/* * QEMU RISC-V CPU * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * Copyright (c) 2017-2018 SiFive, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qemu/qemu-print.h" #include "qemu/ctype.h" #include "qemu/log.h" #include "cpu.h" #include "exec/exec-all.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "fpu/softfloat-helpers.h" /* RISC-V CPU definitions */ static const char riscv_exts[26] = "IEMAFDQCLBJTPVNSUHKORWXYZG"; const char * const riscv_int_regnames[] = { "x0/zero", "x1/ra", "x2/sp", "x3/gp", "x4/tp", "x5/t0", "x6/t1", "x7/t2", "x8/s0", "x9/s1", "x10/a0", "x11/a1", "x12/a2", "x13/a3", "x14/a4", "x15/a5", "x16/a6", "x17/a7", "x18/s2", "x19/s3", "x20/s4", "x21/s5", "x22/s6", "x23/s7", "x24/s8", "x25/s9", "x26/s10", "x27/s11", "x28/t3", "x29/t4", "x30/t5", "x31/t6" }; const char * const riscv_fpr_regnames[] = { "f0/ft0", "f1/ft1", "f2/ft2", "f3/ft3", "f4/ft4", "f5/ft5", "f6/ft6", "f7/ft7", "f8/fs0", "f9/fs1", "f10/fa0", "f11/fa1", "f12/fa2", "f13/fa3", "f14/fa4", "f15/fa5", "f16/fa6", "f17/fa7", "f18/fs2", "f19/fs3", "f20/fs4", "f21/fs5", "f22/fs6", "f23/fs7", "f24/fs8", "f25/fs9", "f26/fs10", "f27/fs11", "f28/ft8", "f29/ft9", "f30/ft10", "f31/ft11" }; const char * const riscv_excp_names[] = { "misaligned_fetch", "fault_fetch", "illegal_instruction", "breakpoint", "misaligned_load", "fault_load", "misaligned_store", "fault_store", "user_ecall", "supervisor_ecall", "hypervisor_ecall", "machine_ecall", "exec_page_fault", "load_page_fault", "reserved", "store_page_fault", "reserved", "reserved", "reserved", "reserved", "guest_exec_page_fault", "guest_load_page_fault", "reserved", "guest_store_page_fault", }; const char * const riscv_intr_names[] = { "u_software", "s_software", "vs_software", "m_software", "u_timer", "s_timer", "vs_timer", "m_timer", "u_external", "vs_external", "h_external", "m_external", "reserved", "reserved", "reserved", "reserved" }; const char *riscv_cpu_get_trap_name(target_ulong cause, bool async) { if (async) { return (cause < ARRAY_SIZE(riscv_intr_names)) ? riscv_intr_names[cause] : "(unknown)"; } else { return (cause < ARRAY_SIZE(riscv_excp_names)) ? riscv_excp_names[cause] : "(unknown)"; } } static void set_misa(CPURISCVState *env, target_ulong misa) { env->misa_mask = env->misa = misa; } static void set_priv_version(CPURISCVState *env, int priv_ver) { env->priv_ver = priv_ver; } static void set_vext_version(CPURISCVState *env, int vext_ver) { env->vext_ver = vext_ver; } static void set_feature(CPURISCVState *env, int feature) { env->features |= (1ULL << feature); } static void set_resetvec(CPURISCVState *env, int resetvec) { #ifndef CONFIG_USER_ONLY env->resetvec = resetvec; #endif } static void riscv_any_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, RVXLEN | RVI | RVM | RVA | RVF | RVD | RVC | RVU); set_priv_version(env, PRIV_VERSION_1_11_0); } static void riscv_base_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; /* We set this in the realise function */ set_misa(env, 0); } static void rvxx_sifive_u_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, RVXLEN | RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); } static void rvxx_sifive_e_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, RVXLEN | RVI | RVM | RVA | RVC | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); qdev_prop_set_bit(DEVICE(obj), "mmu", false); } #if