OPC_MXU_LXW"); gen_reserved_instruction(ctx); break; case OPC_MXU_LXH: /* TODO: Implement emulation of LXH instruction. */ MIPS_INVAL("OPC_MXU_LXH"); gen_reserved_instruction(ctx); break; case OPC_MXU_LXHU: /* TODO: Implement emulation of LXHU instruction. */ MIPS_INVAL("OPC_MXU_LXHU"); gen_reserved_instruction(ctx); break; case OPC_MXU_LXB: /* TODO: Implement emulation of LXB instruction. */ MIPS_INVAL("OPC_MXU_LXB"); gen_reserved_instruction(ctx); break; case OPC_MXU_LXBU: /* TODO: Implement emulation of LXBU instruction. */ MIPS_INVAL("OPC_MXU_LXBU"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool18 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 | rb |x x x| XRd | XRa |0 0 0 0|MXU__POOL18| * +-----------+---------+-----+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool18(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 18, 3); switch (opcode) { case OPC_MXU_D32SLLV: /* TODO: Implement emulation of D32SLLV instruction. */ MIPS_INVAL("OPC_MXU_D32SLLV"); gen_reserved_instruction(ctx); break; case OPC_MXU_D32SLRV: /* TODO: Implement emulation of D32SLRV instruction. */ MIPS_INVAL("OPC_MXU_D32SLRV"); gen_reserved_instruction(ctx); break; case OPC_MXU_D32SARV: /* TODO: Implement emulation of D32SARV instruction. */ MIPS_INVAL("OPC_MXU_D32SARV"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q16SLLV: /* TODO: Implement emulation of Q16SLLV instruction. */ MIPS_INVAL("OPC_MXU_Q16SLLV"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q16SLRV: /* TODO: Implement emulation of Q16SLRV instruction. */ MIPS_INVAL("OPC_MXU_Q16SLRV"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q16SARV: /* TODO: Implement emulation of Q16SARV instruction. */ MIPS_INVAL("OPC_MXU_Q16SARV"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool19 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---+---+-------+-------+-------+-------+-----------+ * | SPECIAL2 |0 0|x x| XRd | XRc | XRb | XRa |MXU__POOL19| * +-----------+---+---+-------+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool19(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 22, 2); switch (opcode) { case OPC_MXU_Q8MUL: case OPC_MXU_Q8MULSU: gen_mxu_q8mul_q8mulsu(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool20 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------+-----+-------+-------+-------+-----------+ * | SPECIAL2 |0 0 0 0 0|x x x| XRc | XRb | XRa |MXU__POOL20| * +-----------+---------+-----+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool20(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 18, 3); switch (opcode) { case OPC_MXU_Q8MOVZ: /* TODO: Implement emulation of Q8MOVZ instruction. */ MIPS_INVAL("OPC_MXU_Q8MOVZ"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q8MOVN: /* TODO: Implement emulation of Q8MOVN instruction. */ MIPS_INVAL("OPC_MXU_Q8MOVN"); gen_reserved_instruction(ctx); break; case OPC_MXU_D16MOVZ: /* TODO: Implement emulation of D16MOVZ instruction. */ MIPS_INVAL("OPC_MXU_D16MOVZ"); gen_reserved_instruction(ctx); break; case OPC_MXU_D16MOVN: /* TODO: Implement emulation of D16MOVN instruction. */ MIPS_INVAL("OPC_MXU_D16MOVN"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32MOVZ: /* TODO: Implement emulation of S32MOVZ instruction. */ MIPS_INVAL("OPC_MXU_S32MOVZ"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32MOVN: /* TODO: Implement emulation of S32MOVN instruction. */ MIPS_INVAL("OPC_MXU_S32MOVN"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * * Decode MXU pool21 * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---+---+-------+-------+-------+-------+-----------+ * | SPECIAL2 |an2|x x| XRd | XRc | XRb | XRa |MXU__POOL21| * +-----------+---+---+-------+-------+-------+-------+-----------+ * */ static void decode_opc_mxu__pool21(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = extract32(ctx->opcode, 22, 2); switch (opcode) { case OPC_MXU_Q8MAC: /* TODO: Implement emulation of Q8MAC instruction. */ MIPS_INVAL("OPC_MXU_Q8MAC"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q8MACSU: /* TODO: Implement emulation of Q8MACSU instruction. */ MIPS_INVAL("OPC_MXU_Q8MACSU"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); break; } } /* * Main MXU decoding function * * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 * +-----------+---------------------------------------+-----------+ * | SPECIAL2 | |x x x x x x| * +-----------+---------------------------------------+-----------+ * */ static void decode_opc_mxu(CPUMIPSState *env, DisasContext *ctx) { /* * TODO: Investigate necessity of including handling of * CLZ, CLO, SDBB in this function, as they belong to * SPECIAL2 opcode space for regular pre-R6 MIPS ISAs. */ uint32_t opcode = extract32(ctx->opcode, 0, 6); if (opcode == OPC__MXU_MUL) { uint32_t rs, rt, rd, op1; rs = extract32(ctx->opcode, 21, 5); rt = extract32(ctx->opcode, 16, 5); rd = extract32(ctx->opcode, 11, 5); op1 = MASK_SPECIAL2(ctx->opcode); gen_arith(ctx, op1, rd, rs, rt); return; } if (opcode == OPC_MXU_S32M2I) { gen_mxu_s32m2i(ctx); return; } if (opcode == OPC_MXU_S32I2M) { gen_mxu_s32i2m(ctx); return; } { TCGv t_mxu_cr = tcg_temp_new(); TCGLabel *l_exit = gen_new_label(); gen_load_mxu_cr(t_mxu_cr); tcg_gen_andi_tl(t_mxu_cr, t_mxu_cr, MXU_CR_MXU_EN); tcg_gen_brcondi_tl(TCG_COND_NE, t_mxu_cr, MXU_CR_MXU_EN, l_exit); switch (opcode) { case OPC_MXU_S32MADD: /* TODO: Implement emulation of S32MADD instruction. */ MIPS_INVAL("OPC_MXU_S32MADD"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32MADDU: /* TODO: Implement emulation of S32MADDU instruction. */ MIPS_INVAL("OPC_MXU_S32MADDU"); gen_reserved_instruction(ctx); break; case OPC_MXU__POOL00: decode_opc_mxu__pool00(env, ctx); break; case OPC_MXU_S32MSUB: /* TODO: Implement emulation of S32MSUB instruction. */ MIPS_INVAL("OPC_MXU_S32MSUB"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32MSUBU: /* TODO: Implement emulation of S32MSUBU instruction. */ MIPS_INVAL("OPC_MXU_S32MSUBU"); gen_reserved_instruction(ctx); break; case OPC_MXU__POOL01: decode_opc_mxu__pool01(env, ctx); break; case OPC_MXU__POOL02: decode_opc_mxu__pool02(env, ctx); break; case OPC_MXU_D16MUL: gen_mxu_d16mul(ctx); break; case OPC_MXU__POOL03: decode_opc_mxu__pool03(env, ctx); break; case OPC_MXU_D16MAC: gen_mxu_d16mac(ctx); break; case OPC_MXU_D16MACF: /* TODO: Implement emulation of D16MACF instruction. */ MIPS_INVAL("OPC_MXU_D16MACF"); gen_reserved_instruction(ctx); break; case OPC_MXU_D16MADL: /* TODO: Implement emulation of D16MADL instruction. */ MIPS_INVAL("OPC_MXU_D16MADL"); gen_reserved_instruction(ctx); break; case OPC_MXU_S16MAD: /* TODO: Implement emulation of S16MAD instruction. */ MIPS_INVAL("OPC_MXU_S16MAD"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q16ADD: /* TODO: Implement emulation of Q16ADD instruction. */ MIPS_INVAL("OPC_MXU_Q16ADD"); gen_reserved_instruction(ctx); break; case OPC_MXU_D16MACE: /* TODO: Implement emulation of D16MACE instruction. */ MIPS_INVAL("OPC_MXU_D16MACE"); gen_reserved_instruction(ctx); break; case OPC_MXU__POOL04: decode_opc_mxu__pool04(env, ctx); break; case OPC_MXU__POOL05: decode_opc_mxu__pool05(env, ctx); break; case OPC_MXU__POOL06: decode_opc_mxu__pool06(env, ctx); break; case OPC_MXU__POOL07: decode_opc_mxu__pool07(env, ctx); break; case OPC_MXU__POOL08: decode_opc_mxu__pool08(env, ctx); break; case OPC_MXU__POOL09: decode_opc_mxu__pool09(env, ctx); break; case OPC_MXU__POOL10: decode_opc_mxu__pool10(env, ctx); break; case OPC_MXU__POOL11: decode_opc_mxu__pool11(env, ctx); break; case OPC_MXU_D32ADD: /* TODO: Implement emulation of D32ADD instruction. */ MIPS_INVAL("OPC_MXU_D32ADD"); gen_reserved_instruction(ctx); break; case OPC_MXU__POOL12: decode_opc_mxu__pool12(env, ctx); break; case OPC_MXU__POOL13: decode_opc_mxu__pool13(env, ctx); break; case OPC_MXU__POOL14: decode_opc_mxu__pool14(env, ctx); break; case OPC_MXU_Q8ACCE: /* TODO: Implement emulation of Q8ACCE instruction. */ MIPS_INVAL("OPC_MXU_Q8ACCE"); gen_reserved_instruction(ctx); break; case OPC_MXU_S8LDD: gen_mxu_s8ldd(ctx); break; case OPC_MXU_S8STD: /* TODO: Implement emulation of S8STD instruction. */ MIPS_INVAL("OPC_MXU_S8STD"); gen_reserved_instruction(ctx); break; case OPC_MXU_S8LDI: /* TODO: Implement emulation of S8LDI instruction. */ MIPS_INVAL("OPC_MXU_S8LDI"); gen_reserved_instruction(ctx); break; case OPC_MXU_S8SDI: /* TODO: Implement emulation of S8SDI instruction. */ MIPS_INVAL("OPC_MXU_S8SDI"); gen_reserved_instruction(ctx); break; case OPC_MXU__POOL15: decode_opc_mxu__pool15(env, ctx); break; case OPC_MXU__POOL16: decode_opc_mxu__pool16(env, ctx); break; case OPC_MXU__POOL17: decode_opc_mxu__pool17(env, ctx); break; case OPC_MXU_S16LDD: /* TODO: Implement emulation of S16LDD instruction. */ MIPS_INVAL("OPC_MXU_S16LDD"); gen_reserved_instruction(ctx); break; case OPC_MXU_S16STD: /* TODO: Implement emulation of S16STD instruction. */ MIPS_INVAL("OPC_MXU_S16STD"); gen_reserved_instruction(ctx); break; case OPC_MXU_S16LDI: /* TODO: Implement emulation of S16LDI instruction. */ MIPS_INVAL("OPC_MXU_S16LDI"); gen_reserved_instruction(ctx); break; case OPC_MXU_S16SDI: /* TODO: Implement emulation of S16SDI instruction. */ MIPS_INVAL("OPC_MXU_S16SDI"); gen_reserved_instruction(ctx); break; case OPC_MXU_D32SLL: /* TODO: Implement emulation of D32SLL instruction. */ MIPS_INVAL("OPC_MXU_D32SLL"); gen_reserved_instruction(ctx); break; case OPC_MXU_D32SLR: /* TODO: Implement emulation of D32SLR instruction. */ MIPS_INVAL("OPC_MXU_D32SLR"); gen_reserved_instruction(ctx); break; case OPC_MXU_D32SARL: /* TODO: Implement emulation of D32SARL instruction. */ MIPS_INVAL("OPC_MXU_D32SARL"); gen_reserved_instruction(ctx); break; case OPC_MXU_D32SAR: /* TODO: Implement emulation of D32SAR instruction. */ MIPS_INVAL("OPC_MXU_D32SAR"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q16SLL: /* TODO: Implement emulation of Q16SLL instruction. */ MIPS_INVAL("OPC_MXU_Q16SLL"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q16SLR: /* TODO: Implement emulation of Q16SLR instruction. */ MIPS_INVAL("OPC_MXU_Q16SLR"); gen_reserved_instruction(ctx); break; case OPC_MXU__POOL18: decode_opc_mxu__pool18(env, ctx); break; case OPC_MXU_Q16SAR: /* TODO: Implement emulation of Q16SAR instruction. */ MIPS_INVAL("OPC_MXU_Q16SAR"); gen_reserved_instruction(ctx); break; case OPC_MXU__POOL19: decode_opc_mxu__pool19(env, ctx); break; case OPC_MXU__POOL20: decode_opc_mxu__pool20(env, ctx); break; case OPC_MXU__POOL21: decode_opc_mxu__pool21(env, ctx); break; case OPC_MXU_Q16SCOP: /* TODO: Implement emulation of Q16SCOP instruction. */ MIPS_INVAL("OPC_MXU_Q16SCOP"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q8MADL: /* TODO: Implement emulation of Q8MADL instruction. */ MIPS_INVAL("OPC_MXU_Q8MADL"); gen_reserved_instruction(ctx); break; case OPC_MXU_S32SFL: /* TODO: Implement emulation of S32SFL instruction. */ MIPS_INVAL("OPC_MXU_S32SFL"); gen_reserved_instruction(ctx); break; case OPC_MXU_Q8SAD: /* TODO: Implement emulation of Q8SAD instruction. */ MIPS_INVAL("OPC_MXU_Q8SAD"); gen_reserved_instruction(ctx); break; default: MIPS_INVAL("decode_opc_mxu"); gen_reserved_instruction(ctx); } gen_set_label(l_exit); tcg_temp_free(t_mxu_cr); } } #endif /* !defined(TARGET_MIPS64) */ static void decode_opc_special2_legacy(CPUMIPSState *env, DisasContext *ctx) { int rs, rt, rd; uint32_t op1; check_insn_opc_removed(ctx, ISA_MIPS_R6); rs = (ctx->opcode >> 21) & 0x1f; rt = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; op1 = MASK_SPECIAL2(ctx->opcode); switch (op1) { case OPC_MADD: /* Multiply and add/sub */ case OPC_MADDU: case OPC_MSUB: case OPC_MSUBU: check_insn(ctx, ISA_MIPS_R1); gen_muldiv(ctx, op1, rd & 3, rs, rt); break; case OPC_MUL: gen_arith(ctx, op1, rd, rs, rt); break; case OPC_DIV_G_2F: case OPC_DIVU_G_2F: case OPC_MULT_G_2F: case OPC_MULTU_G_2F: case OPC_MOD_G_2F: case OPC_MODU_G_2F: check_insn(ctx, INSN_LOONGSON2F | ASE_LEXT); gen_loongson_integer(ctx, op1, rd, rs, rt); break; case OPC_CLO: case OPC_CLZ: check_insn(ctx, ISA_MIPS_R1); gen_cl(ctx, op1, rd, rs); break; case OPC_SDBBP: if (is_uhi(extract32(ctx->opcode, 6, 20))) { gen_helper_do_semihosting(cpu_env); } else { /* * XXX: not clear which exception should be raised * when in debug mode... */ check_insn(ctx, ISA_MIPS_R1); generate_exception_end(ctx, EXCP_DBp); } break; #if defined(TARGET_MIPS64) case OPC_DCLO: case OPC_DCLZ: check_insn(ctx, ISA_MIPS_R1); check_mips_64(ctx); gen_cl(ctx, op1, rd, rs); break; case OPC_DMULT_G_2F: case OPC_DMULTU_G_2F: case OPC_DDIV_G_2F: case OPC_DDIVU_G_2F: case OPC_DMOD_G_2F: case OPC_DMODU_G_2F: check_insn(ctx, INSN_LOONGSON2F | ASE_LEXT); gen_loongson_integer(ctx, op1, rd, rs, rt); break; #endif default: /* Invalid */ MIPS_INVAL("special2_legacy"); gen_reserved_instruction(ctx); break; } } static void decode_opc_special3_r6(CPUMIPSState *env, DisasContext *ctx) { int rs, rt, rd, sa; uint32_t op1, op2; int16_t imm; rs = (ctx->opcode >> 21) & 0x1f; rt = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; sa = (ctx->opcode >> 6) & 0x1f; imm = (int16_t)ctx->opcode >> 7; op1 = MASK_SPECIAL3(ctx->opcode); switch (op1) { case R6_OPC_PREF: if (rt >= 24) { /* hint codes 24-31 are reserved and signal RI */ gen_reserved_instruction(ctx); } /* Treat as NOP. */ break; case R6_OPC_CACHE: check_cp0_enabled(ctx); if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) { gen_cache_operation(ctx, rt, rs, imm); } break; case R6_OPC_SC: gen_st_cond(ctx, rt, rs, imm, MO_TESL, false); break; case R6_OPC_LL: gen_ld(ctx, op1, rt, rs, imm); break; case OPC_BSHFL: { if (rd == 0) { /* Treat as NOP. */ break; } op2 = MASK_BSHFL(ctx->opcode); switch (op2) { case OPC_ALIGN: case OPC_ALIGN_1: case OPC_ALIGN_2: case OPC_ALIGN_3: gen_align(ctx, 32, rd, rs, rt, sa & 3); break; case OPC_BITSWAP: gen_bitswap(ctx, op2, rd, rt); break; } } break; #ifndef CONFIG_USER_ONLY case OPC_GINV: if (unlikely(ctx->gi <= 1)) { gen_reserved_instruction(ctx); } check_cp0_enabled(ctx); switch ((ctx->opcode >> 6) & 3) { case 0: /* GINVI */ /* Treat as NOP. */ break; case 2: /* GINVT */ gen_helper_0e1i(ginvt, cpu_gpr[rs], extract32(ctx->opcode, 8, 2)); break; default: gen_reserved_instruction(ctx); break; } break; #endif #if defined(TARGET_MIPS64) case R6_OPC_SCD: gen_st_cond(ctx, rt, rs, imm, MO_TEQ, false); break; case R6_OPC_LLD: gen_ld(ctx, op1, rt, rs, imm); break; case OPC_DBSHFL: check_mips_64(ctx); { if (rd == 0) { /* Treat as NOP. */ break; } op2 = MASK_DBSHFL(ctx->opcode); switch (op2) { case OPC_DALIGN: case OPC_DALIGN_1: case OPC_DALIGN_2: case OPC_DALIGN_3: case OPC_DALIGN_4: case OPC_DALIGN_5: case OPC_DALIGN_6: case OPC_DALIGN_7: gen_align(ctx, 64, rd, rs, rt, sa & 7); break; case OPC_DBITSWAP: gen_bitswap(ctx, op2, rd, rt); break; } } break; #endif default: /* Invalid */ MIPS_INVAL("special3_r6"); gen_reserved_instruction(ctx); break; } } static void decode_opc_special3_legacy(CPUMIPSState *env, DisasContext *ctx) { int rs, rt, rd; uint32_t op1, op2; rs = (ctx->opcode >> 21) & 0x1f; rt = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; op1 = MASK_SPECIAL3(ctx->opcode); switch (op1) { case OPC_DIV_G_2E: case OPC_DIVU_G_2E: case OPC_MOD_G_2E: case OPC_MODU_G_2E: case OPC_MULT_G_2E: case OPC_MULTU_G_2E: /* * OPC_MULT_G_2E, OPC_ADDUH_QB_DSP, OPC_MUL_PH_DSP have * the same mask and op1. */ if ((ctx->insn_flags & ASE_DSP_R2) && (op1 == OPC_MULT_G_2E)) { op2 = MASK_ADDUH_QB(ctx->opcode); switch (op2) { case OPC_ADDUH_QB: case OPC_ADDUH_R_QB: case OPC_ADDQH_PH: case OPC_ADDQH_R_PH: case OPC_ADDQH_W: case OPC_ADDQH_R_W: case OPC_SUBUH_QB: case OPC_SUBUH_R_QB: case OPC_SUBQH_PH: case OPC_SUBQH_R_PH: case OPC_SUBQH_W: case OPC_SUBQH_R_W: gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt); break; case OPC_MUL_PH: case OPC_MUL_S_PH: case OPC_MULQ_S_W: case OPC_MULQ_RS_W: gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 1); break; default: MIPS_INVAL("MASK ADDUH.QB"); gen_reserved_instruction(ctx); break; } } else if (ctx->insn_flags & INSN_LOONGSON2E) { gen_loongson_integer(ctx, op1, rd, rs, rt); } else { gen_reserved_instruction(ctx); } break; case OPC_LX_DSP: op2 = MASK_LX(ctx->opcode); switch (op2) { #if defined(TARGET_MIPS64) case OPC_LDX: #endif case OPC_LBUX: case OPC_LHX: case OPC_LWX: gen_mipsdsp_ld(ctx, op2, rd, rs, rt); break; default: /* Invalid */ MIPS_INVAL("MASK LX"); gen_reserved_instruction(ctx); break; } break; case OPC_ABSQ_S_PH_DSP: op2 = MASK_ABSQ_S_PH(ctx->opcode); switch (op2) { case OPC_ABSQ_S_QB: case OPC_ABSQ_S_PH: case OPC_ABSQ_S_W: case OPC_PRECEQ_W_PHL: case OPC_PRECEQ_W_PHR: case OPC_PRECEQU_PH_QBL: case OPC_PRECEQU_PH_QBR: case OPC_PRECEQU_PH_QBLA: case OPC_PRECEQU_PH_QBRA: case OPC_PRECEU_PH_QBL: case OPC_PRECEU_PH_QBR: case OPC_PRECEU_PH_QBLA: case OPC_PRECEU_PH_QBRA: gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt); break; case OPC_BITREV: case OPC_REPL_QB: case OPC_REPLV_QB: case OPC_REPL_PH: case OPC_REPLV_PH: gen_mipsdsp_bitinsn(ctx, op1, op2, rd, rt); break; default: MIPS_INVAL("MASK ABSQ_S.PH"); gen_reserved_instruction(ctx); break; } break; case OPC_ADDU_QB_DSP: op2 = MASK_ADDU_QB(ctx->opcode); switch (op2) { case OPC_ADDQ_PH: case OPC_ADDQ_S_PH: case OPC_ADDQ_S_W: case OPC_ADDU_QB: case OPC_ADDU_S_QB: case OPC_ADDU_PH: case OPC_ADDU_S_PH: case OPC_SUBQ_PH: case OPC_SUBQ_S_PH: case OPC_SUBQ_S_W: case OPC_SUBU_QB: case OPC_SUBU_S_QB: case OPC_SUBU_PH: case OPC_SUBU_S_PH: case OPC_ADDSC: case OPC_ADDWC: case OPC_MODSUB: case OPC_RADDU_W_QB: gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt); break; case OPC_MULEU_S_PH_QBL: case OPC_MULEU_S_PH_QBR: case OPC_MULQ_RS_PH: case OPC_MULEQ_S_W_PHL: case OPC_MULEQ_S_W_PHR: case OPC_MULQ_S_PH: gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 1); break; default: /* Invalid */ MIPS_INVAL("MASK ADDU.QB"); gen_reserved_instruction(ctx); break; } break; case OPC_CMPU_EQ_QB_DSP: op2 = MASK_CMPU_EQ_QB(ctx->opcode); switch (op2) { case OPC_PRECR_SRA_PH_W: case OPC_PRECR_SRA_R_PH_W: gen_mipsdsp_arith(ctx, op1, op2, rt, rs, rd); break; case OPC_PRECR_QB_PH: case OPC_PRECRQ_QB_PH: case OPC_PRECRQ_PH_W: case OPC_PRECRQ_RS_PH_W: case OPC_PRECRQU_S_QB_PH: gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt); break; case OPC_CMPU_EQ_QB: case OPC_CMPU_LT_QB: case OPC_CMPU_LE_QB: case OPC_CMP_EQ_PH: case OPC_CMP_LT_PH: case OPC_CMP_LE_PH: gen_mipsdsp_add_cmp_pick(ctx, op1, op2, rd, rs, rt, 0); break; case OPC_CMPGU_EQ_QB: case OPC_CMPGU_LT_QB: case OPC_CMPGU_LE_QB: case OPC_CMPGDU_EQ_QB: case OPC_CMPGDU_LT_QB: case OPC_CMPGDU_LE_QB: case OPC_PICK_QB: case OPC_PICK_PH: case OPC_PACKRL_PH: gen_mipsdsp_add_cmp_pick(ctx, op1, op2, rd, rs, rt, 1); break; default: /* Invalid */ MIPS_INVAL("MASK CMPU.EQ.QB"); gen_reserved_instruction(ctx); break; } break; case OPC_SHLL_QB_DSP: gen_mipsdsp_shift(ctx, op1, rd, rs, rt); break; case OPC_DPA_W_PH_DSP: op2 = MASK_DPA_W_PH(ctx->opcode); switch (op2) { case OPC_DPAU_H_QBL: case OPC_DPAU_H_QBR: case OPC_DPSU_H_QBL: case OPC_DPSU_H_QBR: case OPC_DPA_W_PH: case OPC_DPAX_W_PH: case OPC_DPAQ_S_W_PH: case OPC_DPAQX_S_W_PH: case OPC_DPAQX_SA_W_PH: case OPC_DPS_W_PH: case OPC_DPSX_W_PH: case OPC_DPSQ_S_W_PH: case OPC_DPSQX_S_W_PH: case OPC_DPSQX_SA_W_PH: case OPC_MULSAQ_S_W_PH: case OPC_DPAQ_SA_L_W: case OPC_DPSQ_SA_L_W: case OPC_MAQ_S_W_PHL: case OPC_MAQ_S_W_PHR: case OPC_MAQ_SA_W_PHL: case OPC_MAQ_SA_W_PHR: case OPC_MULSA_W_PH: gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 0); break; default: /* Invalid */ MIPS_INVAL("MASK DPAW.PH"); gen_reserved_instruction(ctx); break; } break; case OPC_INSV_DSP: op2 = MASK_INSV(ctx->opcode); switch (op2) { case OPC_INSV: check_dsp(ctx); { TCGv t0, t1; if (rt == 0) { break; } t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_load_gpr(t1, rs); gen_helper_insv(cpu_gpr[rt], cpu_env, t1, t0); tcg_temp_free(t0); tcg_temp_free(t1); break; } default: /* Invalid */ MIPS_INVAL("MASK INSV"); gen_reserved_instruction(ctx); break; } break; case OPC_APPEND_DSP: gen_mipsdsp_append(env, ctx, op1, rt, rs, rd); break; case OPC_EXTR_W_DSP: op2 = MASK_EXTR_W(ctx->opcode); switch (op2) { case OPC_EXTR_W: case OPC_EXTR_R_W: case OPC_EXTR_RS_W: case OPC_EXTR_S_H: case OPC_EXTRV_S_H: case OPC_EXTRV_W: case OPC_EXTRV_R_W: case OPC_EXTRV_RS_W: case OPC_EXTP: case OPC_EXTPV: case OPC_EXTPDP: case OPC_EXTPDPV: gen_mipsdsp_accinsn(ctx, op1, op2, rt, rs, rd, 1); break; case OPC_RDDSP: gen_mipsdsp_accinsn(ctx, op1, op2, rd, rs, rt, 1); break; case OPC_SHILO: case OPC_SHILOV: case OPC_MTHLIP: case OPC_WRDSP: gen_mipsdsp_accinsn(ctx, op1, op2, rd, rs, rt, 0); break; default: /* Invalid */ MIPS_INVAL("MASK EXTR.W"); gen_reserved_instruction(ctx); break; } break; #if defined(TARGET_MIPS64) case OPC_DDIV_G_2E: case OPC_DDIVU_G_2E: case OPC_DMULT_G_2E: case OPC_DMULTU_G_2E: case OPC_DMOD_G_2E: case OPC_DMODU_G_2E: check_insn(ctx, INSN_LOONGSON2E); gen_loongson_integer(ctx, op1, rd, rs, rt); break; case OPC_ABSQ_S_QH_DSP: op2 = MASK_ABSQ_S_QH(ctx->opcode); switch (op2) { case OPC_PRECEQ_L_PWL: case OPC_PRECEQ_L_PWR: case OPC_PRECEQ_PW_QHL: case OPC_PRECEQ_PW_QHR: case OPC_PRECEQ_PW_QHLA: case OPC_PRECEQ_PW_QHRA: case OPC_PRECEQU_QH_OBL: case OPC_PRECEQU_QH_OBR: case OPC_PRECEQU_QH_OBLA: case OPC_PRECEQU_QH_OBRA: case OPC_PRECEU_QH_OBL: case OPC_PRECEU_QH_OBR: case OPC_PRECEU_QH_OBLA: case OPC_PRECEU_QH_OBRA: case OPC_ABSQ_S_OB: case OPC_ABSQ_S_PW: case OPC_ABSQ_S_QH: gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt); break; case OPC_REPL_OB: case OPC_REPL_PW: case OPC_REPL_QH: case OPC_REPLV_OB: case OPC_REPLV_PW: case OPC_REPLV_QH: gen_mipsdsp_bitinsn(ctx, op1, op2, rd, rt); break; default: /* Invalid */ MIPS_INVAL("MASK ABSQ_S.QH"); gen_reserved_instruction(ctx); break; } break; case OPC_ADDU_OB_DSP: op2 = MASK_ADDU_OB(ctx->opcode); switch (op2) { case OPC_RADDU_L_OB: case OPC_SUBQ_PW: case OPC_SUBQ_S_PW: case OPC_SUBQ_QH: case OPC_SUBQ_S_QH: case OPC_SUBU_OB: case OPC_SUBU_S_OB: case OPC_SUBU_QH: case OPC_SUBU_S_QH: case OPC_SUBUH_OB: case OPC_SUBUH_R_OB: case OPC_ADDQ_PW: case OPC_ADDQ_S_PW: case OPC_ADDQ_QH: case OPC_ADDQ_S_QH: case OPC_ADDU_OB: case OPC_ADDU_S_OB: case OPC_ADDU_QH: case OPC_ADDU_S_QH: case OPC_ADDUH_OB: case OPC_ADDUH_R_OB: gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt); break; case OPC_MULEQ_S_PW_QHL: case OPC_MULEQ_S_PW_QHR: case OPC_MULEU_S_QH_OBL: case OPC_MULEU_S_QH_OBR: case OPC_MULQ_RS_QH: gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 1); break; default: /* Invalid */ MIPS_INVAL("MASK ADDU.OB"); gen_reserved_instruction(ctx); break; } break; case OPC_CMPU_EQ_OB_DSP: op2 = MASK_CMPU_EQ_OB(ctx->opcode); switch (op2) { case OPC_PRECR_SRA_QH_PW: case OPC_PRECR_SRA_R_QH_PW: /* Return value is rt. */ gen_mipsdsp_arith(ctx, op1, op2, rt, rs, rd); break; case OPC_PRECR_OB_QH: case OPC_PRECRQ_OB_QH: case OPC_PRECRQ_PW_L: case OPC_PRECRQ_QH_PW: case OPC_PRECRQ_RS_QH_PW: case OPC_PRECRQU_S_OB_QH: gen_mipsdsp_arith(ctx, op1, op2, rd, rs, rt); break; case OPC_CMPU_EQ_OB: case OPC_CMPU_LT_OB: case OPC_CMPU_LE_OB: case OPC_CMP_EQ_QH: case OPC_CMP_LT_QH: case OPC_CMP_LE_QH: case OPC_CMP_EQ_PW: case OPC_CMP_LT_PW: case OPC_CMP_LE_PW: gen_mipsdsp_add_cmp_pick(ctx, op1, op2, rd, rs, rt, 0); break; case OPC_CMPGDU_EQ_OB: case OPC_CMPGDU_LT_OB: case OPC_CMPGDU_LE_OB: case OPC_CMPGU_EQ_OB: case OPC_CMPGU_LT_OB: case OPC_CMPGU_LE_OB: case OPC_PACKRL_PW: case OPC_PICK_OB: case OPC_PICK_PW: case OPC_PICK_QH: gen_mipsdsp_add_cmp_pick(ctx, op1, op2, rd, rs, rt, 1); break; default: /* Invalid */ MIPS_INVAL("MASK CMPU_EQ.OB"); gen_reserved_instruction(ctx); break; } break; case OPC_DAPPEND_DSP: gen_mipsdsp_append(env, ctx, op1, rt, rs, rd); break; case OPC_DEXTR_W_DSP: op2 = MASK_DEXTR_W(ctx->opcode); switch (op2) { case OPC_DEXTP: case OPC_DEXTPDP: case OPC_DEXTPDPV: case OPC_DEXTPV: case OPC_DEXTR_L: case OPC_DEXTR_R_L: case OPC_DEXTR_RS_L: case OPC_DEXTR_W: case OPC_DEXTR_R_W: case OPC_DEXTR_RS_W: case OPC_DEXTR_S_H: case OPC_DEXTRV_L: case OPC_DEXTRV_R_L: case OPC_DEXTRV_RS_L: case OPC_DEXTRV_S_H: case OPC_DEXTRV_W: case OPC_DEXTRV_R_W: case OPC_DEXTRV_RS_W: gen_mipsdsp_accinsn(ctx, op1, op2, rt, rs, rd, 1); break; case OPC_DMTHLIP: case OPC_DSHILO: case OPC_DSHILOV: gen_mipsdsp_accinsn(ctx, op1, op2, rd, rs, rt, 0); break; default: /* Invalid */ MIPS_INVAL("MASK EXTR.W"); gen_reserved_instruction(ctx); break; } break; case OPC_DPAQ_W_QH_DSP: op2 = MASK_DPAQ_W_QH(ctx->opcode); switch (op2) { case OPC_DPAU_H_OBL: case OPC_DPAU_H_OBR: case OPC_DPSU_H_OBL: case OPC_DPSU_H_OBR: case OPC_DPA_W_QH: case OPC_DPAQ_S_W_QH: case OPC_DPS_W_QH: case OPC_DPSQ_S_W_QH: case OPC_MULSAQ_S_W_QH: case OPC_DPAQ_SA_L_PW: case OPC_DPSQ_SA_L_PW: case OPC_MULSAQ_S_L_PW: gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 0); break; case OPC_MAQ_S_W_QHLL: case OPC_MAQ_S_W_QHLR: case OPC_MAQ_S_W_QHRL: case OPC_MAQ_S_W_QHRR: case OPC_MAQ_SA_W_QHLL: case OPC_MAQ_SA_W_QHLR: case OPC_MAQ_SA_W_QHRL: case OPC_MAQ_SA_W_QHRR: case OPC_MAQ_S_L_PWL: case OPC_MAQ_S_L_PWR: case OPC_DMADD: case OPC_DMADDU: case OPC_DMSUB: case OPC_DMSUBU: gen_mipsdsp_multiply(ctx, op1, op2, rd, rs, rt, 0); break; default: /* Invalid */ MIPS_INVAL("MASK DPAQ.W.QH"); gen_reserved_instruction(ctx); break; } break; case OPC_DINSV_DSP: op2 = MASK_INSV(ctx->opcode); switch (op2) { case OPC_DINSV: { TCGv t0, t1; if (rt == 0) { break; } check_dsp(ctx); t0 = tcg_temp_new(); t1 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_load_gpr(t1, rs); gen_helper_dinsv(cpu_gpr[rt], cpu_env, t1, t0); tcg_temp_free(t0); tcg_temp_free(t1); break; } default: /* Invalid */ MIPS_INVAL("MASK DINSV"); gen_reserved_instruction(ctx); break; } break; case OPC_SHLL_OB_DSP: gen_mipsdsp_shift(ctx, op1, rd, rs, rt); break; #endif default: /* Invalid */ MIPS_INVAL("special3_legacy"); gen_reserved_instruction(ctx); break; } } #if defined(TARGET_MIPS64) static void decode_mmi0(CPUMIPSState *env, DisasContext *ctx) { uint32_t opc = MASK_MMI0(ctx->opcode); switch (opc) { case MMI_OPC_0_PADDW: /* TODO: MMI_OPC_0_PADDW */ case MMI_OPC_0_PSUBW: /* TODO: MMI_OPC_0_PSUBW */ case MMI_OPC_0_PCGTW: /* TODO: MMI_OPC_0_PCGTW */ case MMI_OPC_0_PMAXW: /* TODO: MMI_OPC_0_PMAXW */ case MMI_OPC_0_PADDH: /* TODO: MMI_OPC_0_PADDH */ case MMI_OPC_0_PSUBH: /* TODO: MMI_OPC_0_PSUBH */ case MMI_OPC_0_PCGTH: /* TODO: MMI_OPC_0_PCGTH */ case MMI_OPC_0_PMAXH: /* TODO: MMI_OPC_0_PMAXH */ case MMI_OPC_0_PADDB: /* TODO: MMI_OPC_0_PADDB */ case MMI_OPC_0_PSUBB: /* TODO: MMI_OPC_0_PSUBB */ case MMI_OPC_0_PCGTB: /* TODO: MMI_OPC_0_PCGTB */ case MMI_OPC_0_PADDSW: /* TODO: MMI_OPC_0_PADDSW */ case MMI_OPC_0_PSUBSW: /* TODO: MMI_OPC_0_PSUBSW */ case MMI_OPC_0_PEXTLW: /* TODO: MMI_OPC_0_PEXTLW */ case MMI_OPC_0_PPACW: /* TODO: MMI_OPC_0_PPACW */ case MMI_OPC_0_PADDSH: /* TODO: MMI_OPC_0_PADDSH */ case MMI_OPC_0_PSUBSH: /* TODO: MMI_OPC_0_PSUBSH */ case MMI_OPC_0_PEXTLH: /* TODO: MMI_OPC_0_PEXTLH */ case MMI_OPC_0_PPACH: /* TODO: MMI_OPC_0_PPACH */ case MMI_OPC_0_PADDSB: /* TODO: MMI_OPC_0_PADDSB */ case MMI_OPC_0_PSUBSB: /* TODO: MMI_OPC_0_PSUBSB */ case MMI_OPC_0_PEXTLB: /* TODO: MMI_OPC_0_PEXTLB */ case MMI_OPC_0_PPACB: /* TODO: MMI_OPC_0_PPACB */ case MMI_OPC_0_PEXT5: /* TODO: MMI_OPC_0_PEXT5 */ case MMI_OPC_0_PPAC5: /* TODO: MMI_OPC_0_PPAC5 */ gen_reserved_instruction(ctx); /* TODO: MMI_OPC_CLASS_MMI0 */ break; default: MIPS_INVAL("TX79 MMI class MMI0"); gen_reserved_instruction(ctx); break; } } static void decode_mmi1(CPUMIPSState *env, DisasContext *ctx) { uint32_t opc = MASK_MMI1(ctx->opcode); switch (opc) { case MMI_OPC_1_PABSW: /* TODO: MMI_OPC_1_PABSW */ case MMI_OPC_1_PCEQW: /* TODO: MMI_OPC_1_PCEQW */ case MMI_OPC_1_PMINW: /* TODO: MMI_OPC_1_PMINW */ case MMI_OPC_1_PADSBH: /* TODO: MMI_OPC_1_PADSBH */ case MMI_OPC_1_PABSH: /* TODO: MMI_OPC_1_PABSH */ case MMI_OPC_1_PCEQH: /* TODO: MMI_OPC_1_PCEQH */ case MMI_OPC_1_PMINH: /* TODO: MMI_OPC_1_PMINH */ case MMI_OPC_1_PCEQB: /* TODO: MMI_OPC_1_PCEQB */ case MMI_OPC_1_PADDUW: /* TODO: MMI_OPC_1_PADDUW */ case MMI_OPC_1_PSUBUW: /* TODO: MMI_OPC_1_PSUBUW */ case MMI_OPC_1_PEXTUW: /* TODO: MMI_OPC_1_PEXTUW */ case MMI_OPC_1_PADDUH: /* TODO: MMI_OPC_1_PADDUH */ case MMI_OPC_1_PSUBUH: /* TODO: MMI_OPC_1_PSUBUH */ case MMI_OPC_1_PEXTUH: /* TODO: MMI_OPC_1_PEXTUH */ case MMI_OPC_1_PADDUB: /* TODO: MMI_OPC_1_PADDUB */ case MMI_OPC_1_PSUBUB: /* TODO: MMI_OPC_1_PSUBUB */ case MMI_OPC_1_PEXTUB: /* TODO: MMI_OPC_1_PEXTUB */ case MMI_OPC_1_QFSRV: /* TODO: MMI_OPC_1_QFSRV */ gen_reserved_instruction(ctx); /* TODO: MMI_OPC_CLASS_MMI1 */ break; default: MIPS_INVAL("TX79 MMI class MMI1"); gen_reserved_instruction(ctx); break; } } static void decode_mmi2(CPUMIPSState *env, DisasContext *ctx) { uint32_t opc = MASK_MMI2(ctx->opcode); switch (opc) { case MMI_OPC_2_PMADDW: /* TODO: MMI_OPC_2_PMADDW */ case MMI_OPC_2_PSLLVW: /* TODO: MMI_OPC_2_PSLLVW */ case MMI_OPC_2_PSRLVW: /* TODO: MMI_OPC_2_PSRLVW */ case MMI_OPC_2_PMSUBW: /* TODO: MMI_OPC_2_PMSUBW */ case MMI_OPC_2_PMFHI: /* TODO: MMI_OPC_2_PMFHI */ case MMI_OPC_2_PMFLO: /* TODO: MMI_OPC_2_PMFLO */ case MMI_OPC_2_PINTH: /* TODO: MMI_OPC_2_PINTH */ case MMI_OPC_2_PMULTW: /* TODO: MMI_OPC_2_PMULTW */ case MMI_OPC_2_PDIVW: /* TODO: MMI_OPC_2_PDIVW */ case MMI_OPC_2_PMADDH: /* TODO: MMI_OPC_2_PMADDH */ case MMI_OPC_2_PHMADH: /* TODO: MMI_OPC_2_PHMADH */ case MMI_OPC_2_PAND: /* TODO: MMI_OPC_2_PAND */ case MMI_OPC_2_PXOR: /* TODO: MMI_OPC_2_PXOR */ case MMI_OPC_2_PMSUBH: /* TODO: MMI_OPC_2_PMSUBH */ case MMI_OPC_2_PHMSBH: /* TODO: MMI_OPC_2_PHMSBH */ case MMI_OPC_2_PEXEH: /* TODO: MMI_OPC_2_PEXEH */ case MMI_OPC_2_PREVH: /* TODO: MMI_OPC_2_PREVH */ case MMI_OPC_2_PMULTH: /* TODO: MMI_OPC_2_PMULTH */ case MMI_OPC_2_PDIVBW: /* TODO: MMI_OPC_2_PDIVBW */ case MMI_OPC_2_PEXEW: /* TODO: MMI_OPC_2_PEXEW */ case MMI_OPC_2_PROT3W: /* TODO: MMI_OPC_2_PROT3W */ gen_reserved_instruction(ctx); /* TODO: MMI_OPC_CLASS_MMI2 */ break; case MMI_OPC_2_PCPYLD: gen_mmi_pcpyld(ctx); break; default: MIPS_INVAL("TX79 MMI class MMI2"); gen_reserved_instruction(ctx); break; } } static void decode_mmi3(CPUMIPSState *env, DisasContext *ctx) { uint32_t opc = MASK_MMI3(ctx->opcode); switch (opc) { case MMI_OPC_3_PMADDUW: /* TODO: MMI_OPC_3_PMADDUW */ case MMI_OPC_3_PSRAVW: /* TODO: MMI_OPC_3_PSRAVW */ case MMI_OPC_3_PMTHI: /* TODO: MMI_OPC_3_PMTHI */ case MMI_OPC_3_PMTLO: /* TODO: MMI_OPC_3_PMTLO */ case MMI_OPC_3_PINTEH: /* TODO: MMI_OPC_3_PINTEH */ case MMI_OPC_3_PMULTUW: /* TODO: MMI_OPC_3_PMULTUW */ case MMI_OPC_3_PDIVUW: /* TODO: MMI_OPC_3_PDIVUW */ case MMI_OPC_3_POR: /* TODO: MMI_OPC_3_POR */ case MMI_OPC_3_PNOR: /* TODO: MMI_OPC_3_PNOR */ case MMI_OPC_3_PEXCH: /* TODO: MMI_OPC_3_PEXCH */ case MMI_OPC_3_PEXCW: /* TODO: MMI_OPC_3_PEXCW */ gen_reserved_instruction(ctx); /* TODO: MMI_OPC_CLASS_MMI3 */ break; case MMI_OPC_3_PCPYH: gen_mmi_pcpyh(ctx); break; case MMI_OPC_3_PCPYUD: gen_mmi_pcpyud(ctx); break; default: MIPS_INVAL("TX79 MMI class MMI3"); gen_reserved_instruction(ctx); break; } } static void decode_mmi(CPUMIPSState *env, DisasContext *ctx) { uint32_t opc = MASK_MMI(ctx->opcode); int rs = extract32(ctx->opcode, 21, 5); int rt = extract32(ctx->opcode, 16, 5); int rd = extract32(ctx->opcode, 11, 5); switch (opc) { case MMI_OPC_CLASS_MMI0: decode_mmi0(env, ctx); break; case MMI_OPC_CLASS_MMI1: decode_mmi1(env, ctx); break; case MMI_OPC_CLASS_MMI2: decode_mmi2(env, ctx); break; case MMI_OPC_CLASS_MMI3: decode_mmi3(env, ctx); break; case MMI_OPC_MULT1: case MMI_OPC_MULTU1: case MMI_OPC_MADD: case MMI_OPC_MADDU: case MMI_OPC_MADD1: case MMI_OPC_MADDU1: gen_mul_txx9(ctx, opc, rd, rs, rt); break; case MMI_OPC_DIV1: case MMI_OPC_DIVU1: gen_div1_tx79(ctx, opc, rs, rt); break; case MMI_OPC_MTLO1: case MMI_OPC_MTHI1: gen_HILO1_tx79(ctx, opc, rs); break; case MMI_OPC_MFLO1: case MMI_OPC_MFHI1: gen_HILO1_tx79(ctx, opc, rd); break; case MMI_OPC_PLZCW: /* TODO: MMI_OPC_PLZCW */ case MMI_OPC_PMFHL: /* TODO: MMI_OPC_PMFHL */ case MMI_OPC_PMTHL: /* TODO: MMI_OPC_PMTHL */ case MMI_OPC_PSLLH: /* TODO: MMI_OPC_PSLLH */ case MMI_OPC_PSRLH: /* TODO: MMI_OPC_PSRLH */ case MMI_OPC_PSRAH: /* TODO: MMI_OPC_PSRAH */ case MMI_OPC_PSLLW: /* TODO: MMI_OPC_PSLLW */ case MMI_OPC_PSRLW: /* TODO: MMI_OPC_PSRLW */ case MMI_OPC_PSRAW: /* TODO: MMI_OPC_PSRAW */ gen_reserved_instruction(ctx); /* TODO: MMI_OPC_CLASS_MMI */ break; default: MIPS_INVAL("TX79 MMI class"); gen_reserved_instruction(ctx); break; } } static void gen_mmi_lq(CPUMIPSState *env, DisasContext *ctx) { gen_reserved_instruction(ctx); /* TODO: MMI_OPC_LQ */ } static void gen_mmi_sq(DisasContext *ctx, int base, int rt, int offset) { gen_reserved_instruction(ctx); /* TODO: MMI_OPC_SQ */ } /* * The TX79-specific instruction Store Quadword * * +--------+-------+-------+------------------------+ * | 011111 | base | rt | offset | SQ * +--------+-------+-------+------------------------+ * 6 5 5 16 * * has the same opcode as the Read Hardware Register instruction * * +--------+-------+-------+-------+-------+--------+ * | 011111 | 00000 | rt | rd | 00000 | 111011 | RDHWR * +--------+-------+-------+-------+-------+--------+ * 6 5 5 5 5 6 * * that is required, trapped and emulated by the Linux kernel. However, all * RDHWR encodings yield address error exceptions on the TX79 since the SQ * offset is odd. Therefore all valid SQ instructions can execute normally. * In user mode, QEMU must verify the upper and lower 11 bits to distinguish * between SQ and RDHWR, as the Linux kernel does. */ static void decode_mmi_sq(CPUMIPSState *env, DisasContext *ctx) { int base = extract32(ctx->opcode, 21, 5); int rt = extract32(ctx->opcode, 16, 5); int offset = extract32(ctx->opcode, 0, 16); #ifdef CONFIG_USER_ONLY uint32_t op1 = MASK_SPECIAL3(ctx->opcode); uint32_t op2 = extract32(ctx->opcode, 6, 5); if (base == 0 && op2 == 0 && op1 == OPC_RDHWR) { int rd = extract32(ctx->opcode, 11, 5); gen_rdhwr(ctx, rt, rd, 0); return; } #endif gen_mmi_sq(ctx, base, rt, offset); } #endif static void decode_opc_special3(CPUMIPSState *env, DisasContext *ctx) { int rs, rt, rd, sa; uint32_t op1, op2; int16_t imm; rs = (ctx->opcode >> 21) & 0x1f; rt = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; sa = (ctx->opcode >> 6) & 0x1f; imm = sextract32(ctx->opcode, 7, 9); op1 = MASK_SPECIAL3(ctx->opcode); /* * EVA loads and stores overlap Loongson 2E instructions decoded by * decode_opc_special3_legacy(), so be careful to allow their decoding when * EVA is absent. */ if (ctx->eva) { switch (op1) { case OPC_LWLE: case OPC_LWRE: check_insn_opc_removed(ctx, ISA_MIPS_R6); /* fall through */ case OPC_LBUE: case OPC_LHUE: case OPC_LBE: case OPC_LHE: case OPC_LLE: case OPC_LWE: check_cp0_enabled(ctx); gen_ld(ctx, op1, rt, rs, imm); return; case OPC_SWLE: case OPC_SWRE: check_insn_opc_removed(ctx, ISA_MIPS_R6); /* fall through */ case OPC_SBE: case OPC_SHE: case OPC_SWE: check_cp0_enabled(ctx); gen_st(ctx, op1, rt, rs, imm); return; case OPC_SCE: check_cp0_enabled(ctx); gen_st_cond(ctx, rt, rs, imm, MO_TESL, true); return; case OPC_CACHEE: check_cp0_enabled(ctx); if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) { gen_cache_operation(ctx, rt, rs, imm); } /* Treat as NOP. */ return; case OPC_PREFE: check_cp0_enabled(ctx); /* Treat as NOP. */ return; } } switch (op1) { case OPC_EXT: case OPC_INS: check_insn(ctx, ISA_MIPS_R2); gen_bitops(ctx, op1, rt, rs, sa, rd); break; case OPC_BSHFL: op2 = MASK_BSHFL(ctx->opcode); switch (op2) { case OPC_ALIGN: case OPC_ALIGN_1: case OPC_ALIGN_2: case OPC_ALIGN_3: case OPC_BITSWAP: check_insn(ctx, ISA_MIPS_R6); decode_opc_special3_r6(env, ctx); break; default: check_insn(ctx, ISA_MIPS_R2); gen_bshfl(ctx, op2, rt, rd); break; } break; #if defined(TARGET_MIPS64) case OPC_DEXTM: case OPC_DEXTU: case OPC_DEXT: case OPC_DINSM: case OPC_DINSU: case OPC_DINS: check_insn(ctx, ISA_MIPS_R2); check_mips_64(ctx); gen_bitops(ctx, op1, rt, rs, sa, rd); break; case OPC_DBSHFL: op2 = MASK_DBSHFL(ctx->opcode); switch (op2) { case OPC_DALIGN: case OPC_DALIGN_1: case OPC_DALIGN_2: case OPC_DALIGN_3: case OPC_DALIGN_4: case OPC_DALIGN_5: case OPC_DALIGN_6: case OPC_DALIGN_7: case OPC_DBITSWAP: check_insn(ctx, ISA_MIPS_R6); decode_opc_special3_r6(env, ctx); break; default: check_insn(ctx, ISA_MIPS_R2); check_mips_64(ctx); op2 = MASK_DBSHFL(ctx->opcode); gen_bshfl(ctx, op2, rt, rd); break; } break; #endif case OPC_RDHWR: gen_rdhwr(ctx, rt, rd, extract32(ctx->opcode, 6, 3)); break; case OPC_FORK: check_mt(ctx); { TCGv t0 = tcg_temp_new(); TCGv t1 = tcg_temp_new(); gen_load_gpr(t0, rt); gen_load_gpr(t1, rs); gen_helper_fork(t0, t1); tcg_temp_free(t0); tcg_temp_free(t1); } break; case OPC_YIELD: check_mt(ctx); { TCGv t0 = tcg_temp_new(); gen_load_gpr(t0, rs); gen_helper_yield(t0, cpu_env, t0); gen_store_gpr(t0, rd); tcg_temp_free(t0); } break; default: if (ctx->insn_flags & ISA_MIPS_R6) { decode_opc_special3_r6(env, ctx); } else { decode_opc_special3_legacy(env, ctx); } } } /* MIPS SIMD Architecture (MSA) */ static inline int check_msa_access(DisasContext *ctx) { if (unlikely((ctx->hflags & MIPS_HFLAG_FPU) && !(ctx->hflags & MIPS_HFLAG_F64))) { gen_reserved_instruction(ctx); return 0; } if (unlikely(!(ctx->hflags & MIPS_HFLAG_MSA))) { if (ctx->insn_flags & ASE_MSA) { generate_exception_end(ctx, EXCP_MSADIS); return 0; } else { gen_reserved_instruction(ctx); return 0; } } return 1; } static void gen_check_zero_element(TCGv tresult, uint8_t df, uint8_t wt) { /* generates tcg ops to check if any element is 0 */ /* Note this function only works with MSA_WRLEN = 128 */ uint64_t eval_zero_or_big = 0; uint64_t eval_big = 0; TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); switch (df) { case DF_BYTE: eval_zero_or_big = 0x0101010101010101ULL; eval_big = 0x8080808080808080ULL; break; case DF_HALF: eval_zero_or_big = 0x0001000100010001ULL; eval_big = 0x8000800080008000ULL; break; case DF_WORD: eval_zero_or_big = 0x0000000100000001ULL; eval_big = 0x8000000080000000ULL; break; case DF_DOUBLE: eval_zero_or_big = 0x0000000000000001ULL; eval_big = 0x8000000000000000ULL; break; } tcg_gen_subi_i64(t0, msa_wr_d[wt << 1], eval_zero_or_big); tcg_gen_andc_i64(t0, t0, msa_wr_d[wt << 1]); tcg_gen_andi_i64(t0, t0, eval_big); tcg_gen_subi_i64(t1, msa_wr_d[(wt << 1) + 1], eval_zero_or_big); tcg_gen_andc_i64(t1, t1, msa_wr_d[(wt << 1) + 1]); tcg_gen_andi_i64(t1, t1, eval_big); tcg_gen_or_i64(t0, t0, t1); /* if all bits are zero then all elements are not zero */ /* if some bit is non-zero then some element is zero */ tcg_gen_setcondi_i64(TCG_COND_NE, t0, t0, 0); tcg_gen_trunc_i64_tl(tresult, t0); tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); } static void gen_msa_branch(CPUMIPSState *env, DisasContext *ctx, uint32_t op1) { uint8_t df = (ctx->opcode >> 21) & 0x3; uint8_t wt = (ctx->opcode >> 16) & 0x1f; int64_t s16 = (int16_t)ctx->opcode; check_msa_access(ctx); if (ctx->hflags & MIPS_HFLAG_BMASK) { gen_reserved_instruction(ctx); return; } switch (op1) { case OPC_BZ_V: case OPC_BNZ_V: { TCGv_i64 t0 = tcg_temp_new_i64(); tcg_gen_or_i64(t0, msa_wr_d[wt << 1], msa_wr_d[(wt << 1) + 1]); tcg_gen_setcondi_i64((op1 == OPC_BZ_V) ? TCG_COND_EQ : TCG_COND_NE, t0, t0, 0); tcg_gen_trunc_i64_tl(bcond, t0); tcg_temp_free_i64(t0); } break; case OPC_BZ_B: case OPC_BZ_H: case OPC_BZ_W: case OPC_BZ_D: gen_check_zero_element(bcond, df, wt); break; case OPC_BNZ_B: case