/***************************************************************************** * Copyright (C) The Apache Software Foundation. All rights reserved. * * ------------------------------------------------------------------------- * * This software is published under the terms of the Apache Software License * * version 1.1, a copy of which has been included with this distribution in * * the LICENSE file. * *****************************************************************************/ package com.kitfox.svg.batik; import java.awt.Color; import java.awt.Rectangle; import java.awt.RenderingHints; import java.awt.geom.AffineTransform; import java.awt.geom.NoninvertibleTransformException; import java.awt.geom.Point2D; import java.awt.geom.Rectangle2D; import java.awt.image.ColorModel; /** * Provides the actual implementation for the LinearGradientPaint * This is where the pixel processing is done. * * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans * @author Vincent Hardy * @version $Id: LinearGradientPaintContext.java,v 1.2 2007/02/04 01:28:05 kitfox Exp $ * @see java.awt.PaintContext * @see java.awt.Paint * @see java.awt.GradientPaint */ final class LinearGradientPaintContext extends MultipleGradientPaintContext { /** * The following invariants are used to process the gradient value from * a device space coordinate, (X, Y): * g(X, Y) = dgdX*X + dgdY*Y + gc */ private float dgdX, dgdY, gc, pixSz; private static final int DEFAULT_IMPL = 1; private static final int ANTI_ALIAS_IMPL = 3; private int fillMethod; /** * Constructor for LinearGradientPaintContext. * * @param cm {@link ColorModel} that receives * the Paint data. This is used only as a hint. * * @param deviceBounds the device space bounding box of the * graphics primitive being rendered * * @param userBounds the user space bounding box of the * graphics primitive being rendered * * @param t the {@link AffineTransform} from user * space into device space (gradientTransform should be * concatenated with this) * * @param hints the hints that the context object uses to choose * between rendering alternatives * * @param start gradient start point, in user space * * @param end gradient end point, in user space * * @param fractions the fractions specifying the gradient distribution * * @param colors the gradient colors * * @param cycleMethod either NO_CYCLE, REFLECT, or REPEAT * * @param colorSpace which colorspace to use for interpolation, * either SRGB or LINEAR_RGB * */ public LinearGradientPaintContext(ColorModel cm, Rectangle deviceBounds, Rectangle2D userBounds, AffineTransform t, RenderingHints hints, Point2D dStart, Point2D dEnd, float[] fractions, Color[] colors, MultipleGradientPaint.CycleMethodEnum cycleMethod, MultipleGradientPaint.ColorSpaceEnum colorSpace) throws NoninvertibleTransformException { super(cm, deviceBounds, userBounds, t, hints, fractions, colors, cycleMethod, colorSpace); // Use single precision floating points Point2D.Float start = new Point2D.Float((float)dStart.getX(), (float)dStart.getY()); Point2D.Float end = new Point2D.Float((float)dEnd.getX(), (float)dEnd.getY()); // A given point in the raster should take on the same color as its // projection onto the gradient vector. // Thus, we want the projection of the current position vector // onto the gradient vector, then normalized with respect to the // length of the gradient vector, giving a value which can be mapped into // the range 0-1. // projection = currentVector dot gradientVector / length(gradientVector) // normalized = projection / length(gradientVector) float dx = end.x - start.x; // change in x from start to end float dy = end.y - start.y; // change in y from start to end float dSq = dx*dx + dy*dy; // total distance squared //avoid repeated calculations by doing these divides once. float