defined(TARGET_RISCV32) static void rv32_ibex_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, RV32 | RVI | RVM | RVC | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); qdev_prop_set_bit(DEVICE(obj), "mmu", false); } static void rv32_imafcu_nommu_cpu_init(Object *obj) { CPURISCVState *env = &RISCV_CPU(obj)->env; set_misa(env, RV32 | RVI | RVM | RVA | RVF | RVC | RVU); set_priv_version(env, PRIV_VERSION_1_10_0); set_resetvec(env, DEFAULT_RSTVEC); qdev_prop_set_bit(DEVICE(obj), "mmu", false); } #endif static ObjectClass *riscv_cpu_class_by_name(const char *cpu_model) { ObjectClass *oc; char *typename; char **cpuname; cpuname = g_strsplit(cpu_model, ",", 1); typename = g_strdup_printf(RISCV_CPU_TYPE_NAME("%s"), cpuname[0]); oc = object_class_by_name(typename); g_strfreev(cpuname); g_free(typename); if (!oc || !object_class_dynamic_cast(oc, TYPE_RISCV_CPU) || object_class_is_abstract(oc)) { return NULL; } return oc; } static void riscv_cpu_dump_state(CPUState *cs, FILE *f, int flags) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; int i; #if !defined(CONFIG_USER_ONLY) if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s %d\n", "V = ", riscv_cpu_virt_enabled(env)); } #endif qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "pc ", env->pc); #ifndef CONFIG_USER_ONLY qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mhartid ", env->mhartid); qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mstatus ", env->mstatus); #ifdef TARGET_RISCV32 qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mstatush ", env->mstatush); #endif if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "hstatus ", env->hstatus); qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "vsstatus ", env->vsstatus); } qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mip ", env->mip); qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mie ", env->mie); qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mideleg ", env->mideleg); if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "hideleg ", env->hideleg); } qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "medeleg ", env->medeleg); if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "hedeleg ", env->hedeleg); } qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mtvec ", env->mtvec); qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "stvec ", env->stvec); if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "vstvec ", env->vstvec); } qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mepc ", env->mepc); qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "sepc ", env->sepc); if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "vsepc ", env->vsepc); } qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mcause ", env->mcause); qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "scause ", env->scause); if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "vscause ", env->vscause); } qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mtval ", env->mtval); qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "stval ", env->sbadaddr); if (riscv_has_ext(env, RVH)) { qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "htval ", env->htval); qemu_fprintf(f, " %s " TARGET_FMT_lx "\n", "mtval2 ", env->mtval2); } #endif for (i = 0; i < 32; i++) { qemu_fprintf(f, " %s " TARGET_FMT_lx, riscv_int_regnames[i], env->gpr[i]); if ((i & 3) == 3) { qemu_fprintf(f, "\n"); } } if (flags & CPU_DUMP_FPU) { for (i = 0; i < 32; i++) { qemu_fprintf(f, " %s %016" PRIx64, riscv_fpr_regnames[i], env->fpr[i]); if ((i & 3) == 3) { qemu_fprintf(f, "\n"); } } } } static void riscv_cpu_set_pc(CPUState *cs, vaddr value) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; env->pc = value; } static void riscv_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) { RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; env->pc = tb->pc; } static bool riscv_cpu_has_work(CPUState *cs) { #ifndef CONFIG_USER_ONLY RISCVCPU *cpu = RISCV_CPU(cs); CPURISCVState *env = &cpu->env; /* * Definition of the WFI instruction requires it to ignore the privilege * mode and delegation registers, but respect individual enables */ return (env->mip & env->mie) != 0; #else return true; #endif } void restore_state_to_opc(CPURISCVState *env, TranslationBlock *tb, target_ulong *data) { env->pc = data[0]; } static void riscv_cpu_reset(DeviceState *dev) { CPUState *cs = CPU(dev); RISCVCPU *cpu = RISCV_CPU(cs); RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cpu); CPURISCVState *env = &cpu->env; mcc->parent_reset(dev); #ifndef CONFIG_USER_ONLY env->priv = PRV_M; env->mstatus &= ~(MSTATUS_MIE | MSTATUS_MPRV); env->mcause = 0; env->pc = env->resetvec; #endif cs->exception_index = EXCP_NONE; env->load_res = -1; set_default_nan_mode(1, &env->fp_status); } static void riscv_cpu_disas_set_info(CPUState *s, disassemble_info *info) { #if defined(TARGET_RISCV32) info->print_insn = print_insn_riscv32; #elif defined(TARGET_RISCV64) info->print_insn = print_insn_riscv64; #endif } static void riscv_cpu_realize(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); RISCVCPU *cpu = RISCV_CPU(dev); CPURISCVState *env = &cpu->env; RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(dev); int priv_version = PRIV_VERSION_1_11_0; int vext_version = VEXT_VERSION_0_07_1; target_ulong target_misa = 0; Error *local_err = NULL; cpu_exec_realizefn(cs, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } if (cpu->cfg.priv_spec) { if (!g_strcmp0(cpu->cfg.priv_spec, "v1.11.0")) { priv_version = PRIV_VERSION_1_11_0; } else if (!g_strcmp0(cpu->cfg.priv_spec, "v1.10.0")) { priv_version = PRIV_VERSION_1_10_0; } else { error_setg(errp, "Unsupported privilege spec version '%s'", cpu->cfg.priv_spec); return; } } set_priv_version(env, priv_version); set_vext_version(env, vext_version); if (cpu->cfg.mmu) { set_feature(env, RISCV_FEATURE_MMU); } if (cpu->cfg.pmp) { set_feature(env, RISCV_FEATURE_PMP); } set_resetvec(env, cpu->cfg.resetvec); /* If misa isn't set (rv32 and rv64 machines) set it here */ if (!env->misa) { /* Do some ISA extension error checking */ if (cpu->cfg.ext_i && cpu->cfg.ext_e) { error_setg(errp, "I and E extensions are incompatible"); return; } if (!cpu->cfg.ext_i && !cpu->cfg.ext_e) { error_setg(errp, "Either I or E extension must be set"); return; } if (cpu->cfg.ext_g && !