/* * PMU register read/write functions for TCG IBM POWER chips * * Copyright IBM Corp. 2021 * * Authors: * Daniel Henrique Barboza <danielhb413@gmail.com> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) /* * Checks whether the Group A SPR (MMCR0, MMCR2, MMCRA, and the * PMCs) has problem state read access. * * Read acccess is granted for all PMCC values but 0b01, where a * Facility Unavailable Interrupt will occur. */ static bool spr_groupA_read_allowed(DisasContext *ctx) { if (!ctx->mmcr0_pmcc0 && ctx->mmcr0_pmcc1) { gen_exception_err(ctx, POWERPC_EXCP_FU, FSCR_IC_PMU); return false; } return true; } /* * Checks whether the Group A SPR (MMCR0, MMCR2, MMCRA, and the * PMCs) has problem state write access. * * Write acccess is granted for PMCC values 0b10 and 0b11. Userspace * writing with PMCC 0b00 will generate a Hypervisor Emulation * Assistance Interrupt. Userspace writing with PMCC 0b01 will * generate a Facility Unavailable Interrupt. */ static bool spr_groupA_write_allowed(DisasContext *ctx) { if (ctx->mmcr0_pmcc0) { return true; } if (ctx->mmcr0_pmcc1) { /* PMCC = 0b01 */ gen_exception_err(ctx, POWERPC_EXCP_FU, FSCR_IC_PMU); } else { /* PMCC = 0b00 */ gen_hvpriv_exception(ctx, POWERPC_EXCP_PRIV_REG); } return false; } /* * Helper function to avoid code repetition between MMCR0 and * MMCR2 problem state write functions. * * 'ret' must be tcg_temp_freed() by the caller. */ static TCGv masked_gprn_for_spr_write(int gprn, int sprn, uint64_t spr_mask) { TCGv ret = tcg_temp_new(); TCGv t0 = tcg_temp_new(); /* 'ret' starts with all mask bits cleared */ gen_load_spr(ret, sprn); tcg_gen_andi_tl(ret, ret, ~(spr_mask)); /* Apply the mask into 'gprn' in a temp var */ tcg_gen_andi_tl(t0, cpu_gpr[gprn], spr_mask); /* Add the masked gprn bits into 'ret' */ tcg_gen_or_tl(ret, ret, t0); tcg_temp_free(t0); return ret; } void spr_read_MMCR0_ureg(DisasContext *ctx, int gprn, int sprn) { TCGv t0; if (!spr_groupA_read_allowed(ctx)) { return; } t0 = tcg_temp_new(); /* * Filter out all bits but FC, PMAO, and PMAE, according * to ISA v3.1, in 10.4.4 Monitor Mode Control Register 0, * fourth paragraph. */ gen_load_spr(t0, SPR_POWER_MMCR0); tcg_gen_andi_tl(t0, t0, MMCR0_UREG_MASK); tcg_gen_mov_tl(cpu_gpr[gprn], t0); tcg_temp_free(t0); } static void write_MMCR0_common(DisasContext *ctx, TCGv val) { /* * helper_store_mmcr0 will make clock based operations that * will cause 'bad icount read' errors if we do not execute * gen_icount_io_start() beforehand. */ gen_icount_io_start(ctx); gen_helper_store_mmcr0(cpu_env, val); /* * End the translation block because MMCR0 writes can change * ctx->pmu_insn_cnt. */ ctx->base.is_jmp = DISAS_EXIT_UPDATE; } void spr_write_MMCR0_ureg(DisasContext *ctx, int sprn, int gprn) { TCGv masked_gprn; if (!spr_groupA_write_allowed(ctx)) { return; } /* * Filter out all bits but FC, PMAO, and PMAE, according * to ISA v3.1, in 10.4.4 Monitor Mode Control Register 0, * fourth paragraph. */ masked_gprn = masked_gprn_for_spr_write(gprn, SPR_POWER_MMCR0, MMCR0_UREG_MASK); write_MMCR0_common(ctx, masked_gprn); tcg_temp_free(masked_gprn); } void spr_read_MMCR2_ureg(DisasContext *ctx, int gprn, int sprn) { TCGv t0; if (!spr_groupA_read_allowed(ctx)) { return; } t0 = tcg_temp_new(); /* * On read, filter out all bits that are not FCnP0 bits. * When MMCR0[PMCC] is set to 0b10 or 0b11, providing * problem state programs read/write access to MMCR2, * only the FCnP0 bits can be accessed. All other bits are * not changed when mtspr is executed in problem state, and * all other bits return 0s when mfspr is executed in problem * state, according to ISA