/************************************************************************** * * Etherboot driver for Level 5 Etherfabric network cards * * Written by Michael Brown * * Copyright Fen Systems Ltd. 2005 * Copyright Level 5 Networks Inc. 2005 * * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by * reference. Drivers based on or derived from this code fall under * the GPL and must retain the authorship, copyright and license * notice. * ************************************************************************** */ FILE_LICENCE ( GPL_ANY ); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "etherfabric.h" #include "etherfabric_nic.h" /************************************************************************** * * Constants and macros * ************************************************************************** */ #define EFAB_REGDUMP(...) #define EFAB_TRACE(...) DBGP(__VA_ARGS__) // printf() is not allowed within drivers. Use DBG() instead. #define EFAB_LOG(...) DBG(__VA_ARGS__) #define EFAB_ERR(...) DBG(__VA_ARGS__) #define FALCON_USE_IO_BAR 0 #define HZ 100 #define EFAB_BYTE 1 /************************************************************************** * * Hardware data structures and sizing * ************************************************************************** */ extern int __invalid_queue_size; #define FQS(_prefix, _x) \ ( ( (_x) == 512 ) ? _prefix ## _SIZE_512 : \ ( ( (_x) == 1024 ) ? _prefix ## _SIZE_1K : \ ( ( (_x) == 2048 ) ? _prefix ## _SIZE_2K : \ ( ( (_x) == 4096) ? _prefix ## _SIZE_4K : \ __invalid_queue_size ) ) ) ) #define EFAB_MAX_FRAME_LEN(mtu) \ ( ( ( ( mtu ) + 4/* FCS */ ) + 7 ) & ~7 ) /************************************************************************** * * GMII routines * ************************************************************************** */ static void falcon_mdio_write (struct efab_nic *efab, int device, int location, int value ); static int falcon_mdio_read ( struct efab_nic *efab, int device, int location ); /* GMII registers */ #define GMII_PSSR 0x11 /* PHY-specific status register */ /* Pseudo extensions to the link partner ability register */ #define LPA_EF_1000FULL 0x00020000 #define LPA_EF_1000HALF 0x00010000 #define LPA_EF_10000FULL 0x00040000 #define LPA_EF_10000HALF 0x00080000 #define LPA_EF_1000 ( LPA_EF_1000FULL | LPA_EF_1000HALF ) #define LPA_EF_10000 ( LPA_EF_10000FULL | LPA_EF_10000HALF ) #define LPA_EF_DUPLEX ( LPA_10FULL | LPA_100FULL | LPA_EF_1000FULL | \ LPA_EF_10000FULL ) /* Mask of bits not associated with speed or duplexity. */ #define LPA_OTHER ~( LPA_10FULL | LPA_10HALF | LPA_100FULL | \ LPA_100HALF | LPA_EF_1000FULL | LPA_EF_1000HALF ) /* PHY-specific status register */ #define PSSR_LSTATUS 0x0400 /* Bit 10 - link status */ /** * Retrieve GMII autonegotiation advertised abilities * */ static unsigned int gmii_autoneg_advertised ( struct efab_nic *efab ) { unsigned int mii_advertise; unsigned int gmii_advertise; /* Extended bits are in bits 8 and 9 of MII_CTRL1000 */ mii_advertise = falcon_mdio_read ( efab, 0, MII_ADVERTISE ); gmii_advertise = ( ( falcon_mdio_read ( efab, 0, MII_CTRL1000 ) >> 8 ) & 0x03 ); return ( ( gmii_advertise << 16 ) | mii_advertise ); } /** * Retrieve GMII autonegotiation link partner abilities * */ static unsigned int gmii_autoneg_lpa ( struct efab_nic *efab ) { unsigned int mii_lpa; unsigned int gmii_lpa; /* Extended bits are in bits 10 and 11 of MII_STAT1000 */ mii_lpa = falcon_mdio_read ( efab, 0, MII_LPA ); gmii_lpa = ( falcon_mdio_read ( efab, 0, MII_STAT1000 ) >> 10 ) & 0x03; return ( ( gmii_lpa << 16 ) | mii_lpa ); } /** * Calculate GMII autonegotiated link technology * */ static unsigned int gmii_nway_result ( unsigned int negotiated ) { unsigned int other_bits; /* Mask out the speed and duplexity bits */ other_bits = negotiated & LPA_OTHER; if ( negotiated & LPA_EF_1000FULL ) return ( other_bits | LPA_EF_1000FULL ); else if ( negotiated & LPA_EF_1000HALF ) return ( other_bits | LPA_EF_1000HALF ); else if ( negotiated & LPA_100FULL ) return ( other_bits | LPA_100FULL ); else if ( negotiated & LPA_100BASE4 ) return ( other_bits | LPA_100BASE4 ); else if ( negotiated & LPA_100HALF ) return ( other_bits | LPA_100HALF ); else if ( negotiated & LPA_10FULL ) return ( other_bits | LPA_10FULL ); else return ( other_bits | LPA_10HALF ); } /** * Check GMII PHY link status * */ static int gmii_link_ok ( struct efab_nic *efab ) { int status; int phy_status; /* BMSR is latching - it returns "link down" if the link has * been down at any point since the last read. To get a * real-time status, we therefore read the register twice and * use the result of the second read. */ (void) falcon_mdio_read ( efab, 0, MII_BMSR ); status = falcon_mdio_read ( efab, 0, MII_BMSR ); /* Read the PHY-specific Status Register. This is * non-latching, so we need do only a single read. */ phy_status = falcon_mdio_read ( efab, 0, GMII_PSSR ); return ( ( status & BMSR_LSTATUS ) && ( phy_status & PSSR_LSTATUS ) ); } /************************************************************************** * * MDIO routines * ************************************************************************** */ /* Numbering of the MDIO Manageable Devices (MMDs) */ /* Physical Medium Attachment/ Physical Medium Dependent sublayer */ #define MDIO_MMD_PMAPMD (1) /* WAN Interface Sublayer */ #define MDIO_MMD_WIS (2) /* Physical Coding Sublayer */ #define MDIO_MMD_PCS (3) /* PHY Extender Sublayer */ #define MDIO_MMD_PHYXS (4) /* Extender Sublayer */ #define MDIO_MMD_DTEXS (5) /* Transmission convergence */ #define MDIO_MMD_TC (6) /* Auto negotiation */ #define MDIO_MMD_AN (7) /* Generic register locations */ #define MDIO_MMDREG_CTRL1 (0) #define MDIO_MMDREG_STAT1 (1) #define MDIO_MMDREG_DEVS0 (5) #define MDIO_MMDREG_STAT2 (8) /* Bits in MMDREG_CTRL1 */ /* Reset */ #define MDIO_MMDREG_CTRL1_RESET_LBN (15) #define MDIO_MMDREG_CTRL1_RESET_WIDTH (1) /* Bits in MMDREG_STAT1 */ #define MDIO_MMDREG_STAT1_FAULT_LBN (7) #define MDIO_MMDREG_STAT1_FAULT_WIDTH (1) /* Link state */ #define MDIO_MMDREG_STAT1_LINK_LBN (2) #define MDIO_MMDREG_STAT1_LINK_WIDTH (1) /* Bits in MMDREG_DEVS0. */ #define DEV_PRESENT_BIT(_b) (1 << _b) #define MDIO_MMDREG_DEVS0_DTEXS DEV_PRESENT_BIT(MDIO_MMD_DTEXS) #define MDIO_MMDREG_DEVS0_PHYXS DEV_PRESENT_BIT(MDIO_MMD_PHYXS) #define MDIO_MMDREG_DEVS0_PCS DEV_PRESENT_BIT(MDIO_MMD_PCS) #define MDIO_MMDREG_DEVS0_WIS DEV_PRESENT_BIT(MDIO_MMD_WIS) #define MDIO_MMDREG_DEVS0_PMAPMD DEV_PRESENT_BIT(MDIO_MMD_PMAPMD) #define MDIO_MMDREG_DEVS0_AN DEV_PRESENT_BIT(MDIO_MMD_AN) /* Bits in MMDREG_STAT2 */ #define MDIO_MMDREG_STAT2_PRESENT_VAL (2) #define MDIO_MMDREG_STAT2_PRESENT_LBN (14) #define MDIO_MMDREG_STAT2_PRESENT_WIDTH (2) /* PHY XGXS lane state */ #define MDIO_PHYXS_LANE_STATE (0x18) #define MDIO_PHYXS_LANE_ALIGNED_LBN (12) #define MDIO_PHYXS_LANE_SYNC0_LBN (0) #define MDIO_PHYXS_LANE_SYNC1_LBN (1) #define MDIO_PHYXS_LANE_SYNC2_LBN (2) #define MDIO_PHYXS_LANE_SYNC3_LBN (3) /* This ought to be ridiculous overkill. We expect it to fail rarely */ #define MDIO45_RESET_TRIES 100 #define MDIO45_RESET_SPINTIME 10 static int mdio_clause45_wait_reset_mmds ( struct efab_nic* efab ) { int tries = MDIO45_RESET_TRIES; int in_reset; while(tries) { int mask = efab->phy_op->mmds; int mmd = 0; in_reset = 0; while(mask) { if (mask & 1) { int stat = falcon_mdio_read ( efab, mmd, MDIO_MMDREG_CTRL1 ); if (stat < 0) { EFAB_ERR("Failed to read status of MMD %d\n", mmd ); in_reset = 1; break; } if (stat & (1 << MDIO_MMDREG_CTRL1_RESET_LBN)) in_reset |= (1 << mmd); } mask = mask >> 1; mmd++; } if (!in_reset) break; tries--; mdelay ( MDIO45_RESET_SPINTIME ); } if (in_reset != 0) { EFAB_ERR("Not all MMDs came out of reset in time. MMDs " "still in reset: %x\n", in_reset); return -ETIMEDOUT; } return 0; } static int mdio_clause45_reset_mmd ( struct efab_nic *efab, int mmd ) { int tries = MDIO45_RESET_TRIES; int ctrl; falcon_mdio_write ( efab, mmd, MDIO_MMDREG_CTRL1, ( 1 << MDIO_MMDREG_CTRL1_RESET_LBN ) ); /* Wait for the reset bit to clear. */ do { mdelay ( MDIO45_RESET_SPINTIME ); ctrl = falcon_mdio_read ( efab, mmd, MDIO_MMDREG_CTRL1 ); if ( ~ctrl & ( 1 << MDIO_MMDREG_CTRL1_RESET_LBN ) ) return 0; } while ( --tries ); EFAB_ERR ( "Failed to reset mmd %d\n", mmd ); return -ETIMEDOUT; } static int mdio_clause45_links_ok(struct efab_nic *efab ) { int status, good; int ok = 1; int mmd = 0; int mmd_mask = efab->phy_op->mmds; while (mmd_mask) { if (mmd_mask & 1) { /* Double reads because link state is latched, and a * read moves the current state into the register */ status = falcon_mdio_read ( efab, mmd, MDIO_MMDREG_STAT1 ); status = falcon_mdio_read ( efab, mmd, MDIO_MMDREG_STAT1 ); good = status & (1 << MDIO_MMDREG_STAT1_LINK_LBN); ok = ok && good; } mmd_mask = (mmd_mask >> 1); mmd++; } return ok; } static int mdio_clause45_check_mmds ( struct efab_nic *efab ) { int mmd = 0; int devices = falcon_mdio_read ( efab, MDIO_MMD_PHYXS, MDIO_MMDREG_DEVS0 ); int mmd_mask = efab->phy_op->mmds; /* Check all the expected MMDs are present */ if ( devices < 0 ) { EFAB_ERR ( "Failed to read devices present\n" ); return -EIO; } if ( ( devices & mmd_mask ) != mmd_mask ) { EFAB_ERR ( "required MMDs not present: got %x, wanted %x\n", devices, mmd_mask ); return -EIO; } /* Check all required MMDs are responding and happy. */ while ( mmd_mask ) { if ( mmd_mask & 1 ) { efab_dword_t reg; int status; reg.opaque = falcon_mdio_read ( efab, mmd, MDIO_MMDREG_STAT2 ); status = EFAB_DWORD_FIELD ( reg, MDIO_MMDREG_STAT2_PRESENT ); if ( status != MDIO_MMDREG_STAT2_PRESENT_VAL ) { return -EIO; } } mmd_mask >>= 1; mmd++; } return 0; } /* I/O BAR address register */ #define FCN_IOM_IND_ADR_REG 0x0 /* I/O BAR data register */ #define FCN_IOM_IND_DAT_REG 0x4 /* Address region register */ #define FCN_ADR_REGION_REG_KER 0x00 #define FCN_ADR_REGION0_LBN 0 #define FCN_ADR_REGION0_WIDTH 18 #define FCN_ADR_REGION1_LBN 32 #define FCN_ADR_REGION1_WIDTH 18 #define FCN_ADR_REGION2_LBN 64 #define FCN_ADR_REGION2_WIDTH 18 #define FCN_ADR_REGION3_LBN 96 #define FCN_ADR_REGION3_WIDTH 18 /* Interrupt enable register */ #define FCN_INT_EN_REG_KER 0x0010 #define FCN_MEM_PERR_INT_EN_KER_LBN 5 #define FCN_MEM_PERR_INT_EN_KER_WIDTH 1 #define FCN_KER_INT_CHAR_LBN 4 #define FCN_KER_INT_CHAR_WIDTH 1 #define FCN_KER_INT_KER_LBN 3 #define FCN_KER_INT_KER_WIDTH 1 #define FCN_ILL_ADR_ERR_INT_EN_KER_LBN 2 #define FCN_ILL_ADR_ERR_INT_EN_KER_WIDTH 1 #define FCN_SRM_PERR_INT_EN_KER_LBN 1 #define FCN_SRM_PERR_INT_EN_KER_WIDTH 1 #define FCN_DRV_INT_EN_KER_LBN 0 #define FCN_DRV_INT_EN_KER_WIDTH 1 /* Interrupt status register */ #define FCN_INT_ADR_REG_KER 0x0030 #define FCN_INT_ADR_KER_LBN 0 #define FCN_INT_ADR_KER_WIDTH EFAB_DMA_TYPE_WIDTH ( 64 ) /* Interrupt status register (B0 only) */ #define INT_ISR0_B0 0x90 #define INT_ISR1_B0 0xA0 /* Interrupt acknowledge register (A0/A1 only) */ #define FCN_INT_ACK_KER_REG_A1 0x0050 #define INT_ACK_DUMMY_DATA_LBN 0 #define INT_ACK_DUMMY_DATA_WIDTH 32 /* Interrupt acknowledge work-around register (A0/A1 only )*/ #define WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1 0x0070 /* Hardware initialisation register */ #define FCN_HW_INIT_REG_KER 0x00c0 #define FCN_BCSR_TARGET_MASK_LBN 101 #define FCN_BCSR_TARGET_MASK_WIDTH 4 /* SPI host command register */ #define FCN_EE_SPI_HCMD_REG 0x0100 #define FCN_EE_SPI_HCMD_CMD_EN_LBN 31 #define FCN_EE_SPI_HCMD_CMD_EN_WIDTH 1 #define FCN_EE_WR_TIMER_ACTIVE_LBN 28 #define FCN_EE_WR_TIMER_ACTIVE_WIDTH 1 #define FCN_EE_SPI_HCMD_SF_SEL_LBN 24 #define FCN_EE_SPI_HCMD_SF_SEL_WIDTH 1 #define FCN_EE_SPI_EEPROM 0 #define FCN_EE_SPI_FLASH 1 #define FCN_EE_SPI_HCMD_DABCNT_LBN 16 #define FCN_EE_SPI_HCMD_DABCNT_WIDTH 5 #define FCN_EE_SPI_HCMD_READ_LBN 15 #define FCN_EE_SPI_HCMD_READ_WIDTH 1 #define FCN_EE_SPI_READ 1 #define FCN_EE_SPI_WRITE 0 #define FCN_EE_SPI_HCMD_DUBCNT_LBN 12 #define FCN_EE_SPI_HCMD_DUBCNT_WIDTH 2 #define FCN_EE_SPI_HCMD_ADBCNT_LBN 8 #define FCN_EE_SPI_HCMD_ADBCNT_WIDTH 2 #define FCN_EE_SPI_HCMD_ENC_LBN 0 #define FCN_EE_SPI_HCMD_ENC_WIDTH 8 /* SPI host address register */ #define FCN_EE_SPI_HADR_REG 0x0110 #define FCN_EE_SPI_HADR_DUBYTE_LBN 24 #define FCN_EE_SPI_HADR_DUBYTE_WIDTH 8 #define FCN_EE_SPI_HADR_ADR_LBN 0 #define FCN_EE_SPI_HADR_ADR_WIDTH 24 /* SPI host data register */ #define FCN_EE_SPI_HDATA_REG 0x0120 #define FCN_EE_SPI_HDATA3_LBN 96 #define FCN_EE_SPI_HDATA3_WIDTH 32 #define FCN_EE_SPI_HDATA2_LBN 64 #define FCN_EE_SPI_HDATA2_WIDTH 32 #define FCN_EE_SPI_HDATA1_LBN 32 #define FCN_EE_SPI_HDATA1_WIDTH 32 #define FCN_EE_SPI_HDATA0_LBN 0 #define FCN_EE_SPI_HDATA0_WIDTH 32 /* VPD Config 0 Register register */ #define FCN_EE_VPD_CFG_REG 0x0140 #define FCN_EE_VPD_EN_LBN 0 #define FCN_EE_VPD_EN_WIDTH 1 #define FCN_EE_VPD_EN_AD9_MODE_LBN 1 #define FCN_EE_VPD_EN_AD9_MODE_WIDTH 1 #define FCN_EE_EE_CLOCK_DIV_LBN 112 #define FCN_EE_EE_CLOCK_DIV_WIDTH 7 #define FCN_EE_SF_CLOCK_DIV_LBN 120 #define FCN_EE_SF_CLOCK_DIV_WIDTH 7 /* NIC status register */ #define FCN_NIC_STAT_REG 0x0200 #define FCN_ONCHIP_SRAM_LBN 16 #define FCN_ONCHIP_SRAM_WIDTH 1 #define FCN_SF_PRST_LBN 9 #define FCN_SF_PRST_WIDTH 1 #define FCN_EE_PRST_LBN 8 #define FCN_EE_PRST_WIDTH 1 #define FCN_EE_STRAP_LBN 7 #define FCN_EE_STRAP_WIDTH 1 #define FCN_PCI_PCIX_MODE_LBN 4 #define FCN_PCI_PCIX_MODE_WIDTH 3 #define FCN_PCI_PCIX_MODE_PCI33_DECODE 0 #define FCN_PCI_PCIX_MODE_PCI66_DECODE 1 #define FCN_PCI_PCIX_MODE_PCIX66_DECODE 5 #define FCN_PCI_PCIX_MODE_PCIX100_DECODE 6 #define FCN_PCI_PCIX_MODE_PCIX133_DECODE 7 #define FCN_STRAP_ISCSI_EN_LBN 3 #define FCN_STRAP_ISCSI_EN_WIDTH 1 #define FCN_STRAP_PINS_LBN 0 #define FCN_STRAP_PINS_WIDTH 3 #define