(cpu->cfg.ext_i & cpu->cfg.ext_m & cpu->cfg.ext_a & cpu->cfg.ext_f & cpu->cfg.ext_d)) { warn_report("Setting G will also set IMAFD"); cpu->cfg.ext_i = true; cpu->cfg.ext_m = true; cpu->cfg.ext_a = true; cpu->cfg.ext_f = true; cpu->cfg.ext_d = true; } /* Set the ISA extensions, checks should have happened above */ if (cpu->cfg.ext_i) { target_misa |= RVI; } if (cpu->cfg.ext_e) { target_misa |= RVE; } if (cpu->cfg.ext_m) { target_misa |= RVM; } if (cpu->cfg.ext_a) { target_misa |= RVA; } if (cpu->cfg.ext_f) { target_misa |= RVF; } if (cpu->cfg.ext_d) { target_misa |= RVD; } if (cpu->cfg.ext_c) { target_misa |= RVC; } if (cpu->cfg.ext_s) { target_misa |= RVS; } if (cpu->cfg.ext_u) { target_misa |= RVU; } if (cpu->cfg.ext_h) { target_misa |= RVH; } if (cpu->cfg.ext_v) { target_misa |= RVV; if (!is_power_of_2(cpu->cfg.vlen)) { error_setg(errp, "Vector extension VLEN must be power of 2"); return; } if (cpu->cfg.vlen > RV_VLEN_MAX || cpu->cfg.vlen < 128) { error_setg(errp, "Vector extension implementation only supports VLEN " "in the range [128, %d]", RV_VLEN_MAX); return; } if (!is_power_of_2(cpu->cfg.elen)) { error_setg(errp, "Vector extension ELEN must be power of 2"); return; } if (cpu->cfg.elen > 64 || cpu->cfg.vlen < 8) { error_setg(errp, "Vector extension implementation only supports ELEN " "in the range [8, 64]"); return; } if (cpu->cfg.vext_spec) { if (!g_strcmp0(cpu->cfg.vext_spec, "v0.7.1")) { vext_version = VEXT_VERSION_0_07_1; } else { error_setg(errp, "Unsupported vector spec version '%s'", cpu->cfg.vext_spec); return; } } else { qemu_log("vector verison is not specified, " "use the default value v0.7.1\n"); } set_vext_version(env, vext_version); } set_misa(env, RVXLEN | target_misa); } riscv_cpu_register_gdb_regs_for_features(cs); qemu_init_vcpu(cs); cpu_reset(cs); mcc->parent_realize(dev, errp); } static void riscv_cpu_init(Object *obj) { RISCVCPU *cpu = RISCV_CPU(obj); cpu_set_cpustate_pointers(cpu); } #ifndef CONFIG_USER_ONLY static const VMStateDescription vmstate_riscv_cpu = { .name = "cpu", .unmigratable = 1, }; #endif static Property riscv_cpu_properties[] = { DEFINE_PROP_BOOL("i", RISCVCPU, cfg.ext_i, true), DEFINE_PROP_BOOL("e", RISCVCPU, cfg.ext_e, false), DEFINE_PROP_BOOL("g", RISCVCPU, cfg.ext_g, true), DEFINE_PROP_BOOL("m", RISCVCPU, cfg.ext_m, true), DEFINE_PROP_BOOL("a", RISCVCPU, cfg.ext_a, true), DEFINE_PROP_BOOL("f", RISCVCPU, cfg.ext_f, true), DEFINE_PROP_BOOL("d", RISCVCPU, cfg.ext_d, true), DEFINE_PROP_BOOL("c", RISCVCPU, cfg.ext_c, true), DEFINE_PROP_BOOL("s", RISCVCPU, cfg.ext_s, true), DEFINE_PROP_BOOL("u", RISCVCPU, cfg.ext_u, true), /* This is experimental so mark with 'x-' */ DEFINE_PROP_BOOL("x-h", RISCVCPU, cfg.ext_h, false), DEFINE_PROP_BOOL("x-v", RISCVCPU, cfg.ext_v, false), DEFINE_PROP_BOOL("Counters", RISCVCPU, cfg.ext_counters, true), DEFINE_PROP_BOOL("Zifencei", RISCVCPU, cfg.ext_ifencei, true), DEFINE_PROP_BOOL("Zicsr", RISCVCPU, cfg.ext_icsr, true), DEFINE_PROP_STRING("priv_spec", RISCVCPU, cfg.priv_spec), DEFINE_PROP_STRING("vext_spec", RISCVCPU, cfg.vext_spec), DEFINE_PROP_UINT16("vlen", RISCVCPU, cfg.vlen, 128), DEFINE_PROP_UINT16("elen", RISCVCPU, cfg.elen, 64), DEFINE_PROP_BOOL("mmu", RISCVCPU, cfg.mmu, true), DEFINE_PROP_BOOL("pmp", RISCVCPU, cfg.pmp, true), DEFINE_PROP_UINT64("resetvec", RISCVCPU, cfg.resetvec, DEFAULT_RSTVEC), DEFINE_PROP_END_OF_LIST(), }; static void riscv_cpu_class_init(ObjectClass *c, void *data) { RISCVCPUClass *mcc = RISCV_CPU_CLASS(c); CPUClass *cc = CPU_CLASS(c); DeviceClass *dc = DEVICE_CLASS(c); device_class_set_parent_realize(dc, riscv_cpu_realize, &mcc->parent_realize); device_class_set_parent_reset(dc, riscv_cpu_reset, &mcc->parent_reset); cc->class_by_name = riscv_cpu_class_by_name; cc->has_work = riscv_cpu_has_work; cc->do_interrupt = riscv_cpu_do_interrupt; cc->cpu_exec_interrupt = riscv_cpu_exec_interrupt; cc->dump_state = riscv_cpu_dump_state; cc->set_pc = riscv_cpu_set_pc; cc->synchronize_from_tb = riscv_cpu_synchronize_from_tb; cc->gdb_read_register = riscv_cpu_gdb_read_register; cc->gdb_write_register = riscv_cpu_gdb_write_register; cc->gdb_num_core_regs = 33; #if defined(TARGET_RISCV32) cc->gdb_core_xml_file = "riscv-32bit-cpu.xml"; #elif defined(TARGET_RISCV64) cc->gdb_core_xml_file = "riscv-64bit-cpu.xml"; #endif cc->gdb_stop_before_watchpoint = true; cc->disas_set_info = riscv_cpu_disas_set_info; #ifndef CONFIG_USER_ONLY cc->do_transaction_failed = riscv_cpu_do_transaction_failed; cc->do_unaligned_access = riscv_cpu_do_unaligned_access; cc->get_phys_page_debug = riscv_cpu_get_phys_page_debug; /* For now, mark unmigratable: */ cc->vmsd = &vmstate_riscv_cpu; #endif #ifdef CONFIG_TCG cc->tcg_initialize = riscv_translate_init; cc->tlb_fill = riscv_cpu_tlb_fill; #endif device_class_set_props(dc, riscv_cpu_properties); } char *riscv_isa_string(RISCVCPU *cpu) { int i; const size_t maxlen = sizeof("rv128") + sizeof(riscv_exts) + 1; char *isa_str = g_new(char, maxlen); char *p = isa_str + snprintf(isa_str, maxlen, "rv%d", TARGET_LONG_BITS); for (i = 0; i < sizeof(riscv_exts); i++) { if (cpu->env.misa & RV(riscv_exts[i])) { *p++ = qemu_tolower(riscv_exts[i]); } } *p = '\0'; return isa_str; } static gint riscv_cpu_list_compare(gconstpointer a, gconstpointer b) { ObjectClass *class_a = (ObjectClass *)a; ObjectClass *class_b = (ObjectClass *)b; const char *name_a, *name_b; name_a = object_class_get_name(class_a); name_b = object_class_get_name(class_b); return strcmp(name_a, name_b); } static void riscv_cpu_list_entry(gpointer data, gpointer user_data) { const char *typename = object_class_get_name(OBJECT_CLASS(data)); int len = strlen(typename) - strlen(RISCV_CPU_TYPE_SUFFIX); qemu_printf("%.*s\n", len, typename); } void riscv_cpu_list(void) { GSList *list; list = object_class_get_list(TYPE_RISCV_CPU, false); list = g_slist_sort(list, riscv_cpu_list_compare); g_slist_foreach(list, riscv_cpu_list_entry, NULL); g_slist_free(list); } #define DEFINE_CPU(type_name, initfn) \ { \ .name = type_name, \ .parent = TYPE_RISCV_CPU, \ .instance_init = initfn \ } static const TypeInfo riscv_cpu_type_infos[] = { { .name = TYPE_RISCV_CPU, .parent = TYPE_CPU, .instance_size = sizeof(RISCVCPU), .instance_align = __alignof__(RISCVCPU), .instance_init = riscv_cpu_init, .abstract = true, .class_size = sizeof(RISCVCPUClass), .class_init = riscv_cpu_class_init, }, DEFINE_CPU(TYPE_RISCV_CPU_ANY, riscv_any_cpu_init), #if defined(TARGET_RISCV32) DEFINE_CPU(TYPE_RISCV_CPU_BASE32, riscv_base_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_IBEX, rv32_ibex_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E31, rvxx_sifive_e_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E34, rv32_imafcu_nommu_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U34, rvxx_sifive_u_cpu_init), #elif defined(TARGET_RISCV64) DEFINE_CPU(TYPE_RISCV_CPU_BASE64, riscv_base_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E51, rvxx_sifive_e_cpu_init), DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U54, rvxx_sifive_u_cpu_init), #endif }; DEFINE_TYPES(riscv_cpu_type_infos)