/* * PowerPC implementation of KVM hooks * * Copyright IBM Corp. 2007 * Copyright (C) 2011 Freescale Semiconductor, Inc. * * Authors: * Jerone Young * Christian Ehrhardt * Hollis Blanchard * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include #include #include #include #include "qemu-common.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "cpu.h" #include "cpu-models.h" #include "qemu/timer.h" #include "sysemu/hw_accel.h" #include "kvm_ppc.h" #include "sysemu/cpus.h" #include "sysemu/device_tree.h" #include "mmu-hash64.h" #include "hw/sysbus.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_cpu_core.h" #include "hw/hw.h" #include "hw/ppc/ppc.h" #include "migration/qemu-file-types.h" #include "sysemu/watchdog.h" #include "trace.h" #include "exec/gdbstub.h" #include "exec/memattrs.h" #include "exec/ram_addr.h" #include "sysemu/hostmem.h" #include "qemu/cutils.h" #include "qemu/main-loop.h" #include "qemu/mmap-alloc.h" #include "elf.h" #include "sysemu/kvm_int.h" #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_LAST_INFO }; static int cap_interrupt_unset; static int cap_segstate; static int cap_booke_sregs; static int cap_ppc_smt; static int cap_ppc_smt_possible; static int cap_spapr_tce; static int cap_spapr_tce_64; static int cap_spapr_multitce; static int cap_spapr_vfio; static int cap_hior; static int cap_one_reg; static int cap_epr; static int cap_ppc_watchdog; static int cap_papr; static int cap_htab_fd; static int cap_fixup_hcalls; static int cap_htm; /* Hardware transactional memory support */ static int cap_mmu_radix; static int cap_mmu_hash_v3; static int cap_xive; static int cap_resize_hpt; static int cap_ppc_pvr_compat; static int cap_ppc_safe_cache; static int cap_ppc_safe_bounds_check; static int cap_ppc_safe_indirect_branch; static int cap_ppc_count_cache_flush_assist; static int cap_ppc_nested_kvm_hv; static int cap_large_decr; static uint32_t debug_inst_opcode; /* * Check whether we are running with KVM-PR (instead of KVM-HV). This * should only be used for fallback tests - generally we should use * explicit capabilities for the features we want, rather than * assuming what is/isn't available depending on the KVM variant. */ static bool kvmppc_is_pr(KVMState *ks) { /* Assume KVM-PR if the GET_PVINFO capability is available */ return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0; } static int kvm_ppc_register_host_cpu_type(MachineState *ms); static void kvmppc_get_cpu_characteristics(KVMState *s); static int kvmppc_get_dec_bits(void); int kvm_arch_init(MachineState *ms, KVMState *s) { cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE); cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64); cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO); cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); /* * Note: we don't set cap_papr here, because this capability is * only activated after this by kvmppc_set_papr() */ cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD); cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT); cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM); cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX); cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3); cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE); cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT); kvmppc_get_cpu_characteristics(s); cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV); cap_large_decr = kvmppc_get_dec_bits(); /* * Note: setting it to false because there is not such capability * in KVM at this moment. * * TODO: call kvm_vm_check_extension() with the right capability * after the kernel starts implementing it. */ cap_ppc_pvr_compat = false; if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) { error_report("KVM: Host kernel doesn't have level irq capability"); exit(1); } kvm_ppc_register_host_cpu_type(ms); return 0; } int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) { return 0; } static int kvm_arch_sync_sregs(PowerPCCPU *cpu) { CPUPPCState *cenv = &cpu->env; CPUState *cs = CPU(cpu); struct kvm_sregs sregs; int ret; if (cenv->excp_model == POWERPC_EXCP_BOOKE) { /* * What we're really trying to say is "if we're on BookE, we * use the native PVR for now". This is the only sane way to * check it though, so we potentially confuse users that they * can run BookE guests on BookS. Let's hope nobody dares * enough :) */ return 0; } else { if (!cap_segstate) { fprintf(stderr, "kvm error: missing PVR setting capability\n"); return -ENOSYS; } } ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); if (ret) { return ret; } sregs.pvr = cenv->spr[SPR_PVR]; return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); } /* Set up a shared TLB array with KVM */ static int kvm_booke206_tlb_init(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; CPUState *cs = CPU(cpu); struct kvm_book3e_206_tlb_params params = {}; struct kvm_config_tlb cfg = {}; unsigned int entries = 0; int ret, i; if (!kvm_enabled() || !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { return 0; } assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); for (i = 0; i < BOOKE206_MAX_TLBN; i++) { params.tlb_sizes[i] = booke206_tlb_size(env, i); params.tlb_ways[i] = booke206_tlb_ways(env, i); entries += params.tlb_sizes[i]; } assert(entries == env->nb_tlb); assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); env->tlb_dirty = true; cfg.array = (uintptr_t)env->tlb.tlbm; cfg.array_len = sizeof(ppcmas_tlb_t) * entries; cfg.params = (uintptr_t)¶ms; cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); if (ret < 0) { fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", __func__, strerror(-ret)); return ret; } env->kvm_sw_tlb = true; return 0; } #if defined(TARGET_PPC64) static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp) { int ret; assert(kvm_state != NULL); if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { error_setg(errp, "KVM doesn't expose the MMU features it supports"); error_append_hint(errp, "Consider switching to a newer KVM\n"); return; } ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info); if (ret == 0) { return; } error_setg_errno(errp, -ret, "KVM failed to provide the MMU features it supports"); } struct ppc_radix_page_info *kvm_get_radix_page_info(void) { KVMState *s = KVM_STATE(current_machine->accelerator); struct ppc_radix_page_info *radix_page_info; struct kvm_ppc_rmmu_info rmmu_info; int i; if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) { return NULL; } if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) { return NULL; } radix_page_info = g_malloc0(sizeof(*radix_page_info)); radix_page_info->count = 0; for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { if (rmmu_info.ap_encodings[i]) { radix_page_info->entries[i] = rmmu_info.ap_encodings[i]; radix_page_info->count++; } } return radix_page_info; } target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu, bool radix, bool gtse, uint64_t proc_tbl) { CPUState *cs = CPU(cpu); int ret; uint64_t flags = 0; struct kvm_ppc_mmuv3_cfg cfg = { .process_table = proc_tbl, }; if (radix) { flags |= KVM_PPC_MMUV3_RADIX; } if (gtse) { flags |= KVM_PPC_MMUV3_GTSE; } cfg.flags = flags; ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg); switch (ret) { case 0: return H_SUCCESS; case -EINVAL: return H_PARAMETER; case -ENODEV: return H_NOT_AVAILABLE; default: return H_HARDWARE; } } bool kvmppc_hpt_needs_host_contiguous_pages(void) { static struct kvm_ppc_smmu_info smmu_info; if (!kvm_enabled()) { return false; } kvm_get_smmu_info(&smmu_info, &error_fatal); return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL); } void kvm_check_mmu(PowerPCCPU *cpu, Error **errp) { struct kvm_ppc_smmu_info smmu_info; int iq, ik, jq, jk; Error *local_err = NULL; /* For now, we only have anything to check on hash64 MMUs */ if (!cpu->hash64_opts || !kvm_enabled()) { return; } kvm_get_smmu_info(&smmu_info, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG) && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { error_setg(errp, "KVM does not support 1TiB segments which guest expects"); return; } if (smmu_info.slb_size < cpu->hash64_opts->slb_size) { error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u", smmu_info.slb_size, cpu->hash64_opts->slb_size); return; } /* * Verify that every pagesize supported by the cpu model is * supported by KVM with the same encodings */ for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) { PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq]; struct kvm_ppc_one_seg_page_size *ksps; for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) { if (qsps->page_shift == smmu_info.sps[ik].page_shift) { break; } } if (ik >= ARRAY_SIZE(smmu_info.sps)) { error_setg(errp, "KVM doesn't support for base page shift %u", qsps->page_shift); return; } ksps = &smmu_info.sps[ik]; if (ksps->slb_enc != qsps->slb_enc) { error_setg(errp, "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x", ksps->slb_enc, ksps->page_shift, qsps->slb_enc); return; } for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) { for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) { if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) { break; } } if (jk >= ARRAY_SIZE(ksps->enc)) { error_setg(errp, "KVM doesn't support page shift %u/%u", qsps->enc[jq].page_shift, qsps->page_shift); return; } if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) { error_setg(errp, "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x", ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift, qsps->page_shift, qsps->enc[jq].pte_enc); return; } } } if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { /* * Mostly what guest pagesizes we can use are related to the * host pages used to map guest RAM, which is handled in the * platform code. Cache-Inhibited largepages (64k) however are * used for I/O, so if they're mapped to the host at all it * will be a normal mapping, not a special hugepage one used * for RAM. */ if (getpagesize() < 0x10000) { error_setg(errp, "KVM can't supply 64kiB CI pages, which guest expects"); } } } #endif /* !defined (TARGET_PPC64) */ unsigned long kvm_arch_vcpu_id(CPUState *cpu) { return POWERPC_CPU(cpu)->vcpu_id; } /* * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports * only 1 watchpoint, so array size of 4 is sufficient for now. */ #define MAX_HW_BKPTS 4 static struct HWBreakpoint { target_ulong addr; int type; } hw_debug_points[MAX_HW_BKPTS]; static CPUWatchpoint hw_watchpoint; /* Default there is no breakpoint and watchpoint supported */ static int max_hw_breakpoint; static int max_hw_watchpoint; static int nb_hw_breakpoint; static int nb_hw_watchpoint; static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) { if (cenv->excp_model == POWERPC_EXCP_BOOKE) { max_hw_breakpoint = 2; max_hw_watchpoint = 2; } if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { fprintf(stderr, "Error initializing h/w breakpoints\n"); return; } } int kvm_arch_init_vcpu(CPUState *cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *cenv = &cpu->env; int ret; /* Synchronize sregs with kvm */ ret = kvm_arch_sync_sregs(cpu); if (ret) { if (ret == -EINVAL) { error_report("Register sync failed... If you're using kvm-hv.ko," " only \"-cpu host\" is possible"); } return ret; } switch (cenv->mmu_model) { case POWERPC_MMU_BOOKE206: /* This target supports access to KVM's guest TLB */ ret = kvm_booke206_tlb_init(cpu); break; case POWERPC_MMU_2_07: if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { /* * KVM-HV has transactional memory on POWER8 also without * the KVM_CAP_PPC_HTM extension, so enable it here * instead as long as it's availble to userspace on the * host. */ if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) { cap_htm = true; } } break; default: break; } kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); kvmppc_hw_debug_points_init(cenv); return ret; } int kvm_arch_destroy_vcpu(CPUState *cs) { return 0; } static void kvm_sw_tlb_put(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; CPUState *cs = CPU(cpu); struct kvm_dirty_tlb dirty_tlb; unsigned char *bitmap; int ret; if (!env->kvm_sw_tlb) { return; } bitmap = g_malloc((env->nb_tlb + 7) / 8); memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); dirty_tlb.bitmap = (uintptr_t)bitmap; dirty_tlb.num_dirty = env->nb_tlb; ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); if (ret) { fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", __func__, strerror(-ret)); } g_free(bitmap); } static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; union { uint32_t u32; uint64_t u64; } val; struct kvm_one_reg reg = { .id = id, .addr = (uintptr_t) &val, }; int ret; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret != 0) { trace_kvm_failed_spr_get(spr, strerror(errno)); } else { switch (id & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U32: env->spr[spr] = val.u32; break; case KVM_REG_SIZE_U64: env->spr[spr] = val.u64; break; default: /* Don't handle this size yet */ abort(); } } } static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; union { uint32_t u32; uint64_t u64; } val; struct kvm_one_reg reg = { .id = id, .addr = (uintptr_t) &val, }; int ret; switch (id & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U32: val.u32 = env->spr[spr]; break; case KVM_REG_SIZE_U64: val.u64 = env->spr[spr]; break; default: /* Don't handle this size yet */ abort(); } ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret != 0) { trace_kvm_failed_spr_set(spr, strerror(errno)); } } static int kvm_put_fp(CPUState *cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; struct kvm_one_reg reg; int i; int ret; if (env->insns_flags & PPC_FLOAT) { uint64_t fpscr = env->fpscr; bool vsx = !!