summaryrefslogtreecommitdiffstats
path: root/src/crypto/x25519.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/x25519.c')
-rw-r--r--src/crypto/x25519.c844
1 files changed, 844 insertions, 0 deletions
diff --git a/src/crypto/x25519.c b/src/crypto/x25519.c
new file mode 100644
index 00000000..d58f7168
--- /dev/null
+++ b/src/crypto/x25519.c
@@ -0,0 +1,844 @@
+/*
+ * Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of the
+ * License, or any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA.
+ *
+ * You can also choose to distribute this program under the terms of
+ * the Unmodified Binary Distribution Licence (as given in the file
+ * COPYING.UBDL), provided that you have satisfied its requirements.
+ */
+
+FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
+
+/** @file
+ *
+ * X25519 key exchange
+ *
+ * This implementation is inspired by and partially based upon the
+ * paper "Implementing Curve25519/X25519: A Tutorial on Elliptic Curve
+ * Cryptography" by Martin Kleppmann, available for download from
+ * https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf
+ *
+ * The underlying modular addition, subtraction, and multiplication
+ * operations are completely redesigned for substantially improved
+ * efficiency compared to the TweetNaCl implementation studied in that
+ * paper.
+ *
+ * TweetNaCl iPXE
+ * --------- ----
+ *
+ * Storage size of each big integer 128 40
+ * (in bytes)
+ *
+ * Stack usage for key exchange 1144 360
+ * (in bytes, large objects only)
+ *
+ * Cost of big integer addition 16 5
+ * (in number of 64-bit additions)
+ *
+ * Cost of big integer multiplication 273 31
+ * (in number of 64-bit multiplications)
+ *
+ * The implementation is constant-time (provided that the underlying
+ * big integer operations are also constant-time).
+ */
+
+#include <stdint.h>
+#include <string.h>
+#include <assert.h>
+#include <errno.h>
+#include <ipxe/init.h>
+#include <ipxe/crypto.h>
+#include <ipxe/x25519.h>
+
+/** X25519 reduction constant
+ *
+ * The X25519 field prime is p=2^255-19. This gives us:
+ *
+ * p = 2^255 - 19
+ * 2^255 = p + 19
+ * 2^255 = 19 (mod p)
+ * k * 2^255 = k * 19 (mod p)
+ *
+ * We can therefore reduce a value modulo p by taking the high-order
+ * bits of the value from bit 255 and above, multiplying by 19, and
+ * adding this to the low-order 255 bits of the value.
+ *
+ * This would be cumbersome to do in practice since it would require
+ * partitioning the value at a 255-bit boundary (and hence would
+ * require some shifting and masking operations). However, we can
+ * note that:
+ *
+ * k * 2^255 = k * 19 (mod p)
+ * k * 2 * 2^255 = k * 2 * 19 (mod p)
+ * k * 2^256 = k * 38 (mod p)
+ *
+ * We can therefore simplify the reduction to taking the high order
+ * bits of the value from bit 256 and above, multiplying by 38, and
+ * adding this to the low-order 256 bits of the value.
+ *
+ * Since 256 will inevitably be a multiple of the big integer element
+ * size (typically 32 or 64 bits), this avoids the need to perform any
+ * shifting or masking operations.
+ */
+#define X25519_REDUCE_256 38
+
+/** X25519 multiplication step 1 result
+ *
+ * Step 1 of X25519 multiplication is to compute the product of two
+ * X25519 unsigned 258-bit integers.
+ *
+ * Both multiplication inputs are limited to 258 bits, and so the
+ * product will have at most 516 bits.
+ */
+union x25519_multiply_step1 {
+ /** Raw product
+ *
+ * Big integer multiplication produces a result with a number
+ * of elements equal to the sum of the number of elements in
+ * each input.
+ */
+ bigint_t ( X25519_SIZE + X25519_SIZE ) product;
+ /** Partition into low-order and high-order bits
+ *
+ * Reduction modulo p requires separating the low-order 256
+ * bits from the remaining high-order bits.
+ *
+ * Since the value will never exceed 516 bits (see above),
+ * there will be at most 260 high-order bits.
+ */
+ struct {
+ /** Low-order 256 bits */
+ bigint_t ( bigint_required_size ( ( 256 /* bits */ + 7 ) / 8 ) )
+ low_256bit;
+ /** High-order 260 bits */
+ bigint_t ( bigint_required_size ( ( 260 /* bits */ + 7 ) / 8 ) )
+ high_260bit;
+ } __attribute__ (( packed )) parts;
+};
+
+/** X25519 multiplication step 2 result
+ *
+ * Step 2 of X25519 multiplication is to multiply the high-order 260
+ * bits from step 1 with the 6-bit reduction constant 38, and to add
+ * this to the low-order 256 bits from step 1.
+ *
+ * The multiplication inputs are limited to 260 and 6 bits
+ * respectively, and so the product will have at most 266 bits. After
+ * adding the low-order 256 bits from step 1, the result will have at
+ * most 267 bits.
+ */
+union x25519_multiply_step2 {
+ /** Raw product
+ *
+ * Big integer multiplication produces a result with a number
+ * of elements equal to the sum of the number of elements in
+ * each input.
+ */
+ bigint_t ( bigint_required_size ( ( 260 /* bits */ + 7 ) / 8 ) +
+ bigint_required_size ( ( 6 /* bits */ + 7 ) / 8 ) ) product;
+ /** Big integer value
+ *
+ * The value will never exceed 267 bits (see above), and so
+ * may be consumed as a normal X25519 big integer.
+ */
+ x25519_t value;
+ /** Partition into low-order and high-order bits
+ *
+ * Reduction modulo p requires separating the low-order 256
+ * bits from the remaining high-order bits.
+ *
+ * Since the value will never exceed 267 bits (see above),
+ * there will be at most 11 high-order bits.
+ */
+ struct {
+ /** Low-order 256 bits */
+ bigint_t ( bigint_required_size ( ( 256 /* bits */ + 7 ) / 8 ) )
+ low_256bit;
+ /** High-order 11 bits */
+ bigint_t ( bigint_required_size ( ( 11 /* bits */ + 7 ) / 8 ) )
+ high_11bit;
+ } __attribute__ (( packed )) parts;
+};
+
+/** X25519 multiplication step 3 result
+ *
+ * Step 3 of X25519 multiplication is to multiply the high-order 11
+ * bits from step 2 with the 6-bit reduction constant 38, and to add
+ * this to the low-order 256 bits from step 2.
+ *
+ * The multiplication inputs are limited to 11 and 6 bits
+ * respectively, and so the product will have at most 17 bits. After
+ * adding the low-order 256 bits from step 2, the result will have at
+ * most 257 bits.
+ */
+union x25519_multiply_step3 {
+ /** Raw product
+ *
+ * Big integer multiplication produces a result with a number
+ * of elements equal to the sum of the number of elements in
+ * each input.
+ */
+ bigint_t ( bigint_required_size ( ( 11 /* bits */ + 7 ) / 8 ) +
+ bigint_required_size ( ( 6 /* bits */ + 7 ) / 8 ) ) product;
+ /** Big integer value
+ *
+ * The value will never exceed 267 bits (see above), and so
+ * may be consumed as a normal X25519 big integer.
+ */
+ x25519_t value;
+};
+
+/** X25519 multiplication temporary working space
+ *
+ * We overlap the buffers used by each step of the multiplication
+ * calculation to reduce the total stack space required:
+ *
+ * |--------------------------------------------------------|
+ * | <- pad -> | <------------ step 1 result -------------> |
+ * | | <- low 256 bits -> | <-- high 260 bits --> |
+ * | <------- step 2 result ------> | <-- step 3 result --> |
+ * |--------------------------------------------------------|
+ */
+union x25519_multiply_workspace {
+ /** Step 1 result */
+ struct {
+ /** Padding to avoid collision between steps 1 and 2
+ *
+ * The step 2 multiplication consumes the high 260
+ * bits of step 1, and so the step 2 multiplication
+ * result must not overlap this portion of the step 1
+ * result.