constX = dx/dSq; float constY = dy/dSq; //incremental change along gradient for +x dgdX = a00*constX + a10*constY; //incremental change along gradient for +y dgdY = a01*constX + a11*constY; float dgdXAbs = Math.abs(dgdX); float dgdYAbs = Math.abs(dgdY); if (dgdXAbs > dgdYAbs) pixSz = dgdXAbs; else pixSz = dgdYAbs; //constant, incorporates the translation components from the matrix gc = (a02-start.x)*constX + (a12-start.y)*constY; Object colorRend = hints == null ? RenderingHints.VALUE_COLOR_RENDER_SPEED : hints.get(RenderingHints.KEY_COLOR_RENDERING); Object rend = hints == null ? RenderingHints.VALUE_RENDER_SPEED : hints.get(RenderingHints.KEY_RENDERING); fillMethod = DEFAULT_IMPL; if ((cycleMethod == MultipleGradientPaint.REPEAT) || hasDiscontinuity) { if (rend == RenderingHints.VALUE_RENDER_QUALITY) fillMethod = ANTI_ALIAS_IMPL; // ColorRend overrides rend. if (colorRend == RenderingHints.VALUE_COLOR_RENDER_SPEED) fillMethod = DEFAULT_IMPL; else if (colorRend == RenderingHints.VALUE_COLOR_RENDER_QUALITY) fillMethod = ANTI_ALIAS_IMPL; } } protected void fillHardNoCycle(int[] pixels, int off, int adjust, int x, int y, int w, int h) { //constant which can be pulled out of the inner loop final float initConst = (dgdX*x) + gc; for(int i=0; i= 1) val = gradientOverflow; else { // Could be a binary search... int gradIdx = 0; while (gradIdx < gradientsLength-1) { if (g < fractions[gradIdx+1]) break; gradIdx++; } float delta = (g-fractions[gradIdx]); float idx = ((delta*GRADIENT_SIZE_INDEX) /normalizedIntervals[gradIdx])+0.5f; val = gradients[gradIdx][(int)idx]; } while (off < rowLimit) { pixels[off++] = val; } } else { // System.out.println("In fillHard2: " + g); int gradSteps; int preGradSteps; final int preVal, postVal; if (dgdX >= 0) { gradSteps = (int) ((1-g)/dgdX); preGradSteps = (int)Math.ceil((0-g)/dgdX); preVal = gradientUnderflow; postVal = gradientOverflow; } else { // dgdX < 0 gradSteps = (int) ((0-g)/dgdX); preGradSteps = (int)Math.ceil((1-g)/dgdX); preVal = gradientOverflow; postVal = gradientUnderflow; } if (gradSteps > w) gradSteps = w; final int gradLimit = off + gradSteps; if (preGradSteps > 0) { if (preGradSteps > w) preGradSteps = w; final int preGradLimit = off + preGradSteps; while (off < preGradLimit) { pixels[off++] = preVal; } g += dgdX*preGradSteps; } if (dgdX > 0) { // Could be a binary search... int gradIdx = 0; while (gradIdx < gradientsLength-1) { if (g < fractions[gradIdx+1]) break; gradIdx++; } while (off < gradLimit) { float delta = (g-fractions[gradIdx]); final int [] grad = gradients[gradIdx]; int steps = (int)Math.ceil((fractions[gradIdx+1]-g)/dgdX); int subGradLimit = off + steps; if (subGradLimit > gradLimit) subGradLimit = gradLimit; int idx = (int)(((delta*GRADIENT_SIZE_INDEX) /normalizedIntervals[gradIdx]) *(1<<16)) + (1<<15); int step = (int)(((dgdX*GRADIENT_SIZE_INDEX) /normalizedIntervals[gradIdx]) *(1<<16)); while (off < subGradLimit) { pixels[off++] = grad[idx>>16]; idx += step; } g+=dgdX*steps; gradIdx++; } } else { // Could be a binary search... int gradIdx = gradientsLength-1; while (gradIdx > 0) { if (g > fractions[gradIdx]) break; gradIdx--; } while (off < gradLimit) { float delta = (g-fractions[gradIdx]); final int [] grad = gradients[gradIdx]; int steps = (int)Math.ceil(delta/-dgdX); int subGradLimit = off + steps; if (subGradLimit > gradLimit) subGradLimit = gradLimit; int idx = (int)(((delta*GRADIENT_SIZE_INDEX) /normalizedIntervals[gradIdx]) *(1<<16)) + (1<<15); int step = (int)(((dgdX*GRADIENT_SIZE_INDEX) /normalizedIntervals[gradIdx]) *(1<<16)); while (off < subGradLimit) { pixels[off++] = grad[idx>>16]; idx += step; } g+=dgdX*steps; gradIdx--; } } while (off < rowLimit) { pixels[off++] = postVal; } } off += adjust; //change in off from row to row } } protected void