FCN_STRAP_10G_LBN 2 #define FCN_STRAP_10G_WIDTH 1 #define FCN_STRAP_DUAL_PORT_LBN 1 #define FCN_STRAP_DUAL_PORT_WIDTH 1 #define FCN_STRAP_PCIE_LBN 0 #define FCN_STRAP_PCIE_WIDTH 1 /* Falcon revisions */ #define FALCON_REV_A0 0 #define FALCON_REV_A1 1 #define FALCON_REV_B0 2 /* GPIO control register */ #define FCN_GPIO_CTL_REG_KER 0x0210 #define FCN_GPIO_CTL_REG_KER 0x0210 #define FCN_GPIO3_OEN_LBN 27 #define FCN_GPIO3_OEN_WIDTH 1 #define FCN_GPIO2_OEN_LBN 26 #define FCN_GPIO2_OEN_WIDTH 1 #define FCN_GPIO1_OEN_LBN 25 #define FCN_GPIO1_OEN_WIDTH 1 #define FCN_GPIO0_OEN_LBN 24 #define FCN_GPIO0_OEN_WIDTH 1 #define FCN_GPIO3_OUT_LBN 19 #define FCN_GPIO3_OUT_WIDTH 1 #define FCN_GPIO2_OUT_LBN 18 #define FCN_GPIO2_OUT_WIDTH 1 #define FCN_GPIO1_OUT_LBN 17 #define FCN_GPIO1_OUT_WIDTH 1 #define FCN_GPIO0_OUT_LBN 16 #define FCN_GPIO0_OUT_WIDTH 1 #define FCN_GPIO3_IN_LBN 11 #define FCN_GPIO3_IN_WIDTH 1 #define FCN_GPIO2_IN_LBN 10 #define FCN_GPIO2_IN_WIDTH 1 #define FCN_GPIO1_IN_LBN 9 #define FCN_GPIO1_IN_WIDTH 1 #define FCN_GPIO0_IN_LBN 8 #define FCN_GPIO0_IN_WIDTH 1 #define FCN_FLASH_PRESENT_LBN 7 #define FCN_FLASH_PRESENT_WIDTH 1 #define FCN_EEPROM_PRESENT_LBN 6 #define FCN_EEPROM_PRESENT_WIDTH 1 #define FCN_BOOTED_USING_NVDEVICE_LBN 3 #define FCN_BOOTED_USING_NVDEVICE_WIDTH 1 /* Defines for extra non-volatile storage */ #define FCN_NV_MAGIC_NUMBER 0xFA1C /* Global control register */ #define FCN_GLB_CTL_REG_KER 0x0220 #define FCN_EXT_PHY_RST_CTL_LBN 63 #define FCN_EXT_PHY_RST_CTL_WIDTH 1 #define FCN_PCIE_SD_RST_CTL_LBN 61 #define FCN_PCIE_SD_RST_CTL_WIDTH 1 #define FCN_PCIE_STCK_RST_CTL_LBN 59 #define FCN_PCIE_STCK_RST_CTL_WIDTH 1 #define FCN_PCIE_NSTCK_RST_CTL_LBN 58 #define FCN_PCIE_NSTCK_RST_CTL_WIDTH 1 #define FCN_PCIE_CORE_RST_CTL_LBN 57 #define FCN_PCIE_CORE_RST_CTL_WIDTH 1 #define FCN_EE_RST_CTL_LBN 49 #define FCN_EE_RST_CTL_WIDTH 1 #define FCN_RST_EXT_PHY_LBN 31 #define FCN_RST_EXT_PHY_WIDTH 1 #define FCN_EXT_PHY_RST_DUR_LBN 1 #define FCN_EXT_PHY_RST_DUR_WIDTH 3 #define FCN_SWRST_LBN 0 #define FCN_SWRST_WIDTH 1 #define INCLUDE_IN_RESET 0 #define EXCLUDE_FROM_RESET 1 /* FPGA build version */ #define FCN_ALTERA_BUILD_REG_KER 0x0300 #define FCN_VER_MAJOR_LBN 24 #define FCN_VER_MAJOR_WIDTH 8 #define FCN_VER_MINOR_LBN 16 #define FCN_VER_MINOR_WIDTH 8 #define FCN_VER_BUILD_LBN 0 #define FCN_VER_BUILD_WIDTH 16 #define FCN_VER_ALL_LBN 0 #define FCN_VER_ALL_WIDTH 32 /* Spare EEPROM bits register (flash 0x390) */ #define FCN_SPARE_REG_KER 0x310 #define FCN_MEM_PERR_EN_TX_DATA_LBN 72 #define FCN_MEM_PERR_EN_TX_DATA_WIDTH 2 /* Timer table for kernel access */ #define FCN_TIMER_CMD_REG_KER 0x420 #define FCN_TIMER_MODE_LBN 12 #define FCN_TIMER_MODE_WIDTH 2 #define FCN_TIMER_MODE_DIS 0 #define FCN_TIMER_MODE_INT_HLDOFF 1 #define FCN_TIMER_VAL_LBN 0 #define FCN_TIMER_VAL_WIDTH 12 /* Receive configuration register */ #define FCN_RX_CFG_REG_KER 0x800 #define FCN_RX_XOFF_EN_LBN 0 #define FCN_RX_XOFF_EN_WIDTH 1 /* SRAM receive descriptor cache configuration register */ #define FCN_SRM_RX_DC_CFG_REG_KER 0x610 #define FCN_SRM_RX_DC_BASE_ADR_LBN 0 #define FCN_SRM_RX_DC_BASE_ADR_WIDTH 21 /* SRAM transmit descriptor cache configuration register */ #define FCN_SRM_TX_DC_CFG_REG_KER 0x620 #define FCN_SRM_TX_DC_BASE_ADR_LBN 0 #define FCN_SRM_TX_DC_BASE_ADR_WIDTH 21 /* SRAM configuration register */ #define FCN_SRM_CFG_REG_KER 0x630 #define FCN_SRAM_OOB_ADR_INTEN_LBN 5 #define FCN_SRAM_OOB_ADR_INTEN_WIDTH 1 #define FCN_SRAM_OOB_BUF_INTEN_LBN 4 #define FCN_SRAM_OOB_BUF_INTEN_WIDTH 1 #define FCN_SRAM_OOB_BT_INIT_EN_LBN 3 #define FCN_SRAM_OOB_BT_INIT_EN_WIDTH 1 #define FCN_SRM_NUM_BANK_LBN 2 #define FCN_SRM_NUM_BANK_WIDTH 1 #define FCN_SRM_BANK_SIZE_LBN 0 #define FCN_SRM_BANK_SIZE_WIDTH 2 #define FCN_SRM_NUM_BANKS_AND_BANK_SIZE_LBN 0 #define FCN_SRM_NUM_BANKS_AND_BANK_SIZE_WIDTH 3 #define FCN_RX_CFG_REG_KER 0x800 #define FCN_RX_INGR_EN_B0_LBN 47 #define FCN_RX_INGR_EN_B0_WIDTH 1 #define FCN_RX_USR_BUF_SIZE_B0_LBN 19 #define FCN_RX_USR_BUF_SIZE_B0_WIDTH 9 #define FCN_RX_XON_MAC_TH_B0_LBN 10 #define FCN_RX_XON_MAC_TH_B0_WIDTH 9 #define FCN_RX_XOFF_MAC_TH_B0_LBN 1 #define FCN_RX_XOFF_MAC_TH_B0_WIDTH 9 #define FCN_RX_XOFF_MAC_EN_B0_LBN 0 #define FCN_RX_XOFF_MAC_EN_B0_WIDTH 1 #define FCN_RX_USR_BUF_SIZE_A1_LBN 11 #define FCN_RX_USR_BUF_SIZE_A1_WIDTH 9 #define FCN_RX_XON_MAC_TH_A1_LBN 6 #define FCN_RX_XON_MAC_TH_A1_WIDTH 5 #define FCN_RX_XOFF_MAC_TH_A1_LBN 1 #define FCN_RX_XOFF_MAC_TH_A1_WIDTH 5 #define FCN_RX_XOFF_MAC_EN_A1_LBN 0 #define FCN_RX_XOFF_MAC_EN_A1_WIDTH 1 #define FCN_RX_USR_BUF_SIZE_A1_LBN 11 #define FCN_RX_USR_BUF_SIZE_A1_WIDTH 9 #define FCN_RX_XOFF_MAC_EN_A1_LBN 0 #define FCN_RX_XOFF_MAC_EN_A1_WIDTH 1 /* Receive filter control register */ #define FCN_RX_FILTER_CTL_REG_KER 0x810 #define FCN_UDP_FULL_SRCH_LIMIT_LBN 32 #define FCN_UDP_FULL_SRCH_LIMIT_WIDTH 8 #define FCN_NUM_KER_LBN 24 #define FCN_NUM_KER_WIDTH 2 #define FCN_UDP_WILD_SRCH_LIMIT_LBN 16 #define FCN_UDP_WILD_SRCH_LIMIT_WIDTH 8 #define FCN_TCP_WILD_SRCH_LIMIT_LBN 8 #define FCN_TCP_WILD_SRCH_LIMIT_WIDTH 8 #define FCN_TCP_FULL_SRCH_LIMIT_LBN 0 #define FCN_TCP_FULL_SRCH_LIMIT_WIDTH 8 /* RX queue flush register */ #define FCN_RX_FLUSH_DESCQ_REG_KER 0x0820 #define FCN_RX_FLUSH_DESCQ_CMD_LBN 24 #define FCN_RX_FLUSH_DESCQ_CMD_WIDTH 1 #define FCN_RX_FLUSH_DESCQ_LBN 0 #define FCN_RX_FLUSH_DESCQ_WIDTH 12 /* Receive descriptor update register */ #define FCN_RX_DESC_UPD_REG_KER 0x0830 #define FCN_RX_DESC_WPTR_LBN 96 #define FCN_RX_DESC_WPTR_WIDTH 12 #define FCN_RX_DESC_UPD_REG_KER_DWORD ( FCN_RX_DESC_UPD_REG_KER + 12 ) #define FCN_RX_DESC_WPTR_DWORD_LBN 0 #define FCN_RX_DESC_WPTR_DWORD_WIDTH 12 /* Receive descriptor cache configuration register */ #define FCN_RX_DC_CFG_REG_KER 0x840 #define FCN_RX_DC_SIZE_LBN 0 #define FCN_RX_DC_SIZE_WIDTH 2 #define FCN_RX_SELF_RST_REG_KER 0x890 #define FCN_RX_ISCSI_DIS_LBN 17 #define FCN_RX_ISCSI_DIS_WIDTH 1 #define FCN_RX_NODESC_WAIT_DIS_LBN 9 #define FCN_RX_NODESC_WAIT_DIS_WIDTH 1 #define FCN_RX_RECOVERY_EN_LBN 8 #define FCN_RX_RECOVERY_EN_WIDTH 1 /* TX queue flush register */ #define FCN_TX_FLUSH_DESCQ_REG_KER 0x0a00 #define FCN_TX_FLUSH_DESCQ_CMD_LBN 12 #define FCN_TX_FLUSH_DESCQ_CMD_WIDTH 1 #define FCN_TX_FLUSH_DESCQ_LBN 0 #define FCN_TX_FLUSH_DESCQ_WIDTH 12 /* Transmit configuration register 2 */ #define FCN_TX_CFG2_REG_KER 0xa80 #define FCN_TX_DIS_NON_IP_EV_LBN 17 #define FCN_TX_DIS_NON_IP_EV_WIDTH 1 /* Transmit descriptor update register */ #define FCN_TX_DESC_UPD_REG_KER 0x0a10 #define FCN_TX_DESC_WPTR_LBN 96 #define FCN_TX_DESC_WPTR_WIDTH 12 #define FCN_TX_DESC_UPD_REG_KER_DWORD ( FCN_TX_DESC_UPD_REG_KER + 12 ) #define FCN_TX_DESC_WPTR_DWORD_LBN 0 #define FCN_TX_DESC_WPTR_DWORD_WIDTH 12 /* Transmit descriptor cache configuration register */ #define FCN_TX_DC_CFG_REG_KER 0xa20 #define FCN_TX_DC_SIZE_LBN 0 #define FCN_TX_DC_SIZE_WIDTH 2 /* PHY management transmit data register */ #define FCN_MD_TXD_REG_KER 0xc00 #define FCN_MD_TXD_LBN 0 #define FCN_MD_TXD_WIDTH 16 /* PHY management receive data register */ #define FCN_MD_RXD_REG_KER 0xc10 #define FCN_MD_RXD_LBN 0 #define FCN_MD_RXD_WIDTH 16 /* PHY management configuration & status register */ #define FCN_MD_CS_REG_KER 0xc20 #define FCN_MD_GC_LBN 4 #define FCN_MD_GC_WIDTH 1 #define FCN_MD_RIC_LBN 2 #define FCN_MD_RIC_WIDTH 1 #define FCN_MD_RDC_LBN 1 #define FCN_MD_RDC_WIDTH 1 #define FCN_MD_WRC_LBN 0 #define FCN_MD_WRC_WIDTH 1 /* PHY management PHY address register */ #define FCN_MD_PHY_ADR_REG_KER 0xc30 #define FCN_MD_PHY_ADR_LBN 0 #define FCN_MD_PHY_ADR_WIDTH 16 /* PHY management ID register */ #define FCN_MD_ID_REG_KER 0xc40 #define FCN_MD_PRT_ADR_LBN 11 #define FCN_MD_PRT_ADR_WIDTH 5 #define FCN_MD_DEV_ADR_LBN 6 #define FCN_MD_DEV_ADR_WIDTH 5 /* PHY management status & mask register */ #define FCN_MD_STAT_REG_KER 0xc50 #define FCN_MD_PINT_LBN 4 #define FCN_MD_PINT_WIDTH 1 #define FCN_MD_DONE_LBN 3 #define FCN_MD_DONE_WIDTH 1 #define FCN_MD_BSERR_LBN 2 #define FCN_MD_BSERR_WIDTH 1 #define FCN_MD_LNFL_LBN 1 #define FCN_MD_LNFL_WIDTH 1 #define FCN_MD_BSY_LBN 0 #define FCN_MD_BSY_WIDTH 1 /* Port 0 and 1 MAC control registers */ #define FCN_MAC0_CTRL_REG_KER 0xc80 #define FCN_MAC1_CTRL_REG_KER 0xc90 #define FCN_MAC_XOFF_VAL_LBN 16 #define FCN_MAC_XOFF_VAL_WIDTH 16 #define FCN_MAC_BCAD_ACPT_LBN 4 #define FCN_MAC_BCAD_ACPT_WIDTH 1 #define FCN_MAC_UC_PROM_LBN 3 #define FCN_MAC_UC_PROM_WIDTH 1 #define FCN_MAC_LINK_STATUS_LBN 2 #define FCN_MAC_LINK_STATUS_WIDTH 1 #define FCN_MAC_SPEED_LBN 0 #define FCN_MAC_SPEED_WIDTH 2 /* 10Gig Xaui XGXS Default Values */ #define XX_TXDRV_DEQ_DEFAULT 0xe /* deq=.6 */ #define XX_TXDRV_DTX_DEFAULT 0x5 /* 1.25 */ #define XX_SD_CTL_DRV_DEFAULT 0 /* 20mA */ /* GMAC registers */ #define FALCON_GMAC_REGBANK 0xe00 #define FALCON_GMAC_REGBANK_SIZE 0x200 #define FALCON_GMAC_REG_SIZE 0x10 /* XGMAC registers */ #define FALCON_XMAC_REGBANK 0x1200 #define FALCON_XMAC_REGBANK_SIZE 0x200 #define FALCON_XMAC_REG_SIZE 0x10 /* XGMAC address register low */ #define FCN_XM_ADR_LO_REG_MAC 0x00 #define FCN_XM_ADR_3_LBN 24 #define FCN_XM_ADR_3_WIDTH 8 #define FCN_XM_ADR_2_LBN 16 #define FCN_XM_ADR_2_WIDTH 8 #define FCN_XM_ADR_1_LBN 8 #define FCN_XM_ADR_1_WIDTH 8 #define FCN_XM_ADR_0_LBN 0 #define FCN_XM_ADR_0_WIDTH 8 /* XGMAC address register high */ #define FCN_XM_ADR_HI_REG_MAC 0x01 #define FCN_XM_ADR_5_LBN 8 #define FCN_XM_ADR_5_WIDTH 8 #define FCN_XM_ADR_4_LBN 0 #define FCN_XM_ADR_4_WIDTH 8 /* XGMAC global configuration - port 0*/ #define FCN_XM_GLB_CFG_REG_MAC 0x02 #define FCN_XM_RX_STAT_EN_LBN 11 #define FCN_XM_RX_STAT_EN_WIDTH 1 #define FCN_XM_TX_STAT_EN_LBN 10 #define FCN_XM_TX_STAT_EN_WIDTH 1 #define FCN_XM_RX_JUMBO_MODE_LBN 6 #define FCN_XM_RX_JUMBO_MODE_WIDTH 1 #define FCN_XM_CORE_RST_LBN 0 #define FCN_XM_CORE_RST_WIDTH 1 /* XGMAC transmit configuration - port 0 */ #define FCN_XM_TX_CFG_REG_MAC 0x03 #define FCN_XM_IPG_LBN 16 #define FCN_XM_IPG_WIDTH 4 #define FCN_XM_FCNTL_LBN 10 #define FCN_XM_FCNTL_WIDTH 1 #define FCN_XM_TXCRC_LBN 8 #define FCN_XM_TXCRC_WIDTH 1 #define FCN_XM_AUTO_PAD_LBN 5 #define FCN_XM_AUTO_PAD_WIDTH 1 #define FCN_XM_TX_PRMBL_LBN 2 #define FCN_XM_TX_PRMBL_WIDTH 1 #define FCN_XM_TXEN_LBN 1 #define FCN_XM_TXEN_WIDTH 1 /* XGMAC receive configuration - port 0 */ #define FCN_XM_RX_CFG_REG_MAC 0x04 #define FCN_XM_PASS_CRC_ERR_LBN 25 #define FCN_XM_PASS_CRC_ERR_WIDTH 1 #define FCN_XM_AUTO_DEPAD_LBN 8 #define FCN_XM_AUTO_DEPAD_WIDTH 1 #define FCN_XM_RXEN_LBN 1 #define FCN_XM_RXEN_WIDTH 1 /* XGMAC management interrupt mask register */ #define FCN_XM_MGT_INT_MSK_REG_MAC_B0 0x5 #define FCN_XM_MSK_PRMBLE_ERR_LBN 2 #define FCN_XM_MSK_PRMBLE_ERR_WIDTH 1 #define FCN_XM_MSK_RMTFLT_LBN 1 #define FCN_XM_MSK_RMTFLT_WIDTH 1 #define FCN_XM_MSK_LCLFLT_LBN 0 #define FCN_XM_MSK_LCLFLT_WIDTH 1 /* XGMAC flow control register */ #define FCN_XM_FC_REG_MAC 0x7 #define FCN_XM_PAUSE_TIME_LBN 16 #define FCN_XM_PAUSE_TIME_WIDTH 16 #define FCN_XM_DIS_FCNTL_LBN 0 #define FCN_XM_DIS_FCNTL_WIDTH 1 /* XGMAC transmit parameter register */ #define FCN_XM_TX_PARAM_REG_MAC 0x0d #define FCN_XM_TX_JUMBO_MODE_LBN 31 #define FCN_XM_TX_JUMBO_MODE_WIDTH 1 #define FCN_XM_MAX_TX_FRM_SIZE_LBN 16 #define FCN_XM_MAX_TX_FRM_SIZE_WIDTH 14 #define FCN_XM_ACPT_ALL_MCAST_LBN 11 #define FCN_XM_ACPT_ALL_MCAST_WIDTH 1 /* XGMAC receive parameter register */ #define FCN_XM_RX_PARAM_REG_MAC 0x0e #define FCN_XM_MAX_RX_FRM_SIZE_LBN 0 #define FCN_XM_MAX_RX_FRM_SIZE_WIDTH 14 /* XGMAC management interrupt status register */ #define FCN_XM_MGT_INT_REG_MAC_B0 0x0f #define FCN_XM_PRMBLE_ERR 2 #define FCN_XM_PRMBLE_WIDTH 1 #define FCN_XM_RMTFLT_LBN 1 #define FCN_XM_RMTFLT_WIDTH 1 #define FCN_XM_LCLFLT_LBN 0 #define FCN_XM_LCLFLT_WIDTH 1 /* XAUI XGXS core status register */ #define FCN_XX_ALIGN_DONE_LBN 20 #define FCN_XX_ALIGN_DONE_WIDTH 1 #define FCN_XX_CORE_STAT_REG_MAC 0x16 #define FCN_XX_SYNC_STAT_LBN 16 #define FCN_XX_SYNC_STAT_WIDTH 4 #define FCN_XX_SYNC_STAT_DECODE_SYNCED 0xf #define FCN_XX_COMMA_DET_LBN 12 #define FCN_XX_COMMA_DET_WIDTH 4 #define FCN_XX_COMMA_DET_RESET 0xf #define FCN_XX_CHARERR_LBN 4 #define FCN_XX_CHARERR_WIDTH 4 #define FCN_XX_CHARERR_RESET 0xf #define FCN_XX_DISPERR_LBN 0 #define FCN_XX_DISPERR_WIDTH 4 #define FCN_XX_DISPERR_RESET 0xf /* XGXS/XAUI powerdown/reset register */ #define FCN_XX_PWR_RST_REG_MAC 0x10 #define FCN_XX_PWRDND_EN_LBN 15 #define FCN_XX_PWRDND_EN_WIDTH 1 #define FCN_XX_PWRDNC_EN_LBN 14 #define FCN_XX_PWRDNC_EN_WIDTH 1 #define FCN_XX_PWRDNB_EN_LBN 13 #define FCN_XX_PWRDNB_EN_WIDTH 1 #define FCN_XX_PWRDNA_EN_LBN 12 #define FCN_XX_PWRDNA_EN_WIDTH 1 #define FCN_XX_RSTPLLCD_EN_LBN 9 #define FCN_XX_RSTPLLCD_EN_WIDTH 1 #define FCN_XX_RSTPLLAB_EN_LBN 8 #define FCN_XX_RSTPLLAB_EN_WIDTH 1 #define FCN_XX_RESETD_EN_LBN 7 #define FCN_XX_RESETD_EN_WIDTH 1 #define FCN_XX_RESETC_EN_LBN 6 #define FCN_XX_RESETC_EN_WIDTH 1 #define FCN_XX_RESETB_EN_LBN 5 #define FCN_XX_RESETB_EN_WIDTH 1 #define FCN_XX_RESETA_EN_LBN 4 #define FCN_XX_RESETA_EN_WIDTH 1 #define FCN_XX_RSTXGXSRX_EN_LBN 2 #define FCN_XX_RSTXGXSRX_EN_WIDTH 1 #define FCN_XX_RSTXGXSTX_EN_LBN 1 #define FCN_XX_RSTXGXSTX_EN_WIDTH 1 #define FCN_XX_RST_XX_EN_LBN 0 #define FCN_XX_RST_XX_EN_WIDTH 1 /* XGXS/XAUI powerdown/reset control register */ #define FCN_XX_SD_CTL_REG_MAC 0x11 #define FCN_XX_TERMADJ1_LBN 17 #define FCN_XX_TERMADJ1_WIDTH 1 #define FCN_XX_TERMADJ0_LBN 16 #define FCN_XX_TERMADJ0_WIDTH 1 #define FCN_XX_HIDRVD_LBN 15 #define FCN_XX_HIDRVD_WIDTH 1 #define FCN_XX_LODRVD_LBN 14 #define FCN_XX_LODRVD_WIDTH 1 #define FCN_XX_HIDRVC_LBN 13 #define FCN_XX_HIDRVC_WIDTH 1 #define FCN_XX_LODRVC_LBN 12 #define FCN_XX_LODRVC_WIDTH 1 #define FCN_XX_HIDRVB_LBN 11 #define