+ */
+ uint8_t pad[ sizeof ( union x25519_multiply_step2 ) -
+ offsetof ( union x25519_multiply_step1,
+ parts.high_260bit ) ];
+ /** Step 1 result */
+ union x25519_multiply_step1 step1;
+ } __attribute__ (( packed ));
+ /** Steps 2 and 3 results */
+ struct {
+ /** Step 2 result */
+ union x25519_multiply_step2 step2;
+ /** Step 3 result */
+ union x25519_multiply_step3 step3;
+ } __attribute__ (( packed ));
+};
+
+/** An X25519 elliptic curve point in projective coordinates
+ *
+ * A point (x,y) on the Montgomery curve used in X25519 is represented
+ * using projective coordinates (X/Z,Y/Z) so that intermediate
+ * calculations may be performed on both numerator and denominator
+ * separately, with the division step performed only once at the end
+ * of the calculation.
+ *
+ * The group operation calculation is performed using a Montgomery
+ * ladder as:
+ *
+ * X[2i] = ( X[i]^2 - Z[i]^2 )^2
+ * X[2i+1] = ( X[i] * X[i+1] - Z[i] * Z[i+1] )^2
+ * Z[2i] = 4 * X[i] * Z[i] * ( X[i]^2 + A * X[i] * Z[i] + Z[i]^2 )
+ * Z[2i+1] = X[0] * ( X[i] * Z[i+1] - X[i+1] * Z[i] ) ^ 2
+ *
+ * It is therefore not necessary to store (or use) the value of Y.
+ */
+struct x25519_projective {
+ /** X coordinate */
+ union x25519_quad257 X;
+ /** Z coordinate */
+ union x25519_quad257 Z;
+};
+
+/** An X25519 Montgomery ladder step */
+struct x25519_step {
+ /** X[n]/Z[n] */
+ struct x25519_projective x_n;
+ /** X[n+1]/Z[n+1] */
+ struct x25519_projective x_n1;
+};
+
+/** Constant p=2^255-19 (the finite field prime) */
+static const uint8_t x25519_p_raw[] = {
+ 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xed
+};
+
+/** Constant p=2^255-19 (the finite field prime) */
+static x25519_t x25519_p;
+
+/** Constant 2p=2^256-38 */
+static x25519_t x25519_2p;
+
+/** Constant 4p=2^257-76 */
+static x25519_t x25519_4p;
+
+/** Reduction constant (used during multiplication) */
+static const uint8_t x25519_reduce_256_raw[] = { X25519_REDUCE_256 };
+
+/** Reduction constant (used during multiplication) */
+static bigint_t ( bigint_required_size ( sizeof ( x25519_reduce_256_raw ) ) )
+ x25519_reduce_256;
+
+/** Constant 121665 (used in the Montgomery ladder) */
+static const uint8_t x25519_121665_raw[] = { 0x01, 0xdb, 0x41 };
+
+/** Constant 121665 (used in the Montgomery ladder) */
+static union x25519_oct258 x25519_121665;
+
+/** Constant g=9 (the group generator) */
+static struct x25519_value x25519_generator = {
+ .raw = { 9, }
+};
+
+/**
+ * Initialise constants
+ *
+ */
+static void x25519_init_constants ( void ) {
+
+ /* Construct constant p */
+ bigint_init ( &x25519_p, x25519_p_raw, sizeof ( x25519_p_raw ) );
+
+ /* Construct constant 2p */
+ bigint_copy ( &x25519_p, &x25519_2p );
+ bigint_add ( &x25519_p, &x25519_2p );
+
+ /* Construct constant 4p */
+ bigint_copy ( &x25519_2p, &x25519_4p );
+ bigint_add ( &x25519_2p, &x25519_4p );
+
+ /* Construct reduction constant */
+ bigint_init ( &x25519_reduce_256, x25519_reduce_256_raw,
+ sizeof ( x25519_reduce_256_raw ) );
+
+ /* Construct constant 121665 */
+ bigint_init ( &x25519_121665.value, x25519_121665_raw,
+ sizeof ( x25519_121665_raw ) );
+}
+
+/** Initialisation function */
+struct init_fn x25519_init_fn __init_fn ( INIT_NORMAL ) = {
+ .initialise = x25519_init_constants,
+};
+
+/**
+ * Add big integers modulo field prime
+ *
+ * @v augend Big integer to add
+ * @v addend Big integer to add
+ * @v result Big integer to hold result (may overlap augend)
+ */
+static inline __attribute__ (( always_inline )) void
+x25519_add ( const union x25519_quad257 *augend,
+ const union x25519_quad257 *addend,
+ union x25519_oct258 *result ) {
+ int copy;
+
+ /* Copy augend if necessary */
+ copy = ( result != &augend->oct258 );
+ build_assert ( __builtin_constant_p ( copy ) );
+ if ( copy ) {
+ build_assert ( result != &addend->oct258 );
+ bigint_copy ( &augend->oct258.value, &result->value );
+ }
+
+ /* Perform addition
+ *
+ * Both inputs are in the range [0,4p-1] and the resulting
+ * sum is therefore in the range [0,8p-2].