fillSimpleNoCycle(int[] pixels, int off, int adjust, int x, int y, int w, int h) { //constant which can be pulled out of the inner loop final float initConst = (dgdX*x) + gc; final float step = dgdX*fastGradientArraySize; final int fpStep = (int)(step*(1<<16)); // fix point step final int [] grad = gradient; for(int i=0; i=fastGradientArraySize) val = gradientOverflow; else val = grad[(int)g]; while (off < rowLimit) { pixels[off++] = val; } } else { // System.out.println("In fillSimpleNC2: " + g); int gradSteps; int preGradSteps; final int preVal, postVal; if (dgdX > 0) { gradSteps = (int)((fastGradientArraySize-g)/step); preGradSteps = (int)Math.ceil(0-g/step); preVal = gradientUnderflow; postVal = gradientOverflow; } else { // dgdX < 0 gradSteps = (int)((0-g)/step); preGradSteps = (int)Math.ceil((fastGradientArraySize-g)/step); preVal = gradientOverflow; postVal = gradientUnderflow; } if (gradSteps > w) gradSteps = w; final int gradLimit = off + gradSteps; if (preGradSteps > 0) { if (preGradSteps > w) preGradSteps = w; final int preGradLimit = off + preGradSteps; while (off < preGradLimit) { pixels[off++] = preVal; } g += step*preGradSteps; } int fpG = (int)(g*(1<<16)); while (off < gradLimit) { pixels[off++] = grad[fpG>>16]; fpG += fpStep; } while (off < rowLimit) { pixels[off++] = postVal; } } off += adjust; //change in off from row to row } } protected void fillSimpleRepeat(int[] pixels, int off, int adjust, int x, int y, int w, int h) { final float initConst = (dgdX*x) + gc; // Limit step to fractional part of // fastGradientArraySize (the non fractional part has // no affect anyways, and would mess up lots of stuff // below). float step = (dgdX - (int)dgdX)*fastGradientArraySize; // Make it a Positive step (a small negative step is // the same as a positive step slightly less than // fastGradientArraySize. if (step < 0) step += fastGradientArraySize; final int [] grad = gradient; for(int i=0; i= fastGradientArraySize) { g -= fastGradientArraySize; idx -= fastGradientArraySize; } pixels[off++] = grad[idx]; g += step; } off += adjust; //change in off from row to row } } protected void fillSimpleReflect(int[] pixels, int off, int adjust, int x, int y, int w, int h) { final float initConst = (dgdX*x) + gc; final int [] grad = gradient; for (int i=0; i2 g = g - 2*((int)(g/2.0f)); float step = dgdX; // Pull it into the positive half if (g < 0) { g = -g; //take absolute value step = - step; // Change direction.. } // Now do the same for dgdX. This is safe because // any step that is a multiple of 2.0 has no // affect, hence we can remove it which the first // part does. The second part simply adds 2.0 // (which has no affect due to the cylcle) to move // all negative step values into the positive // side. step = step - 2*((int)step/2.0f); if (step < 0) step += 2.0; final int reflectMax = 2*fastGradientArraySize; // Scale for gradient array. g *= fastGradientArraySize; g += 0.5; step *= fastGradientArraySize; final int rowLimit = off+w; // end of row iteration while (off < rowLimit) { int idx = (int)g; if (idx >= reflectMax) { g -= reflectMax; idx -= reflectMax; } if (idx <= fastGradientArraySize) pixels[off++] = grad[idx]; else pixels[off++] = grad[reflectMax-idx]; g+= step; } off += adjust; //change in off from row to row } } /** * Return a Raster containing the colors generated for the graphics * operation. This is where the area is filled with colors distributed * linearly. * * @param x,y,w,h The area in device space for which colors are * generated. * */ protected void fillRaster(int[] pixels, int off, int adjust, int x, int y, int w, int h) { //constant which can be pulled out of the inner loop final float initConst = (dgdX*x) + gc; if (fillMethod == ANTI_ALIAS_IMPL) { //initialize current value to be start. for(int i=0; i