/* * PMU emulation helpers for TCG IBM POWER chips * * Copyright IBM Corp. 2021 * * Authors: * Daniel Henrique Barboza <danielhb413@gmail.com> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "cpu.h" #include "helper_regs.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "qemu/error-report.h" #include "qemu/main-loop.h" #include "hw/ppc/ppc.h" #include "power8-pmu.h" #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) #define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn) { if (sprn == SPR_POWER_PMC1) { return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE; } return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE; } void pmu_update_summaries(CPUPPCState *env) { target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0]; target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1]; int ins_cnt = 0; int cyc_cnt = 0; if (mmcr0 & MMCR0_FC) { goto hflags_calc; } if (!(mmcr0 & MMCR0_FC14) && mmcr1 != 0) { target_ulong sel; sel = extract64(mmcr1, MMCR1_PMC1EVT_EXTR, MMCR1_EVT_SIZE); switch (sel) { case 0x02: case 0xfe: ins_cnt |= 1 << 1; break; case 0x1e: case 0xf0: cyc_cnt |= 1 << 1; break; } sel = extract64(mmcr1, MMCR1_PMC2EVT_EXTR, MMCR1_EVT_SIZE); ins_cnt |= (sel == 0x02) << 2; cyc_cnt |= (sel == 0x1e) << 2; sel = extract64(mmcr1, MMCR1_PMC3EVT_EXTR, MMCR1_EVT_SIZE); ins_cnt |= (sel == 0x02) << 3; cyc_cnt |= (sel == 0x1e) << 3; sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE); ins_cnt |= ((sel == 0xfa) || (sel == 0x2)) << 4; cyc_cnt |= (sel == 0x1e) << 4; } ins_cnt |= !(mmcr0 & MMCR0_FC56) << 5; cyc_cnt |= !(mmcr0 & MMCR0_FC56) << 6; hflags_calc: env->pmc_ins_cnt = ins_cnt; env->pmc_cyc_cnt = cyc_cnt; env->hflags = deposit32(env->hflags, HFLAGS_INSN_CNT, 1, ins_cnt != 0); } static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns) { target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0]; unsigned ins_cnt = env->pmc_ins_cnt; bool overflow_triggered = false; target_ulong tmp; if (unlikely(ins_cnt & 0x1e)) { if (ins_cnt & (1 << 1)) { tmp = env->spr[SPR_POWER_PMC1]; tmp += num_insns; if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMC1CE)) { tmp = PMC_COUNTER_NEGATIVE_VAL; overflow_triggered = true; } env->spr[SPR_POWER_PMC1] = tmp; } if (ins_cnt & (1 << 2)) { tmp = env->spr[SPR_POWER_PMC2]; tmp += num_insns; if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { tmp = PMC_COUNTER_NEGATIVE_VAL; overflow_triggered = true; } env->spr[SPR_POWER_PMC2] = tmp; } if (ins_cnt & (1 << 3)) { tmp = env->spr[SPR_POWER_PMC3]; tmp += num_insns; if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { tmp = PMC_COUNTER_NEGATIVE_VAL; overflow_triggered = true; } env->spr[SPR_POWER_PMC3] = tmp; } if (ins_cnt & (1 << 4)) { target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1]; int sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE); if (sel == 0x02 || (env->spr[SPR_CTRL] & CTRL_RUN)) { tmp = env->spr[SPR_POWER_PMC4]; tmp += num_insns; if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { tmp = PMC_COUNTER_NEGATIVE_VAL; overflow_triggered = true; } env->spr[SPR_POWER_PMC4] = tmp; } } } if (ins_cnt & (1 << 5)) { tmp = env->spr[SPR_POWER_PMC5]; tmp += num_insns; if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) { tmp = PMC_COUNTER_NEGATIVE_VAL; overflow_triggered = true; } env->spr[SPR_POWER_PMC5] = tmp; } return overflow_triggered; } static void pmu_update_cycles(CPUPPCState *env) { uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t time_delta = now - env->pmu_base_time; int sprn, cyc_cnt = env->pmc_cyc_cnt; for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) { /* * The pseries and powernv clock runs at 1Ghz, meaning * that 1 nanosec equals 1 cycle. */ env->spr[sprn] += time_delta; } } /* Update base_time for future calculations */ env->pmu_base_time = now; } /* * Helper function to retrieve the cycle overflow timer of the * 'sprn' counter. */ static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn) { return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1]; } static void pmc_update_overflow_timer(CPUPPCState *env, int sprn) { QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn); int64_t timeout; /* * PMC5 does not have an overflow timer and this pointer * will be NULL. */ if (!pmc_overflow_timer) { return; } if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) || !pmc_has_overflow_enabled(env, sprn)) { /* Overflow timer is not needed for this counter */ timer_del(pmc_overflow_timer); return; } if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) { timeout = 0; } else { timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn]; } /* * Use timer_mod_anticipate() because an overflow timer might * be already running for this PMC. */ timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout); } static void pmu_update_overflow_timers(CPUPPCState *env) { int sprn; /* * Scroll through all PMCs and start counter overflow timers for * PM_CYC events, if needed. */ for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { pmc_update_overflow_timer(env, sprn); } } static void pmu_delete_timers(CPUPPCState *env) { QEMUTimer *pmc_overflow_timer; int sprn; for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { pmc_overflow_timer = get_cyc_overflow_timer(env, sprn); if (pmc_overflow_timer) { timer_del(pmc_overflow_timer); } } } void helper_store_mmcr0(CPUPPCState *env, target_ulong value) { bool hflags_pmcc0 = (value & MMCR0_PMCC0) != 0; bool hflags_pmcc1 = (value & MMCR0_PMCC1) != 0; pmu_update_cycles(env); env->spr[SPR_POWER_MMCR0] = value; /* MMCR0 writes can change HFLAGS_PMCC[01] and HFLAGS_INSN_CNT */ env->hflags = deposit32(env->hflags, HFLAGS_PMCC0, 1, hflags_pmcc0); env->hflags = deposit32(env->hflags, HFLAGS_PMCC1, 1, hflags_pmcc1); pmu_update_summaries(env); /* Update cycle overflow timers with the current MMCR0 state */ pmu_update_overflow_timers(env); } void helper_store_mmcr1(CPUPPCState *env, uint64_t value) { pmu_update_cycles(env); env->spr[SPR_POWER_MMCR1] = value; /* MMCR1 writes can change HFLAGS_INSN_CNT */ pmu_update_summaries(env); } target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn) { pmu_update_cycles(env); return env->spr[sprn]; } void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value) { pmu_update_cycles(env); env->spr[sprn] = value; pmc_update_overflow_timer(env, sprn); } static void fire_PMC_interrupt(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; pmu_update_cycles(env); if (env->spr[SPR_POWER_MMCR0] & MMCR0_FCECE) { env->spr[SPR_POWER_MMCR0] &= ~MMCR0_FCECE; env->spr[SPR_POWER_MMCR0] |= MMCR0_FC; /* Changing MMCR0_FC requires a new HFLAGS_INSN_CNT calc */ pmu_update_summaries(env); /* * Delete all pending timers if we need to freeze * the PMC. We'll restart them when the PMC starts * running again. */ pmu_delete_timers(env); } if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMAE) { env->spr[SPR_POWER_MMCR0] &= ~MMCR0_PMAE; env->spr[SPR_POWER_MMCR0] |= MMCR0_PMAO; } raise_ebb_perfm_exception(env); } /* This helper assumes that the PMC is running. */ void helper_insns_inc(CPUPPCState *env, uint32_t num_insns) { bool overflow_triggered; PowerPCCPU *cpu; overflow_triggered = pmu_increment_insns(env, num_insns); if (overflow_triggered) { cpu = env_archcpu(env); fire_PMC_interrupt(cpu); } } static void cpu_ppc_pmu_timer_cb(void *opaque) { PowerPCCPU *cpu = opaque; fire_PMC_interrupt(cpu); } void cpu_ppc_pmu_init(CPUPPCState *env) { PowerPCCPU *cpu = env_archcpu(env); int i, sprn; for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { if (sprn == SPR_POWER_PMC5) { continue; } i = sprn - SPR_POWER_PMC1; env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_pmu_timer_cb, cpu); } } #endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */