/* * S/390 memory access helper routines * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/address-spaces.h" #include "exec/helper-proto.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "qemu/int128.h" #if !defined(CONFIG_USER_ONLY) #include "hw/s390x/storage-keys.h" #endif /*****************************************************************************/ /* Softmmu support */ #if !defined(CONFIG_USER_ONLY) /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { int ret = s390_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx); if (unlikely(ret != 0)) { cpu_loop_exit_restore(cs, retaddr); } } #endif /* #define DEBUG_HELPER */ #ifdef DEBUG_HELPER #define HELPER_LOG(x...) qemu_log(x) #else #define HELPER_LOG(x...) #endif /* Reduce the length so that addr + len doesn't cross a page boundary. */ static inline uint32_t adj_len_to_page(uint32_t len, uint64_t addr) { #ifndef CONFIG_USER_ONLY if ((addr & ~TARGET_PAGE_MASK) + len - 1 >= TARGET_PAGE_SIZE) { return -addr & ~TARGET_PAGE_MASK; } #endif return len; } static void fast_memset(CPUS390XState *env, uint64_t dest, uint8_t byte, uint32_t l, uintptr_t ra) { int mmu_idx = cpu_mmu_index(env, false); while (l > 0) { void *p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx); if (p) { /* Access to the whole page in write mode granted. */ uint32_t l_adj = adj_len_to_page(l, dest); memset(p, byte, l_adj); dest += l_adj; l -= l_adj; } else { /* We failed to get access to the whole page. The next write access will likely fill the QEMU TLB for the next iteration. */ cpu_stb_data_ra(env, dest, byte, ra); dest++; l--; } } } static void fast_memmove(CPUS390XState *env, uint64_t dest, uint64_t src, uint32_t l, uintptr_t ra) { int mmu_idx = cpu_mmu_index(env, false); while (l > 0) { void *src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, mmu_idx); void *dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx); if (src_p && dest_p) { /* Access to both whole pages granted. */ uint32_t l_adj = adj_len_to_page(l, src); l_adj = adj_len_to_page(l_adj, dest); memmove(dest_p, src_p, l_adj); src += l_adj; dest += l_adj; l -= l_adj; } else { /* We failed to get access to one or both whole pages. The next read or write access will likely fill the QEMU TLB for the next iteration. */ cpu_stb_data_ra(env, dest, cpu_ldub_data_ra(env, src, ra), ra); src++; dest++; l--; } } } /* and on array */ static uint32_t do_helper_nc(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src, uintptr_t ra) { uint32_t i; uint8_t c = 0; HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", __func__, l, dest, src); for (i = 0; i <= l; i++) { uint8_t x = cpu_ldub_data_ra(env, src + i, ra); x &= cpu_ldub_data_ra(env, dest + i, ra); c |= x; cpu_stb_data_ra(env, dest + i, x, ra); } return c != 0; } uint32_t HELPER(nc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src) { return do_helper_nc(env, l, dest, src, GETPC()); } /* xor on array */ static uint32_t do_helper_xc(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src, uintptr_t ra) { uint32_t i; uint8_t c = 0; HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", __func__, l, dest, src); /* xor with itself is the same as memset(0) */ if (src == dest) { fast_memset(env, dest, 0, l + 1, ra); return 0; } for (i = 0; i <= l; i++) { uint8_t x = cpu_ldub_data_ra(env, src + i, ra); x ^= cpu_ldub_data_ra(env, dest + i, ra); c |= x; cpu_stb_data_ra(env, dest + i, x, ra); } return c != 0; } uint32_t