(env->insns_flags2 & PPC2_VSX); reg.id = KVM_REG_PPC_FPSCR; reg.addr = (uintptr_t)&fpscr; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_fpscr_set(strerror(errno)); return ret; } for (i = 0; i < 32; i++) { uint64_t vsr[2]; uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); #ifdef HOST_WORDS_BIGENDIAN vsr[0] = float64_val(*fpr); vsr[1] = *vsrl; #else vsr[0] = *vsrl; vsr[1] = float64_val(*fpr); #endif reg.addr = (uintptr_t) &vsr; reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i, strerror(errno)); return ret; } } } if (env->insns_flags & PPC_ALTIVEC) { reg.id = KVM_REG_PPC_VSCR; reg.addr = (uintptr_t)&env->vscr; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_vscr_set(strerror(errno)); return ret; } for (i = 0; i < 32; i++) { reg.id = KVM_REG_PPC_VR(i); reg.addr = (uintptr_t)cpu_avr_ptr(env, i); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_vr_set(i, strerror(errno)); return ret; } } } return 0; } static int kvm_get_fp(CPUState *cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; struct kvm_one_reg reg; int i; int ret; if (env->insns_flags & PPC_FLOAT) { uint64_t fpscr; bool vsx = !!(env->insns_flags2 & PPC2_VSX); reg.id = KVM_REG_PPC_FPSCR; reg.addr = (uintptr_t)&fpscr; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_fpscr_get(strerror(errno)); return ret; } else { env->fpscr = fpscr; } for (i = 0; i < 32; i++) { uint64_t vsr[2]; uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); reg.addr = (uintptr_t) &vsr; reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i, strerror(errno)); return ret; } else { #ifdef HOST_WORDS_BIGENDIAN *fpr = vsr[0]; if (vsx) { *vsrl = vsr[1]; } #else *fpr = vsr[1]; if (vsx) { *vsrl = vsr[0]; } #endif } } } if (env->insns_flags & PPC_ALTIVEC) { reg.id = KVM_REG_PPC_VSCR; reg.addr = (uintptr_t)&env->vscr; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_vscr_get(strerror(errno)); return ret; } for (i = 0; i < 32; i++) { reg.id = KVM_REG_PPC_VR(i); reg.addr = (uintptr_t)cpu_avr_ptr(env, i); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_vr_get(i, strerror(errno)); return ret; } } } return 0; } #if defined(TARGET_PPC64) static int kvm_get_vpa(CPUState *cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); struct kvm_one_reg reg; int ret; reg.id = KVM_REG_PPC_VPA_ADDR; reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_vpa_addr_get(strerror(errno)); return ret; } assert((uintptr_t)&spapr_cpu->slb_shadow_size == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); reg.id = KVM_REG_PPC_VPA_SLB; reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_slb_get(strerror(errno)); return ret; } assert((uintptr_t)&spapr_cpu->dtl_size == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); reg.id = KVM_REG_PPC_VPA_DTL; reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_dtl_get(strerror(errno)); return ret; } return 0; } static int kvm_put_vpa(CPUState *cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); struct kvm_one_reg reg; int ret; /* * SLB shadow or DTL can't be registered unless a master VPA is * registered. That means when restoring state, if a VPA *is* * registered, we need to set that up first. If not, we need to * deregister the others before deregistering the master VPA */ assert(spapr_cpu->vpa_addr || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr)); if (spapr_cpu->vpa_addr) { reg.id = KVM_REG_PPC_VPA_ADDR; reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_vpa_addr_set(strerror(errno)); return ret; } } assert((uintptr_t)&spapr_cpu->slb_shadow_size == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); reg.id = KVM_REG_PPC_VPA_SLB; reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_slb_set(strerror(errno)); return ret; } assert((uintptr_t)&spapr_cpu->dtl_size == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); reg.id = KVM_REG_PPC_VPA_DTL; reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_dtl_set(strerror(errno)); return ret; } if (!spapr_cpu->vpa_addr) { reg.id = KVM_REG_PPC_VPA_ADDR; reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret < 0) { trace_kvm_failed_null_vpa_addr_set(strerror(errno)); return ret; } } return 0; } #endif /* TARGET_PPC64 */ int kvmppc_put_books_sregs(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; struct kvm_sregs sregs; int i; sregs.pvr = env->spr[SPR_PVR]; if (cpu->vhyp) { PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp); sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp); } else { sregs.u.s.sdr1 = env->spr[SPR_SDR1]; } /* Sync SLB */ #ifdef TARGET_PPC64 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; if (env->slb[i].esid & SLB_ESID_V) { sregs.u.s.ppc64.slb[i].slbe |= i; } sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; } #endif /* Sync SRs */ for (i = 0; i < 16; i++) { sregs.u.s.ppc32.sr[i] = env->sr[i]; } /* Sync BATs */ for (i = 0; i < 8; i++) { /* Beware. We have to swap upper and lower bits here */ sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) | env->DBAT[1][i]; sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) | env->IBAT[1][i]; } return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); } int kvm_arch_put_registers(CPUState *cs, int level) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; struct kvm_regs regs; int ret; int i; ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); if (ret < 0) { return ret; } regs.ctr = env->ctr; regs.lr = env->lr; regs.xer = cpu_read_xer(env); regs.msr = env->msr; regs.pc = env->nip; regs.srr0 = env->spr[SPR_SRR0]; regs.srr1 = env->spr[SPR_SRR1]; regs.sprg0 = env->spr[SPR_SPRG0]; regs.sprg1 = env->spr[SPR_SPRG1]; regs.sprg2 = env->spr[SPR_SPRG2]; regs.sprg3 = env->spr[SPR_SPRG3]; regs.sprg4 = env->spr[SPR_SPRG4]; regs.sprg5 = env->spr[SPR_SPRG5]; regs.sprg6 = env->spr[SPR_SPRG6]; regs.sprg7 = env->spr[SPR_SPRG7]; regs.pid = env->spr[SPR_BOOKE_PID]; for (i = 0; i < 32; i++) { regs.gpr[i] = env->gpr[i]; } regs.cr = 0; for (i = 0; i < 8; i++) { regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); } ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); if (ret < 0) { return ret; } kvm_put_fp(cs); if (env->tlb_dirty) { kvm_sw_tlb_put(cpu); env->tlb_dirty = false; } if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { ret = kvmppc_put_books_sregs(cpu); if (ret < 0) { return ret; } } if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); } if (cap_one_reg) { int i; /* * We deliberately ignore errors here, for kernels which have * the ONE_REG calls, but don't support the specific * registers, there's a reasonable chance things will still * work, at least until we try to migrate. */ for (i = 0; i < 1024; i++) { uint64_t id = env->spr_cb[i].one_reg_id; if (id != 0) { kvm_put_one_spr(cs, id, i); } } #ifdef TARGET_PPC64 if (msr_ts) { for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); } for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); } kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); } if (cap_papr) { if (kvm_put_vpa(cs) < 0) { trace_kvm_failed_put_vpa(); } } kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); #endif /* TARGET_PPC64 */ } return ret; } static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) { env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; } static int kvmppc_get_booke_sregs(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; struct kvm_sregs sregs; int ret; ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); if (ret < 0) { return ret; } if (sregs.u.e.features & KVM_SREGS_E_BASE) { env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; env->spr[SPR_DECR] = sregs.u.e.dec; env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; env->spr[SPR_TBU] = sregs.u.e.tb >> 32; env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; } if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; } if (sregs.u.e.features & KVM_SREGS_E_64) { env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; } if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; } if (sregs.u.e.features & KVM_SREGS_E_IVOR) { env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); if (sregs.u.e.features & KVM_SREGS_E_SPE) { env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); } if (sregs.u.e.features & KVM_SREGS_E_PM) { env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); } if (sregs.u.e.features & KVM_SREGS_E_PC) { env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); } } if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; } if (sregs.u.e.features & KVM_SREGS_EXP) { env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; } if (sregs.u.e.features & KVM_SREGS_E_PD) { env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; } if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; } } return 0; } static int kvmppc_get_books_sregs(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; struct kvm_sregs sregs; int ret; int i; ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); if (ret < 0) { return ret; } if (!cpu->vhyp) { ppc_store_sdr1(env, sregs.u.s.sdr1); } /* Sync SLB */ #ifdef TARGET_PPC64 /* * The packed SLB array we get from KVM_GET_SREGS only contains * information about valid entries. So we flush our internal copy * to get rid of stale ones, then put all valid SLB entries back * in. */ memset(env->slb, 0, sizeof(env->slb)); for (i = 0; i < ARRAY_SIZE(env->slb); i++) { target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; /* * Only restore valid entries */ if (rb & SLB_ESID_V) { ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs); } } #endif /* Sync SRs */ for (i = 0; i < 16; i++) { env->sr[i] = sregs.u.s.ppc32.sr[i]; } /* Sync BATs */ for (i = 0; i < 8; i++) { env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; } return 0; } int kvm_arch_get_registers(CPUState *cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; struct kvm_regs regs; uint32_t cr; int i, ret; ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); if (ret < 0) { return ret; } cr = regs.cr; for (i = 7; i >= 0; i--) { env->crf[i] = cr & 15; cr >>= 4; } env->ctr = regs.ctr; env->lr = regs.lr; cpu_write_xer(env, regs.xer); env->msr = regs.msr; env->nip = regs.pc; env->spr[SPR_SRR0] = regs.srr0; env->spr[SPR_SRR1] = regs.srr1; env->spr[SPR_SPRG0] = regs.sprg0; env->spr[SPR_SPRG1] = regs.sprg1; env->spr[SPR_SPRG2] = regs.sprg2; env->spr[SPR_SPRG3] = regs.sprg3; env->spr[SPR_SPRG4] = regs.sprg4; env->spr[SPR_SPRG5] = regs.sprg5; env->spr[SPR_SPRG6] = regs.sprg6; env->spr[SPR_SPRG7] = regs.sprg7; env->spr[SPR_BOOKE_PID] = regs.pid; for (i = 0; i < 32; i++) { env->gpr[i] = regs.gpr[i]; } kvm_get_fp(cs); if (cap_booke_sregs) { ret = kvmppc_get_booke_sregs(cpu); if (ret < 0) { return ret; } } if (cap_segstate) { ret = kvmppc_get_books_sregs(cpu); if (ret < 0) { return ret; } } if (cap_hior) { kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); } if (cap_one_reg) { int i; /* * We deliberately ignore errors here, for kernels which have * the ONE_REG calls, but don't support the specific * registers, there's a reasonable chance things will still * work, at least until we try to migrate. */ for (i = 0; i < 1024; i++) { uint64_t id = env->spr_cb[i].one_reg_id; if (id != 0) { kvm_get_one_spr(cs, id, i); } } #ifdef TARGET_PPC64 if (msr_ts) { for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); } for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); } kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); } if (cap_papr) { if (kvm_get_vpa(cs) < 0) { trace_kvm_failed_get_vpa(); } } kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); #endif } return 0; } int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) { unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; if (irq != PPC_INTERRUPT_EXT) { return 0; } if (!kvm_enabled() || !cap_interrupt_unset) { return 0; } kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); return 0; } #if defined(TARGET_PPC64) #define PPC_INPUT_INT PPC970_INPUT_INT #else #define PPC_INPUT_INT PPC6xx_INPUT_INT #endif void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) { return; } MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) { return MEMTXATTRS_UNSPECIFIED; } int kvm_arch_process_async_events(CPUState *cs) { return cs->halted; } static int kvmppc_handle_halt(PowerPCCPU *cpu) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { cs->halted = 1; cs->exception_index = EXCP_HLT; } return 0; } /* map dcr access to existing qemu dcr emulation */ static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data) { if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) { fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); } return 0; } static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data) { if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) { fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); } return 0; } int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { /* Mixed endian case is not handled */ uint32_t sc = debug_inst_opcode; if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, sizeof(sc), 0) || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { return -EINVAL; } return 0; } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { uint32_t sc; if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || sc != debug_inst_opcode || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, sizeof(sc), 1)) { return -EINVAL; } return 0; } static int find_hw_breakpoint(target_ulong addr, int type) { int n; assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(hw_debug_points)); for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { if (hw_debug_points[n].addr == addr && hw_debug_points[n].type == type) { return n; } } return -1; } static int find_hw_watchpoint(target_ulong addr, int *flag) { int n; n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); if (n >= 0) { *flag = BP_MEM_ACCESS; return n; } n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); if (n >= 0) { *flag = BP_MEM_WRITE; return n; } n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); if (n >= 0) { *flag = BP_MEM_READ; return n; } return -1; } int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) { if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) { return -ENOBUFS; } hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr; hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type; switch (type) { case GDB_BREAKPOINT_HW: if (nb_hw_breakpoint >= max_hw_breakpoint) { return -ENOBUFS; } if (find_hw_breakpoint(addr, type) >= 0) { return -EEXIST; } nb_hw_breakpoint++; break; case GDB_WATCHPOINT_WRITE: case GDB_WATCHPOINT_READ: case GDB_WATCHPOINT_ACCESS: if (nb_hw_watchpoint >= max_hw_watchpoint) { return -ENOBUFS; } if (find_hw_breakpoint(addr, type) >= 0) { return -EEXIST; } nb_hw_watchpoint++; break; default: return -ENOSYS; } return 0; } int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) { int n; n = find_hw_breakpoint(addr, type); if (n < 0) { return -ENOENT; } switch (type) { case GDB_BREAKPOINT_HW: nb_hw_breakpoint--; break; case GDB_WATCHPOINT_WRITE: case GDB_WATCHPOINT_READ: case GDB_WATCHPOINT_ACCESS: nb_hw_watchpoint--; break; default: return -ENOSYS; } hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; return 0; } void kvm_arch_remove_all_hw_breakpoints(void) { nb_hw_breakpoint = nb_hw_watchpoint = 0; } void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) { int n; /* Software Breakpoint updates */ if (kvm_sw_breakpoints_active(cs)) { dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; } assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(hw_debug_points)); assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { switch (hw_debug_points[n].type) { case GDB_BREAKPOINT_HW: dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; break; case GDB_WATCHPOINT_WRITE: dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; break; case GDB_WATCHPOINT_READ: dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; break; case GDB_WATCHPOINT_ACCESS: dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | KVMPPC_DEBUG_WATCH_READ; break; default: cpu_abort(cs, "Unsupported breakpoint type\n"); } dbg->arch.bp[n].addr = hw_debug_points[n].addr; } } } static int kvm_handle_hw_breakpoint(CPUState *cs, struct kvm_debug_exit_arch *arch_info) { int handle = 0; int n; int flag = 0; if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); if (n >= 0) { handle = 1; } } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | KVMPPC_DEBUG_WATCH_WRITE)) { n = find_hw_watchpoint(arch_info->address, &flag); if (n >= 0) { handle = 1; cs->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = hw_debug_points[n].addr; hw_watchpoint.flags = flag; } } } return handle; } static int kvm_handle_singlestep(void) { return 1; } static int kvm_handle_sw_breakpoint(void) { return 1; } static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; struct kvm_debug_exit_arch *arch_info = &run->debug.arch; if (cs->singlestep_enabled) { return kvm_handle_singlestep(); } if (arch_info->status) { return kvm_handle_hw_breakpoint(cs, arch_info); } if (kvm_find_sw_breakpoint(cs, arch_info->address)) { return kvm_handle_sw_breakpoint(); } /* * QEMU is not able to handle debug exception, so inject * program exception to guest; * Yes program exception NOT debug exception !! * When QEMU is using debug resources then debug exception must * be always set. To achieve this we set MSR_DE and also set * MSRP_DEP so guest cannot change MSR_DE. * When emulating debug resource for guest we want guest * to control MSR_DE (enable/disable debug interrupt on need). * Supporting both configurations are NOT possible. * So the result is that we cannot share debug resources * between QEMU and Guest on BOOKE architecture. * In the current design QEMU gets the priority over guest, * this means that if QEMU is using debug resources then guest * cannot use them; * For software breakpoint QEMU uses a privileged instruction; * So there cannot be any reason that we are here for guest * set debug exception, only possibility is guest executed a * privileged / illegal instruction and that's why we are * injecting a program interrupt. */ cpu_synchronize_state(cs); /* * env->nip is PC, so increment this by 4 to use * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. */ env->nip += 4; cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_INVAL; ppc_cpu_do_interrupt(cs); return 0; } int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; int ret; qemu_mutex_lock_iothread(); switch (run->exit_reason) { case KVM_EXIT_DCR: if (run->dcr.is_write) { trace_kvm_handle_dcr_write(); ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); } else { trace_kvm_handle_dcr_read(); ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); } break; case KVM_EXIT_HLT: trace_kvm_handle_halt(); ret = kvmppc_handle_halt(cpu); break; #if defined(TARGET_PPC64) case KVM_EXIT_PAPR_HCALL: trace_kvm_handle_papr_hcall(); run->papr_hcall.ret = spapr_hypercall(cpu, run->papr_hcall.nr, run->papr_hcall.args); ret = 0; break; #endif case KVM_EXIT_EPR: trace_kvm_handle_epr(); run->epr.epr = ldl_phys(cs->as, env->mpic_iack); ret = 0; break; case KVM_EXIT_WATCHDOG: trace_kvm_handle_watchdog_expiry(); watchdog_perform_action(); ret = 0; break; case KVM_EXIT_DEBUG: trace_kvm_handle_debug_exception(); if (kvm_handle_debug(cpu, run)) { ret = EXCP_DEBUG; break; } /* re-enter, this exception was guest-internal */ ret = 0; break; default: fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); ret = -1; break; } qemu_mutex_unlock_iothread(); return ret; } int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) { CPUState *cs = CPU(cpu); uint32_t bits = tsr_bits; struct kvm_one_reg reg = { .id = KVM_REG_PPC_OR_TSR, .addr = (uintptr_t) &bits, }; return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); } int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) { CPUState *cs = CPU(cpu); uint32_t bits = tsr_bits; struct kvm_one_reg reg = { .id = KVM_REG_PPC_CLEAR_TSR, .addr = (uintptr_t) &bits, }; return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); } int kvmppc_set_tcr(PowerPCCPU *cpu) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; uint32_t tcr = env->spr[SPR_BOOKE_TCR]; struct kvm_one_reg reg = { .id = KVM_REG_PPC_TCR, .addr = (uintptr_t) &tcr, }; return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); } int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) { CPUState *cs = CPU(cpu); int ret; if (!kvm_enabled()) { return -1; } if (!cap_ppc_watchdog) { printf("warning: KVM does not support watchdog"); return -1; } ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); if (ret < 0) { fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", __func__, strerror(-ret)); return ret; } return ret; } static int read_cpuinfo(const char *field, char *value, int len) { FILE *f; int ret = -1; int field_len = strlen(field); char line[512]; f = fopen("/proc/cpuinfo", "r"); if (!f) { return -1; } do { if (!fgets(line, sizeof(line), f)) { break; } if (!strncmp(line, field, field_len)) { pstrcpy(value, len, line); ret = 0; break; } } while (*line); fclose(f); return ret; } uint32_t kvmppc_get_tbfreq(void) { char line[512]; char *ns; uint32_t retval = NANOSECONDS_PER_SECOND; if (read_cpuinfo("timebase", line, sizeof(line))) { return retval; } ns = strchr(line, ':'); if (!ns) { return retval; } ns++; return atoi(ns); } bool kvmppc_get_host_serial(char **value) { return g_file_get_contents("/proc/device-tree/system-id", value, NULL, NULL); } bool kvmppc_get_host_model(char **value) { return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); } /* Try to find a device tree node for a CPU with clock-frequency property */ static int kvmppc_find_cpu_dt(char *buf, int buf_len) { struct dirent *dirp; DIR *dp; dp = opendir(PROC_DEVTREE_CPU); if (!dp) { printf("Can't open directory " PROC_DEVTREE_CPU "\n"); return -1; } buf[0] = '\0'; while ((dirp = readdir(dp)) != NULL) { FILE *f; snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, dirp->d_name); f = fopen(buf, "r"); if (f) { snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); fclose(f); break; } buf[0] = '\0'; } closedir(dp); if (buf[0] == '\0') { printf("Unknown host!\n"); return -1; } return 0; } static uint64_t kvmppc_read_int_dt(const char *filename) { union { uint32_t v32; uint64_t v64; } u; FILE *f; int len; f = fopen(filename, "rb"); if (!f) { return -1; } len = fread(&u, 1, sizeof(u), f); fclose(f); switch (len) { case 4: /* property is a 32-bit quantity */ return be32_to_cpu(u.v32); case 8: return be64_to_cpu(u.v64); } return 0; } /* * Read a CPU node property from the host device tree that's a single * integer (32-bit or 64-bit). Returns 0 if anything goes wrong * (can't find or open the property, or doesn't understand the format) */ static uint64_t kvmppc_read_int_cpu_dt(const char *propname) { char buf[PATH_MAX], *tmp; uint64_t val; if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { return -1; } tmp = g_strdup_printf("%s/%s", buf, propname); val = kvmppc_read_int_dt(tmp); g_free(tmp); return val; } uint64_t kvmppc_get_clockfreq(void) { return kvmppc_read_int_cpu_dt("clock-frequency"); } static int kvmppc_get_dec_bits(void) { int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits"); if (nr_bits > 0) { return nr_bits; } return 0; } static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) { CPUState *cs = env_cpu(env); if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { return 0; } return 1; } int kvmppc_get_hasidle(CPUPPCState *env) { struct kvm_ppc_pvinfo pvinfo; if (!kvmppc_get_pvinfo(env, &pvinfo) && (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { return 1; } return 0; } int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) { uint32_t *hc = (uint32_t *)buf; struct kvm_ppc_pvinfo pvinfo; if (!kvmppc_get_pvinfo(env, &pvinfo)) { memcpy(buf, pvinfo.hcall, buf_len); return 0; } /* * Fallback to always fail hypercalls regardless of endianness: * * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) * li r3, -1 * b .+8 (becomes nop in wrong endian) * bswap32(li r3, -1) */ hc[0] = cpu_to_be32(0x08000048); hc[1] = cpu_to_be32(0x3860ffff); hc[2] = cpu_to_be32(0x48000008); hc[3] = cpu_to_be32(bswap32(0x3860ffff)); return 1; } static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) { return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); } void kvmppc_enable_logical_ci_hcalls(void) { /* * FIXME: it would be nice if we could detect the cases where * we're using a device which requires the in kernel * implementation of these hcalls, but the kernel lacks them and * produce a warning. */ kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); } void kvmppc_enable_set_mode_hcall(void) { kvmppc_enable_hcall(kvm_state, H_SET_MODE); } void kvmppc_enable_clear_ref_mod_hcalls(void) { kvmppc_enable_hcall(kvm_state, H_CLEAR_REF); kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD); } void kvmppc_enable_h_page_init(void) { kvmppc_enable_hcall(kvm_state, H_PAGE_INIT); } void kvmppc_set_papr(PowerPCCPU *cpu) { CPUState *cs = CPU(cpu); int ret; if (!kvm_enabled()) { return; } ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); if (ret) { error_report("This vCPU type or KVM version does not support PAPR"); exit(1); } /* * Update the capability flag so we sync the right information * with kvm */ cap_papr = 1; } int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr) { return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr); } void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) { CPUState *cs = CPU(cpu); int ret; ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); if (ret && mpic_proxy) { error_report("This KVM version does not support EPR"); exit(1); } } int kvmppc_smt_threads(void) { return cap_ppc_smt ? cap_ppc_smt : 1; } int kvmppc_set_smt_threads(int smt) { int ret; ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0); if (!ret) { cap_ppc_smt = smt; } return ret; } void kvmppc_hint_smt_possible(Error **errp) { int i; GString *g; char *s; assert(kvm_enabled()); if (cap_ppc_smt_possible) { g = g_string_new("Available VSMT modes:"); for (i = 63; i >= 0; i--) { if ((1UL << i) & cap_ppc_smt_possible) { g_string_append_printf(g, " %lu", (1UL << i)); } } s = g_string_free(g, false); error_append_hint(errp, "%s.\n", s); g_free(s); } else { error_append_hint(errp, "This KVM seems to be too old to support VSMT.\n"); } } #ifdef TARGET_PPC64 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift) { struct kvm_ppc_smmu_info info; long rampagesize, best_page_shift; int i; /* * Find the largest hardware supported page size that's less than * or equal to the (logical) backing page size of guest RAM */ kvm_get_smmu_info(&info, &error_fatal); rampagesize = qemu_minrampagesize(); best_page_shift = 0; for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; if (!sps->page_shift) { continue; } if ((sps->page_shift > best_page_shift) && ((1UL << sps->page_shift) <= rampagesize)) { best_page_shift = sps->page_shift; } } return MIN(current_size, 1ULL << (best_page_shift + hash_shift - 7)); } #endif bool kvmppc_spapr_use_multitce(void) { return cap_spapr_multitce; } int kvmppc_spapr_enable_inkernel_multitce(void) { int ret; ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, H_PUT_TCE_INDIRECT, 1); if (!ret) { ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, H_STUFF_TCE, 1); } return ret; } void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift, uint64_t bus_offset, uint32_t nb_table, int *pfd, bool need_vfio) { long len; int fd; void *table; /* * Must set fd to -1 so we don't try to munmap when called for * destroying the table, which the upper layers -will- do */ *pfd = -1; if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) { return NULL; } if (cap_spapr_tce_64) { struct kvm_create_spapr_tce_64 args = { .liobn = liobn, .page_shift = page_shift, .offset = bus_offset >> page_shift, .size = nb_table, .flags = 0 }; fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args); if (fd < 0) { fprintf(stderr, "KVM: Failed to create TCE64 table for liobn 0x%x\n", liobn); return NULL; } } else if (cap_spapr_tce) { uint64_t window_size = (uint64_t) nb_table << page_shift; struct kvm_create_spapr_tce args = { .liobn = liobn, .window_size = window_size, }; if ((window_size != args.window_size) || bus_offset) { return NULL; } fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); if (fd < 0) { fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", liobn); return NULL; } } else { return NULL; } len = nb_table * sizeof(uint64_t); /* FIXME: round this up to page size */ table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (table == MAP_FAILED) { fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", liobn); close(fd); return