+ *
+ * This range lies within the range [0,8p-1] and the result is
+ * therefore a valid X25519 unsigned 258-bit integer, as
+ * required.
+ */
+ bigint_add ( &addend->value, &result->value );
+}
+
+/**
+ * Subtract big integers modulo field prime
+ *
+ * @v minuend Big integer from which to subtract
+ * @v subtrahend Big integer to subtract
+ * @v result Big integer to hold result (may overlap minuend)
+ */
+static inline __attribute__ (( always_inline )) void
+x25519_subtract ( const union x25519_quad257 *minuend,
+ const union x25519_quad257 *subtrahend,
+ union x25519_oct258 *result ) {
+ int copy;
+
+ /* Copy minuend if necessary */
+ copy = ( result != &minuend->oct258 );
+ build_assert ( __builtin_constant_p ( copy ) );
+ if ( copy ) {
+ build_assert ( result != &subtrahend->oct258 );
+ bigint_copy ( &minuend->oct258.value, &result->value );
+ }
+
+ /* Perform subtraction
+ *
+ * Both inputs are in the range [0,4p-1] and the resulting
+ * difference is therefore in the range [1-4p,4p-1].
+ *
+ * This range lies partially outside the range [0,8p-1] and
+ * the result is therefore not yet a valid X25519 unsigned
+ * 258-bit integer.
+ */
+ bigint_subtract ( &subtrahend->value, &result->value );
+
+ /* Add constant multiple of field prime p
+ *
+ * Add the constant 4p to the result. This brings the result
+ * within the range [1,8p-1] (without changing the value
+ * modulo p).
+ *
+ * This range lies within the range [0,8p-1] and the result is
+ * therefore now a valid X25519 unsigned 258-bit integer, as
+ * required.
+ */
+ bigint_add ( &x25519_4p, &result->value );
+}
+
+/**
+ * Multiply big integers modulo field prime
+ *
+ * @v multiplicand Big integer to be multiplied
+ * @v multiplier Big integer to be multiplied
+ * @v result Big integer to hold result (may overlap either input)
+ */
+void x25519_multiply ( const union x25519_oct258 *multiplicand,
+ const union x25519_oct258 *multiplier,
+ union x25519_quad257 *result ) {
+ union x25519_multiply_workspace tmp;
+ union x25519_multiply_step1 *step1 = &tmp.step1;
+ union x25519_multiply_step2 *step2 = &tmp.step2;
+ union x25519_multiply_step3 *step3 = &tmp.step3;
+
+ /* Step 1: perform raw multiplication
+ *
+ * step1 = multiplicand * multiplier
+ *
+ * Both inputs are 258-bit numbers and the step 1 result is
+ * therefore 258+258=516 bits.
+ */
+ static_assert ( sizeof ( step1->product ) >= sizeof ( step1->parts ) );
+ bigint_multiply ( &multiplicand->value, &multiplier->value,
+ &step1->product );
+
+ /* Step 2: reduce high-order 516-256=260 bits of step 1 result
+ *
+ * Use the identity 2^256=38 (mod p) to reduce the high-order
+ * bits of the step 1 result. We split the 516-bit result
+ * from step 1 into its low-order 256 bits and high-order 260
+ * bits:
+ *
+ * step1 = step1(low 256 bits) + step1(high 260 bits) * 2^256
+ *
+ * and then perform the calculation:
+ *
+ * step2 = step1 (mod p)
+ * = step1(low 256 bits) + step1(high 260 bits) * 2^256 (mod p)
+ * = step1(low 256 bits) + step1(high 260 bits) * 38 (mod p)
+ *
+ * There are 6 bits in the constant value 38. The step 2
+ * multiplication product will therefore have 260+6=266 bits,
+ * and the step 2 result (after the addition) will therefore
+ * have 267 bits.
+ */
+ static_assert ( sizeof ( step2->product ) >= sizeof ( step2->value ) );
+ static_assert ( sizeof ( step2->product ) >= sizeof ( step2->parts ) );
+ bigint_grow ( &step1->parts.low_256bit, &result->value );
+ bigint_multiply ( &step1->parts.high_260bit, &x25519_reduce_256,
+ &step2->product );
+ bigint_add ( &result->value, &step2->value );
+
+ /* Step 3: reduce high-order 267-256=11 bits of step 2 result
+ *
+ * Use the identity 2^256=38 (mod p) again to reduce the
+ * high-order bits of the step 2 result. As before, we split
+ * the 267-bit result from step 2 into its low-order 256 bits
+ * and high-order 11 bits:
+ *
+ * step2 = step2(low 256 bits) + step2(high 11 bits) * 2^256
+ *
+ * and then perform the calculation:
+ *
+ * step3 = step2 (mod p)
+ * = step2(low 256 bits) + step2(high 11 bits) * 2^256 (mod p)
+ * = step2(low 256 bits) + step2(high 11 bits) * 38 (mod p)
+ *
+ * There are 6 bits in the constant value 38. The step 3
+ * multiplication product will therefore have 11+6=19 bits,
+ * and the step 3 result (after the addition) will therefore
+ * have 257 bits.
+ *
+ * A loose upper bound for the step 3 result (after the
+ * addition) is given by:
+ *
+ * step3 < ( 2^256 - 1 ) + ( 2^19 - 1 )
+ * < ( 2^257 - 2^256 - 1 ) + ( 2^19 - 1 )
+ * < ( 2^257 - 76 ) - 2^256 + 2^19 + 74
+ * < 4 * ( 2^255 - 19 ) - 2^256 + 2^19 + 74
+ * < 4p - 2^256 + 2^19 + 74
+ *
+ * and so the step 3 result is strictly less than 4p, and
+ * therefore lies within the range [0,4p-1].
+ */
+ memset ( &step3->value, 0, sizeof ( step3->value ) );
+ bigint_grow ( &step2->parts.low_256bit, &result->value );
+ bigint_multiply ( &step2->parts.high_11bit, &x25519_reduce_256,
+ &step3->product );
+ bigint_add ( &step3->value, &result->value );
+
+ /* Step 1 calculates the product of the input operands, and
+ * each subsequent step reduces the number of bits in the
+ * result while preserving this value (modulo p). The final
+ * result is therefore equal to the product of the input
+ * operands (modulo p), as required.
+ *
+ * The step 3 result lies within the range [0,4p-1] and the
+ * final result is therefore a valid X25519 unsigned 257-bit
+ * integer, as required.
+ */
+}
+
+/**
+ * Compute multiplicative inverse
+ *
+ * @v invertend Big integer to be inverted
+ * @v result Big integer to hold result (may not overlap input)
+ */
+void x25519_invert ( const union x25519_oct258 *invertend,
+ union x25519_quad257 *result ) {
+ int i;
+
+ /* Sanity check */
+ assert ( invertend != &result->oct258 );
+
+ /* Calculate inverse as x^(-1)=x^(p-2) where p is the field prime
+ *
+ * The field prime is p=2^255-19 and so:
+ *
+ * p - 2 = 2^255 - 21
+ * = (2^255 - 1) - 2^4 - 2^2
+ *
+ * i.e. p-2 is a 254-bit number in which all bits are set
+ * apart from bit 2 and bit 4.
+ *
+ * We use the square-and-multiply method to compute x^(p-2).
+ */
+ bigint_copy ( &invertend->value, &result->value );
+ for ( i = 253 ; i >= 0 ; i-- ) {
+
+ /* Square running total */
+ x25519_multiply ( &result->oct258, &result->oct258, result );
+
+ /* For each set bit in the exponent, multiply by invertend */
+ if ( ( i != 2 ) && ( i != 4 ) ) {
+ x25519_multiply ( invertend, &result->oct258, result );
+ }
+ }
+}
+
+/**
+ * Reduce big integer via conditional subtraction
+ *
+ * @v subtrahend Big integer to subtract
+ * @v value Big integer to be subtracted from, if possible
+ */
+static void x25519_reduce_by ( const x25519_t *subtrahend, x25519_t *value ) {
+ unsigned int max_bit = ( ( 8 * sizeof ( *value ) ) - 1 );
+ x25519_t tmp;
+
+ /* Conditionally subtract subtrahend
+ *
+ * Subtract the subtrahend, discarding the result (in constant
+ * time) if the subtraction underflows.
+ */
+ bigint_copy ( value, &tmp );
+ bigint_subtract ( subtrahend, value );
+ bigint_swap ( value, &tmp, bigint_bit_is_set ( value, max_bit ) );
+}
+
+/**
+ * Reduce big integer to canonical range
+ *
+ * @v value Big integer to be reduced
+ */
+void x25519_reduce ( union x25519_quad257 *value ) {
+
+ /* Conditionally subtract 2p
+ *
+ * Subtract twice the field prime, discarding the result (in
+ * constant time) if the subtraction underflows.
+ *
+ * The input value is in the range [0,4p-1]. After this
+ * conditional subtraction, the value is in the range
+ * [0,2p-1].
+ */
+ x25519_reduce_by ( &x25519_2p, &value->value );
+
+ /* Conditionally subtract p
+ *
+ * Subtract the field prime, discarding the result (in
+ * constant time) if the subtraction underflows.
+ *
+ * The value is already in the range [0,2p-1]. After this
+ * conditional subtraction, the value is in the range [0,p-1]
+ * and is therefore the canonical representation.
+ */
+ x25519_reduce_by ( &x25519_p, &value->value );
+}
+
+/**
+ * Compute next step of the Montgomery ladder
+ *
+ * @v base Base point
+ * @v bit Bit value
+ * @v step Ladder step
+ */
+static void x25519_step ( const union x25519_quad257 *base, int bit,
+ struct x25519_step *step ) {
+ union x25519_quad257 *a = &step->x_n.X;
+ union x25519_quad257 *b = &step->x_n1.X;
+ union x25519_quad257 *c = &step->x_n.Z;
+ union x25519_quad257 *d = &step->x_n1.Z;
+ union x25519_oct258 e;
+ union x25519_quad257 f;
+ union x25519_oct258 *v1_e;
+ union x25519_oct258 *v2_a;
+ union x25519_oct258 *v3_c;
+ union x25519_oct258 *v4_b;
+ union x25519_quad257 *v5_d;
+ union x25519_quad257 *v6_f;
+ union x25519_quad257 *v7_a;
+ union x25519_quad257 *v8_c;
+ union x25519_oct258 *v9_e;
+ union x25519_oct258 *v10_a;
+ union x25519_quad257 *v11_b;
+ union x25519_oct258 *v12_c;
+ union x25519_quad257 *v13_a;
+ union x25519_oct258 *v14_a;
+ union x25519_quad257 *v15_c;
+ union x25519_quad257 *v16_a;
+ union x25519_quad257 *v17_d;
+ union x25519_quad257 *v18_b;
+
+ /* See the referenced paper "Implementing Curve25519/X25519: A
+ * Tutorial on Elliptic Curve Cryptography" for the reasoning
+ * behind this calculation.
+ */
+
+ /* Reuse storage locations for intermediate results where possible */
+ v1_e = &e;
+ v2_a = container_of ( &a->value, union x25519_oct258, value );
+ v3_c = container_of ( &c->value, union x25519_oct258, value );
+ v4_b = container_of ( &b->value, union x25519_oct258, value );
+ v5_d = d;
+ v6_f = &f;
+ v7_a = a;
+ v8_c = c;
+ v9_e = &e;
+ v10_a = container_of ( &a->value, union x25519_oct258, value );
+ v11_b = b;
+ v12_c = container_of ( &c->value, union x25519_oct258, value );
+ v13_a = a;
+ v14_a = container_of ( &a->value, union x25519_oct258, value );
+ v15_c = c;
+ v16_a = a;
+ v17_d = d;
+ v18_b = b;
+
+ /* Select inputs */
+ bigint_swap ( &a->value, &b->value, bit );
+ bigint_swap ( &c->value, &d->value, bit );
+
+ /* v1 = a + c */
+ x25519_add ( a, c, v1_e );
+
+ /* v2 = a - c */
+ x25519_subtract ( a, c, v2_a );
+
+ /* v3 = b + d */
+ x25519_add ( b, d, v3_c );
+
+ /* v4 = b - d */
+ x25519_subtract ( b, d, v4_b );
+
+ /* v5 = v1^2 = (a + c)^2 = a^2 + 2ac + c^2 */
+ x25519_multiply ( v1_e, v1_e, v5_d );
+
+ /* v6 = v2^2 = (a - c)^2 = a^2 - 2ac + c^2 */
+ x25519_multiply ( v2_a, v2_a, v6_f );
+
+ /* v7 = v3 * v2 = (b + d) * (a - c) = ab - bc + ad - cd */
+ x25519_multiply ( v3_c, v2_a, v7_a );
+
+ /* v8 = v4 * v1 = (b - d) * (a + c) = ab + bc - ad - cd */
+ x25519_multiply ( v4_b, v1_e, v8_c );
+
+ /* v9 = v7 + v8 = 2 * (ab - cd) */
+ x25519_add ( v7_a, v8_c, v9_e );
+
+ /* v10 = v7 - v8 = 2 * (ad - bc) */
+ x25519_subtract ( v7_a, v8_c, v10_a );
+
+ /* v11 = v10^2 = 4 * (ad - bc)^2 */
+ x25519_multiply ( v10_a, v10_a, v11_b );
+
+ /* v12 = v5 - v6 = (a + c)^2 - (a - c)^2 = 4ac */
+ x25519_subtract ( v5_d, v6_f, v12_c );
+
+ /* v13 = v12 * 121665 = 486660ac = (A-2) * ac */
+ x25519_multiply ( v12_c, &x25519_121665, v13_a );
+
+ /* v14 = v13 + v5 = (A-2) * ac + a^2 + 2ac + c^2 = a^2 + A * ac + c^2 */
+ x25519_add ( v13_a, v5_d, v14_a );
+
+ /* v15 = v12 * v14 = 4ac * (a^2 + A * ac + c^2) */
+ x25519_multiply ( v12_c, v14_a, v15_c );
+
+ /* v16 = v5 * v6 = (a + c)^2 * (a - c)^2 = (a^2 - c^2)^2 */
+ x25519_multiply ( &v5_d->oct258, &v6_f->oct258, v16_a );
+
+ /* v17 = v11 * base = 4 * base * (ad - bc)^2 */
+ x25519_multiply ( &v11_b->oct258, &base->oct258, v17_d );
+
+ /* v18 = v9^2 = 4 * (ab - cd)^2 */
+ x25519_multiply ( v9_e, v9_e, v18_b );
+
+ /* Select outputs */
+ bigint_swap ( &a->value, &b->value, bit );
+ bigint_swap ( &c->value, &d->value, bit );
+}
+
+/**
+ * Multiply X25519 elliptic curve point
+ *
+ * @v base Base point
+ * @v scalar Scalar multiple
+ * @v result Point to hold result (may overlap base point)
+ */
+static void x25519_ladder ( const union x25519_quad257 *base,
+ struct x25519_value *scalar,
+ union x25519_quad257 *result ) {
+ static const uint8_t zero[] = { 0 };
+ static const uint8_t one[] = { 1 };
+ struct x25519_step step;
+ union x25519_quad257 *tmp;
+ int bit;
+ int i;
+
+ /* Initialise ladder */
+ bigint_init ( &step.x_n.X.value, one, sizeof ( one ) );
+ bigint_init ( &step.x_n.Z.value, zero, sizeof ( zero ) );
+ bigint_copy ( &base->value, &step.x_n1.X.value );
+ bigint_init ( &step.x_n1.Z.value, one, sizeof ( one ) );
+
+ /* Use ladder */
+ for ( i = 254 ; i >= 0 ; i-- ) {
+ bit = ( ( scalar->raw[ i / 8 ] >> ( i % 8 ) ) & 1 );
+ x25519_step ( base, bit, &step );
+ }
+
+ /* Convert back to affine coordinate */
+ tmp = &step.x_n1.X;
+ x25519_invert ( &step.x_n.Z.oct258, tmp );
+ x25519_multiply ( &step.x_n.X.oct258, &tmp->oct258, result );
+ x25519_reduce ( result );
+}
+
+/**
+ * Reverse X25519 value endianness
+ *
+ * @v value Value to reverse
+ */
+static void x25519_reverse ( struct x25519_value *value ) {
+ uint8_t *low = value->raw;
+ uint8_t *high = &value->raw[ sizeof ( value->raw ) - 1 ];
+ uint8_t tmp;
+
+ /* Reverse bytes */
+ do {
+ tmp = *low;
+ *low = *high;
+ *high = tmp;
+ } while ( ++low < --high );
+}
+
+/**
+ * Calculate X25519 key
+ *
+ * @v base Base point
+ * @v scalar Scalar multiple
+ * @v result Point to hold result (may overlap base point)
+ * @ret rc Return status code
+ */
+int x25519_key ( const struct x25519_value *base,
+ const struct x25519_value *scalar,
+ struct x25519_value *result ) {
+ struct x25519_value *tmp = result;
+ union x25519_quad257 point;
+
+ /* Reverse base point and clear high bit as required by RFC7748 */
+ memcpy ( tmp, base, sizeof ( *tmp ) );
+ x25519_reverse ( tmp );
+ tmp->raw[0] &= 0x7f;
+ bigint_init ( &point.value, tmp->raw, sizeof ( tmp->raw ) );
+
+ /* Clamp scalar as required by RFC7748 */
+ memcpy ( tmp, scalar, sizeof ( *tmp ) );
+ tmp->raw[0] &= 0xf8;
+ tmp->raw[31] |= 0x40;
+
+ /* Multiply elliptic curve point */
+ x25519_ladder ( &point, tmp, &point );
+
+ /* Reverse result */
+ bigint_done ( &point.value, result->raw, sizeof ( result->raw ) );
+ x25519_reverse ( result );
+
+ /* Fail if result was all zeros (as required by RFC8422) */
+ return ( bigint_is_zero ( &point.value ) ? -EPERM : 0 );
+}
+
+/**
+ * Multiply scalar by curve point
+ *
+ * @v base Base point (or NULL to use generator)
+ * @v scalar Scalar multiple
+ * @v result Result point to fill in
+ * @ret rc Return status code
+ */
+static int x25519_curve_multiply ( const void *base, const void *scalar,
+ void *result ) {
+
+ /* Use base point if applicable */
+ if ( ! base )
+ base = &x25519_generator;
+
+ return x25519_key ( base, scalar, result );
+}
+
+/** X25519 elliptic curve */
+struct elliptic_curve x25519_curve = {
+ .name = "x25519",
+ .keysize = sizeof ( struct x25519_value ),
+ .multiply = x25519_curve_multiply,
+};