HELPER(xc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src) { return do_helper_xc(env, l, dest, src, GETPC()); } /* or on array */ static uint32_t do_helper_oc(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src, uintptr_t ra) { uint32_t i; uint8_t c = 0; HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", __func__, l, dest, src); for (i = 0; i <= l; i++) { uint8_t x = cpu_ldub_data_ra(env, src + i, ra); x |= cpu_ldub_data_ra(env, dest + i, ra); c |= x; cpu_stb_data_ra(env, dest + i, x, ra); } return c != 0; } uint32_t HELPER(oc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src) { return do_helper_oc(env, l, dest, src, GETPC()); } /* memmove */ static uint32_t do_helper_mvc(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src, uintptr_t ra) { uint32_t i; HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n", __func__, l, dest, src); /* mvc and memmove do not behave the same when areas overlap! */ /* mvc with source pointing to the byte after the destination is the same as memset with the first source byte */ if (dest == src + 1) { fast_memset(env, dest, cpu_ldub_data_ra(env, src, ra), l + 1, ra); } else if (dest < src || src + l < dest) { fast_memmove(env, dest, src, l + 1, ra); } else { /* slow version with byte accesses which always work */ for (i = 0; i <= l; i++) { uint8_t x = cpu_ldub_data_ra(env, src + i, ra); cpu_stb_data_ra(env, dest + i, x, ra); } } return env->cc_op; } void HELPER(mvc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src) { do_helper_mvc(env, l, dest, src, GETPC()); } /* compare unsigned byte arrays */ static uint32_t do_helper_clc(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2, uintptr_t ra) { uint32_t i; uint32_t cc = 0; HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n", __func__, l, s1, s2); for (i = 0; i <= l; i++) { uint8_t x = cpu_ldub_data_ra(env, s1 + i, ra); uint8_t y = cpu_ldub_data_ra(env, s2 + i, ra); HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y); if (x < y) { cc = 1; break; } else if (x > y) { cc = 2; break; } } HELPER_LOG("\n"); return cc; } uint32_t HELPER(clc)(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2) { return do_helper_clc(env, l, s1, s2, GETPC()); } /* compare logical under mask */ uint32_t HELPER(clm)(CPUS390XState *env, uint32_t r1, uint32_t mask, uint64_t addr) { uintptr_t ra = GETPC(); uint32_t cc = 0; HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __func__, r1, mask, addr); while (mask) { if (mask & 8) { uint8_t d = cpu_ldub_data_ra(env, addr, ra); uint8_t r = extract32(r1, 24, 8); HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d, addr); if (r < d) { cc = 1; break; } else if (r > d) { cc = 2; break; } addr++; } mask = (mask << 1) & 0xf; r1 <<= 8; } HELPER_LOG("\n"); return cc; } static inline uint64_t fix_address(CPUS390XState *env, uint64_t a) { /* 31-Bit mode */ if (!(env->psw.mask & PSW_MASK_64)) { a &= 0x7fffffff; } return a; } static inline uint64_t get_address(CPUS390XState *env, int x2, int b2, int d2) { uint64_t r = d2; if (x2) { r += env->regs[x2]; } if (b2) { r += env->regs[b2]; } return fix_address(env, r); } static inline uint64_t get_address_31fix(CPUS390XState *env, int reg) { return fix_address(env, env->regs[reg]); } /* search string (c is byte to search, r2 is string, r1 end of string) */ uint64_t HELPER(srst)(CPUS390XState *env, uint64_t r0, uint64_t end, uint64_t str) { uintptr_t ra = GETPC(); uint32_t len; uint8_t v, c = r0; str = fix_address(env, str); end = fix_address(env, end); /* Assume for now that R2 is unmodified. */ env->retxl = str; /* Lest we fail to service interrupts in a timely manner, limit the amount of work we're willing to do. For now, let's cap at 8k. */ for (len = 0; len < 0x2000; ++len) { if (str + len == end) { /* Character not found. R1 & R2 are unmodified. */ env->cc_op = 2; return end; } v = cpu_ldub_data_ra(env, str + len, ra); if (v == c) { /* Character found. Set R1 to the location; R2 is unmodified. */ env->cc_op = 1; return str + len; } } /* CPU-determined bytes processed. Advance R2 to next byte to process. */ env->retxl = str + len; env->cc_op = 3; return end; } /* unsigned string compare (c is string terminator) */ uint64_t HELPER(clst)(CPUS390XState *env, uint64_t c, uint64_t s1, uint64_t s2) { uintptr_t ra = GETPC(); uint32_t len; c = c & 0xff; s1 = fix_address(env, s1); s2 = fix_address(env, s2); /* Lest we fail to service interrupts in a timely manner, limit the amount of work we're willing to do. For now, let's cap at 8k. */ for (len = 0; len < 0x2000; ++len) { uint8_t v1 = cpu_ldub_data_ra(env, s1 + len, ra); uint8_t v2 = cpu_ldub_data_ra(env, s2 + len, ra); if (v1 == v2) { if (v1 == c) { /* Equal. CC=0, and don't advance the registers. */ env->cc_op = 0; env->retxl = s2; return s1; } } else { /* Unequal. CC={1,2}, and advance the registers. Note that the terminator need not be zero, but the string that contains the terminator is by definition "low". */ env->cc_op = (v1 == c ? 1 : v2 == c ? 2 : v1 < v2 ? 1 : 2); env->retxl = s2 + len; return s1 + len; } } /* CPU-determined bytes equal; advance the registers. */ env->cc_op = 3; env->retxl = s2 + len; return s1 + len; } /* move page */ uint32_t HELPER(mvpg)(CPUS390XState *env, uint64_t r0, uint64_t r1, uint64_t r2) { /* ??? missing r0 handling, which includes access keys, but more importantly optional suppression of the exception! */ fast_memmove(env, r1, r2, TARGET_PAGE_SIZE, GETPC()); return 0; /* data moved */ } /* string copy (c is string terminator) */ uint64_t HELPER(mvst)(CPUS390XState *env, uint64_t c, uint64_t d, uint64_t s) { uintptr_t ra = GETPC(); uint32_t len; c = c & 0xff; d = fix_address(env, d); s = fix_address(env, s); /* Lest we fail to service interrupts in a timely manner, limit the amount of work we're willing to do. For now, let's cap at 8k. */ for (len = 0; len < 0x2000; ++len) { uint8_t v = cpu_ldub_data_ra(env, s + len, ra); cpu_stb_data_ra(env, d + len, v, ra); if (v == c) { /* Complete. Set CC=1 and advance R1. */ env->cc_op = 1; env->retxl = s; return d + len; } } /* Incomplete. Set CC=3 and signal to advance R1 and R2. */ env->cc_op = 3; env->retxl = s + len; return d + len; } /* load access registers r1 to r3 from memory at a2 */ void HELPER(lam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) { uintptr_t ra = GETPC(); int i; for (i = r1;; i = (i + 1) % 16) { env->aregs[i] = cpu_ldl_data_ra(env, a2, ra); a2 += 4; if (i == r3) { break; } } } /* store access registers r1 to r3 in memory at a2 */ void HELPER(stam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) { uintptr_t ra = GETPC(); int i; for (i = r1;; i = (i + 1) % 16) { cpu_stl_data_ra(env, a2, env->aregs[i], ra); a2 += 4; if (i == r3) { break; } } } /* move long */ uint32_t HELPER(mvcl)(CPUS390XState *env, uint32_t r1, uint32_t r2) { uintptr_t ra = GETPC(); uint64_t destlen = env->regs[r1 + 1] & 0xffffff; uint64_t dest = get_address_31fix(env, r1); uint64_t