NULL; } *pfd = fd; return table; } int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) { long len; if (fd < 0) { return -1; } len = nb_table * sizeof(uint64_t); if ((munmap(table, len) < 0) || (close(fd) < 0)) { fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", strerror(errno)); /* Leak the table */ } return 0; } int kvmppc_reset_htab(int shift_hint) { uint32_t shift = shift_hint; if (!kvm_enabled()) { /* Full emulation, tell caller to allocate htab itself */ return 0; } if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { int ret; ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); if (ret == -ENOTTY) { /* * At least some versions of PR KVM advertise the * capability, but don't implement the ioctl(). Oops. * Return 0 so that we allocate the htab in qemu, as is * correct for PR. */ return 0; } else if (ret < 0) { return ret; } return shift; } /* * We have a kernel that predates the htab reset calls. For PR * KVM, we need to allocate the htab ourselves, for an HV KVM of * this era, it has allocated a 16MB fixed size hash table * already. */ if (kvmppc_is_pr(kvm_state)) { /* PR - tell caller to allocate htab */ return 0; } else { /* HV - assume 16MB kernel allocated htab */ return 24; } } static inline uint32_t mfpvr(void) { uint32_t pvr; asm ("mfpvr %0" : "=r"(pvr)); return pvr; } static void alter_insns(uint64_t *word, uint64_t flags, bool on) { if (on) { *word |= flags; } else { *word &= ~flags; } } static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) { PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); /* Now fix up the class with information we can query from the host */ pcc->pvr = mfpvr(); alter_insns(&pcc->insns_flags, PPC_ALTIVEC, qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC); alter_insns(&pcc->insns_flags2, PPC2_VSX, qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX); alter_insns(&pcc->insns_flags2, PPC2_DFP, qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP); if (dcache_size != -1) { pcc->l1_dcache_size = dcache_size; } if (icache_size != -1) { pcc->l1_icache_size = icache_size; } #if defined(TARGET_PPC64) pcc->radix_page_info = kvm_get_radix_page_info(); if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) { /* * POWER9 DD1 has some bugs which make it not really ISA 3.00 * compliant. More importantly, advertising ISA 3.00 * architected mode may prevent guests from activating * necessary DD1 workarounds. */ pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05); } #endif /* defined(TARGET_PPC64) */ } bool kvmppc_has_cap_epr(void) { return cap_epr; } bool kvmppc_has_cap_fixup_hcalls(void) { return cap_fixup_hcalls; } bool kvmppc_has_cap_htm(void) { return cap_htm; } bool kvmppc_has_cap_mmu_radix(void) { return cap_mmu_radix; } bool kvmppc_has_cap_mmu_hash_v3(void) { return cap_mmu_hash_v3; } static bool kvmppc_power8_host(void) { bool ret = false; #ifdef TARGET_PPC64 { uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr(); ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) || (base_pvr == CPU_POWERPC_POWER8NVL_BASE) || (base_pvr == CPU_POWERPC_POWER8_BASE); } #endif /* TARGET_PPC64 */ return ret; } static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c) { bool l1d_thread_priv_req = !kvmppc_power8_host(); if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) { return 2; } else if ((!l1d_thread_priv_req || c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) && (c.character & c.character_mask & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) { return 1; } return 0; } static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c) { if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) { return 2; } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) { return 1; } return 0; } static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c) { if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) && (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) && (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) { return SPAPR_CAP_FIXED_NA; } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) { return SPAPR_CAP_WORKAROUND; } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) { return SPAPR_CAP_FIXED_CCD; } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) { return SPAPR_CAP_FIXED_IBS; } return 0; } static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c) { if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) { return 1; } return 0; } bool kvmppc_has_cap_xive(void) { return cap_xive; } static void kvmppc_get_cpu_characteristics(KVMState *s) { struct kvm_ppc_cpu_char c; int ret; /* Assume broken */ cap_ppc_safe_cache = 0; cap_ppc_safe_bounds_check = 0; cap_ppc_safe_indirect_branch = 0; ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR); if (!ret) { return; } ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c); if (ret < 0) { return; } cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c); cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c); cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c); cap_ppc_count_cache_flush_assist = parse_cap_ppc_count_cache_flush_assist(c); } int kvmppc_get_cap_safe_cache(void) { return cap_ppc_safe_cache; } int kvmppc_get_cap_safe_bounds_check(void) { return cap_ppc_safe_bounds_check; } int kvmppc_get_cap_safe_indirect_branch(void) { return cap_ppc_safe_indirect_branch; } int kvmppc_get_cap_count_cache_flush_assist(void) { return cap_ppc_count_cache_flush_assist; } bool kvmppc_has_cap_nested_kvm_hv(void) { return !!cap_ppc_nested_kvm_hv; } int kvmppc_set_cap_nested_kvm_hv(int enable) { return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable); } bool kvmppc_has_cap_spapr_vfio(void) { return cap_spapr_vfio; } int kvmppc_get_cap_large_decr(void) { return cap_large_decr; } int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable) { CPUState *cs = CPU(cpu); uint64_t lpcr; kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); /* Do we need to modify the LPCR? */ if (!!(lpcr & LPCR_LD) != !!enable) { if (enable) { lpcr |= LPCR_LD; } else { lpcr &= ~LPCR_LD; } kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); if (!!