FCN_XX_HIDRVB_WIDTH 1 #define FCN_XX_LODRVB_LBN 10 #define FCN_XX_LODRVB_WIDTH 1 #define FCN_XX_HIDRVA_LBN 9 #define FCN_XX_HIDRVA_WIDTH 1 #define FCN_XX_LODRVA_LBN 8 #define FCN_XX_LODRVA_WIDTH 1 #define FCN_XX_LPBKD_LBN 3 #define FCN_XX_LPBKD_WIDTH 1 #define FCN_XX_LPBKC_LBN 2 #define FCN_XX_LPBKC_WIDTH 1 #define FCN_XX_LPBKB_LBN 1 #define FCN_XX_LPBKB_WIDTH 1 #define FCN_XX_LPBKA_LBN 0 #define FCN_XX_LPBKA_WIDTH 1 #define FCN_XX_TXDRV_CTL_REG_MAC 0x12 #define FCN_XX_DEQD_LBN 28 #define FCN_XX_DEQD_WIDTH 4 #define FCN_XX_DEQC_LBN 24 #define FCN_XX_DEQC_WIDTH 4 #define FCN_XX_DEQB_LBN 20 #define FCN_XX_DEQB_WIDTH 4 #define FCN_XX_DEQA_LBN 16 #define FCN_XX_DEQA_WIDTH 4 #define FCN_XX_DTXD_LBN 12 #define FCN_XX_DTXD_WIDTH 4 #define FCN_XX_DTXC_LBN 8 #define FCN_XX_DTXC_WIDTH 4 #define FCN_XX_DTXB_LBN 4 #define FCN_XX_DTXB_WIDTH 4 #define FCN_XX_DTXA_LBN 0 #define FCN_XX_DTXA_WIDTH 4 /* Receive filter table */ #define FCN_RX_FILTER_TBL0 0xF00000 /* Receive descriptor pointer table */ #define FCN_RX_DESC_PTR_TBL_KER_A1 0x11800 #define FCN_RX_DESC_PTR_TBL_KER_B0 0xF40000 #define FCN_RX_ISCSI_DDIG_EN_LBN 88 #define FCN_RX_ISCSI_DDIG_EN_WIDTH 1 #define FCN_RX_ISCSI_HDIG_EN_LBN 87 #define FCN_RX_ISCSI_HDIG_EN_WIDTH 1 #define FCN_RX_DESCQ_BUF_BASE_ID_LBN 36 #define FCN_RX_DESCQ_BUF_BASE_ID_WIDTH 20 #define FCN_RX_DESCQ_EVQ_ID_LBN 24 #define FCN_RX_DESCQ_EVQ_ID_WIDTH 12 #define FCN_RX_DESCQ_OWNER_ID_LBN 10 #define FCN_RX_DESCQ_OWNER_ID_WIDTH 14 #define FCN_RX_DESCQ_SIZE_LBN 3 #define FCN_RX_DESCQ_SIZE_WIDTH 2 #define FCN_RX_DESCQ_SIZE_4K 3 #define FCN_RX_DESCQ_SIZE_2K 2 #define FCN_RX_DESCQ_SIZE_1K 1 #define FCN_RX_DESCQ_SIZE_512 0 #define FCN_RX_DESCQ_TYPE_LBN 2 #define FCN_RX_DESCQ_TYPE_WIDTH 1 #define FCN_RX_DESCQ_JUMBO_LBN 1 #define FCN_RX_DESCQ_JUMBO_WIDTH 1 #define FCN_RX_DESCQ_EN_LBN 0 #define FCN_RX_DESCQ_EN_WIDTH 1 /* Transmit descriptor pointer table */ #define FCN_TX_DESC_PTR_TBL_KER_A1 0x11900 #define FCN_TX_DESC_PTR_TBL_KER_B0 0xF50000 #define FCN_TX_NON_IP_DROP_DIS_B0_LBN 91 #define FCN_TX_NON_IP_DROP_DIS_B0_WIDTH 1 #define FCN_TX_DESCQ_EN_LBN 88 #define FCN_TX_DESCQ_EN_WIDTH 1 #define FCN_TX_ISCSI_DDIG_EN_LBN 87 #define FCN_TX_ISCSI_DDIG_EN_WIDTH 1 #define FCN_TX_ISCSI_HDIG_EN_LBN 86 #define FCN_TX_ISCSI_HDIG_EN_WIDTH 1 #define FCN_TX_DESCQ_BUF_BASE_ID_LBN 36 #define FCN_TX_DESCQ_BUF_BASE_ID_WIDTH 20 #define FCN_TX_DESCQ_EVQ_ID_LBN 24 #define FCN_TX_DESCQ_EVQ_ID_WIDTH 12 #define FCN_TX_DESCQ_OWNER_ID_LBN 10 #define FCN_TX_DESCQ_OWNER_ID_WIDTH 14 #define FCN_TX_DESCQ_SIZE_LBN 3 #define FCN_TX_DESCQ_SIZE_WIDTH 2 #define FCN_TX_DESCQ_SIZE_4K 3 #define FCN_TX_DESCQ_SIZE_2K 2 #define FCN_TX_DESCQ_SIZE_1K 1 #define FCN_TX_DESCQ_SIZE_512 0 #define FCN_TX_DESCQ_TYPE_LBN 1 #define FCN_TX_DESCQ_TYPE_WIDTH 2 #define FCN_TX_DESCQ_FLUSH_LBN 0 #define FCN_TX_DESCQ_FLUSH_WIDTH 1 /* Event queue pointer */ #define FCN_EVQ_PTR_TBL_KER_A1 0x11a00 #define FCN_EVQ_PTR_TBL_KER_B0 0xf60000 #define FCN_EVQ_EN_LBN 23 #define FCN_EVQ_EN_WIDTH 1 #define FCN_EVQ_SIZE_LBN 20 #define FCN_EVQ_SIZE_WIDTH 3 #define FCN_EVQ_SIZE_32K 6 #define FCN_EVQ_SIZE_16K 5 #define FCN_EVQ_SIZE_8K 4 #define FCN_EVQ_SIZE_4K 3 #define FCN_EVQ_SIZE_2K 2 #define FCN_EVQ_SIZE_1K 1 #define FCN_EVQ_SIZE_512 0 #define FCN_EVQ_BUF_BASE_ID_LBN 0 #define FCN_EVQ_BUF_BASE_ID_WIDTH 20 /* RSS indirection table */ #define FCN_RX_RSS_INDIR_TBL_B0 0xFB0000 /* Event queue read pointer */ #define FCN_EVQ_RPTR_REG_KER_A1 0x11b00 #define FCN_EVQ_RPTR_REG_KER_B0 0xfa0000 #define FCN_EVQ_RPTR_LBN 0 #define FCN_EVQ_RPTR_WIDTH 14 #define FCN_EVQ_RPTR_REG_KER_DWORD_A1 ( FCN_EVQ_RPTR_REG_KER_A1 + 0 ) #define FCN_EVQ_RPTR_REG_KER_DWORD_B0 ( FCN_EVQ_RPTR_REG_KER_B0 + 0 ) #define FCN_EVQ_RPTR_DWORD_LBN 0 #define FCN_EVQ_RPTR_DWORD_WIDTH 14 /* Special buffer descriptors */ #define FCN_BUF_FULL_TBL_KER_A1 0x18000 #define FCN_BUF_FULL_TBL_KER_B0 0x800000 #define FCN_IP_DAT_BUF_SIZE_LBN 50 #define FCN_IP_DAT_BUF_SIZE_WIDTH 1 #define FCN_IP_DAT_BUF_SIZE_8K 1 #define FCN_IP_DAT_BUF_SIZE_4K 0 #define FCN_BUF_ADR_FBUF_LBN 14 #define FCN_BUF_ADR_FBUF_WIDTH 34 #define FCN_BUF_OWNER_ID_FBUF_LBN 0 #define FCN_BUF_OWNER_ID_FBUF_WIDTH 14 /** Offset of a GMAC register within Falcon */ #define FALCON_GMAC_REG( efab, mac_reg ) \ ( FALCON_GMAC_REGBANK + \ ( (mac_reg) * FALCON_GMAC_REG_SIZE ) ) /** Offset of an XMAC register within Falcon */ #define FALCON_XMAC_REG( efab_port, mac_reg ) \ ( FALCON_XMAC_REGBANK + \ ( (mac_reg) * FALCON_XMAC_REG_SIZE ) ) #define FCN_MAC_DATA_LBN 0 #define FCN_MAC_DATA_WIDTH 32 /* Transmit descriptor */ #define FCN_TX_KER_PORT_LBN 63 #define FCN_TX_KER_PORT_WIDTH 1 #define FCN_TX_KER_BYTE_CNT_LBN 48 #define FCN_TX_KER_BYTE_CNT_WIDTH 14 #define FCN_TX_KER_BUF_ADR_LBN 0 #define FCN_TX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 ) /* Receive descriptor */ #define FCN_RX_KER_BUF_SIZE_LBN 48 #define FCN_RX_KER_BUF_SIZE_WIDTH 14 #define FCN_RX_KER_BUF_ADR_LBN 0 #define FCN_RX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 ) /* Event queue entries */ #define FCN_EV_CODE_LBN 60 #define FCN_EV_CODE_WIDTH 4 #define FCN_RX_IP_EV_DECODE 0 #define FCN_TX_IP_EV_DECODE 2 #define FCN_DRIVER_EV_DECODE 5 /* Receive events */ #define FCN_RX_EV_PKT_OK_LBN 56 #define FCN_RX_EV_PKT_OK_WIDTH 1 #define FCN_RX_PORT_LBN 30 #define FCN_RX_PORT_WIDTH 1 #define FCN_RX_EV_BYTE_CNT_LBN 16 #define FCN_RX_EV_BYTE_CNT_WIDTH 14 #define FCN_RX_EV_DESC_PTR_LBN 0 #define FCN_RX_EV_DESC_PTR_WIDTH 12 /* Transmit events */ #define FCN_TX_EV_DESC_PTR_LBN 0 #define FCN_TX_EV_DESC_PTR_WIDTH 12 /******************************************************************************* * * * Low-level hardware access * * *******************************************************************************/ #define FCN_REVISION_REG(efab, reg) \ ( ( efab->pci_revision == FALCON_REV_B0 ) ? reg ## _B0 : reg ## _A1 ) #define EFAB_SET_OWORD_FIELD_VER(efab, reg, field, val) \ if ( efab->pci_revision == FALCON_REV_B0 ) \ EFAB_SET_OWORD_FIELD ( reg, field ## _B0, val ); \ else \ EFAB_SET_OWORD_FIELD ( reg, field ## _A1, val ); #if FALCON_USE_IO_BAR /* Write dword via the I/O BAR */ static inline void _falcon_writel ( struct efab_nic *efab, uint32_t value, unsigned int reg ) { outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG ); outl ( value, efab->iobase + FCN_IOM_IND_DAT_REG ); } /* Read dword via the I/O BAR */ static inline uint32_t _falcon_readl ( struct efab_nic *efab, unsigned int reg ) { outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG ); return inl ( efab->iobase + FCN_IOM_IND_DAT_REG ); } #else /* FALCON_USE_IO_BAR */ #define _falcon_writel( efab, value, reg ) \ writel ( (value), (efab)->membase + (reg) ) #define _falcon_readl( efab, reg ) readl ( (efab)->membase + (reg) ) #endif /* FALCON_USE_IO_BAR */ /** * Write to a Falcon register * */ static inline void falcon_write ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg ) { EFAB_REGDUMP ( "Writing register %x with " EFAB_OWORD_FMT "\n", reg, EFAB_OWORD_VAL ( *value ) ); _falcon_writel ( efab, value->u32[0], reg + 0 ); _falcon_writel ( efab, value->u32[1], reg + 4 ); _falcon_writel ( efab, value->u32[2], reg + 8 ); wmb(); _falcon_writel ( efab, value->u32[3], reg + 12 ); wmb(); } /** * Write to Falcon SRAM * */ static inline void falcon_write_sram ( struct efab_nic *efab, efab_qword_t *value, unsigned int index ) { unsigned int reg = ( FCN_REVISION_REG ( efab, FCN_BUF_FULL_TBL_KER ) + ( index * sizeof ( *value ) ) ); EFAB_REGDUMP ( "Writing SRAM register %x with " EFAB_QWORD_FMT "\n", reg, EFAB_QWORD_VAL ( *value ) ); _falcon_writel ( efab, value->u32[0], reg + 0 ); _falcon_writel ( efab, value->u32[1], reg + 4 ); wmb(); } /** * Write dword to Falcon register that allows partial writes * */ static inline void falcon_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg ) { EFAB_REGDUMP ( "Writing partial register %x with " EFAB_DWORD_FMT "\n", reg, EFAB_DWORD_VAL ( *value ) ); _falcon_writel ( efab, value->u32[0], reg ); } /** * Read from a Falcon register * */ static inline void falcon_read ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg ) { value->u32[0] = _falcon_readl ( efab, reg + 0 ); wmb(); value->u32[1] = _falcon_readl ( efab, reg + 4 ); value->u32[2] = _falcon_readl ( efab, reg + 8 ); value->u32[3] = _falcon_readl ( efab, reg + 12 ); EFAB_REGDUMP ( "Read from register %x, got " EFAB_OWORD_FMT "\n", reg, EFAB_OWORD_VAL ( *value ) ); } /** * Read from Falcon SRAM * */ static inline void falcon_read_sram ( struct efab_nic *efab, efab_qword_t *value, unsigned int index ) { unsigned int reg = ( FCN_REVISION_REG ( efab, FCN_BUF_FULL_TBL_KER ) + ( index * sizeof ( *value ) ) ); value->u32[0] = _falcon_readl ( efab, reg + 0 ); value->u32[1] = _falcon_readl ( efab, reg + 4 ); EFAB_REGDUMP ( "Read from SRAM register %x, got " EFAB_QWORD_FMT "\n", reg, EFAB_QWORD_VAL ( *value ) ); } /** * Read dword from a portion of a Falcon register * */ static inline void falcon_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg ) { value->u32[0] = _falcon_readl ( efab, reg ); EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n", reg, EFAB_DWORD_VAL ( *value ) ); } #define FCN_DUMP_REG( efab, _reg ) do { \ efab_oword_t reg; \ falcon_read ( efab, ®, _reg ); \ EFAB_LOG ( #_reg " = " EFAB_OWORD_FMT "\n", \ EFAB_OWORD_VAL ( reg ) ); \ } while ( 0 ); #define FCN_DUMP_MAC_REG( efab, _mac_reg ) do { \ efab_dword_t reg; \ efab->mac_op->mac_readl ( efab, ®, _mac_reg ); \ EFAB_LOG ( #_mac_reg " = " EFAB_DWORD_FMT "\n", \ EFAB_DWORD_VAL ( reg ) ); \ } while ( 0 ); /** * See if an event is present * * @v event Falcon event structure * @ret True An event is pending * @ret False No event is pending * * We check both the high and low dword of the event for all ones. We * wrote all ones when we cleared the event, and no valid event can * have all ones in either its high or low dwords. This approach is * robust against reordering. * * Note that using a single 64-bit comparison is incorrect; even * though the CPU read will be atomic, the DMA write may not be. */ static inline int falcon_event_present ( falcon_event_t* event ) { return ( ! ( EFAB_DWORD_IS_ALL_ONES ( event->dword[0] ) | EFAB_DWORD_IS_ALL_ONES ( event->dword[1] ) ) ); } static void falcon_eventq_read_ack ( struct efab_nic *efab, struct efab_ev_queue *ev_queue ) { efab_dword_t reg; EFAB_POPULATE_DWORD_1 ( reg, FCN_EVQ_RPTR_DWORD, ev_queue->read_ptr ); falcon_writel ( efab, ®, FCN_REVISION_REG ( efab, FCN_EVQ_RPTR_REG_KER_DWORD ) ); } #if 0 /** * Dump register contents (for debugging) * * Marked as static inline so that it will not be compiled in if not * used. */ static inline void falcon_dump_regs ( struct efab_nic *efab ) { FCN_DUMP_REG ( efab, FCN_INT_EN_REG_KER ); FCN_DUMP_REG ( efab, FCN_INT_ADR_REG_KER ); FCN_DUMP_REG ( efab, FCN_GLB_CTL_REG_KER ); FCN_DUMP_REG ( efab, FCN_TIMER_CMD_REG_KER ); FCN_DUMP_REG ( efab, FCN_SRM_RX_DC_CFG_REG_KER ); FCN_DUMP_REG ( efab, FCN_SRM_TX_DC_CFG_REG_KER ); FCN_DUMP_REG ( efab, FCN_RX_FILTER_CTL_REG_KER ); FCN_DUMP_REG ( efab, FCN_RX_DC_CFG_REG_KER ); FCN_DUMP_REG ( efab, FCN_TX_DC_CFG_REG_KER ); FCN_DUMP_REG ( efab, FCN_MAC0_CTRL_REG_KER ); FCN_DUMP_REG ( efab, FCN_MAC1_CTRL_REG_KER ); FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) ); FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) ); FCN_DUMP_REG ( efab, FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) ); FCN_DUMP_MAC_REG ( efab, GM_CFG1_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_CFG2_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_MAX_FLEN_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_MII_MGMT_CFG_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_ADR1_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_ADR2_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG0_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG1_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG2_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG3_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG4_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG5_REG_MAC ); } #endif static void falcon_interrupts ( struct efab_nic *efab, int enabled, int force ) { efab_oword_t int_en_reg_ker; EFAB_POPULATE_OWORD_2 ( int_en_reg_ker, FCN_KER_INT_KER, force, FCN_DRV_INT_EN_KER, enabled ); falcon_write ( efab, &int_en_reg_ker, FCN_INT_EN_REG_KER ); } /******************************************************************************* * * * SPI access * * *******************************************************************************/ /** Maximum length for a single SPI transaction */ #define FALCON_SPI_MAX_LEN 16 static int falcon_spi_wait ( struct efab_nic *efab ) { efab_oword_t reg; int count; count = 0; do { udelay ( 100 ); falcon_read ( efab, ®, FCN_EE_SPI_HCMD_REG ); if ( EFAB_OWORD_FIELD ( reg, FCN_EE_SPI_HCMD_CMD_EN ) == 0 ) return 0; } while ( ++count < 1000 ); EFAB_ERR ( "Timed out waiting for SPI\n" ); return -ETIMEDOUT; } static int falcon_spi_rw ( struct spi_bus* bus, struct spi_device *device, unsigned int command, int address, const void* data_out, void *data_in, size_t len ) { struct efab_nic *efab = container_of ( bus, struct efab_nic, spi_bus ); int address_len, rc, device_id, read_cmd; efab_oword_t reg; /* falcon_init_spi_device() should have reduced the block size * down so this constraint holds */ assert ( len <= FALCON_SPI_MAX_LEN ); /* Is this the FLASH or EEPROM device? */ if ( device == &efab->spi_flash ) device_id = FCN_EE_SPI_FLASH; else if ( device == &efab->spi_eeprom ) device_id = FCN_EE_SPI_EEPROM; else { EFAB_ERR ( "Unknown device %p\n", device ); return -EINVAL; } EFAB_TRACE ( "Executing spi command %d on device %d at %d for %zd bytes\n", command, device_id, address, len ); /* The bus must be idle */ rc = falcon_spi_wait ( efab ); if ( rc ) goto fail1; /* Copy data out */ if ( data_out ) { memcpy ( ®, data_out, len ); falcon_write ( efab, ®, FCN_EE_SPI_HDATA_REG ); } /* Program address register */ if ( address >= 0 ) { EFAB_POPULATE_OWORD_1 ( reg, FCN_EE_SPI_HADR_ADR, address ); falcon_write ( efab, ®, FCN_EE_SPI_HADR_REG ); } /* Issue command */ address_len = ( address >= 0 ) ? device->address_len / 8 : 0; read_cmd = ( data_in ? FCN_EE_SPI_READ : FCN_EE_SPI_WRITE ); EFAB_POPULATE_OWORD_7 ( reg, FCN_EE_SPI_HCMD_CMD_EN, 1, FCN_EE_SPI_HCMD_SF_SEL, device_id, FCN_EE_SPI_HCMD_DABCNT, len, FCN_EE_SPI_HCMD_READ, read_cmd, FCN_EE_SPI_HCMD_DUBCNT, 0, FCN_EE_SPI_HCMD_ADBCNT, address_len, FCN_EE_SPI_HCMD_ENC, command ); falcon_write ( efab, ®, FCN_EE_SPI_HCMD_REG ); /* Wait for the command to complete */ rc = falcon_spi_wait ( efab ); if ( rc ) goto fail2; /* Copy data in */ if ( data_in ) { falcon_read ( efab, ®, FCN_EE_SPI_HDATA_REG ); memcpy ( data_in, ®, len ); } return 0; fail2: fail1: EFAB_ERR ( "Failed SPI command %d to device %d address 0x%x len 0x%zx\n", command, device_id, address, len ); return rc; } /******************************************************************************* * * * Falcon bit-bashed I2C interface * * *******************************************************************************/ static void falcon_i2c_bit_write ( struct bit_basher *basher, unsigned int bit_id, unsigned long data ) { struct efab_nic *efab = container_of ( basher, struct efab_nic, i2c_bb.basher ); efab_oword_t reg; falcon_read ( efab, ®, FCN_GPIO_CTL_REG_KER ); switch ( bit_id ) { case I2C_BIT_SCL: EFAB_SET_OWORD_FIELD ( reg, FCN_GPIO0_OEN, ( data ? 0 : 1 ) ); break; case I2C_BIT_SDA: EFAB_SET_OWORD_FIELD ( reg, FCN_GPIO3_OEN, ( data ? 0 : 1 ) ); break; default: EFAB_ERR ( "%s bit=%d\n", __func__, bit_id ); break; } falcon_write ( efab, ®, FCN_GPIO_CTL_REG_KER ); } static int falcon_i2c_bit_read ( struct bit_basher *basher, unsigned int bit_id ) { struct efab_nic *efab = container_of ( basher, struct efab_nic, i2c_bb.basher ); efab_oword_t reg; falcon_read ( efab, ®, FCN_GPIO_CTL_REG_KER ); switch ( bit_id ) { case I2C_BIT_SCL: return EFAB_OWORD_FIELD ( reg, FCN_GPIO0_IN ); break; case I2C_BIT_SDA: return EFAB_OWORD_FIELD ( reg, FCN_GPIO3_IN ); break; default: EFAB_ERR ( "%s bit=%d\n", __func__, bit_id ); break; } return -1; } static struct bit_basher_operations falcon_i2c_bit_ops = { .read = falcon_i2c_bit_read, .write = falcon_i2c_bit_write, }; /******************************************************************************* * * * MDIO access * * *******************************************************************************/ static int falcon_gmii_wait ( struct efab_nic *efab ) { efab_dword_t md_stat; int count; /* wait up to 10ms */ for (count = 0; count < 1000; count++) { falcon_readl ( efab, &md_stat, FCN_MD_STAT_REG_KER ); if ( EFAB_DWORD_FIELD ( md_stat, FCN_MD_BSY ) == 0 ) { if ( EFAB_DWORD_FIELD ( md_stat, FCN_MD_LNFL ) != 0 || EFAB_DWORD_FIELD ( md_stat, FCN_MD_BSERR ) != 0 ) { EFAB_ERR ( "Error from GMII access " EFAB_DWORD_FMT"\n", EFAB_DWORD_VAL ( md_stat )); return -EIO; } return 0; } udelay(10); } EFAB_ERR ( "Timed out waiting for GMII\n" ); return -ETIMEDOUT; } static void falcon_mdio_write ( struct efab_nic *efab, int device, int location, int value ) { efab_oword_t reg; EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n", device, location, value ); /* Check MII not currently being accessed */ if ( falcon_gmii_wait ( efab ) ) return; /* Write the address/ID register */ EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, location ); falcon_write ( efab, ®, FCN_MD_PHY_ADR_REG_KER ); if ( efab->phy_10g ) { /* clause45 */ EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_PRT_ADR, efab->phy_addr, FCN_MD_DEV_ADR, device ); } else { /* clause22 */ assert ( device == 0 ); EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_PRT_ADR, efab->phy_addr, FCN_MD_DEV_ADR, location ); } falcon_write ( efab, ®, FCN_MD_ID_REG_KER ); /* Write data */ EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_TXD, value ); falcon_write ( efab, ®, FCN_MD_TXD_REG_KER ); EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_WRC, 1, FCN_MD_GC, ( efab->phy_10g ? 0 : 1 ) ); falcon_write ( efab, ®, FCN_MD_CS_REG_KER ); /* Wait for data to be written */ if ( falcon_gmii_wait ( efab ) ) { /* Abort the write operation */ EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_WRC, 0, FCN_MD_GC, 1); falcon_write ( efab, ®, FCN_MD_CS_REG_KER ); udelay(10); } } static int falcon_mdio_read ( struct efab_nic *efab, int device, int location ) { efab_oword_t reg; int value; /* Check MII not currently being accessed */ if ( falcon_gmii_wait ( efab ) ) return -1; if ( efab->phy_10g ) { /* clause45 */ EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, location ); falcon_write ( efab, ®, FCN_MD_PHY_ADR_REG_KER ); EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_PRT_ADR, efab->phy_addr, FCN_MD_DEV_ADR, device ); falcon_write ( efab, ®, FCN_MD_ID_REG_KER); /* request data to be read */ EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_RDC, 1, FCN_MD_GC, 0 ); } else { /* clause22 */ assert ( device == 0 ); EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_PRT_ADR, efab->phy_addr, FCN_MD_DEV_ADR, location ); falcon_write ( efab, ®, FCN_MD_ID_REG_KER ); /* Request data to be read */ EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_RIC, 1, FCN_MD_GC, 1 ); } falcon_write ( efab, ®, FCN_MD_CS_REG_KER ); /* Wait for data to become available */ if ( falcon_gmii_wait ( efab ) ) { /* Abort the read operation */ EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_RIC, 0, FCN_MD_GC, 1 ); falcon_write ( efab, ®, FCN_MD_CS_REG_KER ); udelay ( 10 ); value = -1; } else { /* Read the data */ falcon_read ( efab, ®, FCN_MD_RXD_REG_KER ); value = EFAB_OWORD_FIELD ( reg, FCN_MD_RXD ); } EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n", device, location, value ); return value; } /******************************************************************************* * * * MAC wrapper * * *******************************************************************************/ static void falcon_reconfigure_mac_wrapper ( struct efab_nic *efab ) { efab_oword_t reg; int link_speed; if ( efab->link_options & LPA_EF_10000 ) { link_speed = 0x3; } else if ( efab->link_options & LPA_EF_1000 ) { link_speed = 0x2; } else if ( efab->link_options & LPA_100 ) { link_speed = 0x1; } else { link_speed = 0x0; } EFAB_POPULATE_OWORD_5 ( reg, FCN_MAC_XOFF_VAL, 0xffff /* datasheet */, FCN_MAC_BCAD_ACPT, 1, FCN_MAC_UC_PROM, 0, FCN_MAC_LINK_STATUS, 1, FCN_MAC_SPEED, link_speed ); falcon_write ( efab, ®, FCN_MAC0_CTRL_REG_KER ); } /******************************************************************************* * * * GMAC handling * * *******************************************************************************/ /* GMAC configuration register 1 */ #define GM_CFG1_REG_MAC 0x00 #define GM_SW_RST_LBN 31 #define GM_SW_RST_WIDTH 1 #define GM_RX_FC_EN_LBN 5 #define GM_RX_FC_EN_WIDTH 1 #define GM_TX_FC_EN_LBN 4 #define GM_TX_FC_EN_WIDTH 1 #define GM_RX_EN_LBN 2 #define GM_RX_EN_WIDTH 1 #define GM_TX_EN_LBN 0 #define GM_TX_EN_WIDTH 1 /* GMAC configuration register 2 */ #define GM_CFG2_REG_MAC 0x01 #define GM_PAMBL_LEN_LBN 12 #define GM_PAMBL_LEN_WIDTH 4 #define GM_IF_MODE_LBN 8 #define GM_IF_MODE_WIDTH 2 #define GM_PAD_CRC_EN_LBN 2 #define GM_PAD_CRC_EN_WIDTH 1 #define GM_FD_LBN 0 #define GM_FD_WIDTH 1 /* GMAC maximum frame length register */ #define GM_MAX_FLEN_REG_MAC 0x04 #define GM_MAX_FLEN_LBN 0 #define GM_MAX_FLEN_WIDTH 16 /* GMAC MII management configuration register */ #define GM_MII_MGMT_CFG_REG_MAC 0x08 #define GM_MGMT_CLK_SEL_LBN 0 #define GM_MGMT_CLK_SEL_WIDTH 3 /* GMAC MII management command register */ #define GM_MII_MGMT_CMD_REG_MAC 0x09 #define GM_MGMT_SCAN_CYC_LBN 1 #define GM_MGMT_SCAN_CYC_WIDTH 1 #define GM_MGMT_RD_CYC_LBN 0 #define GM_MGMT_RD_CYC_WIDTH 1 /* GMAC MII management address register */ #define GM_MII_MGMT_ADR_REG_MAC 0x0a #define GM_MGMT_PHY_ADDR_LBN 8 #define GM_MGMT_PHY_ADDR_WIDTH 5 #define GM_MGMT_REG_ADDR_LBN 0 #define GM_MGMT_REG_ADDR_WIDTH 5 /* GMAC MII management control register */ #define GM_MII_MGMT_CTL_REG_MAC 0x0b #define GM_MGMT_CTL_LBN 0 #define GM_MGMT_CTL_WIDTH 16 /* GMAC MII management status register */ #define GM_MII_MGMT_STAT_REG_MAC 0x0c #define GM_MGMT_STAT_LBN 0 #define GM_MGMT_STAT_WIDTH 16 /* GMAC MII management indicators register */ #define GM_MII_MGMT_IND_REG_MAC 0x0d #define GM_MGMT_BUSY_LBN 0 #define GM_MGMT_BUSY_WIDTH 1 /* GMAC station address register 1 */ #define GM_ADR1_REG_MAC 0x10 #define GM_HWADDR_5_LBN 24 #define GM_HWADDR_5_WIDTH 8 #define GM_HWADDR_4_LBN 16 #define GM_HWADDR_4_WIDTH 8 #define GM_HWADDR_3_LBN 8 #define GM_HWADDR_3_WIDTH 8 #define GM_HWADDR_2_LBN 0 #define GM_HWADDR_2_WIDTH 8 /* GMAC station address register 2 */ #define GM_ADR2_REG_MAC 0x11 #define GM_HWADDR_1_LBN 24 #define GM_HWADDR_1_WIDTH 8 #define GM_HWADDR_0_LBN 16 #define GM_HWADDR_0_WIDTH 8 /* GMAC FIFO configuration register 0 */ #define GMF_CFG0_REG_MAC 0x12 #define GMF_FTFENREQ_LBN 12 #define GMF_FTFENREQ_WIDTH 1 #define GMF_STFENREQ_LBN 11 #define GMF_STFENREQ_WIDTH 1 #define GMF_FRFENREQ_LBN 10 #define GMF_FRFENREQ_WIDTH 1 #define GMF_SRFENREQ_LBN 9 #define GMF_SRFENREQ_WIDTH 1 #define GMF_WTMENREQ_LBN 8 #define GMF_WTMENREQ_WIDTH 1 /* GMAC FIFO configuration register 1 */ #define GMF_CFG1_REG_MAC 0x13 #define GMF_CFGFRTH_LBN 16 #define GMF_CFGFRTH_WIDTH 5 #define GMF_CFGXOFFRTX_LBN 0 #define GMF_CFGXOFFRTX_WIDTH 16 /* GMAC FIFO configuration register 2 */ #define GMF_CFG2_REG_MAC 0x14 #define GMF_CFGHWM_LBN 16 #define GMF_CFGHWM_WIDTH 6 #define GMF_CFGLWM_LBN 0 #define GMF_CFGLWM_WIDTH 6 /* GMAC FIFO configuration register 3 */ #define GMF_CFG3_REG_MAC 0x15 #define GMF_CFGHWMFT_LBN 16 #define GMF_CFGHWMFT_WIDTH 6 #define GMF_CFGFTTH_LBN 0 #define GMF_CFGFTTH_WIDTH 6 /* GMAC FIFO configuration register 4 */ #define GMF_CFG4_REG_MAC 0x16 #define GMF_HSTFLTRFRM_PAUSE_LBN 12 #define GMF_HSTFLTRFRM_PAUSE_WIDTH 12 /* GMAC FIFO configuration register 5 */ #define GMF_CFG5_REG_MAC 0x17 #define GMF_CFGHDPLX_LBN 22 #define GMF_CFGHDPLX_WIDTH 1 #define GMF_CFGBYTMODE_LBN 19 #define GMF_CFGBYTMODE_WIDTH 1 #define GMF_HSTDRPLT64_LBN 18 #define GMF_HSTDRPLT64_WIDTH 1 #define GMF_HSTFLTRFRMDC_PAUSE_LBN 12 #define GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1 static void falcon_gmac_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ) { efab_oword_t temp; EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA, EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) ); falcon_write ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) ); } static void falcon_gmac_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ) { efab_oword_t temp; falcon_read ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) ); EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA, EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) ); } static void mentormac_reset ( struct efab_nic *efab ) { efab_dword_t reg; /* Take into reset */ EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 1 ); falcon_gmac_writel ( efab, ®, GM_CFG1_REG_MAC ); udelay ( 1000 ); /* Take out of reset */ EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 0 ); falcon_gmac_writel ( efab, ®, GM_CFG1_REG_MAC ); udelay ( 1000 ); /* Configure GMII interface so PHY is accessible. Note that * GMII interface is connected only to port 0, and that on * Falcon this is a no-op. */ EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CLK_SEL, 0x4 ); falcon_gmac_writel ( efab, ®, GM_MII_MGMT_CFG_REG_MAC ); udelay ( 10 ); } static void mentormac_init ( struct efab_nic *efab ) { int pause, if_mode, full_duplex, bytemode, half_duplex; efab_dword_t reg; /* Configuration register 1 */ pause = ( efab->link_options & LPA_PAUSE_CAP ) ? 1 : 0; if ( ! ( efab->link_options & LPA_EF_DUPLEX ) ) { /* Half-duplex operation requires TX flow control */ pause = 1; } EFAB_POPULATE_DWORD_4 ( reg, GM_TX_EN, 1, GM_TX_FC_EN, pause, GM_RX_EN, 1, GM_RX_FC_EN, 1 ); falcon_gmac_writel ( efab, ®, GM_CFG1_REG_MAC ); udelay ( 10 ); /* Configuration register 2 */ if_mode = ( efab->link_options & LPA_EF_1000 ) ? 2 : 1; full_duplex = ( efab->link_options & LPA_EF_DUPLEX ) ? 1 : 0; EFAB_POPULATE_DWORD_4 ( reg, GM_IF_MODE, if_mode, GM_PAD_CRC_EN, 1, GM_FD, full_duplex, GM_PAMBL_LEN, 0x7 /* ? */ ); falcon_gmac_writel ( efab, ®, GM_CFG2_REG_MAC ); udelay ( 10 ); /* Max frame len register */ EFAB_POPULATE_DWORD_1 ( reg, GM_MAX_FLEN, EFAB_MAX_FRAME_LEN ( ETH_FRAME_LEN ) ); falcon_gmac_writel ( efab, ®, GM_MAX_FLEN_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 0 */ EFAB_POPULATE_DWORD_5 ( reg, GMF_FTFENREQ, 1, GMF_STFENREQ, 1, GMF_FRFENREQ, 1, GMF_SRFENREQ, 1, GMF_WTMENREQ, 1 ); falcon_gmac_writel ( efab, ®, GMF_CFG0_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 1 */ EFAB_POPULATE_DWORD_2 ( reg, GMF_CFGFRTH, 0x12, GMF_CFGXOFFRTX, 0xffff ); falcon_gmac_writel ( efab, ®, GMF_CFG1_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 2 */ EFAB_POPULATE_DWORD_2 ( reg, GMF_CFGHWM, 0x3f, GMF_CFGLWM, 0xa ); falcon_gmac_writel ( efab, ®, GMF_CFG2_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 3 */ EFAB_POPULATE_DWORD_2 ( reg, GMF_CFGHWMFT, 0x1c, GMF_CFGFTTH, 0x08 ); falcon_gmac_writel ( efab, ®, GMF_CFG3_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 4 */ EFAB_POPULATE_DWORD_1 ( reg, GMF_HSTFLTRFRM_PAUSE, 1 ); falcon_gmac_writel ( efab, ®, GMF_CFG4_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 5 */ bytemode = ( efab->link_options & LPA_EF_1000 ) ? 