srclen = env->regs[r2 + 1] & 0xffffff; uint64_t src = get_address_31fix(env, r2); uint8_t pad = env->regs[r2 + 1] >> 24; uint8_t v; uint32_t cc; if (destlen == srclen) { cc = 0; } else if (destlen < srclen) { cc = 1; } else { cc = 2; } if (srclen > destlen) { srclen = destlen; } for (; destlen && srclen; src++, dest++, destlen--, srclen--) { v = cpu_ldub_data_ra(env, src, ra); cpu_stb_data_ra(env, dest, v, ra); } for (; destlen; dest++, destlen--) { cpu_stb_data_ra(env, dest, pad, ra); } env->regs[r1 + 1] = destlen; /* can't use srclen here, we trunc'ed it */ env->regs[r2 + 1] -= src - env->regs[r2]; env->regs[r1] = dest; env->regs[r2] = src; return cc; } /* move long extended another memcopy insn with more bells and whistles */ uint32_t HELPER(mvcle)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) { uintptr_t ra = GETPC(); uint64_t destlen = env->regs[r1 + 1]; uint64_t dest = env->regs[r1]; uint64_t srclen = env->regs[r3 + 1]; uint64_t src = env->regs[r3]; uint8_t pad = a2 & 0xff; uint8_t v; uint32_t cc; if (!(env->psw.mask & PSW_MASK_64)) { destlen = (uint32_t)destlen; srclen = (uint32_t)srclen; dest &= 0x7fffffff; src &= 0x7fffffff; } if (destlen == srclen) { cc = 0; } else if (destlen < srclen) { cc = 1; } else { cc = 2; } if (srclen > destlen) { srclen = destlen; } for (; destlen && srclen; src++, dest++, destlen--, srclen--) { v = cpu_ldub_data_ra(env, src, ra); cpu_stb_data_ra(env, dest, v, ra); } for (; destlen; dest++, destlen--) { cpu_stb_data_ra(env, dest, pad, ra); } env->regs[r1 + 1] = destlen; /* can't use srclen here, we trunc'ed it */ /* FIXME: 31-bit mode! */ env->regs[r3 + 1] -= src - env->regs[r3]; env->regs[r1] = dest; env->regs[r3] = src; return cc; } /* compare logical long extended memcompare insn with padding */ uint32_t HELPER(clcle)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) { uintptr_t ra = GETPC(); uint64_t destlen = env->regs[r1 + 1]; uint64_t dest = get_address_31fix(env, r1); uint64_t srclen = env->regs[r3 + 1]; uint64_t src = get_address_31fix(env, r3); uint8_t pad = a2 & 0xff; uint32_t cc = 0; if (!(destlen || srclen)) { return cc; } if (srclen > destlen) { srclen = destlen; } for (; destlen || srclen; src++, dest++, destlen--, srclen--) { uint8_t v1 = srclen ? cpu_ldub_data_ra(env, src, ra) : pad; uint8_t v2 = destlen ? cpu_ldub_data_ra(env, dest, ra) : pad; if (v1 != v2) { cc = (v1 < v2) ? 1 : 2; break; } } env->regs[r1 + 1] = destlen; /* can't use srclen here, we trunc'ed it */ env->regs[r3 + 1] -= src - env->regs[r3]; env->regs[r1] = dest; env->regs[r3] = src; return cc; } /* checksum */ uint64_t HELPER(cksm)(CPUS390XState *env, uint64_t r1, uint64_t src, uint64_t src_len) { uintptr_t ra = GETPC(); uint64_t max_len, len; uint64_t cksm = (uint32_t)r1; /* Lest we fail to service interrupts in a timely manner, limit the amount of work we're willing to do. For now, let's cap at 8k. */ max_len = (src_len > 0x2000 ? 0x2000 : src_len); /* Process full words as available. */ for (len = 0; len + 4 <= max_len; len += 4, src += 4) { cksm += (uint32_t)cpu_ldl_data_ra(env, src, ra); } switch (max_len - len) { case 1: cksm += cpu_ldub_data_ra(env, src, ra) << 24; len += 1; break; case 2: cksm += cpu_lduw_data_ra(env, src, ra) << 16; len += 2; break; case 3: cksm += cpu_lduw_data_ra(env, src, ra) << 16; cksm += cpu_ldub_data_ra(env, src + 2, ra) << 8; len += 3; break; } /* Fold the carry from the checksum. Note that we can see carry-out during folding more than once (but probably not more than twice). */ while (cksm > 0xffffffffull) { cksm = (uint32_t)cksm + (cksm >> 32); } /* Indicate whether or not we've processed everything. */ env->cc_op = (len == src_len ? 