v3.1, section 10.4.6 Monitor Mode * Control Register 2, p. 1316, third paragraph. */ gen_load_spr(t0, SPR_POWER_MMCR2); tcg_gen_andi_tl(t0, t0, MMCR2_UREG_MASK); tcg_gen_mov_tl(cpu_gpr[gprn], t0); tcg_temp_free(t0); } void spr_write_MMCR2_ureg(DisasContext *ctx, int sprn, int gprn) { TCGv masked_gprn; if (!spr_groupA_write_allowed(ctx)) { return; } /* * Filter the bits that can be written using MMCR2_UREG_MASK, * similar to what is done in spr_write_MMCR0_ureg(). */ masked_gprn = masked_gprn_for_spr_write(gprn, SPR_POWER_MMCR2, MMCR2_UREG_MASK); gen_store_spr(SPR_POWER_MMCR2, masked_gprn); tcg_temp_free(masked_gprn); } void spr_read_PMC(DisasContext *ctx, int gprn, int sprn) { TCGv_i32 t_sprn = tcg_const_i32(sprn); gen_icount_io_start(ctx); gen_helper_read_pmc(cpu_gpr[gprn], cpu_env, t_sprn); tcg_temp_free_i32(t_sprn); } void spr_read_PMC14_ureg(DisasContext *ctx, int gprn, int sprn) { if (!spr_groupA_read_allowed(ctx)) { return; } spr_read_PMC(ctx, gprn, sprn + 0x10); } void spr_read_PMC56_ureg(DisasContext *ctx, int gprn, int sprn) { /* * If PMCC = 0b11, PMC5 and PMC6 aren't included in the Performance * Monitor, and a read attempt results in a Facility Unavailable * Interrupt. */ if (ctx->mmcr0_pmcc0 && ctx->mmcr0_pmcc1) { gen_exception_err(ctx, POWERPC_EXCP_FU, FSCR_IC_PMU); return; } /* The remaining steps are similar to PMCs 1-4 userspace read */ spr_read_PMC14_ureg(ctx, gprn, sprn); } void spr_write_PMC(DisasContext *ctx, int sprn, int gprn) { TCGv_i32 t_sprn = tcg_const_i32(sprn); gen_icount_io_start(ctx); gen_helper_store_pmc(cpu_env, t_sprn, cpu_gpr[gprn]); tcg_temp_free_i32(t_sprn); } void spr_write_PMC14_ureg(DisasContext *ctx, int sprn, int gprn) { if (!spr_groupA_write_allowed(ctx)) { return; } spr_write_PMC(ctx, sprn + 0x10, gprn); } void spr_write_PMC56_ureg(DisasContext *ctx, int sprn, int gprn) { /* * If PMCC = 0b11, PMC5 and PMC6 aren't included in the Performance * Monitor, and a write attempt results in a Facility Unavailable * Interrupt. */ if (ctx->mmcr0_pmcc0 && ctx->mmcr0_pmcc1) { gen_exception_err(ctx, POWERPC_EXCP_FU, FSCR_IC_PMU); return; } /* The remaining steps are similar to PMCs 1-4 userspace write */ spr_write_PMC14_ureg(ctx, sprn, gprn); } void spr_write_MMCR0(DisasContext *ctx, int sprn, int gprn) { write_MMCR0_common(ctx, cpu_gpr[gprn]); } void spr_write_MMCR1(DisasContext *ctx, int sprn, int gprn) { gen_icount_io_start(ctx); gen_helper_store_mmcr1(cpu_env, cpu_gpr[gprn]); } #else void spr_read_MMCR0_ureg(DisasContext *ctx, int gprn, int sprn) { spr_read_ureg(ctx, gprn, sprn); } void spr_write_MMCR0_ureg(DisasContext *ctx, int sprn, int gprn) { spr_noaccess(ctx, gprn, sprn); } void spr_read_MMCR2_ureg(DisasContext *ctx, int gprn, int sprn) { spr_read_ureg(ctx, gprn, sprn); } void spr_write_MMCR2_ureg(DisasContext *ctx, int sprn, int gprn) { spr_noaccess(ctx, gprn, sprn); } void spr_read_PMC14_ureg(DisasContext *ctx, int gprn, int sprn) { spr_read_ureg(ctx, gprn, sprn); } void spr_read_PMC56_ureg(DisasContext *ctx, int gprn, int sprn) { spr_read_ureg(ctx, gprn, sprn); } void spr_write_PMC14_ureg(DisasContext *ctx, int sprn, int gprn) { spr_noaccess(ctx, gprn, sprn); } void spr_write_PMC56_ureg(DisasContext *ctx, int sprn, int gprn) { spr_noaccess(ctx, gprn, sprn); } void spr_write_MMCR0(DisasContext *ctx, int sprn, int gprn) { spr_write_generic(ctx, sprn, gprn); } void spr_write_MMCR1(DisasContext *ctx, int sprn, int gprn) { spr_write_generic(ctx, sprn, gprn); } void spr_write_PMC(DisasContext *ctx, int sprn, int gprn) { spr_write_generic(ctx, sprn, gprn); } #endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */