#ifndef SPARC_CPU_H #define SPARC_CPU_H #include "qemu-common.h" #include "qemu/bswap.h" #include "cpu-qom.h" #define ALIGNED_ONLY #if !defined(TARGET_SPARC64) #define TARGET_LONG_BITS 32 #define TARGET_DPREGS 16 #define TARGET_PAGE_BITS 12 /* 4k */ #define TARGET_PHYS_ADDR_SPACE_BITS 36 #define TARGET_VIRT_ADDR_SPACE_BITS 32 #else #define TARGET_LONG_BITS 64 #define TARGET_DPREGS 32 #define TARGET_PAGE_BITS 13 /* 8k */ #define TARGET_PHYS_ADDR_SPACE_BITS 41 # ifdef TARGET_ABI32 # define TARGET_VIRT_ADDR_SPACE_BITS 32 # else # define TARGET_VIRT_ADDR_SPACE_BITS 44 # endif #endif #define CPUArchState struct CPUSPARCState #include "exec/cpu-defs.h" #include "fpu/softfloat.h" /*#define EXCP_INTERRUPT 0x100*/ /* trap definitions */ #ifndef TARGET_SPARC64 #define TT_TFAULT 0x01 #define TT_ILL_INSN 0x02 #define TT_PRIV_INSN 0x03 #define TT_NFPU_INSN 0x04 #define TT_WIN_OVF 0x05 #define TT_WIN_UNF 0x06 #define TT_UNALIGNED 0x07 #define TT_FP_EXCP 0x08 #define TT_DFAULT 0x09 #define TT_TOVF 0x0a #define TT_EXTINT 0x10 #define TT_CODE_ACCESS 0x21 #define TT_UNIMP_FLUSH 0x25 #define TT_DATA_ACCESS 0x29 #define TT_DIV_ZERO 0x2a #define TT_NCP_INSN 0x24 #define TT_TRAP 0x80 #else #define TT_POWER_ON_RESET 0x01 #define TT_TFAULT 0x08 #define TT_CODE_ACCESS 0x0a #define TT_ILL_INSN 0x10 #define TT_UNIMP_FLUSH TT_ILL_INSN #define TT_PRIV_INSN 0x11 #define TT_NFPU_INSN 0x20 #define TT_FP_EXCP 0x21 #define TT_TOVF 0x23 #define TT_CLRWIN 0x24 #define TT_DIV_ZERO 0x28 #define TT_DFAULT 0x30 #define TT_DATA_ACCESS 0x32 #define TT_UNALIGNED 0x34 #define TT_PRIV_ACT 0x37 #define TT_INSN_REAL_TRANSLATION_MISS 0x3e #define TT_DATA_REAL_TRANSLATION_MISS 0x3f #define TT_EXTINT 0x40 #define TT_IVEC 0x60 #define TT_TMISS 0x64 #define TT_DMISS 0x68 #define TT_DPROT 0x6c #define TT_SPILL 0x80 #define TT_FILL 0xc0 #define TT_WOTHER (1 << 5) #define TT_TRAP 0x100 #endif #define PSR_NEG_SHIFT 23 #define PSR_NEG (1 << PSR_NEG_SHIFT) #define PSR_ZERO_SHIFT 22 #define PSR_ZERO (1 << PSR_ZERO_SHIFT) #define PSR_OVF_SHIFT 21 #define PSR_OVF (1 << PSR_OVF_SHIFT) #define PSR_CARRY_SHIFT 20 #define PSR_CARRY (1 << PSR_CARRY_SHIFT) #define PSR_ICC (PSR_NEG|PSR_ZERO|PSR_OVF|PSR_CARRY) #if !defined(TARGET_SPARC64) #define PSR_EF (1<<12) #define PSR_PIL 0xf00 #define PSR_S (1<<7) #define PSR_PS (1<<6) #define PSR_ET (1<<5) #define PSR_CWP 0x1f #endif #define CC_SRC (env->cc_src) #define CC_SRC2 (env->cc_src2) #define CC_DST (env->cc_dst) #define CC_OP (env->cc_op) /* Even though lazy evaluation of CPU condition codes tends to be less * important on RISC systems where condition codes are only updated * when explicitly requested, SPARC uses it to update 32-bit and 64-bit * condition codes. */ enum { CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */ CC_OP_FLAGS, /* all cc are back in status register */ CC_OP_DIV, /* modify N, Z and V, C = 0*/ CC_OP_ADD, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_ADDX, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_TADD, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_TADDTV, /* modify all flags except V, CC_DST = res, CC_SRC = src1 */ CC_OP_SUB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_SUBX, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_TSUB, /* modify all flags, CC_DST = res, CC_SRC = src1 */ CC_OP_TSUBTV, /* modify all flags except V, CC_DST = res, CC_SRC = src1 */ CC_OP_LOGIC, /* modify N and Z, C = V = 0, CC_DST = res */ CC_OP_NB, }; /* Trap base register */ #define TBR_BASE_MASK 0xfffff000 #if defined(TARGET_SPARC64) #define PS_TCT (1<<12) /* UA2007, impl.dep. trap on control transfer */ #define PS_IG (1<<11) /* v9, zero on UA2007 */ #define PS_MG (1<<10) /* v9, zero on UA2007 */ #define PS_CLE (1<<9) /* UA2007 */ #define PS_TLE (1<<8) /* UA2007 */ #define PS_RMO (1<<7) #define PS_RED (1<<5) /* v9, zero on UA2007 */ #define PS_PEF (1<<4) /* enable fpu */ #define PS_AM (1<<3) /* address mask */ #define PS_PRIV (1<<2) #define PS_IE (1<<1) #define PS_AG (1<<0) /* v9, zero on UA2007 */ #define FPRS_FEF (1<<2) #define HS_PRIV (1<<2) #endif /* Fcc */ #define FSR_RD1 (1ULL << 31) #define FSR_RD0 (1ULL << 30) #define FSR_RD_MASK (FSR_RD1 | FSR_RD0) #define FSR_RD_NEAREST 0 #define FSR_RD_ZERO FSR_RD0 #define FSR_RD_POS FSR_RD1 #define FSR_RD_NEG (FSR_RD1 | FSR_RD0) #define FSR_NVM (1ULL << 27) #define FSR_OFM (1ULL << 26) #define FSR_UFM (1ULL << 25) #define FSR_DZM (1ULL << 24) #define FSR_NXM (1ULL << 23) #define FSR_TEM_MASK (FSR_NVM | FSR_OFM | FSR_UFM | FSR_DZM | FSR_NXM) #define FSR_NVA (1ULL << 9) #define FSR_OFA (1ULL << 8) #define FSR_UFA (1ULL << 7) #define FSR_DZA (1ULL << 6) #define FSR_NXA (1ULL << 5) #define FSR_AEXC_MASK (FSR_NVA | FSR_OFA | FSR_UFA | FSR_DZA | FSR_NXA) #define FSR_NVC (1ULL << 4) #define FSR_OFC (1ULL << 3) #define FSR_UFC (1ULL << 2) #define FSR_DZC (1ULL << 1) #define FSR_NXC (1ULL << 0) #define FSR_CEXC_MASK (FSR_NVC | FSR_OFC | FSR_UFC | FSR_DZC | FSR_NXC) #define FSR_FTT2 (1ULL << 16) #define FSR_FTT1 (1ULL << 15) #define FSR_FTT0 (1ULL << 14) //gcc warns about constant overflow for ~FSR_FTT_MASK //#define FSR_FTT_MASK (FSR_FTT2 | FSR_FTT1 | FSR_FTT0) #ifdef TARGET_SPARC64 #define FSR_FTT_NMASK 0xfffffffffffe3fffULL #define FSR_FTT_CEXC_NMASK 0xfffffffffffe3fe0ULL #define FSR_LDFSR_OLDMASK 0x0000003f000fc000ULL #define FSR_LDXFSR_MASK 0x0000003fcfc00fffULL #define FSR_LDXFSR_OLDMASK 0x00000000000fc000ULL #else #define FSR_FTT_NMASK 0xfffe3fffULL #define FSR_FTT_CEXC_NMASK 0xfffe3fe0ULL #define FSR_LDFSR_OLDMASK 0x000fc000ULL #endif #define FSR_LDFSR_MASK 0xcfc00fffULL #define FSR_FTT_IEEE_EXCP (1ULL << 14) #define FSR_FTT_UNIMPFPOP (3ULL << 14) #define FSR_FTT_SEQ_ERROR (4ULL << 14) #define FSR_FTT_INVAL_FPR (6ULL << 14) #define FSR_FCC1_SHIFT 11 #define FSR_FCC1 (1ULL << FSR_FCC1_SHIFT) #define FSR_FCC0_SHIFT 10 #define FSR_FCC0 (1ULL << FSR_FCC0_SHIFT) /* MMU */ #define MMU_E (1<<0) #define MMU_NF (1<<1) #define PTE_ENTRYTYPE_MASK 3 #define PTE_ACCESS_MASK 0x1c #define PTE_ACCESS_SHIFT 2 #define PTE_PPN_SHIFT 7 #define PTE_ADDR_MASK 0xffffff00 #define PG_ACCESSED_BIT 5 #define PG_MODIFIED_BIT 6 #define PG_CACHE_BIT 7 #define PG_ACCESSED_MASK (1 << PG_ACCESSED_BIT) #define PG_MODIFIED_MASK (1 << PG_MODIFIED_BIT) #define PG_CACHE_MASK (1 << PG_CACHE_BIT) /* 