0 : 3); /* Return both cksm and processed length. */ env->retxl = cksm; return len; } void HELPER(unpk)(CPUS390XState *env, uint32_t len, uint64_t dest, uint64_t src) { uintptr_t ra = GETPC(); int len_dest = len >> 4; int len_src = len & 0xf; uint8_t b; int second_nibble = 0; dest += len_dest; src += len_src; /* last byte is special, it only flips the nibbles */ b = cpu_ldub_data_ra(env, src, ra); cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra); src--; len_src--; /* now pad every nibble with 0xf0 */ while (len_dest > 0) { uint8_t cur_byte = 0; if (len_src > 0) { cur_byte = cpu_ldub_data_ra(env, src, ra); } len_dest--; dest--; /* only advance one nibble at a time */ if (second_nibble) { cur_byte >>= 4; len_src--; src--; } second_nibble = !second_nibble; /* digit */ cur_byte = (cur_byte & 0xf); /* zone bits */ cur_byte |= 0xf0; cpu_stb_data_ra(env, dest, cur_byte, ra); } } static uint32_t do_helper_tr(CPUS390XState *env, uint32_t len, uint64_t array, uint64_t trans, uintptr_t ra) { uint32_t i; for (i = 0; i <= len; i++) { uint8_t byte = cpu_ldub_data_ra(env, array + i, ra); uint8_t new_byte = cpu_ldub_data_ra(env, trans + byte, ra); cpu_stb_data_ra(env, array + i, new_byte, ra); } return env->cc_op; } void HELPER(tr)(CPUS390XState *env, uint32_t len, uint64_t array, uint64_t trans) { do_helper_tr(env, len, array, trans, GETPC()); } uint64_t HELPER(tre)(CPUS390XState *env, uint64_t array, uint64_t len, uint64_t trans) { uintptr_t ra = GETPC(); uint8_t end = env->regs[0] & 0xff; uint64_t l = len; uint64_t i; uint32_t cc = 0; if (!(env->psw.mask & PSW_MASK_64)) { array &= 0x7fffffff; l = (uint32_t)l; } /* Lest we fail to service interrupts in a timely manner, limit the amount of work we're willing to do. For now, let's cap at 8k. */ if (l > 0x2000) { l = 0x2000; cc = 3; } for (i = 0; i < l; i++) { uint8_t byte, new_byte; byte = cpu_ldub_data_ra(env, array + i, ra); if (byte == end) { cc = 1; break; } new_byte = cpu_ldub_data_ra(env, trans + byte, ra); cpu_stb_data_ra(env, array + i, new_byte, ra); } env->cc_op = cc; env->retxl = len - i; return array + i; } static uint32_t do_helper_trt(CPUS390XState *env, uint32_t len, uint64_t array, uint64_t trans, uintptr_t ra) { uint32_t i; for (i = 0; i <= len; i++) { uint8_t byte = cpu_ldub_data_ra(env, array + i, ra); uint8_t sbyte = cpu_ldub_data_ra(env, trans + byte, ra); if (sbyte != 0) { env->regs[1] = array + i; env->regs[2] = deposit64(env->regs[2], 0, 8, sbyte); return (i == len) ? 2 : 1; } } return 0; } uint32_t HELPER(trt)(CPUS390XState *env, uint32_t len, uint64_t array, uint64_t trans) { return do_helper_trt(env, len, array, trans, GETPC()); } void HELPER(cdsg)(CPUS390XState *env, uint64_t addr, uint32_t r1, uint32_t r3) { uintptr_t ra = GETPC(); Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]); Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]); Int128 oldv; bool fail; if (parallel_cpus) { #ifndef CONFIG_ATOMIC128 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); #else int mem_idx = cpu_mmu_index(env, false); TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx); oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); fail = !int128_eq(oldv, cmpv); #endif } else { uint64_t oldh, oldl; oldh = cpu_ldq_data_ra(env, addr + 0, ra); oldl = cpu_ldq_data_ra(env, addr + 8, ra); oldv = int128_make128(oldl, oldh); fail = !int128_eq(oldv, cmpv); if (fail) { newv = oldv; } cpu_stq_data_ra(env, addr + 0, int128_gethi(newv), ra); cpu_stq_data_ra(env, addr + 8, int128_getlo(newv), ra); } env->cc_op = fail; env->regs[r1] = int128_gethi(oldv); env->regs[r1 + 1] = int128_getlo(oldv); } #if !defined(CONFIG_USER_ONLY) void HELPER(lctlg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) { uintptr_t ra = GETPC(); S390CPU *cpu = s390_env_get_cpu(env); bool PERchanged = false; uint64_t src = a2; uint32_t i; for (i = r1;; i = (i + 1) % 16) { uint64_t val = cpu_ldq_data_ra(env, src, ra); if (env->cregs[i] != val && i >= 9 && i <= 11) { PERchanged = true; } env->cregs[i] = val; HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n", i, src, val); src += sizeof(uint64_t); if (i == r3) { break; } } if (PERchanged && env->psw.mask & PSW_MASK_PER) { s390_cpu_recompute_watchpoints(CPU(cpu)); } tlb_flush(CPU(cpu)); } void HELPER(lctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) { uintptr_t ra = GETPC(); S390CPU *cpu = s390_env_get_cpu(env); bool PERchanged = false; uint64_t src = a2; uint32_t i; for (i = r1;; i = (i + 1) % 16) { uint32_t val = cpu_ldl_data_ra(env, src, ra); if ((uint32_t)env->cregs[i] != val && i >= 9 && i <= 11) { PERchanged = true; } env->cregs[i] = deposit64(env->cregs[i], 0, 32, val); HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%x\n", i, src, val); src += sizeof(uint32_t); if (i == r3) { break; } } if (PERchanged && env->psw.mask & PSW_MASK_PER) { s390_cpu_recompute_watchpoints(CPU(cpu)); } tlb_flush(CPU(cpu)); } void HELPER(stctg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) { uintptr_t ra = GETPC(); uint64_t dest = a2; uint32_t i; for (i = r1;; i = (i + 1) % 16) { cpu_stq_data_ra(env, dest, env->cregs[i], ra); dest += sizeof(uint64_t); if (i == r3) { break; } } } void HELPER(stctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3) { uintptr_t ra = GETPC(); uint64_t dest = a2; uint32_t i; for (i = r1;; i = (i + 1) % 16) { cpu_stl_data_ra(env, dest, env->cregs[i], ra); dest += sizeof(uint32_t); if (i == r3) { break; } } } uint32_t HELPER(testblock)(CPUS390XState *env, uint64_t real_addr) { uintptr_t ra = GETPC(); CPUState *cs = CPU(s390_env_get_cpu(env)); uint64_t abs_addr; int i; real_addr = fix_address(env, real_addr); abs_addr = mmu_real2abs(env, real_addr) & TARGET_PAGE_MASK; if (!address_space_access_valid(&address_space_memory, abs_addr, TARGET_PAGE_SIZE, true)) { cpu_restore_state(cs, ra); program_interrupt(env, PGM_ADDRESSING, 4); return 1; } /* Check low-address protection */ if ((env->cregs[0] & CR0_LOWPROT) && real_addr < 0x2000) { cpu_restore_state(cs, ra); program_interrupt(env, PGM_PROTECTION, 4); return 1; } for (i = 0; i < TARGET_PAGE_SIZE; i += 8) { stq_phys(cs->as, abs_addr + i, 0); } return 0; } uint32_t HELPER(tprot)(uint64_t a1, uint64_t a2) { /* XXX implement */ return 0; } /* insert storage key extended */ uint64_t HELPER(iske)(CPUS390XState *env, uint64_t r2) { static S390SKeysState *ss; static S390SKeysClass *skeyclass; uint64_t addr = get_address(env, 0, 0, r2); uint8_t key; if (addr > ram_size) { return 0; } if (unlikely(!ss)) { ss = s390_get_skeys_device(); skeyclass = S390_SKEYS_GET_CLASS(ss); } if (skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key)) { return 0; } return key; } /* set storage key extended */ void HELPER(sske)(CPUS390XState *env, uint64_t r1, uint64_t r2) { static S390SKeysState *ss; static S390SKeysClass *skeyclass; uint64_t addr = get_address(env, 0, 0, r2); uint8_t key; if (addr > ram_size) { return; } if (unlikely(!ss)) { ss = s390_get_skeys_device(); skeyclass = S390_SKEYS_GET_CLASS(ss); } key = (uint8_t) r1; skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key); } /* reset reference bit extended */ uint32_t HELPER(rrbe)(CPUS390XState *env, uint64_t r2) { static S390SKeysState *ss; static S390SKeysClass *skeyclass; uint8_t re, key; if (r2 > ram_size) { return 0; } if (unlikely(!ss)) { ss = s390_get_skeys_device(); skeyclass = S390_SKEYS_GET_CLASS(ss); } if (skeyclass->get_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) { return 0; } re = key & (SK_R | SK_C); key &= ~SK_R; if (skeyclass->set_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) { return 0; } /* * cc * * 0 Reference bit zero; change bit zero * 1 Reference bit zero; change bit one * 2 Reference bit one; change bit zero * 3 Reference bit one; change bit one */ return re >> 1; } uint32_t HELPER(mvcs)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2) { uintptr_t ra = GETPC(); int cc = 0, i; HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n", __func__, l, a1, a2); if (l > 256) { /* max 256 */ l = 256; cc = 3; } /* XXX replace w/ memcpy */ for (i = 0; i < l; i++) { uint8_t x = cpu_ldub_primary_ra(env, a2 + i, ra); cpu_stb_secondary_ra(env, a1 + i, x, ra); } return cc; } uint32_t HELPER(mvcp)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2) { uintptr_t ra = GETPC(); int cc = 0, i; HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n", __func__, l, a1, a2); if (l > 256) { /* max 256 */ l = 256; cc = 3; } /* XXX replace w/ memcpy */ for (i = 0; i < l; i++) { uint8_t x = cpu_ldub_secondary_ra(env, a2 + i, ra); cpu_stb_primary_ra(env, a1 + i, x, ra); } return cc; } /* invalidate pte */ void HELPER(ipte)(CPUS390XState *env, uint64_t pto, uint64_t vaddr) { CPUState *cs = CPU(s390_env_get_cpu(env)); uint64_t page = vaddr & TARGET_PAGE_MASK; uint64_t pte_addr, pte; /* XXX broadcast to other CPUs */ /* Compute the page table entry address */ pte_addr = (pto & _SEGMENT_ENTRY_ORIGIN); pte_addr += (vaddr & _VADDR_PX) >> 9; /* Mark the page table entry as invalid */ pte = ldq_phys(cs->as, pte_addr); pte |= _PAGE_INVALID; stq_phys(cs->as, pte_addr, pte); /* XXX we exploit the fact that Linux passes the exact virtual address here - it's not obliged to! */ tlb_flush_page(cs, page); /* XXX 31-bit hack */ if (page & 0x80000000) { tlb_flush_page(cs, page & ~0x80000000); } else { tlb_flush_page(cs, page | 0x80000000); } } /* flush local tlb */ void HELPER(ptlb)(CPUS390XState *env) { S390CPU *cpu = s390_env_get_cpu(env); tlb_flush(CPU(cpu)); } /* flush global tlb */ void HELPER(purge)(CPUS390XState *env) { S390CPU *cpu = s390_env_get_cpu(env); tlb_flush_all_cpus_synced(CPU(cpu)); } /* load using real address */ uint64_t HELPER(lura)(CPUS390XState *env, uint64_t addr) { CPUState *cs = CPU(s390_env_get_cpu(env)); return (uint32_t)ldl_phys(cs->as, get_address(env, 0, 0, addr)); } uint64_t HELPER(lurag)(CPUS390XState *env, uint64_t addr) { CPUState *cs = CPU(s390_env_get_cpu(env)); return ldq_phys(cs->as, get_address(env, 0, 0, addr)); } /* store using real address */ void HELPER(stura)(CPUS390XState *env, uint64_t addr, uint64_t v1) { CPUState *cs = CPU(s390_env_get_cpu(env)); stl_phys(cs->as, get_address(env, 0, 0, addr), (uint32_t)v1); if ((env->psw.mask & PSW_MASK_PER) && (env->cregs[9] & PER_CR9_EVENT_STORE) && (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) { /* PSW is saved just before calling the helper. */ env->per_address = env->psw.addr; env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env); } } void HELPER(sturg)(CPUS390XState *env, uint64_t addr, uint64_t v1) { CPUState *cs = CPU(s390_env_get_cpu(env)); stq_phys(cs->as, get_address(env, 0, 0, addr), v1); if ((env->psw.mask & PSW_MASK_PER) && (env->cregs[9] & PER_CR9_EVENT_STORE) && (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) { /* PSW is saved just before calling the helper. */ env->per_address = env->psw.addr; env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env); } } /* load real address */ uint64_t HELPER(lra)(CPUS390XState *env, uint64_t addr) { CPUState *cs = CPU(s390_env_get_cpu(env)); uint32_t cc = 0; uint64_t asc = env->psw.mask & PSW_MASK_ASC; uint64_t ret; int old_exc, flags; /* XXX incomplete - has more corner cases */ if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) { cpu_restore_state(cs, GETPC()); program_interrupt(env, PGM_SPECIAL_OP, 2); } old_exc = cs->exception_index; if (mmu_translate(env, addr, 0, asc, &ret, &flags, true)) { cc = 3; } if (cs->exception_index == EXCP_PGM) { ret = env->int_pgm_code | 0x80000000; } else { ret |= addr & ~TARGET_PAGE_MASK; } cs->exception_index = old_exc; env->cc_op = cc; return ret; } #endif /* Execute instruction. This instruction executes an insn modified with the contents of r1. It does not change the executed instruction in memory; it does not change the program counter. Perform this by recording the modified instruction in env->ex_value. This will be noticed by cpu_get_tb_cpu_state and thus tb translation. */ void HELPER(ex)(CPUS390XState *env, uint32_t ilen, uint64_t r1, uint64_t addr) { uint64_t insn = cpu_lduw_code(env, addr); uint8_t opc = insn >> 8; /* Or in the contents of R1[56:63]. */ insn |= r1 & 0xff; /* Load the rest of the instruction. */ insn <<= 48; switch (get_ilen(opc)) { case 2: break; case 4: insn |= (uint64_t)cpu_lduw_code(env, addr + 2) << 32; break; case 6: insn |= (uint64_t)(uint32_t)cpu_ldl_code(env, addr + 2) << 16; break; default: g_assert_not_reached(); } /* The very most common cases can be sped up by avoiding a new TB. */ if ((opc & 0xf0) == 0xd0) { typedef uint32_t (*dx_helper)(CPUS390XState *, uint32_t, uint64_t, uint64_t, uintptr_t); static const dx_helper dx[16] = { [0x2] = do_helper_mvc, [0x4] = do_helper_nc, [0x5] = do_helper_clc, [0x6] = do_helper_oc, [0x7] = do_helper_xc, [0xc] = do_helper_tr, [0xd] = do_helper_trt, }; dx_helper helper = dx[opc & 0xf]; if (helper) { uint32_t l = extract64(insn, 48, 8); uint32_t b1 = extract64(insn, 44, 4); uint32_t d1 = extract64(insn, 32, 12); uint32_t b2 = extract64(insn, 28, 4); uint32_t d2 = extract64(insn, 16, 12); uint64_t a1 = get_address(env, 0, b1, d1); uint64_t a2 = get_address(env, 0, b2, d2); env->cc_op = helper(env, l, a1, a2, 0); env->psw.addr += ilen; return; } } else if (opc == 0x0a) { env->int_svc_code = extract64(insn, 48, 8); env->int_svc_ilen = ilen; helper_exception(env, EXCP_SVC); g_assert_not_reached(); } /* Record the insn we want to execute as well as the ilen to use during the execution of the target insn. This will also ensure that ex_value is non-zero, which flags that we are in a state that requires such execution. */ env->ex_value = insn | ilen; }