OPC_BNZ_H: case OPC_BNZ_W: case OPC_BNZ_D: gen_check_zero_element(bcond, df, wt); tcg_gen_setcondi_tl(TCG_COND_EQ, bcond, bcond, 0); break; } ctx->btarget = ctx->base.pc_next + (s16 << 2) + 4; ctx->hflags |= MIPS_HFLAG_BC; ctx->hflags |= MIPS_HFLAG_BDS32; } static void gen_msa_i8(CPUMIPSState *env, DisasContext *ctx) { #define MASK_MSA_I8(op) (MASK_MSA_MINOR(op) | (op & (0x03 << 24))) uint8_t i8 = (ctx->opcode >> 16) & 0xff; uint8_t ws = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; TCGv_i32 twd = tcg_const_i32(wd); TCGv_i32 tws = tcg_const_i32(ws); TCGv_i32 ti8 = tcg_const_i32(i8); switch (MASK_MSA_I8(ctx->opcode)) { case OPC_ANDI_B: gen_helper_msa_andi_b(cpu_env, twd, tws, ti8); break; case OPC_ORI_B: gen_helper_msa_ori_b(cpu_env, twd, tws, ti8); break; case OPC_NORI_B: gen_helper_msa_nori_b(cpu_env, twd, tws, ti8); break; case OPC_XORI_B: gen_helper_msa_xori_b(cpu_env, twd, tws, ti8); break; case OPC_BMNZI_B: gen_helper_msa_bmnzi_b(cpu_env, twd, tws, ti8); break; case OPC_BMZI_B: gen_helper_msa_bmzi_b(cpu_env, twd, tws, ti8); break; case OPC_BSELI_B: gen_helper_msa_bseli_b(cpu_env, twd, tws, ti8); break; case OPC_SHF_B: case OPC_SHF_H: case OPC_SHF_W: { uint8_t df = (ctx->opcode >> 24) & 0x3; if (df == DF_DOUBLE) { gen_reserved_instruction(ctx); } else { TCGv_i32 tdf = tcg_const_i32(df); gen_helper_msa_shf_df(cpu_env, tdf, twd, tws, ti8); tcg_temp_free_i32(tdf); } } break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } tcg_temp_free_i32(twd); tcg_temp_free_i32(tws); tcg_temp_free_i32(ti8); } static void gen_msa_i5(CPUMIPSState *env, DisasContext *ctx) { #define MASK_MSA_I5(op) (MASK_MSA_MINOR(op) | (op & (0x7 << 23))) uint8_t df = (ctx->opcode >> 21) & 0x3; int8_t s5 = (int8_t) sextract32(ctx->opcode, 16, 5); uint8_t u5 = (ctx->opcode >> 16) & 0x1f; uint8_t ws = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; TCGv_i32 tdf = tcg_const_i32(df); TCGv_i32 twd = tcg_const_i32(wd); TCGv_i32 tws = tcg_const_i32(ws); TCGv_i32 timm = tcg_temp_new_i32(); tcg_gen_movi_i32(timm, u5); switch (MASK_MSA_I5(ctx->opcode)) { case OPC_ADDVI_df: gen_helper_msa_addvi_df(cpu_env, tdf, twd, tws, timm); break; case OPC_SUBVI_df: gen_helper_msa_subvi_df(cpu_env, tdf, twd, tws, timm); break; case OPC_MAXI_S_df: tcg_gen_movi_i32(timm, s5); gen_helper_msa_maxi_s_df(cpu_env, tdf, twd, tws, timm); break; case OPC_MAXI_U_df: gen_helper_msa_maxi_u_df(cpu_env, tdf, twd, tws, timm); break; case OPC_MINI_S_df: tcg_gen_movi_i32(timm, s5); gen_helper_msa_mini_s_df(cpu_env, tdf, twd, tws, timm); break; case OPC_MINI_U_df: gen_helper_msa_mini_u_df(cpu_env, tdf, twd, tws, timm); break; case OPC_CEQI_df: tcg_gen_movi_i32(timm, s5); gen_helper_msa_ceqi_df(cpu_env, tdf, twd, tws, timm); break; case OPC_CLTI_S_df: tcg_gen_movi_i32(timm, s5); gen_helper_msa_clti_s_df(cpu_env, tdf, twd, tws, timm); break; case OPC_CLTI_U_df: gen_helper_msa_clti_u_df(cpu_env, tdf, twd, tws, timm); break; case OPC_CLEI_S_df: tcg_gen_movi_i32(timm, s5); gen_helper_msa_clei_s_df(cpu_env, tdf, twd, tws, timm); break; case OPC_CLEI_U_df: gen_helper_msa_clei_u_df(cpu_env, tdf, twd, tws, timm); break; case OPC_LDI_df: { int32_t s10 = sextract32(ctx->opcode, 11, 10); tcg_gen_movi_i32(timm, s10); gen_helper_msa_ldi_df(cpu_env, tdf, twd, timm); } break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } tcg_temp_free_i32(tdf); tcg_temp_free_i32(twd); tcg_temp_free_i32(tws); tcg_temp_free_i32(timm); } static void gen_msa_bit(CPUMIPSState *env, DisasContext *ctx) { #define MASK_MSA_BIT(op) (MASK_MSA_MINOR(op) | (op & (0x7 << 23))) uint8_t dfm = (ctx->opcode >> 16) & 0x7f; uint32_t df = 0, m = 0; uint8_t ws = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; TCGv_i32 tdf; TCGv_i32 tm; TCGv_i32 twd; TCGv_i32 tws; if ((dfm & 0x40) == 0x00) { m = dfm & 0x3f; df = DF_DOUBLE; } else if ((dfm & 0x60) == 0x40) { m = dfm & 0x1f; df = DF_WORD; } else if ((dfm & 0x70) == 0x60) { m = dfm & 0x0f; df = DF_HALF; } else if ((dfm & 0x78) == 0x70) { m = dfm & 0x7; df = DF_BYTE; } else { gen_reserved_instruction(ctx); return; } tdf = tcg_const_i32(df); tm = tcg_const_i32(m); twd = tcg_const_i32(wd); tws = tcg_const_i32(ws); switch (MASK_MSA_BIT(ctx->opcode)) { case OPC_SLLI_df: gen_helper_msa_slli_df(cpu_env, tdf, twd, tws, tm); break; case OPC_SRAI_df: gen_helper_msa_srai_df(cpu_env, tdf, twd, tws, tm); break; case OPC_SRLI_df: gen_helper_msa_srli_df(cpu_env, tdf, twd, tws, tm); break; case OPC_BCLRI_df: gen_helper_msa_bclri_df(cpu_env, tdf, twd, tws, tm); break; case OPC_BSETI_df: gen_helper_msa_bseti_df(cpu_env, tdf, twd, tws, tm); break; case OPC_BNEGI_df: gen_helper_msa_bnegi_df(cpu_env, tdf, twd, tws, tm); break; case OPC_BINSLI_df: gen_helper_msa_binsli_df(cpu_env, tdf, twd, tws, tm); break; case OPC_BINSRI_df: gen_helper_msa_binsri_df(cpu_env, tdf, twd, tws, tm); break; case OPC_SAT_S_df: gen_helper_msa_sat_s_df(cpu_env, tdf, twd, tws, tm); break; case OPC_SAT_U_df: gen_helper_msa_sat_u_df(cpu_env, tdf, twd, tws, tm); break; case OPC_SRARI_df: gen_helper_msa_srari_df(cpu_env, tdf, twd, tws, tm); break; case OPC_SRLRI_df: gen_helper_msa_srlri_df(cpu_env, tdf, twd, tws, tm); break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } tcg_temp_free_i32(tdf); tcg_temp_free_i32(tm); tcg_temp_free_i32(twd); tcg_temp_free_i32(tws); } static void gen_msa_3r(CPUMIPSState *env, DisasContext *ctx) { #define MASK_MSA_3R(op) (MASK_MSA_MINOR(op) | (op & (0x7 << 23))) uint8_t df = (ctx->opcode >> 21) & 0x3; uint8_t wt = (ctx->opcode >> 16) & 0x1f; uint8_t ws = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; TCGv_i32 tdf = tcg_const_i32(df); TCGv_i32 twd = tcg_const_i32(wd); TCGv_i32 tws = tcg_const_i32(ws); TCGv_i32 twt = tcg_const_i32(wt); switch (MASK_MSA_3R(ctx->opcode)) { case OPC_BINSL_df: switch (df) { case DF_BYTE: gen_helper_msa_binsl_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_binsl_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_binsl_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_binsl_d(cpu_env, twd, tws, twt); break; } break; case OPC_BINSR_df: switch (df) { case DF_BYTE: gen_helper_msa_binsr_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_binsr_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_binsr_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_binsr_d(cpu_env, twd, tws, twt); break; } break; case OPC_BCLR_df: switch (df) { case DF_BYTE: gen_helper_msa_bclr_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_bclr_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_bclr_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_bclr_d(cpu_env, twd, tws, twt); break; } break; case OPC_BNEG_df: switch (df) { case DF_BYTE: gen_helper_msa_bneg_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_bneg_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_bneg_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_bneg_d(cpu_env, twd, tws, twt); break; } break; case OPC_BSET_df: switch (df) { case DF_BYTE: gen_helper_msa_bset_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_bset_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_bset_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_bset_d(cpu_env, twd, tws, twt); break; } break; case OPC_ADD_A_df: switch (df) { case DF_BYTE: gen_helper_msa_add_a_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_add_a_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_add_a_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_add_a_d(cpu_env, twd, tws, twt); break; } break; case OPC_ADDS_A_df: switch (df) { case DF_BYTE: gen_helper_msa_adds_a_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_adds_a_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_adds_a_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_adds_a_d(cpu_env, twd, tws, twt); break; } break; case OPC_ADDS_S_df: switch (df) { case DF_BYTE: gen_helper_msa_adds_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_adds_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_adds_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_adds_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_ADDS_U_df: switch (df) { case DF_BYTE: gen_helper_msa_adds_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_adds_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_adds_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_adds_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_ADDV_df: switch (df) { case DF_BYTE: gen_helper_msa_addv_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_addv_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_addv_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_addv_d(cpu_env, twd, tws, twt); break; } break; case OPC_AVE_S_df: switch (df) { case DF_BYTE: gen_helper_msa_ave_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_ave_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_ave_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_ave_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_AVE_U_df: switch (df) { case DF_BYTE: gen_helper_msa_ave_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_ave_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_ave_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_ave_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_AVER_S_df: switch (df) { case DF_BYTE: gen_helper_msa_aver_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_aver_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_aver_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_aver_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_AVER_U_df: switch (df) { case DF_BYTE: gen_helper_msa_aver_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_aver_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_aver_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_aver_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_CEQ_df: switch (df) { case DF_BYTE: gen_helper_msa_ceq_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_ceq_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_ceq_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_ceq_d(cpu_env, twd, tws, twt); break; } break; case OPC_CLE_S_df: switch (df) { case DF_BYTE: gen_helper_msa_cle_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_cle_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_cle_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_cle_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_CLE_U_df: switch (df) { case DF_BYTE: gen_helper_msa_cle_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_cle_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_cle_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_cle_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_CLT_S_df: switch (df) { case DF_BYTE: gen_helper_msa_clt_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_clt_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_clt_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_clt_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_CLT_U_df: switch (df) { case DF_BYTE: gen_helper_msa_clt_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_clt_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_clt_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_clt_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_DIV_S_df: switch (df) { case DF_BYTE: gen_helper_msa_div_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_div_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_div_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_div_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_DIV_U_df: switch (df) { case DF_BYTE: gen_helper_msa_div_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_div_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_div_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_div_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_MAX_A_df: switch (df) { case DF_BYTE: gen_helper_msa_max_a_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_max_a_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_max_a_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_max_a_d(cpu_env, twd, tws, twt); break; } break; case OPC_MAX_S_df: switch (df) { case DF_BYTE: gen_helper_msa_max_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_max_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_max_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_max_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_MAX_U_df: switch (df) { case DF_BYTE: gen_helper_msa_max_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_max_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_max_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_max_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_MIN_A_df: switch (df) { case DF_BYTE: gen_helper_msa_min_a_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_min_a_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_min_a_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_min_a_d(cpu_env, twd, tws, twt); break; } break; case OPC_MIN_S_df: switch (df) { case DF_BYTE: gen_helper_msa_min_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_min_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_min_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_min_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_MIN_U_df: switch (df) { case DF_BYTE: gen_helper_msa_min_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_min_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_min_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_min_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_MOD_S_df: switch (df) { case DF_BYTE: gen_helper_msa_mod_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_mod_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_mod_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_mod_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_MOD_U_df: switch (df) { case DF_BYTE: gen_helper_msa_mod_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_mod_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_mod_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_mod_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_MADDV_df: switch (df) { case DF_BYTE: gen_helper_msa_maddv_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_maddv_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_maddv_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_maddv_d(cpu_env, twd, tws, twt); break; } break; case OPC_MSUBV_df: switch (df) { case DF_BYTE: gen_helper_msa_msubv_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_msubv_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_msubv_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_msubv_d(cpu_env, twd, tws, twt); break; } break; case OPC_ASUB_S_df: switch (df) { case DF_BYTE: gen_helper_msa_asub_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_asub_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_asub_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_asub_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_ASUB_U_df: switch (df) { case DF_BYTE: gen_helper_msa_asub_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_asub_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_asub_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_asub_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_ILVEV_df: switch (df) { case DF_BYTE: gen_helper_msa_ilvev_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_ilvev_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_ilvev_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_ilvev_d(cpu_env, twd, tws, twt); break; } break; case OPC_ILVOD_df: switch (df) { case DF_BYTE: gen_helper_msa_ilvod_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_ilvod_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_ilvod_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_ilvod_d(cpu_env, twd, tws, twt); break; } break; case OPC_ILVL_df: switch (df) { case DF_BYTE: gen_helper_msa_ilvl_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_ilvl_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_ilvl_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_ilvl_d(cpu_env, twd, tws, twt); break; } break; case OPC_ILVR_df: switch (df) { case DF_BYTE: gen_helper_msa_ilvr_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_ilvr_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_ilvr_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_ilvr_d(cpu_env, twd, tws, twt); break; } break; case OPC_PCKEV_df: switch (df) { case DF_BYTE: gen_helper_msa_pckev_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_pckev_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_pckev_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_pckev_d(cpu_env, twd, tws, twt); break; } break; case OPC_PCKOD_df: switch (df) { case DF_BYTE: gen_helper_msa_pckod_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_pckod_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_pckod_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_pckod_d(cpu_env, twd, tws, twt); break; } break; case OPC_SLL_df: switch (df) { case DF_BYTE: gen_helper_msa_sll_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_sll_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_sll_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_sll_d(cpu_env, twd, tws, twt); break; } break; case OPC_SRA_df: switch (df) { case DF_BYTE: gen_helper_msa_sra_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_sra_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_sra_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_sra_d(cpu_env, twd, tws, twt); break; } break; case OPC_SRAR_df: switch (df) { case DF_BYTE: gen_helper_msa_srar_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_srar_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_srar_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_srar_d(cpu_env, twd, tws, twt); break; } break; case OPC_SRL_df: switch (df) { case DF_BYTE: gen_helper_msa_srl_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_srl_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_srl_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_srl_d(cpu_env, twd, tws, twt); break; } break; case OPC_SRLR_df: switch (df) { case DF_BYTE: gen_helper_msa_srlr_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_srlr_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_srlr_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_srlr_d(cpu_env, twd, tws, twt); break; } break; case OPC_SUBS_S_df: switch (df) { case DF_BYTE: gen_helper_msa_subs_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_subs_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_subs_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_subs_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_MULV_df: switch (df) { case DF_BYTE: gen_helper_msa_mulv_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_mulv_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_mulv_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_mulv_d(cpu_env, twd, tws, twt); break; } break; case OPC_SLD_df: gen_helper_msa_sld_df(cpu_env, tdf, twd, tws, twt); break; case OPC_VSHF_df: gen_helper_msa_vshf_df(cpu_env, tdf, twd, tws, twt); break; case OPC_SUBV_df: switch (df) { case DF_BYTE: gen_helper_msa_subv_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_subv_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_subv_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_subv_d(cpu_env, twd, tws, twt); break; } break; case OPC_SUBS_U_df: switch (df) { case DF_BYTE: gen_helper_msa_subs_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_subs_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_subs_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_subs_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_SPLAT_df: gen_helper_msa_splat_df(cpu_env, tdf, twd, tws, twt); break; case OPC_SUBSUS_U_df: switch (df) { case DF_BYTE: gen_helper_msa_subsus_u_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_subsus_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_subsus_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_subsus_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_SUBSUU_S_df: switch (df) { case DF_BYTE: gen_helper_msa_subsuu_s_b(cpu_env, twd, tws, twt); break; case DF_HALF: gen_helper_msa_subsuu_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_subsuu_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_subsuu_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_DOTP_S_df: case OPC_DOTP_U_df: case OPC_DPADD_S_df: case OPC_DPADD_U_df: case OPC_DPSUB_S_df: case OPC_HADD_S_df: case OPC_DPSUB_U_df: case OPC_HADD_U_df: case OPC_HSUB_S_df: case OPC_HSUB_U_df: if (df == DF_BYTE) { gen_reserved_instruction(ctx); break; } switch (MASK_MSA_3R(ctx->opcode)) { case OPC_HADD_S_df: switch (df) { case DF_HALF: gen_helper_msa_hadd_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_hadd_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_hadd_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_HADD_U_df: switch (df) { case DF_HALF: gen_helper_msa_hadd_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_hadd_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_hadd_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_HSUB_S_df: switch (df) { case DF_HALF: gen_helper_msa_hsub_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_hsub_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_hsub_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_HSUB_U_df: switch (df) { case DF_HALF: gen_helper_msa_hsub_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_hsub_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_hsub_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_DOTP_S_df: switch (df) { case DF_HALF: gen_helper_msa_dotp_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_dotp_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_dotp_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_DOTP_U_df: switch (df) { case DF_HALF: gen_helper_msa_dotp_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_dotp_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_dotp_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_DPADD_S_df: switch (df) { case DF_HALF: gen_helper_msa_dpadd_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_dpadd_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_dpadd_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_DPADD_U_df: switch (df) { case DF_HALF: gen_helper_msa_dpadd_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_dpadd_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_dpadd_u_d(cpu_env, twd, tws, twt); break; } break; case OPC_DPSUB_S_df: switch (df) { case DF_HALF: gen_helper_msa_dpsub_s_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_dpsub_s_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_dpsub_s_d(cpu_env, twd, tws, twt); break; } break; case OPC_DPSUB_U_df: switch (df) { case DF_HALF: gen_helper_msa_dpsub_u_h(cpu_env, twd, tws, twt); break; case DF_WORD: gen_helper_msa_dpsub_u_w(cpu_env, twd, tws, twt); break; case DF_DOUBLE: gen_helper_msa_dpsub_u_d(cpu_env, twd, tws, twt); break; } break; } break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } tcg_temp_free_i32(twd); tcg_temp_free_i32(tws); tcg_temp_free_i32(twt); tcg_temp_free_i32(tdf); } static void gen_msa_elm_3e(CPUMIPSState *env, DisasContext *ctx) { #define MASK_MSA_ELM_DF3E(op) (MASK_MSA_MINOR(op) | (op & (0x3FF << 16))) uint8_t source = (ctx->opcode >> 11) & 0x1f; uint8_t dest = (ctx->opcode >> 6) & 0x1f; TCGv telm = tcg_temp_new(); TCGv_i32 tsr = tcg_const_i32(source); TCGv_i32 tdt = tcg_const_i32(dest); switch (MASK_MSA_ELM_DF3E(ctx->opcode)) { case OPC_CTCMSA: gen_load_gpr(telm, source); gen_helper_msa_ctcmsa(cpu_env, telm, tdt); break; case OPC_CFCMSA: gen_helper_msa_cfcmsa(telm, cpu_env, tsr); gen_store_gpr(telm, dest); break; case OPC_MOVE_V: gen_helper_msa_move_v(cpu_env, tdt, tsr); break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } tcg_temp_free(telm); tcg_temp_free_i32(tdt); tcg_temp_free_i32(tsr); } static void gen_msa_elm_df(CPUMIPSState *env, DisasContext *ctx, uint32_t df, uint32_t n) { #define MASK_MSA_ELM(op) (MASK_MSA_MINOR(op) | (op & (0xf << 22))) uint8_t ws = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; TCGv_i32 tws = tcg_const_i32(ws); TCGv_i32 twd = tcg_const_i32(wd); TCGv_i32 tn = tcg_const_i32(n); TCGv_i32 tdf = tcg_const_i32(df); switch (MASK_MSA_ELM(ctx->opcode)) { case OPC_SLDI_df: gen_helper_msa_sldi_df(cpu_env, tdf, twd, tws, tn); break; case OPC_SPLATI_df: gen_helper_msa_splati_df(cpu_env, tdf, twd, tws, tn); break; case OPC_INSVE_df: gen_helper_msa_insve_df(cpu_env, tdf, twd, tws, tn); break; case OPC_COPY_S_df: case OPC_COPY_U_df: case OPC_INSERT_df: #if !defined(TARGET_MIPS64) /* Double format valid only for MIPS64 */ if (df == DF_DOUBLE) { gen_reserved_instruction(ctx); break; } if ((MASK_MSA_ELM(ctx->opcode) == OPC_COPY_U_df) && (df == DF_WORD)) { gen_reserved_instruction(ctx); break; } #endif switch (MASK_MSA_ELM(ctx->opcode)) { case OPC_COPY_S_df: if (likely(wd != 0)) { switch (df) { case DF_BYTE: gen_helper_msa_copy_s_b(cpu_env, twd, tws, tn); break; case DF_HALF: gen_helper_msa_copy_s_h(cpu_env, twd, tws, tn); break; case DF_WORD: gen_helper_msa_copy_s_w(cpu_env, twd, tws, tn); break; #if defined(TARGET_MIPS64) case DF_DOUBLE: gen_helper_msa_copy_s_d(cpu_env, twd, tws, tn); break; #endif default: assert(0); } } break; case OPC_COPY_U_df: if (likely(wd != 0)) { switch (df) { case DF_BYTE: gen_helper_msa_copy_u_b(cpu_env, twd, tws, tn); break; case DF_HALF: gen_helper_msa_copy_u_h(cpu_env, twd, tws, tn); break; #if defined(TARGET_MIPS64) case DF_WORD: gen_helper_msa_copy_u_w(cpu_env, twd, tws, tn); break; #endif default: assert(0); } } break; case OPC_INSERT_df: switch (df) { case DF_BYTE: gen_helper_msa_insert_b(cpu_env, twd, tws, tn); break; case DF_HALF: gen_helper_msa_insert_h(cpu_env, twd, tws, tn); break; case DF_WORD: gen_helper_msa_insert_w(cpu_env, twd, tws, tn); break; #if defined(TARGET_MIPS64) case DF_DOUBLE: gen_helper_msa_insert_d(cpu_env, twd, tws, tn); break; #endif default: assert(0); } break; } break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); } tcg_temp_free_i32(twd); tcg_temp_free_i32(tws); tcg_temp_free_i32(tn); tcg_temp_free_i32(tdf); } static void gen_msa_elm(CPUMIPSState *env, DisasContext *ctx) { uint8_t dfn = (ctx->opcode >> 16) & 0x3f; uint32_t df = 0, n = 0; if ((dfn & 0x30) == 0x00) { n = dfn & 0x0f; df = DF_BYTE; } else if ((dfn & 0x38) == 0x20) { n = dfn & 0x07; df = DF_HALF; } else if ((dfn & 0x3c) == 0x30) { n = dfn & 0x03; df = DF_WORD; } else if ((dfn & 0x3e) == 0x38) { n = dfn & 0x01; df = DF_DOUBLE; } else if (dfn == 0x3E) { /* CTCMSA, CFCMSA, MOVE.V */ gen_msa_elm_3e(env, ctx); return; } else { gen_reserved_instruction(ctx); return; } gen_msa_elm_df(env, ctx, df, n); } static void gen_msa_3rf(CPUMIPSState *env, DisasContext *ctx) { #define MASK_MSA_3RF(op) (MASK_MSA_MINOR(op) | (op & (0xf << 22))) uint8_t df = (ctx->opcode >> 21) & 0x1; uint8_t wt = (ctx->opcode >> 16) & 0x1f; uint8_t ws = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; TCGv_i32 twd = tcg_const_i32(wd); TCGv_i32 tws = tcg_const_i32(ws); TCGv_i32 twt = tcg_const_i32(wt); TCGv_i32 tdf = tcg_temp_new_i32(); /* adjust df value for floating-point instruction */ tcg_gen_movi_i32(tdf, df + 2); switch (MASK_MSA_3RF(ctx->opcode)) { case OPC_FCAF_df: gen_helper_msa_fcaf_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FADD_df: gen_helper_msa_fadd_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCUN_df: gen_helper_msa_fcun_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSUB_df: gen_helper_msa_fsub_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCOR_df: gen_helper_msa_fcor_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCEQ_df: gen_helper_msa_fceq_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FMUL_df: gen_helper_msa_fmul_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCUNE_df: gen_helper_msa_fcune_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCUEQ_df: gen_helper_msa_fcueq_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FDIV_df: gen_helper_msa_fdiv_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCNE_df: gen_helper_msa_fcne_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCLT_df: gen_helper_msa_fclt_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FMADD_df: gen_helper_msa_fmadd_df(cpu_env, tdf, twd, tws, twt); break; case OPC_MUL_Q_df: tcg_gen_movi_i32(tdf, df + 1); gen_helper_msa_mul_q_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCULT_df: gen_helper_msa_fcult_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FMSUB_df: gen_helper_msa_fmsub_df(cpu_env, tdf, twd, tws, twt); break; case OPC_MADD_Q_df: tcg_gen_movi_i32(tdf, df + 1); gen_helper_msa_madd_q_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCLE_df: gen_helper_msa_fcle_df(cpu_env, tdf, twd, tws, twt); break; case OPC_MSUB_Q_df: tcg_gen_movi_i32(tdf, df + 1); gen_helper_msa_msub_q_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FCULE_df: gen_helper_msa_fcule_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FEXP2_df: gen_helper_msa_fexp2_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSAF_df: gen_helper_msa_fsaf_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FEXDO_df: gen_helper_msa_fexdo_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSUN_df: gen_helper_msa_fsun_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSOR_df: gen_helper_msa_fsor_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSEQ_df: gen_helper_msa_fseq_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FTQ_df: gen_helper_msa_ftq_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSUNE_df: gen_helper_msa_fsune_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSUEQ_df: gen_helper_msa_fsueq_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSNE_df: gen_helper_msa_fsne_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSLT_df: gen_helper_msa_fslt_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FMIN_df: gen_helper_msa_fmin_df(cpu_env, tdf, twd, tws, twt); break; case OPC_MULR_Q_df: tcg_gen_movi_i32(tdf, df + 1); gen_helper_msa_mulr_q_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSULT_df: gen_helper_msa_fsult_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FMIN_A_df: gen_helper_msa_fmin_a_df(cpu_env, tdf, twd, tws, twt); break; case OPC_MADDR_Q_df: tcg_gen_movi_i32(tdf, df + 1); gen_helper_msa_maddr_q_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSLE_df: gen_helper_msa_fsle_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FMAX_df: gen_helper_msa_fmax_df(cpu_env, tdf, twd, tws, twt); break; case OPC_MSUBR_Q_df: tcg_gen_movi_i32(tdf, df + 1); gen_helper_msa_msubr_q_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FSULE_df: gen_helper_msa_fsule_df(cpu_env, tdf, twd, tws, twt); break; case OPC_FMAX_A_df: gen_helper_msa_fmax_a_df(cpu_env, tdf, twd, tws, twt); break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } tcg_temp_free_i32(twd); tcg_temp_free_i32(tws); tcg_temp_free_i32(twt); tcg_temp_free_i32(tdf); } static void gen_msa_2r(CPUMIPSState *env, DisasContext *ctx) { #define MASK_MSA_2R(op) (MASK_MSA_MINOR(op) | (op & (0x1f << 21)) | \ (op & (0x7 << 18))) uint8_t wt = (ctx->opcode >> 16) & 0x1f; uint8_t ws = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; uint8_t df = (ctx->opcode >> 16) & 0x3; TCGv_i32 twd = tcg_const_i32(wd); TCGv_i32 tws = tcg_const_i32(ws); TCGv_i32 twt = tcg_const_i32(wt); TCGv_i32 tdf = tcg_const_i32(df); switch (MASK_MSA_2R(ctx->opcode)) { case OPC_FILL_df: #if !defined(TARGET_MIPS64) /* Double format valid only for MIPS64 */ if (df == DF_DOUBLE) { gen_reserved_instruction(ctx); break; } #endif gen_helper_msa_fill_df(cpu_env, tdf, twd, tws); /* trs */ break; case OPC_NLOC_df: switch (df) { case DF_BYTE: gen_helper_msa_nloc_b(cpu_env, twd, tws); break; case DF_HALF: gen_helper_msa_nloc_h(cpu_env, twd, tws); break; case DF_WORD: gen_helper_msa_nloc_w(cpu_env, twd, tws); break; case DF_DOUBLE: gen_helper_msa_nloc_d(cpu_env, twd, tws); break; } break; case OPC_NLZC_df: switch (df) { case DF_BYTE: gen_helper_msa_nlzc_b(cpu_env, twd, tws); break; case DF_HALF: gen_helper_msa_nlzc_h(cpu_env, twd, tws); break; case DF_WORD: gen_helper_msa_nlzc_w(cpu_env, twd, tws); break; case DF_DOUBLE: gen_helper_msa_nlzc_d(cpu_env, twd, tws); break; } break; case OPC_PCNT_df: switch (df) { case DF_BYTE: gen_helper_msa_pcnt_b(cpu_env, twd, tws); break; case DF_HALF: gen_helper_msa_pcnt_h(cpu_env, twd, tws); break; case DF_WORD: gen_helper_msa_pcnt_w(cpu_env, twd, tws); break; case DF_DOUBLE: gen_helper_msa_pcnt_d(cpu_env, twd, tws); break; } break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } tcg_temp_free_i32(twd); tcg_temp_free_i32(tws); tcg_temp_free_i32(twt); tcg_temp_free_i32(tdf); } static void gen_msa_2rf(CPUMIPSState *env, DisasContext *ctx) { #define MASK_MSA_2RF(op) (MASK_MSA_MINOR(op) | (op & (0x1f << 21)) | \ (op & (0xf << 17))) uint8_t wt = (ctx->opcode >> 16) & 0x1f; uint8_t ws = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; uint8_t df = (ctx->opcode >> 16) & 0x1; TCGv_i32 twd = tcg_const_i32(wd); TCGv_i32 tws = tcg_const_i32(ws); TCGv_i32 twt = tcg_const_i32(wt); /* adjust df value for floating-point instruction */ TCGv_i32 tdf = tcg_const_i32(df + 2); switch (MASK_MSA_2RF(ctx->opcode)) { case OPC_FCLASS_df: gen_helper_msa_fclass_df(cpu_env, tdf, twd, tws); break; case OPC_FTRUNC_S_df: gen_helper_msa_ftrunc_s_df(cpu_env, tdf, twd, tws); break; case OPC_FTRUNC_U_df: gen_helper_msa_ftrunc_u_df(cpu_env, tdf, twd, tws); break; case OPC_FSQRT_df: gen_helper_msa_fsqrt_df(cpu_env, tdf, twd, tws); break; case OPC_FRSQRT_df: gen_helper_msa_frsqrt_df(cpu_env, tdf, twd, tws); break; case OPC_FRCP_df: gen_helper_msa_frcp_df(cpu_env, tdf, twd, tws); break; case OPC_FRINT_df: gen_helper_msa_frint_df(cpu_env, tdf, twd, tws); break; case OPC_FLOG2_df: gen_helper_msa_flog2_df(cpu_env, tdf, twd, tws); break; case OPC_FEXUPL_df: gen_helper_msa_fexupl_df(cpu_env, tdf, twd, tws); break; case OPC_FEXUPR_df: gen_helper_msa_fexupr_df(cpu_env, tdf, twd, tws); break; case OPC_FFQL_df: gen_helper_msa_ffql_df(cpu_env, tdf, twd, tws); break; case OPC_FFQR_df: gen_helper_msa_ffqr_df(cpu_env, tdf, twd, tws); break; case OPC_FTINT_S_df: gen_helper_msa_ftint_s_df(cpu_env, tdf, twd, tws); break; case OPC_FTINT_U_df: gen_helper_msa_ftint_u_df(cpu_env, tdf, twd, tws); break; case OPC_FFINT_S_df: gen_helper_msa_ffint_s_df(cpu_env, tdf, twd, tws); break; case OPC_FFINT_U_df: gen_helper_msa_ffint_u_df(cpu_env, tdf, twd, tws); break; } tcg_temp_free_i32(twd); tcg_temp_free_i32(tws); tcg_temp_free_i32(twt); tcg_temp_free_i32(tdf); } static void gen_msa_vec_v(CPUMIPSState *env, DisasContext *ctx) { #define MASK_MSA_VEC(op) (MASK_MSA_MINOR(op) | (op & (0x1f << 21))) uint8_t wt = (ctx->opcode >> 16) & 0x1f; uint8_t ws = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; TCGv_i32 twd = tcg_const_i32(wd); TCGv_i32 tws = tcg_const_i32(ws); TCGv_i32 twt = tcg_const_i32(wt); switch (MASK_MSA_VEC(ctx->opcode)) { case OPC_AND_V: gen_helper_msa_and_v(cpu_env, twd, tws, twt); break; case OPC_OR_V: gen_helper_msa_or_v(cpu_env, twd, tws, twt); break; case OPC_NOR_V: gen_helper_msa_nor_v(cpu_env, twd, tws, twt); break; case OPC_XOR_V: gen_helper_msa_xor_v(cpu_env, twd, tws, twt); break; case OPC_BMNZ_V: gen_helper_msa_bmnz_v(cpu_env, twd, tws, twt); break; case OPC_BMZ_V: gen_helper_msa_bmz_v(cpu_env, twd, tws, twt); break; case OPC_BSEL_V: gen_helper_msa_bsel_v(cpu_env, twd, tws, twt); break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } tcg_temp_free_i32(twd); tcg_temp_free_i32(tws); tcg_temp_free_i32(twt); } static void gen_msa_vec(CPUMIPSState *env, DisasContext *ctx) { switch (MASK_MSA_VEC(ctx->opcode)) { case OPC_AND_V: case OPC_OR_V: case OPC_NOR_V: case OPC_XOR_V: case OPC_BMNZ_V: case OPC_BMZ_V: case OPC_BSEL_V: gen_msa_vec_v(env, ctx); break; case OPC_MSA_2R: gen_msa_2r(env, ctx); break; case OPC_MSA_2RF: gen_msa_2rf(env, ctx); break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } } static void gen_msa(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = ctx->opcode; check_insn(ctx, ASE_MSA); check_msa_access(ctx); switch (MASK_MSA_MINOR(opcode)) { case OPC_MSA_I8_00: case OPC_MSA_I8_01: case OPC_MSA_I8_02: gen_msa_i8(env, ctx); break; case OPC_MSA_I5_06: case OPC_MSA_I5_07: gen_msa_i5(env, ctx); break; case OPC_MSA_BIT_09: case OPC_MSA_BIT_0A: gen_msa_bit(env, ctx); break; case OPC_MSA_3R_0D: case OPC_MSA_3R_0E: case OPC_MSA_3R_0F: case OPC_MSA_3R_10: case OPC_MSA_3R_11: case OPC_MSA_3R_12: case OPC_MSA_3R_13: case OPC_MSA_3R_14: case OPC_MSA_3R_15: gen_msa_3r(env, ctx); break; case OPC_MSA_ELM: gen_msa_elm(env, ctx); break; case OPC_MSA_3RF_1A: case OPC_MSA_3RF_1B: case OPC_MSA_3RF_1C: gen_msa_3rf(env, ctx); break; case OPC_MSA_VEC: gen_msa_vec(env, ctx); break; case OPC_LD_B: case OPC_LD_H: case OPC_LD_W: case OPC_LD_D: case OPC_ST_B: case OPC_ST_H: case OPC_ST_W: case OPC_ST_D: { int32_t s10 = sextract32(ctx->opcode, 16, 10); uint8_t rs = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; uint8_t df = (ctx->opcode >> 0) & 0x3; TCGv_i32 twd = tcg_const_i32(wd); TCGv taddr = tcg_temp_new(); gen_base_offset_addr(ctx, taddr, rs, s10 << df); switch (MASK_MSA_MINOR(opcode)) { case OPC_LD_B: gen_helper_msa_ld_b(cpu_env, twd, taddr); break; case OPC_LD_H: gen_helper_msa_ld_h(cpu_env, twd, taddr); break; case OPC_LD_W: gen_helper_msa_ld_w(cpu_env, twd, taddr); break; case OPC_LD_D: gen_helper_msa_ld_d(cpu_env, twd, taddr); break; case OPC_ST_B: gen_helper_msa_st_b(cpu_env, twd, taddr); break; case OPC_ST_H: gen_helper_msa_st_h(cpu_env, twd, taddr); break; case OPC_ST_W: gen_helper_msa_st_w(cpu_env, twd, taddr); break; case OPC_ST_D: gen_helper_msa_st_d(cpu_env, twd, taddr); break; } tcg_temp_free_i32(twd); tcg_temp_free(taddr); } break; default: MIPS_INVAL("MSA instruction"); gen_reserved_instruction(ctx); break; } } static bool decode_opc_legacy(CPUMIPSState *env, DisasContext *ctx) { int32_t offset; int rs, rt, rd, sa; uint32_t op, op1; int16_t imm; op = MASK_OP_MAJOR(ctx->opcode); rs = (ctx->opcode >> 21) & 0x1f; rt = (ctx->opcode >> 16) & 0x1f; rd = (ctx->opcode >> 11) & 0x1f; sa = (ctx->opcode >> 6) & 0x1f; imm = (int16_t)ctx->opcode; switch (op) { case OPC_SPECIAL: decode_opc_special(env, ctx); break; case OPC_SPECIAL2: #if defined(TARGET_MIPS64) if ((ctx->insn_flags & INSN_R5900) && (ctx->insn_flags & ASE_MMI)) { decode_mmi(env, ctx); #else if (ctx->insn_flags & ASE_MXU) { decode_opc_mxu(env, ctx); #endif } else { decode_opc_special2_legacy(env, ctx); } break; case OPC_SPECIAL3: #if defined(TARGET_MIPS64) if (ctx->insn_flags & INSN_R5900) { decode_mmi_sq(env, ctx); /* MMI_OPC_SQ */ } else { decode_opc_special3(env, ctx); } #else decode_opc_special3(env, ctx); #endif break; case OPC_REGIMM: op1 = MASK_REGIMM(ctx->opcode); switch (op1) { case OPC_BLTZL: /* REGIMM branches */ case OPC_BGEZL: case OPC_BLTZALL: case OPC_BGEZALL: check_insn(ctx, ISA_MIPS2); check_insn_opc_removed(ctx, ISA_MIPS_R6); /* Fallthrough */ case OPC_BLTZ: case OPC_BGEZ: gen_compute_branch(ctx, op1, 4, rs, -1, imm << 2, 4); break; case OPC_BLTZAL: case OPC_BGEZAL: if (ctx->insn_flags & ISA_MIPS_R6) { if (rs == 0) { /* OPC_NAL, OPC_BAL */ gen_compute_branch(ctx, op1, 4, 0, -1, imm << 2, 4); } else { gen_reserved_instruction(ctx); } } else { gen_compute_branch(ctx, op1, 4, rs, -1, imm << 2, 4); } break; case OPC_TGEI: /* REGIMM traps */ case OPC_TGEIU: case OPC_TLTI: case OPC_TLTIU: case OPC_TEQI: case OPC_TNEI: check_insn(ctx, ISA_MIPS2); check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_trap(ctx, op1, rs, -1, imm); break; case OPC_SIGRIE: check_insn(ctx, ISA_MIPS_R6); gen_reserved_instruction(ctx); break; case OPC_SYNCI: check_insn(ctx, ISA_MIPS_R2); /* * Break the TB to be able to sync copied instructions * immediately. */ ctx->base.is_jmp = DISAS_STOP; break; case OPC_BPOSGE32: /* MIPS DSP branch */ #if defined(TARGET_MIPS64) case OPC_BPOSGE64: #endif check_dsp(ctx); gen_compute_branch(ctx, op1, 4, -1, -2, (int32_t)imm << 2, 4); break; #if defined(TARGET_MIPS64) case OPC_DAHI: check_insn(ctx, ISA_MIPS_R6); check_mips_64(ctx); if (rs != 0) { tcg_gen_addi_tl(cpu_gpr[rs], cpu_gpr[rs], (int64_t)imm << 32); } break; case OPC_DATI: check_insn(ctx, ISA_MIPS_R6); check_mips_64(ctx); if (rs != 0) { tcg_gen_addi_tl(cpu_gpr[rs], cpu_gpr[rs], (int64_t)imm << 48); } break; #endif default: /* Invalid */ MIPS_INVAL("regimm"); gen_reserved_instruction(ctx); break; } break; case OPC_CP0: check_cp0_enabled(ctx); op1 = MASK_CP0(ctx->opcode); switch (op1) { case OPC_MFC0: case OPC_MTC0: case OPC_MFTR: case OPC_MTTR: case OPC_MFHC0: case OPC_MTHC0: #if defined(TARGET_MIPS64) case OPC_DMFC0: case OPC_DMTC0: #endif #ifndef CONFIG_USER_ONLY gen_cp0(env, ctx, op1, rt, rd); #endif /* !CONFIG_USER_ONLY */ break; case OPC_C0: case OPC_C0_1: case OPC_C0_2: case OPC_C0_3: case OPC_C0_4: case OPC_C0_5: case OPC_C0_6: case OPC_C0_7: case OPC_C0_8: case OPC_C0_9: case OPC_C0_A: case OPC_C0_B: case OPC_C0_C: case OPC_C0_D: case OPC_C0_E: case OPC_C0_F: #ifndef CONFIG_USER_ONLY gen_cp0(env, ctx, MASK_C0(ctx->opcode), rt, rd); #endif /* !CONFIG_USER_ONLY */ break; case OPC_MFMC0: #ifndef CONFIG_USER_ONLY { uint32_t op2; TCGv t0 = tcg_temp_new(); op2 = MASK_MFMC0(ctx->opcode); switch (op2) { case OPC_DMT: check_cp0_mt(ctx); gen_helper_dmt(t0); gen_store_gpr(t0, rt); break; case OPC_EMT: check_cp0_mt(ctx); gen_helper_emt(t0); gen_store_gpr(t0, rt); break; case OPC_DVPE: check_cp0_mt(ctx); gen_helper_dvpe(t0, cpu_env); gen_store_gpr(t0, rt); break; case OPC_EVPE: check_cp0_mt(ctx); gen_helper_evpe(t0, cpu_env); gen_store_gpr(t0, rt); break; case OPC_DVP: check_insn(ctx, ISA_MIPS_R6); if (ctx->vp) { gen_helper_dvp(t0, cpu_env); gen_store_gpr(t0, rt); } break; case OPC_EVP: check_insn(ctx, ISA_MIPS_R6); if (ctx->vp) { gen_helper_evp(t0, cpu_env); gen_store_gpr(t0, rt); } break; case OPC_DI: check_insn(ctx, ISA_MIPS_R2); save_cpu_state(ctx, 1); gen_helper_di(t0, cpu_env); gen_store_gpr(t0, rt); /* * Stop translation as we may have switched * the execution mode. */ ctx->base.is_jmp = DISAS_STOP; break; case OPC_EI: check_insn(ctx, ISA_MIPS_R2); save_cpu_state(ctx, 1); gen_helper_ei(t0, cpu_env); gen_store_gpr(t0, rt); /* * DISAS_STOP isn't sufficient, we need to ensure we break * out of translated code to check for pending interrupts. */ gen_save_pc(ctx->base.pc_next + 4); ctx->base.is_jmp = DISAS_EXIT; break; default: /* Invalid */ MIPS_INVAL("mfmc0"); gen_reserved_instruction(ctx); break; } tcg_temp_free(t0); } #endif /* !CONFIG_USER_ONLY */ break; case OPC_RDPGPR: check_insn(ctx, ISA_MIPS_R2); gen_load_srsgpr(rt, rd); break; case OPC_WRPGPR: check_insn(ctx, ISA_MIPS_R2); gen_store_srsgpr(rt, rd); break; default: MIPS_INVAL("cp0"); gen_reserved_instruction(ctx); break; } break; case OPC_BOVC: /* OPC_BEQZALC, OPC_BEQC, OPC_ADDI */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_BOVC, OPC_BEQZALC, OPC_BEQC */ gen_compute_compact_branch(ctx, op, rs, rt, imm << 2); } else { /* OPC_ADDI */ /* Arithmetic with immediate opcode */ gen_arith_imm(ctx, op, rt, rs, imm); } break; case OPC_ADDIU: gen_arith_imm(ctx, op, rt, rs, imm); break; case OPC_SLTI: /* Set on less than with immediate opcode */ case OPC_SLTIU: gen_slt_imm(ctx, op, rt, rs, imm); break; case OPC_ANDI: /* Arithmetic with immediate opcode */ case OPC_LUI: /* OPC_AUI */ case OPC_ORI: case OPC_XORI: gen_logic_imm(ctx, op, rt, rs, imm); break; case OPC_J: /* Jump */ case OPC_JAL: offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 2; gen_compute_branch(ctx, op, 4, rs, rt, offset, 4); break; /* Branch */ case OPC_BLEZC: /* OPC_BGEZC, OPC_BGEC, OPC_BLEZL */ if (ctx->insn_flags & ISA_MIPS_R6) { if (rt == 0) { gen_reserved_instruction(ctx); break; } /* OPC_BLEZC, OPC_BGEZC, OPC_BGEC */ gen_compute_compact_branch(ctx, op, rs, rt, imm << 2); } else { /* OPC_BLEZL */ gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4); } break; case OPC_BGTZC: /* OPC_BLTZC, OPC_BLTC, OPC_BGTZL */ if (ctx->insn_flags & ISA_MIPS_R6) { if (rt == 0) { gen_reserved_instruction(ctx); break; } /* OPC_BGTZC, OPC_BLTZC, OPC_BLTC */ gen_compute_compact_branch(ctx, op, rs, rt, imm << 2); } else { /* OPC_BGTZL */ gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4); } break; case OPC_BLEZALC: /* OPC_BGEZALC, OPC_BGEUC, OPC_BLEZ */ if (rt == 0) { /* OPC_BLEZ */ gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4); } else { check_insn(ctx, ISA_MIPS_R6); /* OPC_BLEZALC, OPC_BGEZALC, OPC_BGEUC */ gen_compute_compact_branch(ctx, op, rs, rt, imm << 2); } break; case OPC_BGTZALC: /* OPC_BLTZALC, OPC_BLTUC, OPC_BGTZ */ if (rt == 0) { /* OPC_BGTZ */ gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4); } else { check_insn(ctx, ISA_MIPS_R6); /* OPC_BGTZALC, OPC_BLTZALC, OPC_BLTUC */ gen_compute_compact_branch(ctx, op, rs, rt, imm << 2); } break; case OPC_BEQL: case OPC_BNEL: check_insn(ctx, ISA_MIPS2); check_insn_opc_removed(ctx, ISA_MIPS_R6); /* Fallthrough */ case OPC_BEQ: case OPC_BNE: gen_compute_branch(ctx, op, 4, rs, rt, imm << 2, 4); break; case OPC_LL: /* Load and stores */ check_insn(ctx, ISA_MIPS2); if (ctx->insn_flags & INSN_R5900) { check_insn_opc_user_only(ctx, INSN_R5900); } /* Fallthrough */ case OPC_LWL: case OPC_LWR: check_insn_opc_removed(ctx, ISA_MIPS_R6); /* Fallthrough */ case OPC_LB: case OPC_LH: case OPC_LW: case OPC_LWPC: case OPC_LBU: case OPC_LHU: gen_ld(ctx, op, rt, rs, imm); break; case OPC_SWL: case OPC_SWR: check_insn_opc_removed(ctx, ISA_MIPS_R6); /* fall through */ case OPC_SB: case OPC_SH: case OPC_SW: gen_st(ctx, op, rt, rs, imm); break; case OPC_SC: check_insn(ctx, ISA_MIPS2); check_insn_opc_removed(ctx, ISA_MIPS_R6); if (ctx->insn_flags & INSN_R5900) { check_insn_opc_user_only(ctx, INSN_R5900); } gen_st_cond(ctx, rt, rs, imm, MO_TESL, false); break; case OPC_CACHE: check_insn_opc_removed(ctx, ISA_MIPS_R6); check_cp0_enabled(ctx); check_insn(ctx, ISA_MIPS3 | ISA_MIPS_R1); if (ctx->hflags & MIPS_HFLAG_ITC_CACHE) { gen_cache_operation(ctx, rt, rs, imm); } /* Treat as NOP. */ break; case OPC_PREF: check_insn_opc_removed(ctx, ISA_MIPS_R6); if (ctx->insn_flags & INSN_R5900) { /* Treat as NOP. */ } else { check_insn(ctx, ISA_MIPS4 | ISA_MIPS_R1); /* Treat as NOP. */ } break; /* Floating point (COP1). */ case OPC_LWC1: case OPC_LDC1: case OPC_SWC1: case OPC_SDC1: gen_cop1_ldst(ctx, op, rt, rs, imm); break; case OPC_CP1: op1 = MASK_CP1(ctx->opcode); switch (op1) { case OPC_MFHC1: case OPC_MTHC1: check_cp1_enabled(ctx); check_insn(ctx, ISA_MIPS_R2); /* fall through */ case OPC_MFC1: case OPC_CFC1: case OPC_MTC1: case OPC_CTC1: check_cp1_enabled(ctx); gen_cp1(ctx, op1, rt, rd); break; #if defined(TARGET_MIPS64) case OPC_DMFC1: case OPC_DMTC1: check_cp1_enabled(ctx); check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_cp1(ctx, op1, rt, rd); break; #endif case OPC_BC1EQZ: /* OPC_BC1ANY2 */ check_cp1_enabled(ctx); if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_BC1EQZ */ gen_compute_branch1_r6(ctx, MASK_CP1(ctx->opcode), rt, imm << 2, 4); } else { /* OPC_BC1ANY2 */ check_cop1x(ctx); check_insn(ctx, ASE_MIPS3D); gen_compute_branch1(ctx, MASK_BC1(ctx->opcode), (rt >> 2) & 0x7, imm << 2); } break; case OPC_BC1NEZ: check_cp1_enabled(ctx); check_insn(ctx, ISA_MIPS_R6); gen_compute_branch1_r6(ctx, MASK_CP1(ctx->opcode), rt, imm << 2, 4); break; case OPC_BC1ANY4: check_cp1_enabled(ctx); check_insn_opc_removed(ctx, ISA_MIPS_R6); check_cop1x(ctx); check_insn(ctx, ASE_MIPS3D); /* fall through */ case OPC_BC1: check_cp1_enabled(ctx); check_insn_opc_removed(ctx, ISA_MIPS_R6); gen_compute_branch1(ctx, MASK_BC1(ctx->opcode), (rt >> 2) & 0x7, imm << 2); break; case OPC_PS_FMT: check_ps(ctx); /* fall through */ case OPC_S_FMT: case OPC_D_FMT: check_cp1_enabled(ctx); gen_farith(ctx, ctx->opcode & FOP(0x3f, 0x1f), rt, rd, sa, (imm >> 8) & 0x7); break; case OPC_W_FMT: case OPC_L_FMT: { int r6_op = ctx->opcode & FOP(0x3f, 0x1f); check_cp1_enabled(ctx); if (ctx->insn_flags & ISA_MIPS_R6) { switch (r6_op) { case R6_OPC_CMP_AF_S: case R6_OPC_CMP_UN_S: case R6_OPC_CMP_EQ_S: case R6_OPC_CMP_UEQ_S: case R6_OPC_CMP_LT_S: case R6_OPC_CMP_ULT_S: case R6_OPC_CMP_LE_S: case R6_OPC_CMP_ULE_S: case R6_OPC_CMP_SAF_S: case R6_OPC_CMP_SUN_S: case R6_OPC_CMP_SEQ_S: case R6_OPC_CMP_SEUQ_S: case R6_OPC_CMP_SLT_S: case R6_OPC_CMP_SULT_S: case R6_OPC_CMP_SLE_S: case R6_OPC_CMP_SULE_S: case R6_OPC_CMP_OR_S: case R6_OPC_CMP_UNE_S: case R6_OPC_CMP_NE_S: case R6_OPC_CMP_SOR_S: case R6_OPC_CMP_SUNE_S: case R6_OPC_CMP_SNE_S: gen_r6_cmp_s(ctx, ctx->opcode & 0x1f, rt, rd, sa); break; case R6_OPC_CMP_AF_D: case R6_OPC_CMP_UN_D: case R6_OPC_CMP_EQ_D: case R6_OPC_CMP_UEQ_D: case R6_OPC_CMP_LT_D: case R6_OPC_CMP_ULT_D: case R6_OPC_CMP_LE_D: case R6_OPC_CMP_ULE_D: case R6_OPC_CMP_SAF_D: case R6_OPC_CMP_SUN_D: case R6_OPC_CMP_SEQ_D: case R6_OPC_CMP_SEUQ_D: case R6_OPC_CMP_SLT_D: case R6_OPC_CMP_SULT_D: case R6_OPC_CMP_SLE_D: case R6_OPC_CMP_SULE_D: case R6_OPC_CMP_OR_D: case R6_OPC_CMP_UNE_D: case R6_OPC_CMP_NE_D: case R6_OPC_CMP_SOR_D: case R6_OPC_CMP_SUNE_D: case R6_OPC_CMP_SNE_D: gen_r6_cmp_d(ctx, ctx->opcode & 0x1f, rt, rd, sa); break; default: gen_farith(ctx, ctx->opcode & FOP(0x3f, 0x1f), rt, rd, sa, (imm >> 8) & 0x7); break; } } else { gen_farith(ctx, ctx->opcode & FOP(0x3f, 0x1f), rt, rd, sa, (imm >> 8) & 0x7); } break; } case OPC_BZ_V: case OPC_BNZ_V: case OPC_BZ_B: case OPC_BZ_H: case OPC_BZ_W: case OPC_BZ_D: case OPC_BNZ_B: case OPC_BNZ_H: case OPC_BNZ_W: case OPC_BNZ_D: check_insn(ctx, ASE_MSA); gen_msa_branch(env, ctx, op1); break; default: MIPS_INVAL("cp1"); gen_reserved_instruction(ctx); break; } break; /* Compact branches [R6] and COP2 [non-R6] */ case OPC_BC: /* OPC_LWC2 */ case OPC_BALC: /* OPC_SWC2 */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_BC, OPC_BALC */ gen_compute_compact_branch(ctx, op, 0, 0, sextract32(ctx->opcode << 2, 0, 28)); } else if (ctx->insn_flags & ASE_LEXT) { gen_loongson_lswc2(ctx, rt, rs, rd); } else { /* OPC_LWC2, OPC_SWC2 */ /* COP2: Not implemented. */ generate_exception_err(ctx, EXCP_CpU, 2); } break; case OPC_BEQZC: /* OPC_JIC, OPC_LDC2 */ case OPC_BNEZC: /* OPC_JIALC, OPC_SDC2 */ if (ctx->insn_flags & ISA_MIPS_R6) { if (rs != 0) { /* OPC_BEQZC, OPC_BNEZC */ gen_compute_compact_branch(ctx, op, rs, 0, sextract32(ctx->opcode << 2, 0, 23)); } else { /* OPC_JIC, OPC_JIALC */ gen_compute_compact_branch(ctx, op, 0, rt, imm); } } else if (ctx->insn_flags & ASE_LEXT) { gen_loongson_lsdc2(ctx, rt, rs, rd); } else { /* OPC_LWC2, OPC_SWC2 */ /* COP2: Not implemented. */ generate_exception_err(ctx, EXCP_CpU, 2); } break; case OPC_CP2: check_insn(ctx, ASE_LMMI); /* Note that these instructions use different fields. */ gen_loongson_multimedia(ctx, sa, rd, rt); break; case OPC_CP3: check_insn_opc_removed(ctx, ISA_MIPS_R6); if (ctx->CP0_Config1 & (1 << CP0C1_FP)) { check_cp1_enabled(ctx); op1 = MASK_CP3(ctx->opcode); switch (op1) { case OPC_LUXC1: case OPC_SUXC1: check_insn(ctx, ISA_MIPS5 | ISA_MIPS_R2); /* Fallthrough */ case OPC_LWXC1: case OPC_LDXC1: case OPC_SWXC1: case OPC_SDXC1: check_insn(ctx, ISA_MIPS4 | ISA_MIPS_R2); gen_flt3_ldst(ctx, op1, sa, rd, rs, rt); break; case OPC_PREFX: check_insn(ctx, ISA_MIPS4 | ISA_MIPS_R2); /* Treat as NOP. */ break; case OPC_ALNV_PS: check_insn(ctx, ISA_MIPS5 | ISA_MIPS_R2); /* Fallthrough */ case OPC_MADD_S: case OPC_MADD_D: case OPC_MADD_PS: case OPC_MSUB_S: case OPC_MSUB_D: case OPC_MSUB_PS: case OPC_NMADD_S: case OPC_NMADD_D: case OPC_NMADD_PS: case OPC_NMSUB_S: case OPC_NMSUB_D: case OPC_NMSUB_PS: check_insn(ctx, ISA_MIPS4 | ISA_MIPS_R2); gen_flt3_arith(ctx, op1, sa, rs, rd, rt); break; default: MIPS_INVAL("cp3"); gen_reserved_instruction(ctx); break; } } else { generate_exception_err(ctx, EXCP_CpU, 1); } break; #if defined(TARGET_MIPS64) /* MIPS64 opcodes */ case OPC_LLD: if (ctx->insn_flags & INSN_R5900) { check_insn_opc_user_only(ctx, INSN_R5900); } /* fall through */ case OPC_LDL: case OPC_LDR: check_insn_opc_removed(ctx, ISA_MIPS_R6); /* fall through */ case OPC_LWU: case OPC_LD: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_ld(ctx, op, rt, rs, imm); break; case OPC_SDL: case OPC_SDR: check_insn_opc_removed(ctx, ISA_MIPS_R6); /* fall through */ case