/* * Copyright (C) 2012 Michael Brown . * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * * You can also choose to distribute this program under the terms of * the Unmodified Binary Distribution Licence (as given in the file * COPYING.UBDL), provided that you have satisfied its requirements. */ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL ); #include #include #include #include #include #include #include #include #include #include #include #include #include "intel.h" /** @file * * Intel 10/100/1000 network card driver * */ /** VM transmit profiler */ static struct profiler intel_vm_tx_profiler __profiler = { .name = "intel.vm_tx" }; /** VM receive refill profiler */ static struct profiler intel_vm_refill_profiler __profiler = { .name = "intel.vm_refill" }; /** VM poll profiler */ static struct profiler intel_vm_poll_profiler __profiler = { .name = "intel.vm_poll" }; /****************************************************************************** * * EEPROM interface * ****************************************************************************** */ /** * Read data from EEPROM * * @v nvs NVS device * @v address Address from which to read * @v data Data buffer * @v len Length of data buffer * @ret rc Return status code */ static int intel_read_eeprom ( struct nvs_device *nvs, unsigned int address, void *data, size_t len ) { struct intel_nic *intel = container_of ( nvs, struct intel_nic, eeprom ); unsigned int i; uint32_t value; uint16_t *data_word = data; /* Sanity check. We advertise a blocksize of one word, so * should only ever receive single-word requests. */ assert ( len == sizeof ( *data_word ) ); /* Initiate read */ writel ( ( INTEL_EERD_START | ( address << intel->eerd_addr_shift ) ), intel->regs + INTEL_EERD ); /* Wait for read to complete */ for ( i = 0 ; i < INTEL_EEPROM_MAX_WAIT_MS ; i++ ) { /* If read is not complete, delay 1ms and retry */ value = readl ( intel->regs + INTEL_EERD ); if ( ! ( value & intel->eerd_done ) ) { mdelay ( 1 ); continue; } /* Extract data */ *data_word = cpu_to_le16 ( INTEL_EERD_DATA ( value ) ); return 0; } DBGC ( intel, "INTEL %p timed out waiting for EEPROM read\n", intel ); return -ETIMEDOUT; } /** * Write data to EEPROM * * @v nvs NVS device * @v address Address to which to write * @v data Data buffer * @v len Length of data buffer * @ret rc Return status code */ static int intel_write_eeprom ( struct nvs_device *nvs, unsigned int address __unused, const void *data __unused, size_t len __unused ) { struct intel_nic *intel = container_of ( nvs, struct intel_nic, eeprom ); DBGC ( intel, "INTEL %p EEPROM write not supported\n", intel ); return -ENOTSUP; } /** * Initialise EEPROM * * @v intel Intel device * @ret rc Return status code */ static int intel_init_eeprom ( struct intel_nic *intel ) { unsigned int i; uint32_t value; /* The NIC automatically detects the type of attached EEPROM. * The EERD register provides access to only a single word at * a time, so we pretend to have a single-word block size. * * The EEPROM size may be larger than the minimum size, but * this doesn't matter to us since we access only the first * few words. */ intel->eeprom.word_len_log2 = INTEL_EEPROM_WORD_LEN_LOG2; intel->eeprom.size = INTEL_EEPROM_MIN_SIZE_WORDS; intel->eeprom.block_size = 1; intel->eeprom.read = intel_read_eeprom; intel->eeprom.write = intel_write_eeprom; /* The layout of the EERD register was changed at some point * to accommodate larger EEPROMs. Read from address zero (for * which the request layouts are compatible) to determine * which type of register we have. */ writel ( INTEL_EERD_START, intel->regs + INTEL_EERD ); for ( i = 0 ; i < INTEL_EEPROM_MAX_WAIT_MS ; i++ ) { value = readl ( intel->regs + INTEL_EERD ); if ( value & INTEL_EERD_DONE_LARGE ) { DBGC ( intel, "INTEL %p has large-format EERD\n", intel ); intel->eerd_done = INTEL_EERD_DONE_LARGE; intel->eerd_addr_shift = INTEL_EERD_ADDR_SHIFT_LARGE; return 0; } if ( value & INTEL_EERD_DONE_SMALL ) { DBGC ( intel, "INTEL %p has small-format EERD\n", intel ); intel->eerd_done = INTEL_EERD_DONE_SMALL; intel->eerd_addr_shift = INTEL_EERD_ADDR_SHIFT_SMALL; return 0; } mdelay ( 1 ); } DBGC ( intel, "INTEL %p timed out waiting for initial EEPROM read " "(value %08x)\n", intel, value ); return -ETIMEDOUT; } /****************************************************************************** * * MAC address * ****************************************************************************** */ /** * Fetch initial MAC address from EEPROM * * @v intel Intel device * @v hw_addr Hardware address to fill in * @ret rc Return status code */ static int intel_fetch_mac_eeprom ( struct intel_nic *intel, uint8_t *hw_addr ) { int rc; /* Initialise EEPROM */ if ( ( rc = intel_init_eeprom ( intel ) ) != 0 ) return rc; /* Read base MAC address from EEPROM */ if ( ( rc = nvs_read ( &intel->eeprom, INTEL_EEPROM_MAC, hw_addr, ETH_ALEN ) ) != 0 ) { DBGC ( intel, "INTEL %p could not read EEPROM base MAC " "address: %s\n", intel, strerror ( rc ) ); return rc; } /* Adjust MAC address for multi-port devices */ hw_addr[ETH_ALEN-1] ^= intel->port; DBGC ( intel, "INTEL %p has EEPROM MAC address %s (port %d)\n", intel, eth_ntoa ( hw_addr ), intel->port ); return 0; } /** * Fetch initial MAC address * * @v intel Intel device * @v hw_addr Hardware address to fill in * @ret rc Return status code */ static int intel_fetch_mac ( struct intel_nic *intel, uint8_t *hw_addr ) { union intel_receive_address mac; int rc; /* Read current address from RAL0/RAH0 */ mac.reg.low = cpu_to_le32 ( readl ( intel->regs + INTEL_RAL0 ) ); mac.reg.high = cpu_to_le32 ( readl ( intel->regs + INTEL_RAH0 ) ); DBGC ( intel, "INTEL %p has autoloaded MAC address %s\n", intel, eth_ntoa ( mac.raw ) ); /* Use current address if valid */ if ( is_valid_ether_addr ( mac.raw ) ) { memcpy ( hw_addr, mac.raw, ETH_ALEN ); return 0; } /* Otherwise, try to read address from EEPROM */ if ( ( rc = intel_fetch_mac_eeprom ( intel, hw_addr ) ) == 0 ) return 0; DBGC ( intel, "INTEL %p has no MAC address to use\n", intel ); return -ENOENT; } /****************************************************************************** * * Device reset * ****************************************************************************** */ /** * Reset hardware * * @v intel Intel device * @ret rc Return status code */ static int intel_reset ( struct intel_nic *intel ) { uint32_t pbs; uint32_t pba; uint32_t ctrl; uint32_t status; uint32_t orig_ctrl; uint32_t orig_status; /* Record initial control and status register values */ orig_ctrl = ctrl = readl ( intel->regs + INTEL_CTRL ); orig_status = readl ( intel->regs + INTEL_STATUS ); /* Force RX and TX packet buffer allocation, to work around an * errata in ICH devices. */ if ( intel->flags & INTEL_PBS_ERRATA ) { DBGC ( intel, "INTEL %p WARNING: applying ICH PBS/PBA errata\n", intel ); pbs = readl ( intel->regs + INTEL_PBS ); pba = readl ( intel->regs + INTEL_PBA ); writel ( 0x08, intel->regs + INTEL_PBA ); writel ( 0x10, intel->regs + INTEL_PBS ); DBGC ( intel, "INTEL %p PBS %#08x->%#08x PBA %#08x->%#08x\n", intel, pbs, readl ( intel->regs + INTEL_PBS ), pba, readl ( intel->regs + INTEL_PBA ) ); } /* Always reset MAC. Required to reset the TX and RX rings. */ writel ( ( ctrl | INTEL_CTRL_RST ), intel->regs + INTEL_CTRL ); mdelay ( INTEL_RESET_DELAY_MS ); /* Set a sensible default configuration */ if ( ! ( intel->flags & INTEL_NO_ASDE ) ) ctrl |= INTEL_CTRL_ASDE; ctrl |= INTEL_CTRL_SLU; ctrl &= ~( INTEL_CTRL_LRST | INTEL_CTRL_FRCSPD | INTEL_CTRL_FRCDPLX ); writel ( ctrl, intel->regs + INTEL_CTRL ); mdelay ( INTEL_RESET_DELAY_MS ); /* On some models (notably ICH), the PHY reset mechanism * appears to be broken. In particular, the PHY_CTRL register * will be correctly loaded from NVM but the values will not * be propagated to the "OEM bits" PHY register. This * typically has the effect of dropping the link speed to * 10Mbps. * * Work around this problem by skipping the PHY reset if * either (a) the link is already up, or (b) this particular * NIC is known to be broken. */ status = readl ( intel->regs + INTEL_STATUS ); if ( ( intel->flags & INTEL_NO_PHY_RST ) || ( status & INTEL_STATUS_LU ) ) { DBGC ( intel, "INTEL %p %sMAC reset (%08x/%08x was " "%08x/%08x)\n", intel, ( ( intel->flags & INTEL_NO_PHY_RST ) ? "forced " : "" ), ctrl, status, orig_ctrl, orig_status ); return 0; } /* Reset PHY and MAC simultaneously */ writel ( ( ctrl | INTEL_CTRL_RST | INTEL_CTRL_PHY_RST ), intel->regs + INTEL_CTRL ); mdelay ( INTEL_RESET_DELAY_MS ); /* PHY reset is not self-clearing on all models */ writel ( ctrl, intel->regs + INTEL_CTRL ); mdelay ( INTEL_RESET_DELAY_MS ); status = readl ( intel->regs + INTEL_STATUS ); DBGC ( intel, "INTEL %p MAC+PHY reset (%08x/%08x was %08x/%08x)\n", intel, ctrl, status, orig_ctrl, orig_status ); return 0; } /****************************************************************************** * * Link state * ****************************************************************************** */ /** * Check link state * * @v netdev Network device */ static void intel_check_link ( struct net_device *netdev ) { struct intel_nic *intel = netdev->priv; uint32_t status; /* Read link status */ status = readl ( intel->regs + INTEL_STATUS ); DBGC ( intel, "INTEL %p link status is %08x\n", intel, status ); /* Update network device */ if ( status & INTEL_STATUS_LU ) { netdev_link_up ( netdev ); } else { netdev_link_down ( netdev ); } } /****************************************************************************** * * Descriptors * ****************************************************************************** */ /** * Populate transmit descriptor * * @v tx Transmit descriptor * @v addr Data buffer address * @v len Length of data */ void intel_describe_tx ( struct intel_descriptor *tx, physaddr_t addr, size_t len ) { /* Populate transmit descriptor */ tx->address = cpu_to_le64 ( addr ); tx->length = cpu_to_le16 ( len ); tx->flags = 0; tx->command = ( INTEL_DESC_CMD_RS | INTEL_DESC_CMD_IFCS | INTEL_DESC_CMD_EOP ); tx->status = 0; } /** * Populate advanced transmit descriptor * * @v tx Transmit descriptor * @v addr Data buffer address * @v len Length of data */ void intel_describe_tx_adv ( struct intel_descriptor *tx, physaddr_t addr, size_t len ) { /* Populate advanced transmit descriptor */ tx->address = cpu_to_le64 ( addr ); tx->length = cpu_to_le16 ( len ); tx->flags = INTEL_DESC_FL_DTYP_DATA; tx->command = ( INTEL_DESC_CMD_DEXT | INTEL_DESC_CMD_RS | INTEL_DESC_CMD_IFCS | INTEL_DESC_CMD_EOP ); tx->status = cpu_to_le32 ( INTEL_DESC_STATUS_PAYLEN ( len ) ); } /** * Populate receive descriptor * * @v rx Receive descriptor * @v addr Data buffer address * @v len Length of data */ void intel_describe_rx ( struct intel_descriptor *rx, physaddr_t addr, size_t len __unused ) { /* Populate transmit descriptor */ rx->address = cpu_to_le64 ( addr ); rx->length = 0; rx->status = 0; } /****************************************************************************** * * Network device interface * ****************************************************************************** */ /** * Disable descriptor ring * * @v intel Intel device * @v reg Register block * @ret rc Return status code */ static int intel_disable_ring ( struct intel_nic *intel, unsigned int reg ) { uint32_t dctl; unsigned int i; /* Disable ring */ writel ( 0, ( intel->regs + reg + INTEL_xDCTL ) ); /* Wait for disable to complete */ for ( i = 0 ; i < INTEL_DISABLE_MAX_WAIT_MS ; i++ ) { /* Check if ring is disabled */ dctl = readl ( intel->regs + reg + INTEL_xDCTL ); if ( ! ( dctl & INTEL_xDCTL_ENABLE ) ) return 0; /* Delay */ mdelay ( 1 ); } DBGC ( intel, "INTEL %p ring %05x timed out waiting for disable " "(dctl %08x)\n", intel, reg, dctl ); return -ETIMEDOUT; } /** * Reset descriptor ring * * @v intel Intel device * @v reg Register block * @ret rc Return status code */ void intel_reset_ring ( struct intel_nic *intel, unsigned int reg ) { /* Disable ring. Ignore errors and continue to reset the ring anyway */ intel_disable_ring ( intel, reg ); /* Clear ring length */ writel ( 0, ( intel->regs + reg + INTEL_xDLEN ) ); /* Clear ring address */ writel ( 0, ( intel->regs + reg + INTEL_xDBAH ) ); writel ( 0, ( intel->regs + reg + INTEL_xDBAL ) ); /* Reset head and tail pointers */ writel ( 0, ( intel->regs + reg + INTEL_xDH ) ); writel ( 0, ( intel->regs + reg + INTEL_xDT ) ); } /** * Create descriptor ring * * @v intel Intel device * @v ring Descriptor ring * @ret rc Return status code */ int intel_create_ring ( struct intel_nic *intel, struct intel_ring *ring ) { physaddr_t address; uint32_t dctl; /* Allocate descriptor ring. Align ring on its own size to * prevent any possible page-crossing errors due to hardware * errata. */ ring->desc = malloc_dma ( ring->len, ring->len ); if ( ! ring->desc ) return -ENOMEM; /* Initialise descriptor ring */ memset ( ring->desc, 0, ring->len ); /* Program ring address */ address = virt_to_bus ( ring->desc ); writel ( ( address & 0xffffffffUL ), ( intel->regs + ring->reg + INTEL_xDBAL ) ); if ( sizeof ( physaddr_t ) > sizeof ( uint32_t ) ) { writel ( ( ( ( uint64_t ) address ) >> 32 ), ( intel->regs + ring->reg + INTEL_xDBAH ) ); } else { writel ( 0, intel->regs + ring->reg + INTEL_xDBAH ); } /* Program ring length */ writel ( ring->len, ( intel->regs + ring->reg + INTEL_xDLEN ) ); /* Reset head and tail pointers */ writel ( 0, ( intel->regs + ring->reg + INTEL_xDH ) ); writel ( 0, ( intel->regs + ring->reg + INTEL_xDT ) ); /* Enable ring */ dctl = readl ( intel->regs + ring->reg + INTEL_xDCTL ); dctl |= INTEL_xDCTL_ENABLE; writel ( dctl, intel->regs + ring->reg + INTEL_xDCTL ); DBGC ( intel, "INTEL %p ring %05x is at [%08llx,%08llx)\n", intel, ring->reg, ( ( unsigned long long ) address ), ( ( unsigned long long ) address + ring->len ) ); return 0; } /** * Destroy descriptor ring * * @v intel Intel device * @v ring Descriptor ring */ void intel_destroy_ring ( struct intel_nic *intel, struct intel_ring *ring ) { /* Reset ring */ intel_reset_ring ( intel, ring->reg ); /* Free descriptor ring */ free_dma ( ring->desc, ring->len ); ring->desc = NULL; ring->prod = 0; ring->cons = 0; } /** * Refill receive descriptor ring * * @v intel Intel device */ void intel_refill_rx ( struct intel_nic *intel ) { struct intel_descriptor *rx; struct io_buffer *iobuf; unsigned int rx_idx; unsigned int rx_tail; physaddr_t address; unsigned int refilled = 0; /* Refill ring */ while ( ( intel->rx.prod - intel->rx.cons ) < INTEL_RX_FILL ) { /* Allocate I/O buffer */ iobuf = alloc_iob ( INTEL_RX_MAX_LEN ); if ( ! iobuf ) { /* Wait for next refill */ break; } /* Get next receive descriptor */ rx_idx = ( intel->rx.prod++ % INTEL_NUM_RX_DESC ); rx = &intel->rx.desc[rx_idx]; /* Populate receive descriptor */ address = virt_to_bus ( iobuf->data ); intel->rx.describe ( rx, address, 0 ); /* Record I/O buffer */ assert ( intel->rx_iobuf[rx_idx] == NULL ); intel->rx_iobuf[rx_idx] = iobuf; DBGC2 ( intel, "INTEL %p RX %d is [%llx,%llx)\n", intel, rx_idx, ( ( unsigned long long ) address ), ( ( unsigned long long ) address + INTEL_RX_MAX_LEN ) ); refilled++; } /* Push descriptors to card, if applicable */ if ( refilled ) { wmb(); rx_tail = ( intel->rx.prod % INTEL_NUM_RX_DESC ); profile_start ( &intel_vm_refill_profiler ); writel ( rx_tail, intel->regs + intel->rx.reg + INTEL_xDT ); profile_stop ( &intel_vm_refill_profiler ); profile_exclude ( &intel_vm_refill_profiler ); } } /** * Discard unused receive I/O buffers * * @v intel Intel device */ void intel_empty_rx ( struct intel_nic *intel ) { unsigned int i; for ( i = 0 ; i < INTEL_NUM_RX_DESC ; i++ ) { if ( intel->rx_iobuf[i] ) free_iob ( intel->rx_iobuf[i] ); intel->rx_iobuf[i] = NULL; } } /** * Open network device * * @v netdev Network device * @ret rc Return status code */ static int intel_open ( struct net_device *netdev ) { struct intel_nic *intel = netdev->priv; union intel_receive_address mac; uint32_t fextnvm11; uint32_t tctl; uint32_t rctl; int rc; /* Set undocumented bit in FEXTNVM11 to work around an errata * in i219 devices that will otherwise cause a complete * datapath hang at the next device reset. */ if ( intel->flags & INTEL_RST_HANG ) { DBGC ( intel, "INTEL %p WARNING: applying reset hang " "workaround\n", intel ); fextnvm11 = readl ( intel->regs + INTEL_FEXTNVM11 ); fextnvm11 |= INTEL_FEXTNVM11_WTF; writel ( fextnvm11, intel->regs + INTEL_FEXTNVM11 ); } /* Create transmit descriptor ring */ if ( ( rc = intel_create_ring ( intel, &intel->tx ) ) != 0 ) goto err_create_tx; /* Create receive descriptor ring */ if ( ( rc = intel_create_ring ( intel, &intel->rx ) ) != 0 ) goto err_create_rx; /* Program MAC address */ memset ( &mac, 0, sizeof ( mac ) ); memcpy ( mac.raw, netdev->ll_addr, sizeof ( mac.raw ) ); writel ( le32_to_cpu ( mac.reg.low ), intel->regs + INTEL_RAL0 ); writel ( ( le32_to_cpu ( mac.reg.high ) | INTEL_RAH0_AV ), intel->regs + INTEL_RAH0 ); /* Enable transmitter */ tctl = readl ( intel->regs + INTEL_TCTL ); tctl &= ~( INTEL_TCTL_CT_MASK | INTEL_TCTL_COLD_MASK ); tctl |= ( INTEL_TCTL_EN | INTEL_TCTL_PSP | INTEL_TCTL_CT_DEFAULT | INTEL_TCTL_COLD_DEFAULT ); writel ( tctl, intel->regs + INTEL_TCTL ); /* Enable receiver */ rctl = readl ( intel->regs + INTEL_RCTL ); rctl &= ~( INTEL_RCTL_BSIZE_BSEX_MASK ); rctl |= ( INTEL_RCTL_EN | INTEL_RCTL_UPE | INTEL_RCTL_MPE | INTEL_RCTL_BAM | INTEL_RCTL_BSIZE_2048 | INTEL_RCTL_SECRC ); writel ( rctl, intel->regs + INTEL_RCTL ); /* Fill receive ring */ intel_refill_rx ( intel ); /* Update link state */ intel_check_link ( netdev ); /* Apply required errata */ if ( intel->flags & INTEL_VMWARE ) { DBGC ( intel, "INTEL %p applying VMware errata workaround\n", intel ); intel->force_icr = INTEL_IRQ_RXT0; } return 0; intel_destroy_ring ( intel, &intel->rx ); err_create_rx: intel_destroy_ring ( intel, &intel->tx ); err_create_tx: return rc; } /** * Close network device * * @v netdev Network device */ static void intel_close ( struct net_device *netdev ) { struct intel_nic *intel = netdev->priv; /* Disable receiver */ writel ( 0, intel->regs + INTEL_RCTL ); /* Disable transmitter */ writel ( 0, intel->regs + INTEL_TCTL ); /* Destroy receive descriptor ring */ intel_destroy_ring ( intel, &intel->rx ); /* Discard any unused receive buffers */ intel_empty_rx ( intel ); /* Destroy transmit descriptor ring */ intel_destroy_ring ( intel, &intel->tx ); /* Reset the NIC, to flush the transmit and receive FIFOs */ intel_reset ( intel ); } /** * Transmit packet * * @v netdev Network device * @v iobuf I/O buffer * @ret rc Return status code */ int intel_transmit ( struct net_device *netdev, struct io_buffer *iobuf ) { struct intel_nic *intel = netdev->priv; struct intel_descriptor *tx; unsigned int tx_idx; unsigned int tx_tail; physaddr_t address; size_t len; /* Get next transmit descriptor */ if ( ( intel->tx.prod - intel->tx.cons ) >= INTEL_TX_FILL ) { DBGC ( intel, "INTEL %p out of transmit descriptors\n", intel ); return -ENOBUFS; } tx_idx = ( intel->tx.prod++ % INTEL_NUM_TX_DESC ); tx_tail = ( intel->tx.prod % INTEL_NUM_TX_DESC ); tx = &intel->tx.desc[tx_idx]; /* Populate transmit descriptor */ address = virt_to_bus ( iobuf->data ); len = iob_len ( iobuf ); intel->tx.describe ( tx, address, len ); wmb(); /* Notify card that there are packets ready to transmit */ profile_start ( &intel_vm_tx_profiler ); writel ( tx_tail, intel->regs + intel->tx.reg + INTEL_xDT ); profile_stop ( &intel_vm_tx_profiler ); profile_exclude ( &intel_vm_tx_profiler ); DBGC2 ( intel, "INTEL %p TX %d is [%llx,%llx)\n", intel, tx_idx, ( ( unsigned long long ) address ), ( ( unsigned long long ) address + len ) ); return 0; } /** * Poll for completed packets * * @v netdev Network device */ void intel_poll_tx ( struct net_device *netdev ) { struct intel_nic *intel = netdev->priv; struct intel_descriptor *tx; unsigned int tx_idx; /* Check for completed packets */ while ( intel->tx.cons != intel->tx.prod ) { /* Get next transmit descriptor */ tx_idx = ( intel->tx.cons % INTEL_NUM_TX_DESC ); tx = &intel->tx.desc[tx_idx]; /* Stop if descriptor is still in use */ if ( ! ( tx->status & cpu_to_le32 ( INTEL_DESC_STATUS_DD ) ) ) return; DBGC2 ( intel, "INTEL %p TX %d complete\n", intel, tx_idx ); /* Complete TX descriptor */ netdev_tx_complete_next ( netdev ); intel->tx.cons++; } } /** * Poll for received packets * * @v netdev Network device */ void intel_poll_rx ( struct net_device *netdev ) { struct intel_nic *intel = netdev->priv; struct intel_descriptor *rx; struct io_buffer *iobuf; unsigned int rx_idx; size_t len; /* Check for received packets */ while ( intel->rx.cons != intel->rx.prod ) { /* Get next receive descriptor */ rx_idx = ( intel->rx.cons % INTEL_NUM_RX_DESC ); rx = &intel->rx.desc[rx_idx]; /* Stop if descriptor is still in use */ if ( ! ( rx->status & cpu_to_le32 ( INTEL_DESC_STATUS_DD ) ) ) return; /* Populate I/O buffer */ iobuf = intel->rx_iobuf[rx_idx]; intel->rx_iobuf[rx_idx] = NULL; len = le16_to_cpu ( rx->length ); iob_put ( iobuf, len ); /* Hand off to network stack */ if ( rx->status & cpu_to_le32 ( INTEL_DESC_STATUS_RXE ) ) { DBGC ( intel, "INTEL %p RX %d error (length %zd, " "status %08x)\n", intel, rx_idx, len, le32_to_cpu ( rx->status ) ); netdev_rx_err ( netdev, iobuf, -EIO ); } else { DBGC2 ( intel, "INTEL %p RX %d complete (length %zd)\n", intel, rx_idx, len ); netdev_rx ( netdev, iobuf ); } intel->rx.cons++; } } /** * Poll for completed and received packets * * @v netdev Network device */ static void intel_poll ( struct net_device *netdev ) { struct intel_nic *intel = netdev->priv; uint32_t icr; /* Check for and acknowledge interrupts */ profile_start ( &intel_vm_poll_profiler ); icr = readl ( intel->regs + INTEL_ICR ); profile_stop ( &intel_vm_poll_profiler ); profile_exclude ( &intel_vm_poll_profiler ); icr |= intel->force_icr; if ( ! icr ) return; /* Poll for TX completions, if applicable */ if ( icr & INTEL_IRQ_TXDW ) intel_poll_tx ( netdev ); /* Poll for RX completions, if applicable */ if ( icr & ( INTEL_IRQ_RXT0 | INTEL_IRQ_RXO ) ) intel_poll_rx ( netdev ); /* Report receive overruns */ if ( icr & INTEL_IRQ_RXO ) netdev_rx_err ( netdev, NULL, -ENOBUFS ); /* Check link state, if applicable */ if ( icr & INTEL_IRQ_LSC ) intel_check_link ( netdev ); /* Check for unexpected interrupts */ if ( icr & ~( INTEL_IRQ_TXDW | INTEL_IRQ_TXQE | INTEL_IRQ_LSC | INTEL_IRQ_RXDMT0 | INTEL_IRQ_RXT0 | INTEL_IRQ_RXO ) ) { DBGC ( intel, "INTEL %p unexpected ICR %08x\n", intel, icr ); /* Report as a TX error */ netdev_tx_err ( netdev, NULL, -ENOTSUP ); } /* Refill RX ring */ intel_refill_rx ( intel ); } /** * Enable or disable interrupts * * @v netdev Network device * @v enable Interrupts should be enabled */ static void intel_irq ( struct net_device *netdev, int enable ) { struct intel_nic *intel = netdev->priv; uint32_t mask; mask = ( INTEL_IRQ_TXDW | INTEL_IRQ_LSC | INTEL_IRQ_RXT0 ); if ( enable ) { writel ( mask, intel->regs + INTEL_IMS ); } else { writel ( mask, intel->regs + INTEL_IMC ); } } /** Intel network device operations */ static struct net_device_operations intel_operations = { .open = intel_open, .close = intel_close, .transmit = intel_transmit, .poll = intel_poll, .irq = intel_irq, }; /****************************************************************************** * * PCI interface * ****************************************************************************** */ /** * Probe PCI device * * @v pci PCI device * @ret rc Return status code */ static int intel_probe ( struct pci_device *pci ) { struct net_device *netdev; struct intel_nic *intel; int rc; /* Allocate and initialise net device */ netdev = alloc_etherdev ( sizeof ( *intel ) ); if ( ! netdev ) { rc = -ENOMEM; goto err_alloc; } netdev_init ( netdev, &intel_operations ); intel = netdev->priv; pci_set_drvdata ( pci, netdev ); netdev->dev = &pci->dev; memset ( intel, 0, sizeof ( *intel ) ); intel->port = PCI_FUNC ( pci->busdevfn ); intel->flags = pci->id->driver_data; intel_init_ring ( &intel->tx, INTEL_NUM_TX_DESC, INTEL_TD, intel_describe_tx ); intel_init_ring ( &intel->rx, INTEL_NUM_RX_DESC, INTEL_RD, intel_describe_rx ); /* Fix up PCI device */ adjust_pci_device ( pci ); /* Map registers */ intel->regs = ioremap ( pci->membase, INTEL_BAR_SIZE ); if ( ! intel->regs ) { rc = -ENODEV; goto err_ioremap; } /* Reset the NIC */ if ( ( rc = intel_reset ( intel ) ) != 0 ) goto err_reset; /* Fetch MAC address */ if ( ( rc = intel_fetch_mac ( intel, netdev->hw_addr ) ) != 0 ) goto err_fetch_mac; /* Register network device */ if ( ( rc = register_netdev ( netdev ) ) != 0 ) goto err_register_netdev; /* Set initial link state */ intel_check_link ( netdev ); return 0; unregister_netdev ( netdev ); err_register_netdev: err_fetch_mac: intel_reset ( intel ); err_reset: iounmap ( intel->regs ); err_ioremap: netdev_nullify ( netdev ); netdev_put ( netdev ); err_alloc: return rc; } /** * Remove PCI device * * @v pci PCI device */ static void intel_remove ( struct pci_device *pci ) { struct net_device *netdev = pci_get_drvdata ( pci ); struct intel_nic *intel = netdev->priv; /* Unregister network device */ unregister_netdev ( netdev ); /* Reset the NIC */ intel_reset ( intel ); /* Free network device */ iounmap ( intel->regs ); netdev_nullify ( netdev ); netdev_put ( netdev ); } /** Intel PCI device IDs */ static struct pci_device_id intel_nics[] = { PCI_ROM ( 0x8086, 0x0438, "dh8900cc", "DH8900CC", 0 ), PCI_ROM ( 0x8086, 0x043a, "dh8900cc-f", "DH8900CC Fiber", 0 ), PCI_ROM ( 0x8086, 0x043c, "dh8900cc-b", "DH8900CC Backplane", 0 ), PCI_ROM ( 0x8086, 0x0440, "dh8900cc-s", "DH8900CC SFP", 0 ), PCI_ROM ( 0x8086, 0x1000, "82542-f", "82542 (Fiber)", 0 ), PCI_ROM ( 0x8086, 0x1001, "82543gc-f", "82543GC (Fiber)", 0 ), PCI_ROM ( 0x8086, 0x1004, "82543gc", "82543GC (Copper)", 0 ), PCI_ROM ( 0x8086, 0x1008, "82544ei", "82544EI (Copper)", 0 ), PCI_ROM ( 0x8086, 0x1009, "82544ei-f", "82544EI (Fiber)", 0 ), PCI_ROM ( 0x8086, 0x100c, "82544gc", "82544GC (Copper)", 0 ), PCI_ROM ( 0x8086, 0x100d, "82544gc-l", "82544GC (LOM)", 0 ), PCI_ROM ( 0x8086, 0x100e, "82540em", "82540EM", 0 ), PCI_ROM ( 0x8086, 0x100f, "82545em", "82545EM (Copper)", INTEL_VMWARE ), PCI_ROM ( 0x8086, 0x1010, "82546eb", "82546EB (Copper)", 0 ), PCI_ROM ( 0x8086, 0x1011, "82545em-f", "82545EM (Fiber)", 0 ), PCI_ROM ( 0x8086, 0x1012, "82546eb-f", "82546EB (Fiber)", 0 ), PCI_ROM ( 0x8086, 0x1013, "82541ei", "82541EI", 0 ), PCI_ROM ( 0x8086, 0x1014, "82541er", "82541ER", 0 ), PCI_ROM ( 0x8086, 0x1015, "82540em-l", "82540EM (LOM)", 0 ), PCI_ROM ( 0x8086, 0x1016, "82540ep-m", "82540EP (Mobile)", 0 ), PCI_ROM ( 0x8086, 0x1017, "82540ep", "82540EP", 0 ), PCI_ROM ( 0x8086, 0x1018, "82541ei", "82541EI", 0 ), PCI_ROM ( 0x8086, 0x1019, "82547ei", "82547EI", 0 ), PCI_ROM ( 0x8086, 0x101a, "82547ei-m", "82547EI (Mobile)", 0 ), PCI_ROM ( 0x8086, 0x101d, "82546eb", "82546EB", 0 ), PCI_ROM ( 0x8086, 0x101e, "82540ep-m", "82540EP (Mobile)", 0 ), PCI_ROM ( 0x8086, 0x1026, "82545gm", "82545GM", 0 ), PCI_ROM ( 0x8086, 0x1027, "82545gm-1", "82545GM", 0 ), PCI_ROM ( 0x8086, 0x1028, "82545gm-2", "82545GM", 0 ), PCI_ROM ( 0x8086, 0x1049, "82566mm", "82566MM", INTEL_PBS_ERRATA ), PCI_ROM ( 0x8086, 0x104a, "82566dm", "82566DM", INTEL_PBS_ERRATA ), PCI_ROM ( 0x8086, 0x104b, "82566dc", "82566DC", INTEL_PBS_ERRATA ), PCI_ROM ( 0x8086, 0x104c, "82562v", "82562V", INTEL_PBS_ERRATA ), PCI_ROM ( 0x8086, 0x104d, "82566mc", "82566MC", INTEL_PBS_ERRATA ), PCI_ROM ( 0x8086, 0x105e, "82571eb", "82571EB", 0 ), PCI_ROM ( 0x8086, 0x105f, "82571eb-1", "82571EB", 0 ), PCI_ROM ( 0x8086, 0x1060, "82571eb-2", "82571EB", 0 ), PCI_ROM ( 0x8086, 0x1075, "82547gi", "82547GI", 0 ), PCI_ROM ( 0x8086, 0x1076, "82541gi", "82541GI", 0 ), PCI_ROM ( 0x8086, 0x1077, "82541gi-1", "82541GI", 0 ), PCI_ROM ( 0x8086, 0x1078, "82541er", "82541ER", 0 ), PCI_ROM ( 0x8086, 0x1079, "82546gb", "82546GB", 0 ), PCI_ROM ( 0x8086, 0x107a, "82546gb-1", "82546GB", 0 ), PCI_ROM ( 0x8086, 0x107b, "82546gb-2", "82546GB", 0 ), PCI_ROM ( 0x8086, 0x107c, "82541pi", "82541PI", 0 ), PCI_ROM ( 0x8086, 0x107d, "82572ei", "82572EI (Copper)", 0 ), PCI_ROM ( 0x8086, 0x107e, "82572ei-f", "82572EI (Fiber)", 0 ), PCI_ROM ( 0x8086, 0x107f, "82572ei", "82572EI", 0 ), PCI_ROM ( 0x8086, 0x108a, "82546gb-3", "82546GB", 0 ), PCI_ROM ( 0x8086, 0x108b, "82573v", "82573V (Copper)", 0 ), PCI_ROM ( 0x8086, 0x108c, "82573e", "82573E (Copper)", 0 ), PCI_ROM ( 0x8086, 0x1096, "80003es2lan", "80003ES2LAN (Copper)", 0 ), PCI_ROM ( 0x8086, 0x1098, "80003es2lan-s", "80003ES2LAN (Serdes)", 0 ), PCI_ROM ( 0x8086, 0x1099, "82546gb-4", "82546GB (Copper)", 0 ), PCI_ROM ( 0x8086, 0x109a, "82573l", "82573L", 0 ), PCI_ROM ( 0x8086, 0x10a4, "82571eb", "82571EB", 0 ), PCI_ROM ( 0x8086, 0x10a5, "82571eb", "82571EB (Fiber)", 0 ), PCI_ROM ( 0x8086, 0x10a7, "82575eb", "82575EB", 0 ), PCI_ROM ( 0x8086, 0x10a9, "82575eb", "82575EB Backplane", 0 ), PCI_ROM ( 0x8086, 0x10b5, "82546gb", "82546GB (Copper)", 0 ), PCI_ROM ( 0x8086, 0x10b9, "82572ei", "82572EI (Copper)", 0 ), PCI_ROM ( 0x8086, 0x10ba, "80003es2lan", "80003ES2LAN (Copper)", 0 ), PCI_ROM ( 0x8086, 0x10bb, "80003es2lan", "80003ES2LAN (Serdes)", 0 ), PCI_ROM ( 0x8086, 0x10bc, "82571eb", "82571EB (Copper)", 0 ), PCI_ROM ( 0x8086, 0x10bd, "82566dm-2", "82566DM-2", 0 ), PCI_ROM ( 0x8086, 0x10bf, "82567lf", "82567LF", 0 ), PCI_ROM ( 0x8086, 0x10c0, "82562v-2", "82562V-2", 0 ), PCI_ROM ( 0x8086, 0x10c2, "82562g-2", "82562G-2", 0 ), PCI_ROM ( 0x8086, 0x10c3, "82562gt-2", "82562GT-2", 0 ), PCI_ROM ( 0x8086, 0x10c4, "82562gt", "82562GT", INTEL_PBS_ERRATA ), PCI_ROM ( 0x8086, 0x10c5, "82562g", "82562G", INTEL_PBS_ERRATA ), PCI_ROM ( 0x8086, 0x10c9, "82576", "82576", 0 ), PCI_ROM ( 0x8086, 0x10cb, "82567v", "82567V", 0 ), PCI_ROM ( 0x8086, 0x10cc, "82567lm-2", "82567LM-2", 0 ), PCI_ROM ( 0x8086, 0x10cd, "82567lf-2", "82567LF-2", 0 ), PCI_ROM ( 0x8086, 0x10ce, "82567v-2", "82567V-2", 0 ), PCI_ROM ( 0x8086, 0x10d3, "82574l", "82574L", 0 ), PCI_ROM ( 0x8086, 0x10d5, "82571pt", "82571PT PT Quad", 0 ), PCI_ROM ( 0x8086, 0x10d6, "82575gb", "82575GB", 0 ), PCI_ROM ( 0x8086, 0x10d9, "82571eb-d", "82571EB Dual Mezzanine", 0 ), PCI_ROM ( 0x8086, 0x10da, "82571eb-q", "82571EB Quad Mezzanine", 0 ), PCI_ROM ( 0x8086, 0x10de, "82567lm-3", "82567LM-3", 0 ), PCI_ROM ( 0x8086, 0x10df, "82567lf-3", "82567LF-3", 0 ), PCI_ROM ( 0x8086, 0x10e5, "82567lm-4", "82567LM-4", 0 ), PCI_ROM ( 0x8086, 0x10e6, "82576", "82576", 0 ), PCI_ROM ( 0x8086, 0x10e7, "82576-2", "82576", 0 ), PCI_ROM ( 0x8086, 0x10e8, "82576-3", "82576", 0 ), PCI_ROM ( 0x8086, 0x10ea, "82577lm", "82577LM", 0 ), PCI_ROM ( 0x8086, 0x10eb, "82577lc", "82577LC", 0 ), PCI_ROM ( 0x8086, 0x10ef, "82578dm", "82578DM", 0 ), PCI_ROM ( 0x8086, 0x10f0, "82578dc", "82578DC", 0 ), PCI_ROM ( 0x8086, 0x10f5, "82567lm", "82567LM", 0 ), PCI_ROM ( 0x8086, 0x10f6, "82574l", "82574L", 0 ), PCI_ROM ( 0x8086, 0x1501, "82567v-3", "82567V-3", INTEL_PBS_ERRATA ), PCI_ROM ( 0x8086, 0x1502, "82579lm", "82579LM", INTEL_NO_PHY_RST ), PCI_ROM ( 0x8086, 0x1503, "82579v", "82579V", 0 ), PCI_ROM ( 0x8086, 0x150a, "82576ns", "82576NS", 0 ), PCI_ROM ( 0x8086, 0x150c, "82583v", "82583V", 0 ), PCI_ROM ( 0x8086, 0x150d, "82576-4", "82576 Backplane", 0 ), PCI_ROM ( 0x8086, 0x150e, "82580", "82580", 0 ), PCI_ROM ( 0x8086, 0x150f, "82580-f", "82580 Fiber", 0 ), PCI_ROM ( 0x8086, 0x1510, "82580-b", "82580 Backplane", 0 ), PCI_ROM ( 0x8086, 0x1511, "82580-s", "82580 SFP", 0 ), PCI_ROM ( 0x8086, 0x1516, "82580-2", "82580", 0 ), PCI_ROM ( 0x8086, 0x1518, "82576ns", "82576NS SerDes", 0 ), PCI_ROM ( 0x8086, 0x1521, "i350", "I350", 0 ), PCI_ROM ( 0x8086, 0x1522, "i350-f", "I350 Fiber", 0 ), PCI_ROM ( 0x8086, 0x1523, "i350-b", "I350 Backplane", INTEL_NO_ASDE ), PCI_ROM ( 0x8086, 0x1524, "i350-2", "I350", 0 ), PCI_ROM ( 0x8086, 0x1525, "82567v-4", "82567V-4", 0 ), PCI_ROM ( 0x8086, 0x1526, "82576-5", "82576", 0 ), PCI_ROM ( 0x8086, 0x1527, "82580-f2", "82580 Fiber", 0 ), PCI_ROM ( 0x8086, 0x1533, "i210", "I210", 0 ), PCI_ROM ( 0x8086, 0x1539, "i211", "I211", 0 ), PCI_ROM ( 0x8086, 0x153a, "i217lm", "I217-LM", INTEL_NO_PHY_RST ), PCI_ROM ( 0x8086, 0x153b, "i217v", "I217-V", 0 ), PCI_ROM ( 0x8086, 0x1559, "i218v", "I218-V", 0), PCI_ROM ( 0x8086, 0x155a, "i218lm", "I218-LM", 0), PCI_ROM ( 0x8086, 0x156f, "i219lm", "I219-LM", INTEL_I219 ), PCI_ROM ( 0x8086, 0x1570, "i219v", "I219-V", INTEL_I219 ), PCI_ROM ( 0x8086, 0x157b, "i210-2", "I210", 0 ), PCI_ROM ( 0x8086, 0x15a0, "i218lm-2", "I218-LM", INTEL_NO_PHY_RST ), PCI_ROM ( 0x8086, 0x15a1, "i218v-2", "I218-V", 0 ), PCI_ROM ( 0x8086, 0x15a2, "i218lm-3", "I218-LM", INTEL_NO_PHY_RST ), PCI_ROM ( 0x8086, 0x15a3, "i218v-3", "I218-V", INTEL_NO_PHY_RST ), PCI_ROM ( 0x8086, 0x15b7, "i219lm-2", "I219-LM (2)", INTEL_I219 ), PCI_ROM ( 0x8086, 0x15b8, "i219v-2", "I219-V (2)", INTEL_I219 ), PCI_ROM ( 0x8086, 0x15b9, "i219lm-3", "I219-LM (3)", INTEL_I219 ), PCI_ROM ( 0x8086, 0x15d6, "i219v-5", "I219-V (5)", INTEL_I219 ), PCI_ROM ( 0x8086, 0x15d7, "i219lm-4", "I219-LM (4)", INTEL_I219 ), PCI_ROM ( 0x8086, 0x15d8, "i219v-4", "I219-V (4)", INTEL_I219 ), PCI_ROM ( 0x8086, 0x15e3, "i219lm-5", "I219-LM (5)", INTEL_I219 ), PCI_ROM ( 0x8086, 0x1f41, "i354", "I354", INTEL_NO_ASDE ), PCI_ROM ( 0x8086, 0x294c, "82566dc-2", "82566DC-2", 0 ), PCI_ROM ( 0x8086, 0x2e6e, "cemedia", "CE Media Processor", 0 ), }; /** Intel PCI driver */ struct pci_driver intel_driver __pci_driver = { .ids = intel_nics, .id_count = ( sizeof ( intel_nics ) / sizeof ( intel_nics[0] ) ), .probe = intel_probe, .remove = intel_remove, };