(lpcr & LPCR_LD) != !!enable) { return -1; } } return 0; } PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void) { uint32_t host_pvr = mfpvr(); PowerPCCPUClass *pvr_pcc; pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); if (pvr_pcc == NULL) { pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); } return pvr_pcc; } static int kvm_ppc_register_host_cpu_type(MachineState *ms) { TypeInfo type_info = { .name = TYPE_HOST_POWERPC_CPU, .class_init = kvmppc_host_cpu_class_init, }; MachineClass *mc = MACHINE_GET_CLASS(ms); PowerPCCPUClass *pvr_pcc; ObjectClass *oc; DeviceClass *dc; int i; pvr_pcc = kvm_ppc_get_host_cpu_class(); if (pvr_pcc == NULL) { return -1; } type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); type_register(&type_info); if (object_dynamic_cast(OBJECT(ms), TYPE_SPAPR_MACHINE)) { /* override TCG default cpu type with 'host' cpu model */ mc->default_cpu_type = TYPE_HOST_POWERPC_CPU; } oc = object_class_by_name(type_info.name); g_assert(oc); /* * Update generic CPU family class alias (e.g. on a POWER8NVL host, * we want "POWER8" to be a "family" alias that points to the current * host CPU type, too) */ dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc)); for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) { if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) { char *suffix; ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc)); suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX); if (suffix) { *suffix = 0; } break; } } return 0; } int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) { struct kvm_rtas_token_args args = { .token = token, }; if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { return -ENOENT; } strncpy(args.name, function, sizeof(args.name) - 1); return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); } int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp) { struct kvm_get_htab_fd s = { .flags = write ? KVM_GET_HTAB_WRITE : 0, .start_index = index, }; int ret; if (!cap_htab_fd) { error_setg(errp, "KVM version doesn't support %s the HPT", write ? "writing" : "reading"); return -ENOTSUP; } ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); if (ret < 0) { error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s", write ? "writing" : "reading", write ? "to" : "from", strerror(errno)); return -errno; } return ret; } int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) { int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); uint8_t buf[bufsize]; ssize_t rc; do { rc = read(fd, buf, bufsize); if (rc < 0) { fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", strerror(errno)); return rc; } else if (rc) { uint8_t *buffer = buf; ssize_t n = rc; while (n) { struct kvm_get_htab_header *head = (struct kvm_get_htab_header *) buffer; size_t chunksize = sizeof(*head) + HASH_PTE_SIZE_64 * head->n_valid; qemu_put_be32(f, head->index); qemu_put_be16(f, head->n_valid); qemu_put_be16(f, head->n_invalid); qemu_put_buffer(f, (void *)(head + 1), HASH_PTE_SIZE_64 * head->n_valid); buffer += chunksize; n -= chunksize; } } } while ((rc != 0) && ((max_ns < 0) || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); return (rc == 0) ? 1 : 0; } int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, uint16_t n_valid, uint16_t n_invalid) { struct kvm_get_htab_header *buf; size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64; ssize_t rc; buf = alloca(chunksize); buf->index = index; buf->n_valid = n_valid; buf->n_invalid = n_invalid; qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid); rc = write(fd, buf, chunksize); if (rc < 0) { fprintf(stderr, "Error writing KVM hash table: %s\n", strerror(errno)); return rc; } if (rc != chunksize) { /* We should never get a short write on a single chunk */ fprintf(stderr, "Short write, restoring KVM hash table\n"); return -1; } return 0; } bool kvm_arch_stop_on_emulation_error(CPUState *cpu) { return true; } void kvm_arch_init_irq_routing(KVMState *s) { } void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n) { int fd, rc; int i; fd = kvmppc_get_htab_fd(false, ptex, &error_abort); i = 0; while (i < n) { struct kvm_get_htab_header *hdr; int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP; char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64]; rc = read(fd, buf, sizeof(buf)); if (rc < 0) { hw_error("kvmppc_read_hptes: Unable to read HPTEs"); } hdr = (struct kvm_get_htab_header *)buf; while ((i < n) && ((char *)hdr < (buf + rc))) { int invalid = hdr->n_invalid, valid = hdr->n_valid; if (hdr->index != (ptex + i)) { hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i); } if (n - i < valid) { valid = n - i; } memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid); i += valid; if ((n - i) < invalid) { invalid = n - i; } memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64); i += invalid; hdr = (struct kvm_get_htab_header *) ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid); } } close(fd); } void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1) { int fd, rc; struct { struct kvm_get_htab_header hdr; uint64_t pte0; uint64_t pte1; } buf; fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort); buf.hdr.n_valid = 1; buf.hdr.n_invalid = 0; buf.hdr.index = ptex; buf.pte0 = cpu_to_be64(pte0); buf.pte1 = cpu_to_be64(pte1); rc = write(fd, &buf, sizeof(buf)); if (rc != sizeof(buf)) { hw_error("kvmppc_write_hpte: Unable to update KVM HPT"); } close(fd); } int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, uint64_t address, uint32_t data, PCIDevice *dev) { return 0; } int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, int vector, PCIDevice *dev) { return 0; } int kvm_arch_release_virq_post(int virq) { return 0; } int kvm_arch_msi_data_to_gsi(uint32_t data) { return data & 0xffff; } int kvmppc_enable_hwrng(void) { if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) { return -1; } return kvmppc_enable_hcall(kvm_state, H_RANDOM); } void kvmppc_check_papr_resize_hpt(Error **errp) { if (!kvm_enabled()) { return; /* No KVM, we're good */ } if (cap_resize_hpt) { return; /* Kernel has explicit support, we're good */ } /* Otherwise fallback on looking for PR KVM */ if (kvmppc_is_pr(kvm_state)) { return; } error_setg(errp, "Hash page table resizing not available with this KVM version"); } int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift) { CPUState *cs = CPU(cpu); struct kvm_ppc_resize_hpt rhpt = { .flags = flags, .shift = shift, }; if (!cap_resize_hpt) { return -ENOSYS; } return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt); } int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift) { CPUState *cs = CPU(cpu); struct kvm_ppc_resize_hpt rhpt = { .flags = flags, .shift = shift, }; if (!cap_resize_hpt) { return -ENOSYS; } return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt); } /* * This is a helper function to detect a post migration scenario * in which a guest, running as KVM-HV, freezes in cpu_post_load because * the guest kernel can't handle a PVR value other than the actual host * PVR in KVM_SET_SREGS, even if pvr_match() returns true. * * If we don't have cap_ppc_pvr_compat and we're not running in PR * (so, we're HV), return true. The workaround itself is done in * cpu_post_load. * * The order here is important: we'll only check for KVM PR as a * fallback if the guest kernel can't handle the situation itself. * We need to avoid as much as possible querying the running KVM type * in QEMU level. */ bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu) { CPUState *cs = CPU(cpu); if (!kvm_enabled()) { return false; } if (cap_ppc_pvr_compat) { return false; } return !kvmppc_is_pr(cs->kvm_state); } void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online) { CPUState *cs = CPU(cpu); if (kvm_enabled()) { kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online); } } void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset) { CPUState *cs = CPU(cpu); if (kvm_enabled()) { kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset); } }