OPC_SD: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_st(ctx, op, rt, rs, imm); break; case OPC_SCD: check_insn_opc_removed(ctx, ISA_MIPS_R6); check_insn(ctx, ISA_MIPS3); if (ctx->insn_flags & INSN_R5900) { check_insn_opc_user_only(ctx, INSN_R5900); } check_mips_64(ctx); gen_st_cond(ctx, rt, rs, imm, MO_TEQ, false); break; case OPC_BNVC: /* OPC_BNEZALC, OPC_BNEC, OPC_DADDI */ if (ctx->insn_flags & ISA_MIPS_R6) { /* OPC_BNVC, OPC_BNEZALC, OPC_BNEC */ gen_compute_compact_branch(ctx, op, rs, rt, imm << 2); } else { /* OPC_DADDI */ check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_arith_imm(ctx, op, rt, rs, imm); } break; case OPC_DADDIU: check_insn(ctx, ISA_MIPS3); check_mips_64(ctx); gen_arith_imm(ctx, op, rt, rs, imm); break; #else case OPC_BNVC: /* OPC_BNEZALC, OPC_BNEC */ if (ctx->insn_flags & ISA_MIPS_R6) { gen_compute_compact_branch(ctx, op, rs, rt, imm << 2); } else { MIPS_INVAL("major opcode"); gen_reserved_instruction(ctx); } break; #endif case OPC_DAUI: /* OPC_JALX */ if (ctx->insn_flags & ISA_MIPS_R6) { #if defined(TARGET_MIPS64) /* OPC_DAUI */ check_mips_64(ctx); if (rs == 0) { generate_exception(ctx, EXCP_RI); } else if (rt != 0) { TCGv t0 = tcg_temp_new(); gen_load_gpr(t0, rs); tcg_gen_addi_tl(cpu_gpr[rt], t0, imm << 16); tcg_temp_free(t0); } #else gen_reserved_instruction(ctx); MIPS_INVAL("major opcode"); #endif } else { /* OPC_JALX */ check_insn(ctx, ASE_MIPS16 | ASE_MICROMIPS); offset = (int32_t)(ctx->opcode & 0x3FFFFFF) << 2; gen_compute_branch(ctx, op, 4, rs, rt, offset, 4); } break; case OPC_MSA: /* OPC_MDMX */ if (ctx->insn_flags & INSN_R5900) { #if defined(TARGET_MIPS64) gen_mmi_lq(env, ctx); /* MMI_OPC_LQ */ #endif } else { /* MDMX: Not implemented. */ gen_msa(env, ctx); } break; case OPC_PCREL: check_insn(ctx, ISA_MIPS_R6); gen_pcrel(ctx, ctx->opcode, ctx->base.pc_next, rs); break; default: /* Invalid */ MIPS_INVAL("major opcode"); return false; } return true; } static void decode_opc(CPUMIPSState *env, DisasContext *ctx) { /* make sure instructions are on a word boundary */ if (ctx->base.pc_next & 0x3) { env->CP0_BadVAddr = ctx->base.pc_next; generate_exception_err(ctx, EXCP_AdEL, EXCP_INST_NOTAVAIL); return; } /* Handle blikely not taken case */ if ((ctx->hflags & MIPS_HFLAG_BMASK_BASE) == MIPS_HFLAG_BL) { TCGLabel *l1 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_NE, bcond, 0, l1); tcg_gen_movi_i32(hflags, ctx->hflags & ~MIPS_HFLAG_BMASK); gen_goto_tb(ctx, 1, ctx->base.pc_next + 4); gen_set_label(l1); } if (decode_opc_legacy(env, ctx)) { return; } gen_reserved_instruction(ctx); } static void mips_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); CPUMIPSState *env = cs->env_ptr; ctx->page_start = ctx->base.pc_first & TARGET_PAGE_MASK; ctx->saved_pc = -1; ctx->insn_flags = env->insn_flags; ctx->CP0_Config1 = env->CP0_Config1; ctx->CP0_Config2 = env->CP0_Config2; ctx->CP0_Config3 = env->CP0_Config3; ctx->CP0_Config5 = env->CP0_Config5; ctx->btarget = 0; ctx->kscrexist = (env->CP0_Config4 >> CP0C4_KScrExist) & 0xff; ctx->rxi = (env->CP0_Config3 >> CP0C3_RXI) & 1; ctx->ie = (env->CP0_Config4 >> CP0C4_IE) & 3; ctx->bi = (env->CP0_Config3 >> CP0C3_BI) & 1; ctx->bp = (env->CP0_Config3 >> CP0C3_BP) & 1; ctx->PAMask = env->PAMask; ctx->mvh = (env->CP0_Config5 >> CP0C5_MVH) & 1; ctx->eva = (env->CP0_Config5 >> CP0C5_EVA) & 1; ctx->sc = (env->CP0_Config3 >> CP0C3_SC) & 1; ctx->CP0_LLAddr_shift = env->CP0_LLAddr_shift; ctx->cmgcr = (env->CP0_Config3 >> CP0C3_CMGCR) & 1; /* Restore delay slot state from the tb context. */ ctx->hflags = (uint32_t)ctx->base.tb->flags; /* FIXME: maybe use 64 bits? */ ctx->ulri = (env->CP0_Config3 >> CP0C3_ULRI) & 1; ctx->ps = ((env->active_fpu.fcr0 >> FCR0_PS) & 1) || (env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)); ctx->vp = (env->CP0_Config5 >> CP0C5_VP) & 1; ctx->mrp = (env->CP0_Config5 >> CP0C5_MRP) & 1; ctx->nan2008 = (env->active_fpu.fcr31 >> FCR31_NAN2008) & 1; ctx->abs2008 = (env->active_fpu.fcr31 >> FCR31_ABS2008) & 1; ctx->mi = (env->CP0_Config5 >> CP0C5_MI) & 1; ctx->gi = (env->CP0_Config5 >> CP0C5_GI) & 3; restore_cpu_state(env, ctx); #ifdef CONFIG_USER_ONLY ctx->mem_idx = MIPS_HFLAG_UM; #else ctx->mem_idx = hflags_mmu_index(ctx->hflags); #endif ctx->default_tcg_memop_mask = (ctx->insn_flags & (ISA_MIPS_R6 | INSN_LOONGSON3A)) ? MO_UNALN : MO_ALIGN; LOG_DISAS("\ntb %p idx %d hflags %04x\n", ctx->base.tb, ctx->mem_idx, ctx->hflags); } static void mips_tr_tb_start(DisasContextBase *dcbase, CPUState *cs) { } static void mips_tr_insn_start(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); tcg_gen_insn_start(ctx->base.pc_next, ctx->hflags & MIPS_HFLAG_BMASK, ctx->btarget); } static bool mips_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cs, const CPUBreakpoint *bp) { DisasContext *ctx = container_of(dcbase, DisasContext, base); save_cpu_state(ctx, 1); ctx->base.is_jmp = DISAS_NORETURN; gen_helper_raise_exception_debug(cpu_env); /* * The address covered by the breakpoint must be included in * [tb->pc, tb->pc + tb->size) in order to for it to be * properly cleared -- thus we increment the PC here so that * the logic setting tb->size below does the right thing. */ ctx->base.pc_next += 4; return true; } static void mips_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs) { CPUMIPSState *env = cs->env_ptr; DisasContext *ctx = container_of(dcbase, DisasContext, base); int insn_bytes; int is_slot; is_slot = ctx->hflags & MIPS_HFLAG_BMASK; if (ctx->insn_flags & ISA_NANOMIPS32) { ctx->opcode = cpu_lduw_code(env, ctx->base.pc_next); insn_bytes = decode_nanomips_opc(env, ctx); } else if (!(ctx->hflags & MIPS_HFLAG_M16)) { ctx->opcode = cpu_ldl_code(env, ctx->base.pc_next); insn_bytes = 4; decode_opc(env, ctx); } else if (ctx->insn_flags & ASE_MICROMIPS) { ctx->opcode = cpu_lduw_code(env, ctx->base.pc_next); insn_bytes = decode_micromips_opc(env, ctx); } else if (ctx->insn_flags & ASE_MIPS16) { ctx->opcode = cpu_lduw_code(env, ctx->base.pc_next); insn_bytes = decode_mips16_opc(env, ctx); } else { gen_reserved_instruction(ctx); g_assert(ctx->base.is_jmp == DISAS_NORETURN); return; } if (ctx->hflags & MIPS_HFLAG_BMASK) { if (!(ctx->hflags & (MIPS_HFLAG_BDS16 | MIPS_HFLAG_BDS32 | MIPS_HFLAG_FBNSLOT))) { /* * Force to generate branch as there is neither delay nor * forbidden slot. */ is_slot = 1; } if ((ctx->hflags & MIPS_HFLAG_M16) && (ctx->hflags & MIPS_HFLAG_FBNSLOT)) { /* * Force to generate branch as microMIPS R6 doesn't restrict * branches in the forbidden slot. */ is_slot = 1; } } if (is_slot) { gen_branch(ctx, insn_bytes); } ctx->base.pc_next += insn_bytes; if (ctx->base.is_jmp != DISAS_NEXT) { return; } /* * Execute a branch and its delay slot as a single instruction. * This is what GDB expects and is consistent with what the * hardware does (e.g. if a delay slot instruction faults, the * reported PC is the PC of the branch). */ if (ctx->base.singlestep_enabled && (ctx->hflags & MIPS_HFLAG_BMASK) == 0) { ctx->base.is_jmp = DISAS_TOO_MANY; } if (ctx->base.pc_next - ctx->page_start >= TARGET_PAGE_SIZE) { ctx->base.is_jmp = DISAS_TOO_MANY; } } static void mips_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs) { DisasContext *ctx = container_of(dcbase, DisasContext, base); if (ctx->base.singlestep_enabled && ctx->base.is_jmp != DISAS_NORETURN) { save_cpu_state(ctx, ctx->base.is_jmp != DISAS_EXIT); gen_helper_raise_exception_debug(cpu_env); } else { switch (ctx->base.is_jmp) { case DISAS_STOP: gen_save_pc(ctx->base.pc_next); tcg_gen_lookup_and_goto_ptr(); break; case DISAS_NEXT: case DISAS_TOO_MANY: save_cpu_state(ctx, 0); gen_goto_tb(ctx, 0, ctx->base.pc_next); break; case DISAS_EXIT: tcg_gen_exit_tb(NULL, 0); break; case DISAS_NORETURN: break; default: g_assert_not_reached(); } } } static void mips_tr_disas_log(const DisasContextBase *dcbase, CPUState *cs) { qemu_log("IN: %s\n", lookup_symbol(dcbase->pc_first)); log_target_disas(cs, dcbase->pc_first, dcbase->tb->size); } static const TranslatorOps mips_tr_ops = { .init_disas_context = mips_tr_init_disas_context, .tb_start = mips_tr_tb_start, .insn_start = mips_tr_insn_start, .breakpoint_check = mips_tr_breakpoint_check, .translate_insn = mips_tr_translate_insn, .tb_stop = mips_tr_tb_stop, .disas_log = mips_tr_disas_log, }; void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) { DisasContext ctx; translator_loop(&mips_tr_ops, &ctx.base, cs, tb, max_insns); } static void fpu_dump_state(CPUMIPSState *env, FILE * f, int flags) { int i; int is_fpu64 = !!(env->hflags & MIPS_HFLAG_F64); #define printfpr(fp) \ do { \ if (is_fpu64) \ qemu_fprintf(f, "w:%08x d:%016" PRIx64 \ " fd:%13g fs:%13g psu: %13g\n", \ (fp)->w[FP_ENDIAN_IDX], (fp)->d, \ (double)(fp)->fd, \ (double)(fp)->fs[FP_ENDIAN_IDX], \ (double)(fp)->fs[!FP_ENDIAN_IDX]); \ else { \ fpr_t tmp; \ tmp.w[FP_ENDIAN_IDX] = (fp)->w[FP_ENDIAN_IDX]; \ tmp.w[!FP_ENDIAN_IDX] = ((fp) + 1)->w[FP_ENDIAN_IDX]; \ qemu_fprintf(f, "w:%08x d:%016" PRIx64 \ " fd:%13g fs:%13g psu:%13g\n", \ tmp.w[FP_ENDIAN_IDX], tmp.d, \ (double)tmp.fd, \ (double)tmp.fs[FP_ENDIAN_IDX], \ (double)tmp.fs[!FP_ENDIAN_IDX]); \ } \ } while (0) qemu_fprintf(f, "CP1 FCR0 0x%08x FCR31 0x%08x SR.FR %d fp_status 0x%02x\n", env->active_fpu.fcr0, env->active_fpu.fcr31, is_fpu64, get_float_exception_flags(&env->active_fpu.fp_status)); for (i = 0; i < 32; (is_fpu64) ? i++ : (i += 2)) { qemu_fprintf(f, "%3s: ", fregnames[i]); printfpr(&env->active_fpu.fpr[i]); } #undef printfpr } void mips_cpu_dump_state(CPUState *cs, FILE *f, int flags) { MIPSCPU *cpu = MIPS_CPU(cs); CPUMIPSState *env = &cpu->env; int i; qemu_fprintf(f, "pc=0x" TARGET_FMT_lx " HI=0x" TARGET_FMT_lx " LO=0x" TARGET_FMT_lx " ds %04x " TARGET_FMT_lx " " TARGET_FMT_ld "\n", env->active_tc.PC, env->active_tc.HI[0], env->active_tc.LO[0], env->hflags, env->btarget, env->bcond); for (i = 0; i < 32; i++) { if ((i & 3) == 0) { qemu_fprintf(f, "GPR%02d:", i); } qemu_fprintf(f, " %s " TARGET_FMT_lx, regnames[i], env->active_tc.gpr[i]); if ((i & 3) == 3) { qemu_fprintf(f, "\n"); } } qemu_fprintf(f, "CP0 Status 0x%08x Cause 0x%08x EPC 0x" TARGET_FMT_lx "\n", env->CP0_Status, env->CP0_Cause, env->CP0_EPC); qemu_fprintf(f, " Config0 0x%08x Config1 0x%08x LLAddr 0x%016" PRIx64 "\n", env->CP0_Config0, env->CP0_Config1, env->CP0_LLAddr); qemu_fprintf(f, " Config2 0x%08x Config3 0x%08x\n", env->CP0_Config2, env->CP0_Config3); qemu_fprintf(f, " Config4 0x%08x Config5 0x%08x\n", env->CP0_Config4, env->CP0_Config5); if ((flags & CPU_DUMP_FPU) && (env->hflags & MIPS_HFLAG_FPU)) { fpu_dump_state(env, f, flags); } } void mips_tcg_init(void) { int i; cpu_gpr[0] = NULL; for (i = 1; i < 32; i++) cpu_gpr[i] = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, active_tc.gpr[i]), regnames[i]); for (i = 0; i < 32; i++) { int off = offsetof(CPUMIPSState, active_fpu.fpr[i].wr.d[0]); msa_wr_d[i * 2] = tcg_global_mem_new_i64(cpu_env, off, msaregnames[i * 2]); /* * The scalar floating-point unit (FPU) registers are mapped on * the MSA vector registers. */ fpu_f64[i] = msa_wr_d[i * 2]; off = offsetof(CPUMIPSState, active_fpu.fpr[i].wr.d[1]); msa_wr_d[i * 2 + 1] = tcg_global_mem_new_i64(cpu_env, off, msaregnames[i * 2 + 1]); } cpu_PC = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, active_tc.PC), "PC"); for (i = 0; i < MIPS_DSP_ACC; i++) { cpu_HI[i] = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, active_tc.HI[i]), regnames_HI[i]); cpu_LO[i] = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, active_tc.LO[i]), regnames_LO[i]); } cpu_dspctrl = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, active_tc.DSPControl), "DSPControl"); bcond = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, bcond), "bcond"); btarget = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, btarget), "btarget"); hflags = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMIPSState, hflags), "hflags"); fpu_fcr0 = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMIPSState, active_fpu.fcr0), "fcr0"); fpu_fcr31 = tcg_global_mem_new_i32(cpu_env, offsetof(CPUMIPSState, active_fpu.fcr31), "fcr31"); cpu_lladdr = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, lladdr), "lladdr"); cpu_llval = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, llval), "llval"); #if defined(TARGET_MIPS64) cpu_mmr[0] = NULL; for (i = 1; i < 32; i++) { cpu_mmr[i] = tcg_global_mem_new_i64(cpu_env, offsetof(CPUMIPSState, active_tc.mmr[i]), regnames[i]); } #endif #if !defined(TARGET_MIPS64) for (i = 0; i < NUMBER_OF_MXU_REGISTERS - 1; i++) { mxu_gpr[i] = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, active_tc.mxu_gpr[i]), mxuregnames[i]); } mxu_CR = tcg_global_mem_new(cpu_env, offsetof(CPUMIPSState, active_tc.mxu_cr), mxuregnames[NUMBER_OF_MXU_REGISTERS - 1]); #endif } void restore_state_to_opc(CPUMIPSState *env, TranslationBlock *tb, target_ulong *data) { env->active_tc.PC = data[0]; env->hflags &= ~MIPS_HFLAG_BMASK; env->hflags |= data[1]; switch (env->hflags & MIPS_HFLAG_BMASK_BASE) { case MIPS_HFLAG_BR: break; case MIPS_HFLAG_BC: case MIPS_HFLAG_BL: case MIPS_HFLAG_B: env->btarget = data[2]; break; } }