/* * Copyright (C) 2012 Michael Brown . * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * * You can also choose to distribute this program under the terms of * the Unmodified Binary Distribution Licence (as given in the file * COPYING.UBDL), provided that you have satisfied its requirements. */ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL ); /** @file * * SHA-1 algorithm * */ #include #include #include #include #include #include #include #include /** SHA-1 variables */ struct sha1_variables { /* This layout matches that of struct sha1_digest_data, * allowing for efficient endianness-conversion, */ uint32_t a; uint32_t b; uint32_t c; uint32_t d; uint32_t e; uint32_t w[80]; } __attribute__ (( packed )); /** * f(a,b,c,d) for steps 0 to 19 * * @v v SHA-1 variables * @ret f f(a,b,c,d) */ static uint32_t sha1_f_0_19 ( struct sha1_variables *v ) { return ( ( v->b & v->c ) | ( (~v->b) & v->d ) ); } /** * f(a,b,c,d) for steps 20 to 39 and 60 to 79 * * @v v SHA-1 variables * @ret f f(a,b,c,d) */ static uint32_t sha1_f_20_39_60_79 ( struct sha1_variables *v ) { return ( v->b ^ v->c ^ v->d ); } /** * f(a,b,c,d) for steps 40 to 59 * * @v v SHA-1 variables * @ret f f(a,b,c,d) */ static uint32_t sha1_f_40_59 ( struct sha1_variables *v ) { return ( ( v->b & v->c ) | ( v->b & v->d ) | ( v->c & v->d ) ); } /** An SHA-1 step function */ struct sha1_step { /** * Calculate f(a,b,c,d) * * @v v SHA-1 variables * @ret f f(a,b,c,d) */ uint32_t ( * f ) ( struct sha1_variables *v ); /** Constant k */ uint32_t k; }; /** SHA-1 steps */ static struct sha1_step sha1_steps[4] = { /** 0 to 19 */ { .f = sha1_f_0_19, .k = 0x5a827999 }, /** 20 to 39 */ { .f = sha1_f_20_39_60_79, .k = 0x6ed9eba1 }, /** 40 to 59 */ { .f = sha1_f_40_59, .k = 0x8f1bbcdc }, /** 60 to 79 */ { .f = sha1_f_20_39_60_79, .k = 0xca62c1d6 }, }; /** * Initialise SHA-1 algorithm * * @v ctx SHA-1 context */ static void sha1_init ( void *ctx ) { struct sha1_context *context = ctx; context->ddd.dd.digest.h[0] = cpu_to_be32 ( 0x67452301 ); context->ddd.dd.digest.h[1] = cpu_to_be32 ( 0xefcdab89 ); context->ddd.dd.digest.h[2] = cpu_to_be32 ( 0x98badcfe ); context->ddd.dd.digest.h[3] = cpu_to_be32 ( 0x10325476 ); context->ddd.dd.digest.h[4] = cpu_to_be32 ( 0xc3d2e1f0 ); context->len = 0; } /** * Calculate SHA-1 digest of accumulated data * * @v context SHA-1 context */ static void sha1_digest ( struct sha1_context *context ) { union { union sha1_digest_data_dwords ddd; struct sha1_variables v; } u; uint32_t *a = &u.v.a; uint32_t *b = &u.v.b; uint32_t *c = &u.v.c; uint32_t *d = &u.v.d; uint32_t *e = &u.v.e; uint32_t *w = u.v.w; uint32_t f; uint32_t k; uint32_t temp; struct sha1_step *step; unsigned int i; /* Sanity checks */ assert ( ( context->len % sizeof ( context->ddd.dd.data ) ) == 0 ); linker_assert ( &u.ddd.dd.digest.h[0] == a, sha1_bad_layout ); linker_assert ( &u.ddd.dd.digest.h[1] == b, sha1_bad_layout ); linker_assert ( &u.ddd.dd.digest.h[2] == c, sha1_bad_layout ); linker_assert ( &u.ddd.dd.digest.h[3] == d, sha1_bad_layout ); linker_assert ( &u.ddd.dd.digest.h[4] == e, sha1_bad_layout ); linker_assert ( &u.ddd.dd.data.dword[0] == w, sha1_bad_layout ); DBGC ( context, "SHA1 digesting:\n" ); DBGC_HDA ( context, 0, &context->ddd.dd.digest, sizeof ( context->ddd.dd.digest ) ); DBGC_HDA ( context, context->len, &context->ddd.dd.data, sizeof ( context->ddd.dd.data ) ); /* Convert h[0..4] to host-endian, and initialise a, b, c, d, * e, and w[0..15] */ for ( i = 0 ; i < ( sizeof ( u.ddd.dword ) / sizeof ( u.ddd.dword[0] ) ) ; i++ ) { be32_to_cpus ( &context->ddd.dword[i] ); u.ddd.dword[i] = context->ddd.dword[i]; } /* Initialise w[16..79] */ for ( i = 16 ; i < 80 ; i++ ) w[i] = rol32 ( ( w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16] ), 1 ); /* Main loop */ for ( i = 0 ; i < 80 ; i++ ) { step = &sha1_steps[ i / 20 ]; f = step->f ( &u.v ); k = step->k; temp = ( rol32 ( *a, 5 ) + f + *e + k + w[i] ); *e = *d; *d = *c; *c = rol32 ( *b, 30 ); *b = *a; *a = temp; DBGC2 ( context, "%2d : %08x %08x %08x %08x %08x\n", i, *a, *b, *c, *d, *e ); } /* Add chunk to hash and convert back to big-endian */ for ( i = 0 ; i < 5 ; i++ ) { context->ddd.dd.digest.h[i] = cpu_to_be32 ( context->ddd.dd.digest.h[i] + u.ddd.dd.digest.h[i] ); } DBGC ( context, "SHA1 digested:\n" ); DBGC_HDA ( context, 0, &context->ddd.dd.digest, sizeof ( context->ddd.dd.digest ) ); } /** * Accumulate data with SHA-1 algorithm * * @v ctx SHA-1 context * @v data Data * @v len Length of data */ static void sha1_update ( void *ctx, const void *data, size_t len ) { struct sha1_context *context = ctx; const uint8_t *byte = data; size_t offset; /* Accumulate data a byte at a time, performing the digest * whenever we fill the data buffer */ while ( len-- ) { offset = ( context->len % sizeof ( context->ddd.dd.data ) ); context->ddd.dd.data.byte[offset] = *(byte++); context->len++; if ( ( context->len % sizeof ( context->ddd.dd.data ) ) == 0 ) sha1_digest ( context ); } } /** * Generate SHA-1 digest * * @v ctx SHA-1 context * @v out Output buffer */ static void sha1_final ( void *ctx, void *out ) { struct sha1_context *context = ctx; uint64_t len_bits; uint8_t pad; /* Record length before pre-processing */ len_bits = cpu_to_be64 ( ( ( uint64_t ) context->len ) * 8 ); /* Pad with a single "1" bit followed by as many "0" bits as required */ pad = 0x80; do { sha1_update ( ctx, &pad, sizeof ( pad ) ); pad = 0x00; } while ( ( context->len % sizeof ( context->ddd.dd.data ) ) != offsetof ( typeof ( context->ddd.dd.data ), final.len ) ); /* Append length (in bits) */ sha1_update ( ctx, &len_bits, sizeof ( len_bits ) ); assert ( ( context->len % sizeof ( context->ddd.dd.data ) ) == 0 ); /* Copy out final digest */ memcpy ( out, &context->ddd.dd.digest, sizeof ( context->ddd.dd.digest ) ); } /** SHA-1 algorithm */ struct digest_algorithm sha1_algorithm = { .name = "sha1", .ctxsize = sizeof ( struct sha1_context ), .blocksize = sizeof ( union sha1_block ), .digestsize = sizeof ( struct sha1_digest ), .init = sha1_init, .update = sha1_update, .final = sha1_final, }; /** "sha1" object identifier */ static uint8_t oid_sha1[] = { ASN1_OID_SHA1 }; /** "sha1" OID-identified algorithm */ struct asn1_algorithm oid_sha1_algorithm __asn1_algorithm = { .name = "sha1", .digest = &sha1_algorithm, .oid = ASN1_OID_CURSOR ( oid_sha1 ), };