3 <= NWINDOWS <= 32. */ #define MIN_NWINDOWS 3 #define MAX_NWINDOWS 32 #if !defined(TARGET_SPARC64) #define NB_MMU_MODES 3 #else #define NB_MMU_MODES 7 typedef struct trap_state { uint64_t tpc; uint64_t tnpc; uint64_t tstate; uint32_t tt; } trap_state; #endif #define TARGET_INSN_START_EXTRA_WORDS 1 typedef struct sparc_def_t { const char *name; target_ulong iu_version; uint32_t fpu_version; uint32_t mmu_version; uint32_t mmu_bm; uint32_t mmu_ctpr_mask; uint32_t mmu_cxr_mask; uint32_t mmu_sfsr_mask; uint32_t mmu_trcr_mask; uint32_t mxcc_version; uint32_t features; uint32_t nwindows; uint32_t maxtl; } sparc_def_t; #define CPU_FEATURE_FLOAT (1 << 0) #define CPU_FEATURE_FLOAT128 (1 << 1) #define CPU_FEATURE_SWAP (1 << 2) #define CPU_FEATURE_MUL (1 << 3) #define CPU_FEATURE_DIV (1 << 4) #define CPU_FEATURE_FLUSH (1 << 5) #define CPU_FEATURE_FSQRT (1 << 6) #define CPU_FEATURE_FMUL (1 << 7) #define CPU_FEATURE_VIS1 (1 << 8) #define CPU_FEATURE_VIS2 (1 << 9) #define CPU_FEATURE_FSMULD (1 << 10) #define CPU_FEATURE_HYPV (1 << 11) #define CPU_FEATURE_CMT (1 << 12) #define CPU_FEATURE_GL (1 << 13) #define CPU_FEATURE_TA0_SHUTDOWN (1 << 14) /* Shutdown on "ta 0x0" */ #define CPU_FEATURE_ASR17 (1 << 15) #define CPU_FEATURE_CACHE_CTRL (1 << 16) #define CPU_FEATURE_POWERDOWN (1 << 17) #define CPU_FEATURE_CASA (1 << 18) #ifndef TARGET_SPARC64 #define CPU_DEFAULT_FEATURES (CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | \ CPU_FEATURE_MUL | CPU_FEATURE_DIV | \ CPU_FEATURE_FLUSH | CPU_FEATURE_FSQRT | \ CPU_FEATURE_FMUL | CPU_FEATURE_FSMULD) #else #define CPU_DEFAULT_FEATURES (CPU_FEATURE_FLOAT | CPU_FEATURE_SWAP | \ CPU_FEATURE_MUL | CPU_FEATURE_DIV | \ CPU_FEATURE_FLUSH | CPU_FEATURE_FSQRT | \ CPU_FEATURE_FMUL | CPU_FEATURE_VIS1 | \ CPU_FEATURE_VIS2 | CPU_FEATURE_FSMULD | \ CPU_FEATURE_CASA) enum { mmu_us_12, // Ultrasparc < III (64 entry TLB) mmu_us_3, // Ultrasparc III (512 entry TLB) mmu_us_4, // Ultrasparc IV (several TLBs, 32 and 256MB pages) mmu_sun4v, // T1, T2 }; #endif #define TTE_VALID_BIT (1ULL << 63) #define TTE_NFO_BIT (1ULL << 60) #define TTE_USED_BIT (1ULL << 41) #define TTE_LOCKED_BIT (1ULL << 6) #define TTE_SIDEEFFECT_BIT (1ULL << 3) #define TTE_PRIV_BIT (1ULL << 2) #define TTE_W_OK_BIT (1ULL << 1) #define TTE_GLOBAL_BIT (1ULL << 0) #define TTE_IS_VALID(tte) ((tte) & TTE_VALID_BIT) #define TTE_IS_NFO(tte) ((tte) & TTE_NFO_BIT) #define TTE_IS_USED(tte) ((tte) & TTE_USED_BIT) #define TTE_IS_LOCKED(tte) ((tte) & TTE_LOCKED_BIT) #define TTE_IS_SIDEEFFECT(tte) ((tte) & TTE_SIDEEFFECT_BIT) #define TTE_IS_PRIV(tte) ((tte) & TTE_PRIV_BIT) #define TTE_IS_W_OK(tte) ((tte) & TTE_W_OK_BIT) #define TTE_IS_GLOBAL(tte) ((tte) & TTE_GLOBAL_BIT) #define TTE_SET_USED(tte) ((tte) |= TTE_USED_BIT) #define TTE_SET_UNUSED(tte) ((tte) &= ~TTE_USED_BIT) #define TTE_PGSIZE(tte) (((tte) >> 61) & 3ULL) #define TTE_PA(tte) ((tte) & 0x1ffffffe000ULL) #define SFSR_NF_BIT (1ULL << 24) /* JPS1 NoFault */ #define SFSR_TM_BIT (1ULL << 15) /* JPS1 TLB Miss */ #define SFSR_FT_VA_IMMU_BIT (1ULL << 13) /* USIIi VA out of range (IMMU) */ #define SFSR_FT_VA_DMMU_BIT (1ULL << 12) /* USIIi VA out of range (DMMU) */ #define SFSR_FT_NFO_BIT (1ULL << 11) /* NFO page access */ #define SFSR_FT_ILL_BIT (1ULL << 10) /* illegal LDA/STA ASI */ #define SFSR_FT_ATOMIC_BIT (1ULL << 9) /* atomic op on noncacheable area */ #define SFSR_FT_NF_E_BIT (1ULL << 8) /* NF access on side effect area */ #define SFSR_FT_PRIV_BIT (1ULL << 7) /* privilege violation */ #define SFSR_PR_BIT (1ULL << 3) /* privilege mode */ #define SFSR_WRITE_BIT (1ULL << 2) /* write access mode */ #define SFSR_OW_BIT (1ULL << 1) /* status overwritten */ #define SFSR_VALID_BIT (1ULL << 0) /* status valid */ #define SFSR_ASI_SHIFT 16 /* 23:16 ASI value */ #define SFSR_ASI_MASK (0xffULL << SFSR_ASI_SHIFT) #define SFSR_CT_PRIMARY (0ULL << 4) /* 5:4 context type */ #define SFSR_CT_SECONDARY (1ULL << 4) #define SFSR_CT_NUCLEUS (2ULL << 4) #define SFSR_CT_NOTRANS (3ULL << 4) #define SFSR_CT_MASK (3ULL << 4) /* Leon3 cache control */ /* Cache control: emulate the behavior of cache control registers but without any effect on the emulated */ #define CACHE_STATE_MASK 0x3 #define CACHE_DISABLED 0x0 #define CACHE_FROZEN 0x1 #define CACHE_ENABLED 0x3 /* Cache Control register fields */ #define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */ #define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */ #define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */ #define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */ #define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */ #define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */ #define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */ #define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */ typedef struct SparcTLBEntry { uint64_t tag; uint64_t tte; } SparcTLBEntry; struct CPUTimer { const char *name; uint32_t frequency; uint32_t disabled; uint64_t disabled_mask; uint32_t npt; uint64_t npt_mask; int64_t clock_offset; QEMUTimer *qtimer; }; typedef struct CPUTimer CPUTimer; typedef struct CPUSPARCState CPUSPARCState; struct CPUSPARCState { target_ulong gregs[8]; /* general registers */ target_ulong *regwptr; /* pointer to current register window */ target_ulong pc; /* program counter */ target_ulong npc; /* next program counter */ target_ulong y; /* multiply/divide register */ /* emulator internal flags handling */ target_ulong cc_src, cc_src2; target_ulong cc_dst; uint32_t cc_op; target_ulong cond; /* conditional branch result (XXX: save it in a temporary register when possible) */ uint32_t psr; /* processor state register */ target_ulong fsr; /* FPU state register */ CPU_DoubleU fpr[TARGET_DPREGS]; /* floating point registers */ uint32_t cwp; /* index of current register window (extracted from PSR) */ #if !defined(TARGET_SPARC64) || defined(TARGET_ABI32) uint32_t wim; /* window invalid mask */ #endif target_ulong tbr; /* trap base register */ #if !defined(TARGET_SPARC64) int psrs; /* supervisor mode (extracted from PSR) */ int psrps; /* previous supervisor mode */ int psret; /* enable traps */ #endif uint32_t psrpil; /* interrupt blocking level */ uint32_t pil_in; /* incoming interrupt level bitmap */ #if !defined(TARGET_SPARC64) int psref; /* enable fpu */ #endif int interrupt_index; /* NOTE: we allow 8 more registers to handle wrapping */ target_ulong regbase[MAX_NWINDOWS * 16 + 8]; /* Fields up to this point are cleared by a CPU reset */ struct {} end_reset_fields; CPU_COMMON /* Fields from here on are preserved across CPU reset. */ target_ulong version; uint32_t nwindows; /* MMU regs */ #if defined(TARGET_SPARC64) uint64_t lsu; #define DMMU_E 0x8 #define IMMU_E 0x4 //typedef struct SparcMMU union { uint64_t immuregs[16]; struct { uint64_t tsb_tag_target; uint64_t unused_mmu_primary_context; // use DMMU uint64_t unused_mmu_secondary_context; // use DMMU uint64_t sfsr; uint64_t sfar; uint64_t tsb; uint64_t tag_access; uint64_t virtual_watchpoint; uint64_t physical_watchpoint; } immu; }; union { uint64_t dmmuregs[16]; struct { uint64_t tsb_tag_target; uint64_t mmu_primary_context; uint64_t mmu_secondary_context; uint64_t sfsr; uint64_t sfar; uint64_t tsb; uint64_t tag_access; uint64_t virtual_watchpoint; uint64_t physical_watchpoint; } dmmu; }; SparcTLBEntry itlb[64]; SparcTLBEntry dtlb[64]; uint32_t mmu_version; #else uint32_t mmuregs[32]; uint64_t mxccdata[4]; uint64_t mxccregs[8]; uint32_t mmubpctrv, mmubpctrc, mmubpctrs; uint64_t mmubpaction; uint64_t mmubpregs[4]; uint64_t prom_addr; #endif /* temporary float registers */ float128 qt0, qt1; float_status fp_status; #if defined(TARGET_SPARC64) #define MAXTL_MAX 8 #define MAXTL_MASK (MAXTL_MAX - 1) trap_state ts[MAXTL_MAX]; uint32_t xcc; /* Extended integer condition codes */ uint32_t asi; uint32_t pstate; uint32_t tl; uint32_t maxtl; uint32_t cansave, canrestore, otherwin, wstate, cleanwin; uint64_t agregs[8]; /* alternate general registers */ uint64_t bgregs[8]; /* backup for normal global registers */ uint64_t igregs[8]; /* interrupt general registers */ uint64_t mgregs[8]; /* mmu general registers */ uint64_t fprs; uint64_t tick_cmpr, stick_cmpr; CPUTimer *tick, *stick; #define TICK_NPT_MASK 0x8000000000000000ULL #define TICK_INT_DIS 0x8000000000000000ULL uint64_t gsr; uint32_t gl; // UA2005 /* UA 2005 hyperprivileged registers */ uint64_t hpstate, htstate[MAXTL_MAX], hintp, htba, hver, hstick_cmpr, ssr; CPUTimer *hstick; // UA 2005 /* Interrupt vector registers */ uint64_t ivec_status; uint64_t ivec_data[3]; uint32_t softint; #define SOFTINT_TIMER 1 #define SOFTINT_STIMER (1 << 16) #define SOFTINT_INTRMASK (0xFFFE) #define SOFTINT_REG_MASK (SOFTINT_STIMER|SOFTINT_INTRMASK|SOFTINT_TIMER) #endif sparc_def_t *def; void *irq_manager; void (*qemu_irq_ack)(CPUSPARCState *env, void *irq_manager, int intno); /* Leon3 cache control */ uint32_t cache_control; }; /** * SPARCCPU: * @env: #CPUSPARCState * * A SPARC CPU. */ struct SPARCCPU { /*< private >*/ CPUState parent_obj; /*< public >*/ CPUSPARCState env; }; static inline SPARCCPU *sparc_env_get_cpu(CPUSPARCState *env) { return container_of(env, SPARCCPU, env); } #define ENV_GET_CPU(e) CPU(sparc_env_get_cpu(e)) #define ENV_OFFSET offsetof(SPARCCPU, env) #ifndef CONFIG_USER_ONLY extern const struct VMStateDescription vmstate_sparc_cpu; #endif void sparc_cpu_do_interrupt(CPUState *cpu); void sparc_cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf, int flags); hwaddr sparc_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); int sparc_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); int sparc_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cpu, vaddr addr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr); void cpu_raise_exception_ra(CPUSPARCState *, int, uintptr_t) QEMU_NORETURN; #ifndef NO_CPU_IO_DEFS /* cpu_init.c */ SPARCCPU *cpu_sparc_init(const char *cpu_model); void cpu_sparc_set_id(CPUSPARCState *env, unsigned int cpu); void sparc_cpu_list(FILE *f, fprintf_function cpu_fprintf); /* mmu_helper.c */ int sparc_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw, int mmu_idx); target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev); void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUSPARCState *env); #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) int sparc_cpu_memory_rw_debug(CPUState *cpu, vaddr addr, uint8_t *buf, int len, bool is_write); #endif /* translate.c */ void gen_intermediate_code_init(CPUSPARCState *env); /* cpu-exec.c */ /* win_helper.c */ target_ulong cpu_get_psr(CPUSPARCState *env1); void cpu_put_psr(CPUSPARCState *env1, target_ulong val); void cpu_put_psr_raw(CPUSPARCState *env1, target_ulong val); #ifdef TARGET_SPARC64 target_ulong cpu_get_ccr(CPUSPARCState *env1); void cpu_put_ccr(CPUSPARCState *env1, target_ulong val); target_ulong cpu_get_cwp64(CPUSPARCState *env1); void cpu_put_cwp64(CPUSPARCState *env1, int cwp); void cpu_change_pstate(CPUSPARCState *env1, uint32_t new_pstate); #endif int cpu_cwp_inc(CPUSPARCState *env1, int cwp); int cpu_cwp_dec(CPUSPARCState *env1, int cwp); void cpu_set_cwp(CPUSPARCState *env1, int new_cwp); /* int_helper.c */ void leon3_irq_manager(CPUSPARCState *env, void *irq_manager, int intno); /* sun4m.c, sun4u.c */ void cpu_check_irqs(CPUSPARCState *env); /* leon3.c */ void leon3_irq_ack(void *irq_manager, int intno); #if defined (TARGET_SPARC64) static inline int compare_masked(uint64_t x, uint64_t y, uint64_t mask) { return (x & mask) == (y & mask); } #define MMU_CONTEXT_BITS 13 #define MMU_CONTEXT_MASK ((1 << MMU_CONTEXT_BITS) - 1) static inline int tlb_compare_context(const SparcTLBEntry *tlb, uint64_t context) { return compare_masked(context, tlb->tag, MMU_CONTEXT_MASK); } #endif #endif /* cpu-exec.c */ #if !defined(CONFIG_USER_ONLY) void sparc_cpu_unassigned_access(CPUState *cpu, hwaddr addr, bool is_write, bool is_exec, int is_asi, unsigned size); #if defined(TARGET_SPARC64) hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr, int mmu_idx); #endif #endif int cpu_sparc_signal_handler(int host_signum, void *pinfo, void *puc); #ifndef NO_CPU_IO_DEFS #define cpu_init(cpu_model) CPU(cpu_sparc_init(cpu_model)) #endif #define cpu_signal_handler cpu_sparc_signal_handler #define cpu_list sparc_cpu_list /* MMU modes definitions */ #if defined (TARGET_SPARC64) #define MMU_USER_IDX 0 #define MMU_USER_SECONDARY_IDX 1 #define MMU_KERNEL_IDX 2 #define MMU_KERNEL_SECONDARY_IDX 3 #define MMU_NUCLEUS_IDX 4 #define MMU_HYPV_IDX 5 #define MMU_PHYS_IDX 6 #else #define MMU_USER_IDX 0 #define MMU_KERNEL_IDX 1 #define MMU_PHYS_IDX 2 #endif #if defined (TARGET_SPARC64) static inline int cpu_has_hypervisor(CPUSPARCState *env1) { return env1->def->features & CPU_FEATURE_HYPV; } static inline int cpu_hypervisor_mode(CPUSPARCState *env1) { return cpu_has_hypervisor(env1) && (env1->hpstate & HS_PRIV); } static inline int cpu_supervisor_mode(CPUSPARCState *env1) { return env1->pstate & PS_PRIV; } #else static inline int cpu_supervisor_mode(CPUSPARCState *env1) { return env1->psrs; } #endif static inline int cpu_mmu_index(CPUSPARCState *env, bool ifetch) { #if defined(CONFIG_USER_ONLY) return MMU_USER_IDX; #elif !defined(TARGET_SPARC64) if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */ return MMU_PHYS_IDX; } else { return env->psrs; } #else /* IMMU or DMMU disabled. */ if (ifetch ? (env->lsu & IMMU_E) == 0 || (env->pstate & PS_RED) != 0 : (env->lsu & DMMU_E) == 0) { return MMU_PHYS_IDX; } else if (env->tl > 0) { return MMU_NUCLEUS_IDX; } else if (cpu_hypervisor_mode(env)) { return MMU_HYPV_IDX; } else if (cpu_supervisor_mode(env)) { return MMU_KERNEL_IDX; } else { return MMU_USER_IDX; } #endif } static inline int cpu_interrupts_enabled(CPUSPARCState *env1) { #if !defined (TARGET_SPARC64) if (env1->psret != 0) return 1; #else if (env1->pstate & PS_IE) return 1; #endif return 0; } static inline int cpu_pil_allowed(CPUSPARCState *env1, int pil) { #if !defined(TARGET_SPARC64) /* level 15 is non-maskable on sparc v8 */ return pil == 15 || pil > env1->psrpil; #else return pil > env1->psrpil; #endif } #include "exec/cpu-all.h" #ifdef TARGET_SPARC64 /* sun4u.c */ void cpu_tick_set_count(CPUTimer *timer, uint64_t count); uint64_t cpu_tick_get_count(CPUTimer *timer); void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit); trap_state* cpu_tsptr(CPUSPARCState* env); #endif #define TB_FLAG_MMU_MASK 7 #define TB_FLAG_FPU_ENABLED (1 << 4) #define TB_FLAG_AM_ENABLED (1 << 5) #define TB_FLAG_SUPER (1 << 6) #define TB_FLAG_HYPER (1 << 7) #define TB_FLAG_ASI_SHIFT 24 static inline void cpu_get_tb_cpu_state(CPUSPARCState *env, target_ulong *pc, target_ulong *cs_base, uint32_t *pflags) { uint32_t flags; *pc = env->pc; *cs_base = env->npc; flags = cpu_mmu_index(env, false); #ifndef CONFIG_USER_ONLY if (cpu_supervisor_mode(env)) { flags |= TB_FLAG_SUPER; } #endif #ifdef TARGET_SPARC64 #ifndef CONFIG_USER_ONLY if (cpu_hypervisor_mode(env)) { flags |= TB_FLAG_HYPER; } #endif if (env->pstate & PS_AM) { flags |= TB_FLAG_AM_ENABLED; } if ((env->def->features & CPU_FEATURE_FLOAT) && (env->pstate & PS_PEF) && (env->fprs & FPRS_FEF)) { flags |= TB_FLAG_FPU_ENABLED; } flags |= env->asi << TB_FLAG_ASI_SHIFT; #else if ((env->def->features & CPU_FEATURE_FLOAT) && env->psref) { flags |= TB_FLAG_FPU_ENABLED; } #endif *pflags = flags; } static inline bool tb_fpu_enabled(int tb_flags) { #if defined(CONFIG_USER_ONLY) return true; #else return tb_flags & TB_FLAG_FPU_ENABLED; #endif } static inline bool tb_am_enabled(int tb_flags) { #ifndef TARGET_SPARC64 return false; #else return tb_flags & TB_FLAG_AM_ENABLED; #endif } #endif