1 : 0; half_duplex = ( efab->link_options & LPA_EF_DUPLEX ) ? 0 : 1; falcon_gmac_readl ( efab, ®, GMF_CFG5_REG_MAC ); EFAB_SET_DWORD_FIELD ( reg, GMF_CFGBYTMODE, bytemode ); EFAB_SET_DWORD_FIELD ( reg, GMF_CFGHDPLX, half_duplex ); EFAB_SET_DWORD_FIELD ( reg, GMF_HSTDRPLT64, half_duplex ); EFAB_SET_DWORD_FIELD ( reg, GMF_HSTFLTRFRMDC_PAUSE, 0 ); falcon_gmac_writel ( efab, ®, GMF_CFG5_REG_MAC ); udelay ( 10 ); /* MAC address */ EFAB_POPULATE_DWORD_4 ( reg, GM_HWADDR_5, efab->mac_addr[5], GM_HWADDR_4, efab->mac_addr[4], GM_HWADDR_3, efab->mac_addr[3], GM_HWADDR_2, efab->mac_addr[2] ); falcon_gmac_writel ( efab, ®, GM_ADR1_REG_MAC ); udelay ( 10 ); EFAB_POPULATE_DWORD_2 ( reg, GM_HWADDR_1, efab->mac_addr[1], GM_HWADDR_0, efab->mac_addr[0] ); falcon_gmac_writel ( efab, ®, GM_ADR2_REG_MAC ); udelay ( 10 ); } static int falcon_init_gmac ( struct efab_nic *efab ) { /* Reset the MAC */ mentormac_reset ( efab ); /* Initialise PHY */ efab->phy_op->init ( efab ); /* check the link is up */ if ( !efab->link_up ) return -EAGAIN; /* Initialise MAC */ mentormac_init ( efab ); /* reconfigure the MAC wrapper */ falcon_reconfigure_mac_wrapper ( efab ); return 0; } static struct efab_mac_operations falcon_gmac_operations = { .init = falcon_init_gmac, }; /******************************************************************************* * * * XMAC handling * * *******************************************************************************/ /** * Write dword to a Falcon XMAC register * */ static void falcon_xmac_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ) { efab_oword_t temp; EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA, EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) ); falcon_write ( efab, &temp, FALCON_XMAC_REG ( efab, mac_reg ) ); } /** * Read dword from a Falcon XMAC register * */ static void falcon_xmac_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ) { efab_oword_t temp; falcon_read ( efab, &temp, FALCON_XMAC_REG ( efab, mac_reg ) ); EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA, EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) ); } /** * Configure Falcon XAUI output */ static void falcon_setup_xaui ( struct efab_nic *efab ) { efab_dword_t sdctl, txdrv; falcon_xmac_readl ( efab, &sdctl, FCN_XX_SD_CTL_REG_MAC ); EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVD, XX_SD_CTL_DRV_DEFAULT ); EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVD, XX_SD_CTL_DRV_DEFAULT ); EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVC, XX_SD_CTL_DRV_DEFAULT ); EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVC, XX_SD_CTL_DRV_DEFAULT ); EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVB, XX_SD_CTL_DRV_DEFAULT ); EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVB, XX_SD_CTL_DRV_DEFAULT ); EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_HIDRVA, XX_SD_CTL_DRV_DEFAULT ); EFAB_SET_DWORD_FIELD ( sdctl, FCN_XX_LODRVA, XX_SD_CTL_DRV_DEFAULT ); falcon_xmac_writel ( efab, &sdctl, FCN_XX_SD_CTL_REG_MAC ); EFAB_POPULATE_DWORD_8 ( txdrv, FCN_XX_DEQD, XX_TXDRV_DEQ_DEFAULT, FCN_XX_DEQC, XX_TXDRV_DEQ_DEFAULT, FCN_XX_DEQB, XX_TXDRV_DEQ_DEFAULT, FCN_XX_DEQA, XX_TXDRV_DEQ_DEFAULT, FCN_XX_DTXD, XX_TXDRV_DTX_DEFAULT, FCN_XX_DTXC, XX_TXDRV_DTX_DEFAULT, FCN_XX_DTXB, XX_TXDRV_DTX_DEFAULT, FCN_XX_DTXA, XX_TXDRV_DTX_DEFAULT); falcon_xmac_writel ( efab, &txdrv, FCN_XX_TXDRV_CTL_REG_MAC); } static int falcon_xgmii_status ( struct efab_nic *efab ) { efab_dword_t reg; if ( efab->pci_revision < FALCON_REV_B0 ) return 1; /* The ISR latches, so clear it and re-read */ falcon_xmac_readl ( efab, ®, FCN_XM_MGT_INT_REG_MAC_B0 ); falcon_xmac_readl ( efab, ®, FCN_XM_MGT_INT_REG_MAC_B0 ); if ( EFAB_DWORD_FIELD ( reg, FCN_XM_LCLFLT ) || EFAB_DWORD_FIELD ( reg, FCN_XM_RMTFLT ) ) { EFAB_TRACE ( "MGT_INT: "EFAB_DWORD_FMT"\n", EFAB_DWORD_VAL ( reg ) ); return 0; } return 1; } static void falcon_mask_status_intr ( struct efab_nic *efab, int enable ) { efab_dword_t reg; if ( efab->pci_revision < FALCON_REV_B0 ) return; /* Flush the ISR */ if ( enable ) falcon_xmac_readl ( efab, ®, FCN_XM_MGT_INT_REG_MAC_B0 ); EFAB_POPULATE_DWORD_2 ( reg, FCN_XM_MSK_RMTFLT, !enable, FCN_XM_MSK_LCLFLT, !enable); falcon_xmac_readl ( efab, ®, FCN_XM_MGT_INT_MSK_REG_MAC_B0 ); } /** * Reset 10G MAC connected to port * */ static int falcon_reset_xmac ( struct efab_nic *efab ) { efab_dword_t reg; int count; EFAB_POPULATE_DWORD_1 ( reg, FCN_XM_CORE_RST, 1 ); falcon_xmac_writel ( efab, ®, FCN_XM_GLB_CFG_REG_MAC ); for ( count = 0 ; count < 1000 ; count++ ) { udelay ( 10 ); falcon_xmac_readl ( efab, ®, FCN_XM_GLB_CFG_REG_MAC ); if ( EFAB_DWORD_FIELD ( reg, FCN_XM_CORE_RST ) == 0 ) return 0; } return -ETIMEDOUT; } static int falcon_reset_xaui ( struct efab_nic *efab ) { efab_dword_t reg; int count; if (!efab->is_asic) return 0; EFAB_POPULATE_DWORD_1 ( reg, FCN_XX_RST_XX_EN, 1 ); falcon_xmac_writel ( efab, ®, FCN_XX_PWR_RST_REG_MAC ); /* Give some time for the link to establish */ for (count = 0; count < 1000; count++) { /* wait up to 10ms */ falcon_xmac_readl ( efab, ®, FCN_XX_PWR_RST_REG_MAC ); if ( EFAB_DWORD_FIELD ( reg, FCN_XX_RST_XX_EN ) == 0 ) { falcon_setup_xaui ( efab ); return 0; } udelay(10); } EFAB_ERR ( "timed out waiting for XAUI/XGXS reset\n" ); return -ETIMEDOUT; } static int falcon_xaui_link_ok ( struct efab_nic *efab ) { efab_dword_t reg; int align_done, lane_status, sync; int has_phyxs; int link_ok = 1; /* Read Falcon XAUI side */ if ( efab->is_asic ) { /* Read link status */ falcon_xmac_readl ( efab, ®, FCN_XX_CORE_STAT_REG_MAC ); align_done = EFAB_DWORD_FIELD ( reg, FCN_XX_ALIGN_DONE ); sync = EFAB_DWORD_FIELD ( reg, FCN_XX_SYNC_STAT ); sync = ( sync == FCN_XX_SYNC_STAT_DECODE_SYNCED ); link_ok = align_done && sync; } /* Clear link status ready for next read */ EFAB_SET_DWORD_FIELD ( reg, FCN_XX_COMMA_DET, FCN_XX_COMMA_DET_RESET ); EFAB_SET_DWORD_FIELD ( reg, FCN_XX_CHARERR, FCN_XX_CHARERR_RESET); EFAB_SET_DWORD_FIELD ( reg, FCN_XX_DISPERR, FCN_XX_DISPERR_RESET); falcon_xmac_writel ( efab, ®, FCN_XX_CORE_STAT_REG_MAC ); has_phyxs = ( efab->phy_op->mmds & ( 1 << MDIO_MMD_PHYXS ) ); if ( link_ok && has_phyxs ) { lane_status = falcon_mdio_read ( efab, MDIO_MMD_PHYXS, MDIO_PHYXS_LANE_STATE ); link_ok = ( lane_status & ( 1 << MDIO_PHYXS_LANE_ALIGNED_LBN ) ); if (!link_ok ) EFAB_LOG ( "XGXS lane status: %x\n", lane_status ); } return link_ok; } /** * Initialise XMAC * */ static void falcon_reconfigure_xmac ( struct efab_nic *efab ) { efab_dword_t reg; int max_frame_len; /* Configure MAC - cut-thru mode is hard wired on */ EFAB_POPULATE_DWORD_3 ( reg, FCN_XM_RX_JUMBO_MODE, 1, FCN_XM_TX_STAT_EN, 1, FCN_XM_RX_STAT_EN, 1); falcon_xmac_writel ( efab, ®, FCN_XM_GLB_CFG_REG_MAC ); /* Configure TX */ EFAB_POPULATE_DWORD_6 ( reg, FCN_XM_TXEN, 1, FCN_XM_TX_PRMBL, 1, FCN_XM_AUTO_PAD, 1, FCN_XM_TXCRC, 1, FCN_XM_FCNTL, 1, FCN_XM_IPG, 0x3 ); falcon_xmac_writel ( efab, ®, FCN_XM_TX_CFG_REG_MAC ); /* Configure RX */ EFAB_POPULATE_DWORD_4 ( reg, FCN_XM_RXEN, 1, FCN_XM_AUTO_DEPAD, 0, FCN_XM_ACPT_ALL_MCAST, 1, FCN_XM_PASS_CRC_ERR, 1 ); falcon_xmac_writel ( efab, ®, FCN_XM_RX_CFG_REG_MAC ); /* Set frame length */ max_frame_len = EFAB_MAX_FRAME_LEN ( ETH_FRAME_LEN ); EFAB_POPULATE_DWORD_1 ( reg, FCN_XM_MAX_RX_FRM_SIZE, max_frame_len ); falcon_xmac_writel ( efab, ®, FCN_XM_RX_PARAM_REG_MAC ); EFAB_POPULATE_DWORD_2 ( reg, FCN_XM_MAX_TX_FRM_SIZE, max_frame_len, FCN_XM_TX_JUMBO_MODE, 1 ); falcon_xmac_writel ( efab, ®, FCN_XM_TX_PARAM_REG_MAC ); /* Enable flow control receipt */ EFAB_POPULATE_DWORD_2 ( reg, FCN_XM_PAUSE_TIME, 0xfffe, FCN_XM_DIS_FCNTL, 0 ); falcon_xmac_writel ( efab, ®, FCN_XM_FC_REG_MAC ); /* Set MAC address */ EFAB_POPULATE_DWORD_4 ( reg, FCN_XM_ADR_0, efab->mac_addr[0], FCN_XM_ADR_1, efab->mac_addr[1], FCN_XM_ADR_2, efab->mac_addr[2], FCN_XM_ADR_3, efab->mac_addr[3] ); falcon_xmac_writel ( efab, ®, FCN_XM_ADR_LO_REG_MAC ); EFAB_POPULATE_DWORD_2 ( reg, FCN_XM_ADR_4, efab->mac_addr[4], FCN_XM_ADR_5, efab->mac_addr[5] ); falcon_xmac_writel ( efab, ®, FCN_XM_ADR_HI_REG_MAC ); } static int falcon_init_xmac ( struct efab_nic *efab ) { int count, rc; /* Mask the PHY management interrupt */ falcon_mask_status_intr ( efab, 0 ); /* Initialise the PHY to instantiate the clock. */ rc = efab->phy_op->init ( efab ); if ( rc ) { EFAB_ERR ( "unable to initialise PHY\n" ); goto fail1; } falcon_reset_xaui ( efab ); /* Give the PHY and MAC time to faff */ mdelay ( 100 ); /* Reset and reconfigure the XMAC */ rc = falcon_reset_xmac ( efab ); if ( rc ) goto fail2; falcon_reconfigure_xmac ( efab ); falcon_reconfigure_mac_wrapper ( efab ); /** * Now wait for the link to come up. This may take a while * for some slower PHY's. */ for (count=0; count<50; count++) { int link_ok = 1; /* Wait a while for the link to come up. */ mdelay ( 100 ); if ((count % 5) == 0) putchar ( '.' ); /* Does the PHY think the wire-side link is up? */ link_ok = mdio_clause45_links_ok ( efab ); /* Ensure the XAUI link to the PHY is good */ if ( link_ok ) { link_ok = falcon_xaui_link_ok ( efab ); if ( !link_ok ) falcon_reset_xaui ( efab ); } /* Check fault indication */ if ( link_ok ) link_ok = falcon_xgmii_status ( efab ); efab->link_up = link_ok; if ( link_ok ) { /* unmask the status interrupt */ falcon_mask_status_intr ( efab, 1 ); return 0; } } /* Link failed to come up, but initialisation was fine. */ rc = -ETIMEDOUT; fail2: fail1: return rc; } static struct efab_mac_operations falcon_xmac_operations = { .init = falcon_init_xmac, }; /******************************************************************************* * * * Null PHY handling * * *******************************************************************************/ static int falcon_xaui_phy_init ( struct efab_nic *efab ) { /* CX4 is always 10000FD only */ efab->link_options = LPA_EF_10000FULL; /* There is no PHY! */ return 0; } static struct efab_phy_operations falcon_xaui_phy_ops = { .init = falcon_xaui_phy_init, .mmds = 0, }; /******************************************************************************* * * * Alaska PHY * * *******************************************************************************/ /** * Initialise Alaska PHY * */ static int alaska_init ( struct efab_nic *efab ) { unsigned int advertised, lpa; /* Read link up status */ efab->link_up = gmii_link_ok ( efab ); if ( ! efab->link_up ) return -EIO; /* Determine link options from PHY. */ advertised = gmii_autoneg_advertised ( efab ); lpa = gmii_autoneg_lpa ( efab ); efab->link_options = gmii_nway_result ( advertised & lpa ); return 0; } static struct efab_phy_operations falcon_alaska_phy_ops = { .init = alaska_init, }; /******************************************************************************* * * * xfp * * *******************************************************************************/ #define XFP_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PCS | \ MDIO_MMDREG_DEVS0_PMAPMD | \ MDIO_MMDREG_DEVS0_PHYXS ) static int falcon_xfp_phy_init ( struct efab_nic *efab ) { int rc; /* Optical link is always 10000FD only */ efab->link_options = LPA_EF_10000FULL; /* Reset the PHY */ rc = mdio_clause45_reset_mmd ( efab, MDIO_MMD_PHYXS ); if ( rc ) return rc; return 0; } static struct efab_phy_operations falcon_xfp_phy_ops = { .init = falcon_xfp_phy_init, .mmds = XFP_REQUIRED_DEVS, }; /******************************************************************************* * * * txc43128 * * *******************************************************************************/ /* Command register */ #define TXC_GLRGS_GLCMD (0xc004) #define TXC_GLCMD_LMTSWRST_LBN (14) /* Amplitude on lanes 0+1, 2+3 */ #define TXC_ALRGS_ATXAMP0 (0xc041) #define TXC_ALRGS_ATXAMP1 (0xc042) /* Bit position of value for lane 0+2, 1+3 */ #define TXC_ATXAMP_LANE02_LBN (3) #define TXC_ATXAMP_LANE13_LBN (11) #define TXC_ATXAMP_1280_mV (0) #define TXC_ATXAMP_1200_mV (8) #define TXC_ATXAMP_1120_mV (12) #define TXC_ATXAMP_1060_mV (14) #define TXC_ATXAMP_0820_mV (25) #define TXC_ATXAMP_0720_mV (26) #define TXC_ATXAMP_0580_mV (27) #define TXC_ATXAMP_0440_mV (28) #define TXC_ATXAMP_0820_BOTH ( (TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE02_LBN) | \ (TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE13_LBN) ) #define TXC_ATXAMP_DEFAULT (0x6060) /* From databook */ /* Preemphasis on lanes 0+1, 2+3 */ #define TXC_ALRGS_ATXPRE0 (0xc043) #define TXC_ALRGS_ATXPRE1 (0xc044) #define TXC_ATXPRE_NONE (0) #define TXC_ATXPRE_DEFAULT (0x1010) /* From databook */ #define TXC_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PCS | \ MDIO_MMDREG_DEVS0_PMAPMD | \ MDIO_MMDREG_DEVS0_PHYXS ) static int falcon_txc_logic_reset ( struct efab_nic *efab ) { int val; int tries = 50; val = falcon_mdio_read ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD ); val |= (1 << TXC_GLCMD_LMTSWRST_LBN); falcon_mdio_write ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD, val ); while ( tries--) { val = falcon_mdio_read ( efab, MDIO_MMD_PCS, TXC_GLRGS_GLCMD ); if ( ~val & ( 1 << TXC_GLCMD_LMTSWRST_LBN ) ) return 0; udelay(1); } EFAB_ERR ( "logic reset failed\n" ); return -ETIMEDOUT; } static int falcon_txc_phy_init ( struct efab_nic *efab ) { int rc; /* CX4 is always 10000FD only */ efab->link_options = LPA_EF_10000FULL; /* reset the phy */ rc = mdio_clause45_reset_mmd ( efab, MDIO_MMD_PMAPMD ); if ( rc ) goto fail1; rc = mdio_clause45_check_mmds ( efab ); if ( rc ) goto fail2; /* Turn amplitude down and preemphasis off on the host side * (PHY<->MAC) as this is believed less likely to upset falcon * and no adverse effects have been noted. It probably also * saves a picowatt or two */ /* Turn off preemphasis */ falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE0, TXC_ATXPRE_NONE ); falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE1, TXC_ATXPRE_NONE ); /* Turn down the amplitude */ falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXAMP0, TXC_ATXAMP_0820_BOTH ); falcon_mdio_write ( efab, MDIO_MMD_PHYXS, TXC_ALRGS_ATXAMP1, TXC_ATXAMP_0820_BOTH ); /* Set the line side amplitude and preemphasis to the databook * defaults as an erratum causes them to be 0 on at least some * PHY rev.s */ falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXPRE0, TXC_ATXPRE_DEFAULT ); falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXPRE1, TXC_ATXPRE_DEFAULT ); falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXAMP0, TXC_ATXAMP_DEFAULT ); falcon_mdio_write ( efab, MDIO_MMD_PMAPMD, TXC_ALRGS_ATXAMP1, TXC_ATXAMP_DEFAULT ); rc = falcon_txc_logic_reset ( efab ); if ( rc ) goto fail3; return 0; fail3: fail2: fail1: return rc; } static struct efab_phy_operations falcon_txc_phy_ops = { .init = falcon_txc_phy_init, .mmds = TXC_REQUIRED_DEVS, }; /******************************************************************************* * * * tenxpress * * *******************************************************************************/ #define TENXPRESS_REQUIRED_DEVS ( MDIO_MMDREG_DEVS0_PMAPMD | \ MDIO_MMDREG_DEVS0_PCS | \ MDIO_MMDREG_DEVS0_PHYXS ) #define PCS_TEST_SELECT_REG 0xd807 /* PRM 10.5.8 */ #define CLK312_EN_LBN 3 #define CLK312_EN_WIDTH 1 #define PCS_CLOCK_CTRL_REG 0xd801 #define PLL312_RST_N_LBN 2 /* Special Software reset register */ #define PMA_PMD_EXT_CTRL_REG 49152 #define PMA_PMD_EXT_SSR_LBN 15 /* Boot status register */ #define PCS_BOOT_STATUS_REG 0xd000 #define PCS_BOOT_FATAL_ERR_LBN 0 #define PCS_BOOT_PROGRESS_LBN 1 #define PCS_BOOT_PROGRESS_WIDTH 2 #define PCS_BOOT_COMPLETE_LBN 3 #define PCS_SOFT_RST2_REG 0xd806 #define SERDES_RST_N_LBN 13 #define XGXS_RST_N_LBN 12 static int falcon_tenxpress_check_c11 ( struct efab_nic *efab ) { int count; uint32_t boot_stat; /* Check that the C11 CPU has booted */ for (count=0; count<10; count++) { boot_stat = falcon_mdio_read ( efab, MDIO_MMD_PCS, PCS_BOOT_STATUS_REG ); if ( boot_stat & ( 1 << PCS_BOOT_COMPLETE_LBN ) ) return 0; udelay(10); } EFAB_ERR ( "C11 failed to boot\n" ); return -ETIMEDOUT; } static int falcon_tenxpress_phy_init ( struct efab_nic *efab ) { int rc, reg; /* 10XPRESS is always 10000FD (at the moment) */ efab->link_options = LPA_EF_10000FULL; /* Wait for the blocks to come out of reset */ rc = mdio_clause45_wait_reset_mmds ( efab ); if ( rc ) goto fail1; rc = mdio_clause45_check_mmds ( efab ); if ( rc ) goto fail2; /* Turn on the clock */ reg = (1 << CLK312_EN_LBN); falcon_mdio_write ( efab, MDIO_MMD_PCS, PCS_TEST_SELECT_REG, reg); /* Wait 200ms for the PHY to boot */ mdelay(200); rc = falcon_tenxpress_check_c11 ( efab ); if ( rc ) goto fail3; return 0; fail3: fail2: fail1: return rc; } static struct efab_phy_operations falcon_tenxpress_phy_ops = { .init = falcon_tenxpress_phy_init, .mmds = TENXPRESS_REQUIRED_DEVS, }; /******************************************************************************* * * * PM8358 * * *******************************************************************************/ /* The PM8358 just presents a DTE XS */ #define PM8358_REQUIRED_DEVS (MDIO_MMDREG_DEVS0_DTEXS) /* PHY-specific definitions */ /* Master ID and Global Performance Monitor Update */ #define PMC_MASTER_REG (0xd000) /* Analog Tx Rx settings under software control */ #define PMC_MASTER_ANLG_CTRL (1<< 11) /* Master Configuration register 2 */ #define PMC_MCONF2_REG (0xd002) /* Drive Tx off centre of data eye (1) vs. clock edge (0) */ #define PMC_MCONF2_TEDGE (1 << 2) /* Drive Rx off centre of data eye (1) vs. clock edge (0) */ #define PMC_MCONF2_REDGE (1 << 3) /* Analog Rx settings */ #define PMC_ANALOG_RX_CFG0 (0xd025) #define PMC_ANALOG_RX_CFG1 (0xd02d) #define PMC_ANALOG_RX_CFG2 (0xd035) #define PMC_ANALOG_RX_CFG3 (0xd03d) #define PMC_ANALOG_RX_TERM (1 << 15) /* Bit 15 of RX CFG: 0 for 100 ohms float, 1 for 50 to 1.2V */ #define PMC_ANALOG_RX_EQ_MASK (3 << 8) #define PMC_ANALOG_RX_EQ_NONE (0 << 8) #define PMC_ANALOG_RX_EQ_HALF (1 << 8) #define PMC_ANALOG_RX_EQ_FULL (2 << 8) #define PMC_ANALOG_RX_EQ_RSVD (3 << 8) static int falcon_pm8358_phy_init ( struct efab_nic *efab ) { int rc, reg, i; /* This is a XAUI retimer part */ efab->link_options = LPA_EF_10000FULL; rc = mdio_clause45_reset_mmd ( efab, MDIO_MMDREG_DEVS0_DTEXS ); if ( rc ) return rc; /* Enable software control of analogue settings */ reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, PMC_MASTER_REG ); reg |= PMC_MASTER_ANLG_CTRL; falcon_mdio_write ( efab, MDIO_MMD_DTEXS, PMC_MASTER_REG, reg ); /* Turn rx eq on for all channels */ for (i=0; i< 3; i++) { /* The analog CFG registers are evenly spaced 8 apart */ uint16_t addr = PMC_ANALOG_RX_CFG0 + 8*i; reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, addr ); reg = ( reg & ~PMC_ANALOG_RX_EQ_MASK ) | PMC_ANALOG_RX_EQ_FULL; falcon_mdio_write ( efab, MDIO_MMD_DTEXS, addr, reg ); } /* Set TEDGE, clear REDGE */ reg = falcon_mdio_read ( efab, MDIO_MMD_DTEXS, PMC_MCONF2_REG ); reg = ( reg & ~PMC_MCONF2_REDGE) | PMC_MCONF2_TEDGE; falcon_mdio_write ( efab, MDIO_MMD_DTEXS, PMC_MCONF2_REG, reg ); return 0; } static struct efab_phy_operations falcon_pm8358_phy_ops = { .init = falcon_pm8358_phy_init, .mmds = PM8358_REQUIRED_DEVS, }; /******************************************************************************* * * * SFE4001 support * * *******************************************************************************/ #define MAX_TEMP_THRESH 90 /* I2C Expander */ #define PCA9539 0x74 #define P0_IN 0x00 #define P0_OUT 0x02 #define P0_CONFIG 0x06 #define P0_EN_1V0X_LBN 0 #define P0_EN_1V0X_WIDTH 1 #define P0_EN_1V2_LBN 1 #define P0_EN_1V2_WIDTH 1 #define P0_EN_2V5_LBN 2 #define P0_EN_2V5_WIDTH 1 #define P0_EN_3V3X_LBN 3 #define P0_EN_3V3X_WIDTH 1 #define P0_EN_5V_LBN 4 #define P0_EN_5V_WIDTH 1 #define P0_X_TRST_LBN 6 #define P0_X_TRST_WIDTH 1 #define P1_IN 0x01 #define P1_CONFIG 0x07 #define P1_AFE_PWD_LBN 0 #define P1_AFE_PWD_WIDTH 1 #define P1_DSP_PWD25_LBN 1 #define P1_DSP_PWD25_WIDTH 1 #define P1_SPARE_LBN 4 #define P1_SPARE_WIDTH 4 /* Temperature Sensor */ #define MAX6647 0x4e #define RSL 0x02 #define RLHN 0x05 #define WLHO 0x0b static struct i2c_device i2c_pca9539 = { .dev_addr = PCA9539, .dev_addr_len = 1, .word_addr_len = 1, }; static struct i2c_device i2c_max6647 = { .dev_addr = MAX6647, .dev_addr_len = 1, .word_addr_len = 1, }; static int sfe4001_init ( struct efab_nic *efab ) { struct i2c_interface *i2c = &efab->i2c_bb.i2c; efab_dword_t reg; uint8_t in, cfg, out; int count, rc; EFAB_LOG ( "Initialise SFE4001 board\n" ); /* Ensure XGXS and XAUI SerDes are held in reset */ EFAB_POPULATE_DWORD_7 ( reg, FCN_XX_PWRDNA_EN, 1, FCN_XX_PWRDNB_EN, 1, FCN_XX_RSTPLLAB_EN, 1, FCN_XX_RESETA_EN, 1, FCN_XX_RESETB_EN, 1, FCN_XX_RSTXGXSRX_EN, 1, FCN_XX_RSTXGXSTX_EN, 1 ); falcon_xmac_writel ( efab, ®, FCN_XX_PWR_RST_REG_MAC); udelay(10); /* Set DSP over-temperature alert threshold */ cfg = MAX_TEMP_THRESH; rc = i2c->write ( i2c, &i2c_max6647, WLHO, &cfg, EFAB_BYTE ); if ( rc ) goto fail1; /* Read it back and verify */ rc = i2c->read ( i2c, &i2c_max6647, RLHN, &in, EFAB_BYTE ); if ( rc ) goto fail2; if ( in != MAX_TEMP_THRESH ) { EFAB_ERR ( "Unable to verify MAX6647 limit (requested=%d " "confirmed=%d)\n", cfg, in ); rc = -EIO; goto fail3; } /* Clear any previous over-temperature alert */ rc = i2c->read ( i2c, &i2c_max6647, RSL, &in, EFAB_BYTE ); if ( rc ) goto fail4; /* Enable port 0 and 1 outputs on IO expander */ cfg = 0x00; rc = i2c->write ( i2c, &i2c_pca9539, P0_CONFIG, &cfg, EFAB_BYTE ); if ( rc ) goto fail5; cfg = 0xff & ~(1 << P1_SPARE_LBN); rc = i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &cfg, EFAB_BYTE ); if ( rc ) goto fail6; /* Turn all power off then wait 1 sec. This ensures PHY is reset */ out = 0xff & ~((0 << P0_EN_1V2_LBN) | (0 << P0_EN_2V5_LBN) | (0 << P0_EN_3V3X_LBN) | (0 << P0_EN_5V_LBN) | (0 << P0_EN_1V0X_LBN)); rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE ); if ( rc ) goto fail7; mdelay(1000); for (count=0; count<20; count++) { /* Turn on 1.2V, 2.5V, 3.3V and 5V power rails */ out = 0xff & ~( (1 << P0_EN_1V2_LBN) | (1 << P0_EN_2V5_LBN) | (1 << P0_EN_3V3X_LBN) | (1 << P0_EN_5V_LBN) | (1 << P0_X_TRST_LBN) ); rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE ); if ( rc ) goto fail8; mdelay ( 10 ); /* Turn on the 1V power rail */ out &= ~( 1 << P0_EN_1V0X_LBN ); rc = i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE ); if ( rc ) goto fail9; EFAB_LOG ( "Waiting for power...(attempt %d)\n", count); mdelay ( 1000 ); /* Check DSP is powered */ rc = i2c->read ( i2c, &i2c_pca9539, P1_IN, &in, EFAB_BYTE ); if ( rc ) goto fail10; if ( in & ( 1 << P1_AFE_PWD_LBN ) ) return 0; } rc = -ETIMEDOUT; fail10: fail9: fail8: fail7: /* Turn off power rails */ out = 0xff; (void) i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE ); /* Disable port 1 outputs on IO expander */ out = 0xff; (void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &out, EFAB_BYTE ); fail6: /* Disable port 0 outputs */ out = 0xff; (void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &out, EFAB_BYTE ); fail5: fail4: fail3: fail2: fail1: EFAB_ERR ( "Failed initialising SFE4001 board\n" ); return rc; } static void sfe4001_fini ( struct efab_nic *efab ) { struct i2c_interface *i2c = &efab->i2c_bb.i2c; uint8_t in, cfg, out; EFAB_ERR ( "Turning off SFE4001\n" ); /* Turn off all power rails */ out = 0xff; (void) i2c->write ( i2c, &i2c_pca9539, P0_OUT, &out, EFAB_BYTE ); /* Disable port 1 outputs on IO expander */ cfg = 0xff; (void) i2c->write ( i2c, &i2c_pca9539, P1_CONFIG, &cfg, EFAB_BYTE ); /* Disable port 0 outputs on IO expander */ cfg = 0xff; (void) i2c->write ( i2c, &i2c_pca9539, P0_CONFIG, &cfg, EFAB_BYTE ); /* Clear any over-temperature alert */ (void) i2c->read ( i2c, &i2c_max6647, RSL, &in, EFAB_BYTE ); } struct efab_board_operations sfe4001_ops = { .init = sfe4001_init, .fini = sfe4001_fini, }; static int sfe4002_init ( struct efab_nic *efab __attribute__((unused)) ) { return 0; } static void sfe4002_fini ( struct efab_nic *efab __attribute__((unused)) ) { } struct efab_board_operations sfe4002_ops = { .init = sfe4002_init, .fini = sfe4002_fini, }; static int sfe4003_init ( struct efab_nic *efab __attribute__((unused)) ) { return 0; } static void sfe4003_fini ( struct efab_nic *efab __attribute__((unused)) ) { } struct efab_board_operations sfe4003_ops = { .init = sfe4003_init, .fini = sfe4003_fini, }; /******************************************************************************* * * * Hardware initialisation * * *******************************************************************************/ static void falcon_free_special_buffer ( void *p ) { /* We don't bother cleaning up the buffer table entries - * we're hardly limited */ free_dma ( p, EFAB_BUF_ALIGN ); } static void* falcon_alloc_special_buffer ( struct efab_nic *efab, int bytes, struct efab_special_buffer *entry ) { void* buffer; int remaining; efab_qword_t buf_desc; unsigned long dma_addr; /* Allocate the buffer, aligned on a buffer address boundary */ buffer = malloc_dma ( bytes, EFAB_BUF_ALIGN ); if ( ! buffer ) return NULL; /* Push buffer table entries to back the buffer */ entry->id = efab->buffer_head; entry->dma_addr = dma_addr = virt_to_bus ( buffer ); assert ( ( dma_addr & ( EFAB_BUF_ALIGN - 1 ) ) == 0 ); remaining = bytes; while ( remaining > 0 ) { EFAB_POPULATE_QWORD_3 ( buf_desc, FCN_IP_DAT_BUF_SIZE, FCN_IP_DAT_BUF_SIZE_4K, FCN_BUF_ADR_FBUF, ( dma_addr >> 12 ), FCN_BUF_OWNER_ID_FBUF, 0 ); falcon_write_sram ( efab, &buf_desc, efab->buffer_head ); ++efab->buffer_head; dma_addr += EFAB_BUF_ALIGN; remaining -= EFAB_BUF_ALIGN; } EFAB_TRACE ( "Allocated 0x%x bytes at %p backed by buffer table " "entries 0x%x..0x%x\n", bytes, buffer, entry->id, efab->buffer_head - 1 ); return buffer; } static void clear_b0_fpga_memories ( struct efab_nic *efab) { efab_oword_t blanko, temp; int offset; EFAB_ZERO_OWORD ( blanko ); /* Clear the address region register */ EFAB_POPULATE_OWORD_4 ( temp, FCN_ADR_REGION0, 0, FCN_ADR_REGION1, ( 1 << 16 ), FCN_ADR_REGION2, ( 2 << 16 ), FCN_ADR_REGION3, ( 3 << 16 ) ); falcon_write ( efab, &temp, FCN_ADR_REGION_REG_KER ); EFAB_TRACE ( "Clearing filter and RSS tables\n" ); for ( offset = FCN_RX_FILTER_TBL0 ; offset < FCN_RX_RSS_INDIR_TBL_B0+0x800 ; offset += 0x10 ) { falcon_write ( efab, &blanko, offset ); } EFAB_TRACE ( "Wiping buffer tables\n" ); /* Notice the 8 byte access mode */ for ( offset = 0x2800000 ; offset < 0x3000000 ; offset += 0x8) { _falcon_writel ( efab, 0, offset ); _falcon_writel ( efab, 0, offset + 4 ); wmb(); } } static int falcon_reset ( struct efab_nic *efab ) { efab_oword_t glb_ctl_reg_ker; /* Initiate software reset */ EFAB_POPULATE_OWORD_6 ( glb_ctl_reg_ker, FCN_PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET, FCN_PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET, FCN_PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET, FCN_EE_RST_CTL, EXCLUDE_FROM_RESET, FCN_EXT_PHY_RST_DUR, 0x7, /* 10ms */ FCN_SWRST, 1 ); falcon_write ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER ); /* Allow 50ms for reset */ mdelay ( 50 ); /* Check for device reset complete */ falcon_read ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER ); if ( EFAB_OWORD_FIELD ( glb_ctl_reg_ker, FCN_SWRST ) != 0 ) { EFAB_ERR ( "Reset failed\n" ); return -ETIMEDOUT; } if ( ( efab->pci_revision == FALCON_REV_B0 ) && !efab->is_asic ) { clear_b0_fpga_memories ( efab ); } return 0; } /** Offset of MAC address within EEPROM or Flash */ #define FALCON_MAC_ADDRESS_OFFSET 0x310 /* * Falcon EEPROM structure */ #define SF_NV_CONFIG_BASE 0x300 #define SF_NV_CONFIG_EXTRA 0xA0 struct falcon_nv_config_ver2 { uint16_t nports; uint8_t port0_phy_addr; uint8_t port0_phy_type; uint8_t port1_phy_addr; uint8_t port1_phy_type; uint16_t asic_sub_revision; uint16_t board_revision; uint8_t mac_location; }; struct falcon_nv_extra { uint16_t magicnumber; uint16_t structure_version; uint16_t checksum; union { struct falcon_nv_config_ver2 ver2; } ver_specific; }; #define BOARD_TYPE(_rev) (_rev >> 8) static void falcon_probe_nic_variant ( struct efab_nic *efab, struct pci_device *pci ) { efab_oword_t altera_build, nic_stat; int fpga_version; uint8_t revision; /* PCI revision */ pci_read_config_byte ( pci, PCI_REVISION, &revision ); efab->pci_revision = revision; /* Asic vs FPGA */ falcon_read ( efab, &altera_build, FCN_ALTERA_BUILD_REG_KER ); fpga_version = EFAB_OWORD_FIELD ( altera_build, FCN_VER_ALL ); efab->is_asic = (fpga_version == 0); /* MAC and PCI type */ falcon_read ( efab, &nic_stat, FCN_NIC_STAT_REG ); if ( efab->pci_revision == FALCON_REV_B0 ) { efab->phy_10g = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_10G ); } else if ( efab->is_asic ) { efab->phy_10g = EFAB_OWORD_FIELD ( nic_stat, FCN_STRAP_10G ); } else { int minor = EFAB_OWORD_FIELD ( altera_build, FCN_VER_MINOR ); efab->phy_10g = ( minor == 0x14 ); } } static void falcon_init_spi_device ( struct efab_nic *efab, struct spi_device *spi ) { /* Falcon's SPI interface only supports reads/writes of up to 16 bytes. * Reduce the nvs block size down to satisfy this - which means callers * should use the nvs_* functions rather than spi_*. */ if ( spi->nvs.block_size > FALCON_SPI_MAX_LEN ) spi->nvs.block_size = FALCON_SPI_MAX_LEN; spi->bus = &efab->spi_bus; efab->spi = spi; } static int falcon_probe_spi ( struct efab_nic *efab ) { efab_oword_t nic_stat, gpio_ctl, ee_vpd_cfg; int has_flash, has_eeprom, ad9bit; falcon_read ( efab, &nic_stat, FCN_NIC_STAT_REG ); falcon_read ( efab, &gpio_ctl, FCN_GPIO_CTL_REG_KER ); falcon_read ( efab, &ee_vpd_cfg, FCN_EE_VPD_CFG_REG ); /* determine if FLASH / EEPROM is present */ if ( ( efab->pci_revision >= FALCON_REV_B0 ) || efab->is_asic ) { has_flash = EFAB_OWORD_FIELD ( nic_stat, FCN_SF_PRST ); has_eeprom = EFAB_OWORD_FIELD ( nic_stat, FCN_EE_PRST ); } else { has_flash = EFAB_OWORD_FIELD ( gpio_ctl, FCN_FLASH_PRESENT ); has_eeprom = EFAB_OWORD_FIELD ( gpio_ctl, FCN_EEPROM_PRESENT ); } ad9bit = EFAB_OWORD_FIELD ( ee_vpd_cfg, FCN_EE_VPD_EN_AD9_MODE ); /* Configure the SPI and I2C bus */ efab->spi_bus.rw = falcon_spi_rw; init_i2c_bit_basher ( &efab->i2c_bb, &falcon_i2c_bit_ops ); /* Configure the EEPROM SPI device. Generally, an Atmel 25040 * (or similar) is used, but this is only possible if there is also * a flash device present to store the boot-time chip configuration. */ if ( has_eeprom ) { if ( has_flash && ad9bit ) init_at25040 ( &efab->spi_eeprom ); else init_mc25xx640 ( &efab->spi_eeprom ); falcon_init_spi_device ( efab, &efab->spi_eeprom ); } /* Configure the FLASH SPI device */ if ( has_flash ) { init_at25f1024 ( &efab->spi_flash ); falcon_init_spi_device ( efab, &efab->spi_flash ); } EFAB_LOG ( "flash is %s, EEPROM is %s%s\n", ( has_flash ? "present" : "absent" ), ( has_eeprom ? "present " : "absent" ), ( has_eeprom ? (ad9bit ? "(9bit)" : "(16bit)") : "") ); /* The device MUST have flash or eeprom */ if ( ! efab->spi ) { EFAB_ERR ( "Device appears to have no flash or eeprom\n" ); return -EIO; } /* If the device has EEPROM attached, then advertise NVO space */ if ( has_eeprom ) { nvo_init ( &efab->nvo, &efab->spi_eeprom.nvs, 0x100, 0xf0, NULL, &efab->netdev->refcnt ); } return 0; } static int falcon_probe_nvram ( struct efab_nic *efab ) { struct nvs_device *nvs = &efab->spi->nvs; struct falcon_nv_extra nv; int rc, board_revision; /* Read the MAC address */ rc = nvs_read ( nvs, FALCON_MAC_ADDRESS_OFFSET, efab->mac_addr, ETH_ALEN ); if ( rc ) return rc; /* Poke through the NVRAM structure for the PHY type. */ rc = nvs_read ( nvs, SF_NV_CONFIG_BASE + SF_NV_CONFIG_EXTRA, &nv, sizeof ( nv ) ); if ( rc ) return rc; /* Handle each supported NVRAM version */ if ( ( le16_to_cpu ( nv.magicnumber ) == FCN_NV_MAGIC_NUMBER ) && ( le16_to_cpu ( nv.structure_version ) >= 2 ) ) { struct falcon_nv_config_ver2* ver2 = &nv.ver_specific.ver2; /* Get the PHY type */ efab->phy_addr = le16_to_cpu ( ver2->port0_phy_addr ); efab->phy_type = le16_to_cpu ( ver2->port0_phy_type ); board_revision = le16_to_cpu ( ver2->board_revision ); } else { EFAB_ERR ( "NVram is not recognised\n" ); return -EINVAL; } efab->board_type = BOARD_TYPE ( board_revision ); EFAB_TRACE ( "Falcon board %d phy %d @ addr %d\n", efab->board_type, efab->phy_type, efab->phy_addr ); /* Patch in the board operations */ switch ( efab->board_type ) { case EFAB_BOARD_SFE4001: efab->board_op = &sfe4001_ops; break; case EFAB_BOARD_SFE4002: efab->board_op = &sfe4002_ops; break; case EFAB_BOARD_SFE4003: efab->board_op = &sfe4003_ops; break; default: EFAB_ERR ( "Unrecognised board type\n" ); return -EINVAL; } /* Patch in MAC operations */ if ( efab->phy_10g ) efab->mac_op = &falcon_xmac_operations; else efab->mac_op = &falcon_gmac_operations; /* Hook in the PHY ops */ switch ( efab->phy_type ) { case PHY_TYPE_10XPRESS: efab->phy_op = &falcon_tenxpress_phy_ops; break; case PHY_TYPE_CX4: efab->phy_op = &falcon_xaui_phy_ops; break; case PHY_TYPE_XFP: efab->phy_op = &falcon_xfp_phy_ops; break; case PHY_TYPE_CX4_RTMR: efab->phy_op = &falcon_txc_phy_ops; break; case PHY_TYPE_PM8358: efab->phy_op = &falcon_pm8358_phy_ops; break; case PHY_TYPE_1GIG_ALASKA: efab->phy_op = &falcon_alaska_phy_ops; break; default: EFAB_ERR ( "Unknown PHY type: %d\n", efab->phy_type ); return -EINVAL; } return 0; } static int falcon_init_sram ( struct efab_nic *efab ) { efab_oword_t reg; int count; /* use card in internal SRAM mode */ falcon_read ( efab, ®, FCN_NIC_STAT_REG ); EFAB_SET_OWORD_FIELD ( reg, FCN_ONCHIP_SRAM, 1 ); falcon_write ( efab, ®, FCN_NIC_STAT_REG ); /* Deactivate any external SRAM that might be present */ EFAB_POPULATE_OWORD_2 ( reg, FCN_GPIO1_OEN, 1, FCN_GPIO1_OUT, 1 ); falcon_write ( efab, ®, FCN_GPIO_CTL_REG_KER ); /* Initiate SRAM reset */ EFAB_POPULATE_OWORD_2 ( reg, FCN_SRAM_OOB_BT_INIT_EN, 1, FCN_SRM_NUM_BANKS_AND_BANK_SIZE, 0 ); falcon_write ( efab, ®, FCN_SRM_CFG_REG_KER ); /* Wait for SRAM reset to complete */ count = 0; do { /* SRAM reset is slow; expect around 16ms */ mdelay ( 20 ); /* Check for reset complete */ falcon_read ( efab, ®, FCN_SRM_CFG_REG_KER ); if ( !EFAB_OWORD_FIELD ( reg, FCN_SRAM_OOB_BT_INIT_EN ) ) return 0; } while (++count < 20); /* wait up to 0.4 sec */ EFAB_ERR ( "timed out waiting for SRAM reset\n"); return -ETIMEDOUT; } static void falcon_setup_nic ( struct efab_nic *efab ) { efab_dword_t timer_cmd; efab_oword_t reg; int tx_fc, xoff_thresh, xon_thresh; /* bug5129: Clear the parity enables on the TX data fifos as * they produce false parity errors because of timing issues */ falcon_read ( efab, ®, FCN_SPARE_REG_KER ); EFAB_SET_OWORD_FIELD ( reg, FCN_MEM_PERR_EN_TX_DATA, 0 ); falcon_write ( efab, ®, FCN_SPARE_REG_KER ); /* Set up TX and RX descriptor caches in SRAM */ EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_TX_DC_BASE_ADR, 0x130000 ); falcon_write ( efab, ®, FCN_SRM_TX_DC_CFG_REG_KER ); EFAB_POPULATE_OWORD_1 ( reg, FCN_TX_DC_SIZE, 1 /* 16 descriptors */ ); falcon_write ( efab, ®, FCN_TX_DC_CFG_REG_KER ); EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_RX_DC_BASE_ADR, 0x100000 ); falcon_write ( efab, ®, FCN_SRM_RX_DC_CFG_REG_KER ); EFAB_POPULATE_OWORD_1 ( reg, FCN_RX_DC_SIZE, 2 /* 32 descriptors */ ); falcon_write ( efab, ®, FCN_RX_DC_CFG_REG_KER ); /* Set number of RSS CPUs * bug7244: Increase filter depth to reduce RX_RESET likelihood */ EFAB_POPULATE_OWORD_5 ( reg, FCN_NUM_KER, 0, FCN_UDP_FULL_SRCH_LIMIT, 8, FCN_UDP_WILD_SRCH_LIMIT, 8, FCN_TCP_WILD_SRCH_LIMIT, 8, FCN_TCP_FULL_SRCH_LIMIT, 8); falcon_write ( efab, ®, FCN_RX_FILTER_CTL_REG_KER ); udelay ( 1000 ); /* Setup RX. Wait for descriptor is broken and must * be disabled. RXDP recovery shouldn't be needed, but is. * disable ISCSI parsing because we don't need it */ falcon_read ( efab, ®, FCN_RX_SELF_RST_REG_KER ); EFAB_SET_OWORD_FIELD ( reg, FCN_RX_NODESC_WAIT_DIS, 1 ); EFAB_SET_OWORD_FIELD ( reg, FCN_RX_RECOVERY_EN, 1 ); EFAB_SET_OWORD_FIELD ( reg, FCN_RX_ISCSI_DIS, 1 ); falcon_write ( efab, ®, FCN_RX_SELF_RST_REG_KER ); /* Determine recommended flow control settings. * * Flow control is qualified on B0 and A1/1G, not on A1/10G */ if ( efab->pci_revision == FALCON_REV_B0 ) { tx_fc = 1; xoff_thresh = 54272; /* ~80Kb - 3*max MTU */ xon_thresh = 27648; /* ~3*max MTU */ } else if ( !efab->phy_10g ) { tx_fc = 1; xoff_thresh = 2048; xon_thresh = 512; } else { tx_fc = xoff_thresh = xon_thresh = 0; } /* Setup TX and RX */ falcon_read ( efab, ®, FCN_TX_CFG2_REG_KER ); EFAB_SET_OWORD_FIELD ( reg, FCN_TX_DIS_NON_IP_EV, 1 ); falcon_write ( efab, ®, FCN_TX_CFG2_REG_KER ); falcon_read ( efab, ®, FCN_RX_CFG_REG_KER ); EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_USR_BUF_SIZE, (3*4096) / 32 ); if ( efab->pci_revision == FALCON_REV_B0) EFAB_SET_OWORD_FIELD ( reg, FCN_RX_INGR_EN_B0, 1 ); EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XON_MAC_TH, xon_thresh / 256); EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XOFF_MAC_TH, xoff_thresh / 256); EFAB_SET_OWORD_FIELD_VER ( efab, reg, FCN_RX_XOFF_MAC_EN, tx_fc); falcon_write ( efab, ®, FCN_RX_CFG_REG_KER ); /* Set timer register */ EFAB_POPULATE_DWORD_2 ( timer_cmd, FCN_TIMER_MODE, FCN_TIMER_MODE_DIS, FCN_TIMER_VAL, 0 ); falcon_writel ( efab, &timer_cmd, FCN_TIMER_CMD_REG_KER ); } static void falcon_init_resources ( struct efab_nic *efab ) { struct efab_ev_queue *ev_queue = &efab->ev_queue; struct efab_rx_queue *rx_queue = &efab->rx_queue; struct efab_tx_queue *tx_queue = &efab->tx_queue; efab_oword_t reg; int jumbo; /* Initialise the ptrs */ tx_queue->read_ptr = tx_queue->write_ptr = 0; rx_queue->read_ptr = rx_queue->write_ptr = 0; ev_queue->read_ptr = 0; /* Push the event queue to the hardware */ EFAB_POPULATE_OWORD_3 ( reg, FCN_EVQ_EN, 1, FCN_EVQ_SIZE, FQS(FCN_EVQ, EFAB_EVQ_SIZE), FCN_EVQ_BUF_BASE_ID, ev_queue->entry.id ); falcon_write ( efab, ®, FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) ); /* Push the tx queue to the hardware */ EFAB_POPULATE_OWORD_8 ( reg, FCN_TX_DESCQ_EN, 1, FCN_TX_ISCSI_DDIG_EN, 0, FCN_TX_ISCSI_DDIG_EN, 0, FCN_TX_DESCQ_BUF_BASE_ID, tx_queue->entry.id, FCN_TX_DESCQ_EVQ_ID, 0, FCN_TX_DESCQ_SIZE, FQS(FCN_TX_DESCQ, EFAB_TXD_SIZE), FCN_TX_DESCQ_TYPE, 0 /* kernel queue */, FCN_TX_NON_IP_DROP_DIS_B0, 1 ); falcon_write ( efab, ®, FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) ); /* Push the rx queue to the hardware */ jumbo = ( efab->pci_revision == FALCON_REV_B0 ) ? 0 : 1; EFAB_POPULATE_OWORD_8 ( reg, FCN_RX_ISCSI_DDIG_EN, 0, FCN_RX_ISCSI_HDIG_EN, 0, FCN_RX_DESCQ_BUF_BASE_ID, rx_queue->entry.id, FCN_RX_DESCQ_EVQ_ID, 0, FCN_RX_DESCQ_SIZE, FQS(FCN_RX_DESCQ, EFAB_RXD_SIZE), FCN_RX_DESCQ_TYPE, 0 /* kernel queue */, FCN_RX_DESCQ_JUMBO, jumbo, FCN_RX_DESCQ_EN, 1 ); falcon_write ( efab, ®, FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) ); /* Program INT_ADR_REG_KER */ EFAB_POPULATE_OWORD_1 ( reg, FCN_INT_ADR_KER, virt_to_bus ( &efab->int_ker ) ); falcon_write ( efab, ®, FCN_INT_ADR_REG_KER ); /* Ack the event queue */ falcon_eventq_read_ack ( efab, ev_queue ); } static void falcon_fini_resources ( struct efab_nic *efab ) { efab_oword_t cmd; /* Disable interrupts */ falcon_interrupts ( efab, 0, 0 ); /* Flush the dma queues */ EFAB_POPULATE_OWORD_2 ( cmd, FCN_TX_FLUSH_DESCQ_CMD, 1, FCN_TX_FLUSH_DESCQ, 0 ); falcon_write ( efab, &cmd, FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) ); EFAB_POPULATE_OWORD_2 ( cmd, FCN_RX_FLUSH_DESCQ_CMD, 1, FCN_RX_FLUSH_DESCQ, 0 ); falcon_write ( efab, &cmd, FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) ); mdelay ( 100 ); /* Remove descriptor rings from card */ EFAB_ZERO_OWORD ( cmd ); falcon_write ( efab, &cmd, FCN_REVISION_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ) ); falcon_write ( efab, &cmd, FCN_REVISION_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ) ); falcon_write ( efab, &cmd, FCN_REVISION_REG ( efab, FCN_EVQ_PTR_TBL_KER ) ); } /******************************************************************************* * * * Hardware rx path * * *******************************************************************************/ static void falcon_build_rx_desc ( falcon_rx_desc_t *rxd, struct io_buffer *iob ) { EFAB_POPULATE_QWORD_2 ( *rxd, FCN_RX_KER_BUF_SIZE, EFAB_RX_BUF_SIZE, FCN_RX_KER_BUF_ADR, virt_to_bus ( iob->data ) ); } static void falcon_notify_rx_desc ( struct efab_nic *efab, struct efab_rx_queue *rx_queue ) { efab_dword_t reg; int ptr = rx_queue->write_ptr % EFAB_RXD_SIZE; EFAB_POPULATE_DWORD_1 ( reg, FCN_RX_DESC_WPTR_DWORD, ptr ); falcon_writel ( efab, ®, FCN_RX_DESC_UPD_REG_KER_DWORD ); } /******************************************************************************* * * * Hardware tx path * * *******************************************************************************/ static void falcon_build_tx_desc ( falcon_tx_desc_t *txd, struct io_buffer *iob ) { EFAB_POPULATE_QWORD_2 ( *txd, FCN_TX_KER_BYTE_CNT, iob_len ( iob ), FCN_TX_KER_BUF_ADR, virt_to_bus ( iob->data ) ); } static void falcon_notify_tx_desc ( struct efab_nic *efab, struct efab_tx_queue *tx_queue ) { efab_dword_t reg; int ptr = tx_queue->write_ptr % EFAB_TXD_SIZE; EFAB_POPULATE_DWORD_1 ( reg, FCN_TX_DESC_WPTR_DWORD, ptr ); falcon_writel ( efab, ®, FCN_TX_DESC_UPD_REG_KER_DWORD ); } /******************************************************************************* * * * Software receive interface * * *******************************************************************************/ static int efab_fill_rx_queue ( struct efab_nic *efab, struct efab_rx_queue *rx_queue ) { int fill_level = rx_queue->write_ptr - rx_queue->read_ptr; int space = EFAB_NUM_RX_DESC - fill_level - 1; int pushed = 0; while ( space ) { int buf_id = rx_queue->write_ptr % EFAB_NUM_RX_DESC; int desc_id = rx_queue->write_ptr % EFAB_RXD_SIZE; struct io_buffer *iob; falcon_rx_desc_t *rxd; assert ( rx_queue->buf[buf_id] == NULL ); iob = alloc_iob ( EFAB_RX_BUF_SIZE ); if ( !iob ) break; EFAB_TRACE ( "pushing rx_buf[%d] iob %p data %p\n", buf_id, iob, iob->data ); rx_queue->buf[buf_id] = iob; rxd = rx_queue->ring + desc_id; falcon_build_rx_desc ( rxd, iob ); ++rx_queue->write_ptr; ++pushed; --space; } if ( pushed ) { /* Push the ptr to hardware */ falcon_notify_rx_desc ( efab, rx_queue ); fill_level = rx_queue->write_ptr - rx_queue->read_ptr; EFAB_TRACE ( "pushed %d rx buffers to fill level %d\n", pushed, fill_level ); } if ( fill_level == 0 ) return -ENOMEM; return 0; } static void efab_receive ( struct efab_nic *efab, unsigned int id, int len, int drop ) { struct efab_rx_queue *rx_queue = &efab->rx_queue; struct io_buffer *iob; unsigned int read_ptr = rx_queue->read_ptr % EFAB_RXD_SIZE; unsigned int buf_ptr = rx_queue->read_ptr % EFAB_NUM_RX_DESC; assert ( id == read_ptr ); /* Pop this rx buffer out of the software ring */ iob = rx_queue->buf[buf_ptr]; rx_queue->buf[buf_ptr] = NULL; EFAB_TRACE ( "popping rx_buf[%d] iob %p data %p with %d bytes %s\n", id, iob, iob->data, len, drop ? "bad" : "ok" ); /* Pass the packet up if required */ if ( drop ) free_iob ( iob ); else { iob_put ( iob, len ); netdev_rx ( efab->netdev, iob ); } ++rx_queue->read_ptr; } /******************************************************************************* * * * Software transmit interface * * *******************************************************************************/ static int efab_transmit ( struct net_device *netdev, struct io_buffer *iob ) { struct efab_nic *efab = netdev_priv ( netdev ); struct efab_tx_queue *tx_queue = &efab->tx_queue; int fill_level, space; falcon_tx_desc_t *txd; int buf_id; fill_level = tx_queue->write_ptr - tx_queue->read_ptr; space = EFAB_TXD_SIZE - fill_level - 1; if ( space < 1 ) return -ENOBUFS; /* Save the iobuffer for later completion */ buf_id = tx_queue->write_ptr % EFAB_TXD_SIZE; assert ( tx_queue->buf[buf_id] == NULL ); tx_queue->buf[buf_id] = iob; EFAB_TRACE ( "tx_buf[%d] for iob %p data %p len %zd\n", buf_id, iob, iob->data, iob_len ( iob ) ); /* Form the descriptor, and push it to hardware */ txd = tx_queue->ring + buf_id; falcon_build_tx_desc ( txd, iob ); ++tx_queue->write_ptr; falcon_notify_tx_desc ( efab, tx_queue ); return 0; } static int efab_transmit_done ( struct efab_nic *efab, int id ) { struct efab_tx_queue *tx_queue = &efab->tx_queue; unsigned int read_ptr, stop; /* Complete all buffers from read_ptr up to and including id */ read_ptr = tx_queue->read_ptr % EFAB_TXD_SIZE; stop = ( id + 1 ) % EFAB_TXD_SIZE; while ( read_ptr != stop ) { struct io_buffer *iob = tx_queue->buf[read_ptr]; assert ( iob ); /* Complete the tx buffer */ if ( iob ) netdev_tx_complete ( efab->netdev, iob ); tx_queue->buf[read_ptr] = NULL; ++tx_queue->read_ptr; read_ptr = tx_queue->read_ptr % EFAB_TXD_SIZE; } return 0; } /******************************************************************************* * * * Hardware event path * * *******************************************************************************/ static void falcon_clear_interrupts ( struct efab_nic *efab ) { efab_dword_t reg; if ( efab->pci_revision == FALCON_REV_B0 ) { /* read the ISR */ falcon_readl( efab, ®, INT_ISR0_B0 ); } else { /* write to the INT_ACK register */ EFAB_ZERO_DWORD ( reg ); falcon_writel ( efab, ®, FCN_INT_ACK_KER_REG_A1 ); mb(); falcon_readl ( efab, ®, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1 ); } } static void falcon_handle_event ( struct efab_nic *efab, falcon_event_t *evt ) { int ev_code, desc_ptr, len, drop; /* Decode event */ ev_code = EFAB_QWORD_FIELD ( *evt, FCN_EV_CODE ); switch ( ev_code ) { case FCN_TX_IP_EV_DECODE: desc_ptr = EFAB_QWORD_FIELD ( *evt, FCN_TX_EV_DESC_PTR ); efab_transmit_done ( efab, desc_ptr ); break; case FCN_RX_IP_EV_DECODE: desc_ptr = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_DESC_PTR ); len = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_BYTE_CNT ); drop = !EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_PKT_OK ); efab_receive ( efab, desc_ptr, len, drop ); break; default: EFAB_TRACE ( "Unknown event type %d\n", ev_code ); break; } } /******************************************************************************* * * * Software (polling) interrupt handler * * *******************************************************************************/ static void efab_poll ( struct net_device *netdev ) { struct efab_nic *efab = netdev_priv ( netdev ); struct efab_ev_queue *ev_queue = &efab->ev_queue; struct efab_rx_queue *rx_queue = &efab->rx_queue; falcon_event_t *evt; /* Read the event queue by directly looking for events * (we don't even bother to read the eventq write ptr) */ evt = ev_queue->ring + ev_queue->read_ptr; while ( falcon_event_present ( evt ) ) { EFAB_TRACE ( "Event at index 0x%x address %p is " EFAB_QWORD_FMT "\n", ev_queue->read_ptr, evt, EFAB_QWORD_VAL ( *evt ) ); falcon_handle_event ( efab, evt ); /* Clear the event */ EFAB_SET_QWORD ( *evt ); /* Move to the next event. We don't ack the event * queue until the end */ ev_queue->read_ptr = ( ( ev_queue->read_ptr + 1 ) % EFAB_EVQ_SIZE ); evt = ev_queue->ring + ev_queue->read_ptr; } /* Push more buffers if needed */ (void) efab_fill_rx_queue ( efab, rx_queue ); /* Clear any pending interrupts */ falcon_clear_interrupts ( efab ); /* Ack the event queue */ falcon_eventq_read_ack ( efab, ev_queue ); } static void efab_irq ( struct net_device *netdev, int enable ) { struct efab_nic *efab = netdev_priv ( netdev ); struct efab_ev_queue *ev_queue = &efab->ev_queue; switch ( enable ) { case 0: falcon_interrupts ( efab, 0, 0 ); break; case 1: falcon_interrupts ( efab, 1, 0 ); falcon_eventq_read_ack ( efab, ev_queue ); break; case 2: falcon_interrupts ( efab, 1, 1 ); break; } } /******************************************************************************* * * * Software open/close * * *******************************************************************************/ static void efab_free_resources ( struct efab_nic *efab ) { struct efab_ev_queue *ev_queue = &efab->ev_queue; struct efab_rx_queue *rx_queue = &efab->rx_queue; struct efab_tx_queue *tx_queue = &efab->tx_queue; int i; for ( i = 0; i < EFAB_NUM_RX_DESC; i++ ) { if ( rx_queue->buf[i] ) free_iob ( rx_queue->buf[i] ); } for ( i = 0; i < EFAB_TXD_SIZE; i++ ) { if ( tx_queue->buf[i] ) netdev_tx_complete ( efab->netdev, tx_queue->buf[i] ); } if ( rx_queue->ring ) falcon_free_special_buffer ( rx_queue->ring ); if ( tx_queue->ring ) falcon_free_special_buffer ( tx_queue->ring ); if ( ev_queue->ring ) falcon_free_special_buffer ( ev_queue->ring ); memset ( rx_queue, 0, sizeof ( *rx_queue ) ); memset ( tx_queue, 0, sizeof ( *tx_queue ) ); memset ( ev_queue, 0, sizeof ( *ev_queue ) ); /* Ensure subsequent buffer allocations start at id 0 */ efab->buffer_head = 0; } static int efab_alloc_resources ( struct efab_nic *efab ) { struct efab_ev_queue *ev_queue = &efab->ev_queue; struct efab_rx_queue *rx_queue = &efab->rx_queue; struct efab_tx_queue *tx_queue = &efab->tx_queue; size_t bytes; /* Allocate the hardware event queue */ bytes = sizeof ( falcon_event_t ) * EFAB_TXD_SIZE; ev_queue->ring = falcon_alloc_special_buffer ( efab, bytes, &ev_queue->entry ); if ( !ev_queue->ring ) goto fail1; /* Initialise the hardware event queue */ memset ( ev_queue->ring, 0xff, bytes ); /* Allocate the hardware tx queue */ bytes = sizeof ( falcon_tx_desc_t ) * EFAB_TXD_SIZE; tx_queue->ring = falcon_alloc_special_buffer ( efab, bytes, &tx_queue->entry ); if ( ! tx_queue->ring ) goto fail2; /* Allocate the hardware rx queue */ bytes = sizeof ( falcon_rx_desc_t ) * EFAB_RXD_SIZE; rx_queue->ring = falcon_alloc_special_buffer ( efab, bytes, &rx_queue->entry ); if ( ! rx_queue->ring ) goto fail3; return 0; fail3: falcon_free_special_buffer ( tx_queue->ring ); tx_queue->ring = NULL; fail2: falcon_free_special_buffer ( ev_queue->ring ); ev_queue->ring = NULL; fail1: return -ENOMEM; } static int efab_init_mac ( struct efab_nic *efab ) { int count, rc; /* This can take several seconds */ EFAB_LOG ( "Waiting for link..\n" ); for ( count=0; count<5; count++ ) { rc = efab->mac_op->init ( efab ); if ( rc ) { EFAB_ERR ( "Failed reinitialising MAC, error %s\n", strerror ( rc )); return rc; } /* Sleep for 2s to wait for the link to settle, either * because we want to use it, or because we're about * to reset the mac anyway */ mdelay ( 2000 ); if ( ! efab->link_up ) { EFAB_ERR ( "!\n" ); continue; } EFAB_LOG ( "\n%dMbps %s-duplex\n", ( efab->link_options & LPA_EF_10000 ? 10000 : ( efab->link_options & LPA_EF_1000 ? 1000 : ( efab->link_options & LPA_100 ? 100 : 10 ) ) ), ( efab->link_options & LPA_EF_DUPLEX ? "full" : "half" ) ); /* TODO: Move link state handling to the poll() routine */ netdev_link_up ( efab->netdev ); return 0; } EFAB_ERR ( "timed initialising MAC\n" ); return -ETIMEDOUT; } static void efab_close ( struct net_device *netdev ) { struct efab_nic *efab = netdev_priv ( netdev ); falcon_fini_resources ( efab ); efab_free_resources ( efab ); efab->board_op->fini ( efab ); falcon_reset ( efab ); } static int efab_open ( struct net_device *netdev ) { struct efab_nic *efab = netdev_priv ( netdev ); struct efab_rx_queue *rx_queue = &efab->rx_queue; int rc; rc = falcon_reset ( efab ); if ( rc ) goto fail1; rc = efab->board_op->init ( efab ); if ( rc ) goto fail2; rc = falcon_init_sram ( efab ); if ( rc ) goto fail3; /* Configure descriptor caches before pushing hardware queues */ falcon_setup_nic ( efab ); rc = efab_alloc_resources ( efab ); if ( rc ) goto fail4; falcon_init_resources ( efab ); /* Push rx buffers */ rc = efab_fill_rx_queue ( efab, rx_queue ); if ( rc ) goto fail5; /* Try and bring the interface up */ rc = efab_init_mac ( efab ); if ( rc ) goto fail6; return 0; fail6: fail5: efab_free_resources ( efab ); fail4: fail3: efab->board_op->fini ( efab ); fail2: falcon_reset ( efab ); fail1: return rc; } static struct net_device_operations efab_operations = { .open = efab_open, .close = efab_close, .transmit = efab_transmit, .poll = efab_poll, .irq = efab_irq, }; static void efab_remove ( struct pci_device *pci ) { struct net_device *netdev = pci_get_drvdata ( pci ); struct efab_nic *efab = netdev_priv ( netdev ); if ( efab->membase ) { falcon_reset ( efab ); iounmap ( efab->membase ); efab->membase = NULL; } if ( efab->nvo.nvs ) { unregister_nvo ( &efab->nvo ); efab->nvo.nvs = NULL; } unregister_netdev ( netdev ); netdev_nullify ( netdev ); netdev_put ( netdev ); } static int efab_probe ( struct pci_device *pci ) { struct net_device *netdev; struct efab_nic *efab; unsigned long mmio_start, mmio_len; int rc; /* Create the network adapter */ netdev = alloc_etherdev ( sizeof ( struct efab_nic ) ); if ( ! netdev ) { rc = -ENOMEM; goto fail1; } /* Initialise the network adapter, and initialise private storage */ netdev_init ( netdev, &efab_operations ); pci_set_drvdata ( pci, netdev ); netdev->dev = &pci->dev; efab = netdev_priv ( netdev ); memset ( efab, 0, sizeof ( *efab ) ); efab->netdev = netdev; /* Get iobase/membase */ mmio_start = pci_bar_start ( pci, PCI_BASE_ADDRESS_2 ); mmio_len = pci_bar_size ( pci, PCI_BASE_ADDRESS_2 ); efab->membase = ioremap ( mmio_start, mmio_len ); EFAB_TRACE ( "BAR of %lx bytes at phys %lx mapped at %p\n", mmio_len, mmio_start, efab->membase ); /* Enable the PCI device */ adjust_pci_device ( pci ); efab->iobase = pci->ioaddr & ~3; /* Determine the NIC variant */ falcon_probe_nic_variant ( efab, pci ); /* Read the SPI interface and determine the MAC address, * and the board and phy variant. Hook in the op tables */ rc = falcon_probe_spi ( efab ); if ( rc ) goto fail2; rc = falcon_probe_nvram ( efab ); if ( rc ) goto fail3; memcpy ( netdev->hw_addr, efab->mac_addr, ETH_ALEN ); rc = register_netdev ( netdev ); if ( rc ) goto fail4; netdev_link_up ( netdev ); /* Advertise non-volatile storage */ if ( efab->nvo.nvs ) { rc = register_nvo ( &efab->nvo, netdev_settings ( netdev ) ); if ( rc ) goto fail5; } EFAB_LOG ( "Found %s EtherFabric %s %s revision %d\n", pci->id->name, efab->is_asic ? "ASIC" : "FPGA", efab->phy_10g ? "10G" : "1G", efab->pci_revision ); return 0; fail5: unregister_netdev ( netdev ); fail4: fail3: fail2: iounmap ( efab->membase ); efab->membase = NULL; netdev_put ( netdev ); fail1: return rc; } static struct pci_device_id efab_nics[] = { PCI_ROM(0x1924, 0x0703, "falcon", "EtherFabric Falcon", 0), PCI_ROM(0x1924, 0x0710, "falconb0", "EtherFabric FalconB0", 0), }; struct pci_driver etherfabric_driver __pci_driver = { .ids = efab_nics, .id_count = sizeof ( efab_nics ) / sizeof ( efab_nics[0] ), .probe = efab_probe, .remove = efab_remove, }; /* * Local variables: * c-basic-offset: 8 * c-indent-level: 8 * tab-width: 8 * End: */