/* * Copyright (C) 2024 Michael Brown . * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * * You can also choose to distribute this program under the terms of * the Unmodified Binary Distribution Licence (as given in the file * COPYING.UBDL), provided that you have satisfied its requirements. */ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL ); /** @file * * X25519 key exchange test * * Full key exchange test vectors are taken from RFC7748. * */ /* Forcibly enable assertions */ #undef NDEBUG #include #include #include #include /** Define inline multiplicand */ #define MULTIPLICAND(...) { __VA_ARGS__ } /** Define inline multiplier */ #define MULTIPLIER(...) { __VA_ARGS__ } /** Define inline invertend */ #define INVERTEND(...) { __VA_ARGS__ } /** Define inline base point */ #define BASE(...) { __VA_ARGS__ } /** Define inline scalar multiple */ #define SCALAR(...) { __VA_ARGS__ } /** Define inline expected result */ #define EXPECTED(...) { __VA_ARGS__ } /** An X25519 multiplication self-test */ struct x25519_multiply_test { /** Multiplicand */ const void *multiplicand; /** Length of multiplicand */ size_t multiplicand_len; /** Multiplier */ const void *multiplier; /** Length of multiplier */ size_t multiplier_len; /** Expected result */ const void *expected; /** Length of expected result */ size_t expected_len; }; /** * Define an X25519 multiplication test * * @v name Test name * @v MULTIPLICAND 258-bit multiplicand * @v MULTIPLIER 258-bit multiplier * @v EXPECTED 255-bit expected result * @ret test X25519 multiplication test */ #define X25519_MULTIPLY_TEST( name, MULTIPLICAND, MULTIPLIER, \ EXPECTED ) \ static const uint8_t name ## _multiplicand[] = MULTIPLICAND; \ static const uint8_t name ## _multiplier[] = MULTIPLIER; \ static const uint8_t name ## _expected[] = EXPECTED; \ static struct x25519_multiply_test name = { \ .multiplicand = name ## _multiplicand, \ .multiplicand_len = sizeof ( name ## _multiplicand ), \ .multiplier = name ## _multiplier, \ .multiplier_len = sizeof ( name ## _multiplier ), \ .expected = name ## _expected, \ .expected_len = sizeof ( name ## _expected ), \ } /** An X25519 multiplicative inversion self-test */ struct x25519_invert_test { /** Invertend */ const void *invertend; /** Length of invertend */ size_t invertend_len; /** Expected result */ const void *expected; /** Length of expected result */ size_t expected_len; }; /** * Define an X25519 multiplicative inversion test * * @v name Test name * @v INVERTEND 258-bit invertend * @v EXPECTED 255-bit expected result * @ret test X25519 multiplicative inversion test */ #define X25519_INVERT_TEST( name, INVERTEND, EXPECTED ) \ static const uint8_t name ## _invertend[] = INVERTEND; \ static const uint8_t name ## _expected[] = EXPECTED; \ static struct x25519_invert_test name = { \ .invertend = name ## _invertend, \ .invertend_len = sizeof ( name ## _invertend ), \ .expected = name ## _expected, \ .expected_len = sizeof ( name ## _expected ), \ } /** An X25519 key exchange self-test */ struct x25519_key_test { /** Base */ struct x25519_value base; /** Scalar */ struct x25519_value scalar; /** Expected result */ struct x25519_value expected; /** Number of iterations */ unsigned int count; /** Key exchange is expected to fail (i.e. produce all-zeroes) */ int fail; }; /** * Define an X25519 key exchange test * * @v name Test name * @v COUNT Number of iterations * @v FAIL Expected failure status * @v BASE Base point * @v SCALAR Scalar multiple * @v EXPECTED Expected result * @ret test X25519 key exchange test */ #define X25519_KEY_TEST( name, COUNT, FAIL, BASE, SCALAR, EXPECTED ) \ static struct x25519_key_test name = { \ .count = COUNT, \ .fail = FAIL, \ .base = { .raw = BASE }, \ .scalar = { .raw = SCALAR }, \ .expected = { .raw = EXPECTED }, \ } /** * Report an X25519 multiplication test result * * @v test X25519 multiplication test * @v file Test code file * @v line Test code line */ static void x25519_multiply_okx ( struct x25519_multiply_test *test, const char *file, unsigned int line ) { union x25519_oct258 multiplicand; union x25519_oct258 multiplier; union x25519_quad257 expected; union x25519_quad257 actual; /* Construct big integers */ bigint_init ( &multiplicand.value, test->multiplicand, test->multiplicand_len ); DBGC ( test, "X25519 multiplicand:\n" ); DBGC_HDA ( test, 0, &multiplicand, sizeof ( multiplicand ) ); bigint_init ( &multiplier.value, test->multiplier, test->multiplier_len ); DBGC ( test, "X25519 multiplier:\n" ); DBGC_HDA ( test, 0, &multiplier, sizeof ( multiplier ) ); bigint_init ( &expected.value, test->expected, test->expected_len ); DBGC ( test, "X25519 expected product:\n" ); DBGC_HDA ( test, 0, &expected, sizeof ( expected ) ); /* Perform multiplication */ x25519_multiply ( &multiplicand, &multiplier, &actual ); /* Reduce result to allow for comparison */ x25519_reduce ( &actual ); DBGC ( test, "X25519 actual product:\n" ); DBGC_HDA ( test, 0, &actual, sizeof ( actual ) ); /* Compare against expected result */ okx ( memcmp ( &actual, &expected, sizeof ( expected ) ) == 0, file, line ); } #define x25519_multiply_ok( test ) \ x25519_multiply_okx ( test, __FILE__, __LINE__ ) /** * Report an X25519 multiplicative inversion test result * * @v test X25519 multiplicative inversion test * @v file Test code file * @v line Test code line */ static void x25519_invert_okx ( struct x25519_invert_test *test, const char *file, unsigned int line ) { static const uint8_t one[] = { 1 }; union x25519_oct258 invertend; union x25519_quad257 expected; union x25519_quad257 actual; union x25519_quad257 product; union x25519_quad257 identity; /* Construct big integers */ bigint_init ( &invertend.value, test->invertend, test->invertend_len ); DBGC ( test, "X25519 invertend:\n" ); DBGC_HDA ( test, 0, &invertend, sizeof ( invertend ) ); bigint_init ( &expected.value, test->expected, test->expected_len ); DBGC ( test, "X25519 expected inverse:\n" ); DBGC_HDA ( test, 0, &expected, sizeof ( expected ) ); bigint_init ( &identity.value, one, sizeof ( one ) ); /* Perform inversion */ x25519_invert ( &invertend, &actual ); /* Multiply invertend by inverse */ x25519_multiply ( &invertend, &actual.oct258, &product ); /* Reduce results to allow for comparison */ x25519_reduce ( &actual ); DBGC ( test, "X25519 actual inverse:\n" ); DBGC_HDA ( test, 0, &actual, sizeof ( actual ) ); x25519_reduce ( &product ); DBGC ( test, "X25519 actual product:\n" ); DBGC_HDA ( test, 0, &product, sizeof ( product ) ); /* Compare against expected results */ okx ( memcmp ( &actual, &expected, sizeof ( expected ) ) == 0, file, line ); okx ( memcmp ( &product, &identity, sizeof ( identity ) ) == 0, file, line ); } #define x25519_invert_ok( test ) \ x25519_invert_okx ( test, __FILE__, __LINE__ ) /** * Report an X25519 key exchange test result * * @v test X25519 key exchange test * @v file Test code file * @v line Test code line */ static void x25519_key_okx ( struct x25519_key_test *test, const char *file, unsigned int line ) { struct x25519_value base; struct x25519_value scalar; struct x25519_value actual; unsigned int i; int rc; /* Construct input values */ memcpy ( &base, &test->base, sizeof ( test->base ) ); memcpy ( &scalar, &test->scalar, sizeof ( test->scalar ) ); DBGC ( test, "X25519 base:\n" ); DBGC_HDA ( test, 0, &base, sizeof ( base ) ); DBGC ( test, "X25519 scalar:\n" ); DBGC_HDA ( test, 0, &scalar, sizeof ( scalar ) ); DBGC ( test, "X25519 expected result (x%d):\n", test->count ); DBGC_HDA ( test, 0, &test->expected, sizeof ( test->expected ) ); /* Calculate key */ for ( i = 0 ; i < test->count ; i++ ) { rc = x25519_key ( &base, &scalar, &actual ); if ( test->fail ) { okx ( rc != 0, file, line ); } else { okx ( rc == 0, file, line ); } memcpy ( &base, &scalar, sizeof ( base ) ); memcpy ( &scalar, &actual, sizeof ( scalar ) ); } DBGC ( test, "X25519 actual result (x%d):\n", test->count ); DBGC_HDA ( test, 0, &actual, sizeof ( actual ) ); /* Compare against expected result */ okx ( memcmp ( &actual, &test->expected, sizeof ( test->expected ) ) == 0, file, line ); } #define x25519_key_ok( test ) \ x25519_key_okx ( test, __FILE__, __LINE__ ) /* Test multiplying small numbers */ X25519_MULTIPLY_TEST ( multiply_small, MULTIPLICAND ( 6 ), MULTIPLIER ( 9 ), EXPECTED ( 6 * 9 ) ); /* Test exact multiple of field prime */ X25519_MULTIPLY_TEST ( multiply_k_p, MULTIPLICAND ( 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xed ), MULTIPLIER ( 0x00, 0xe8, 0x0d, 0x83, 0xd4, 0xe9, 0x1e, 0xdd, 0x7a, 0x45, 0x14, 0x87, 0xb7, 0xfc, 0x62, 0x54, 0x1f, 0xb2, 0x97, 0x24, 0xde, 0xfa, 0xd3, 0xe7, 0x3e, 0x83, 0x93, 0x60, 0xbc, 0x20, 0x97, 0x9b, 0x22 ), EXPECTED ( 0x00 ) ); /* 0x0223b8c1e9392456de3eb13b9046685257bdd640fb06671ad11c80317fa3b1799d * * 0x006c031199972a846916419f828b9d2434e465e150bd9c66b3ad3c2d6d1a3d1fa7 = * 0x1ba87e982f7c477616b4d5136ba54733e40081c1c2e27d864aa178ce893d1297 (mod p) */ X25519_MULTIPLY_TEST ( multiply_1, MULTIPLICAND ( 0x02, 0x23, 0xb8, 0xc1, 0xe9, 0x39, 0x24, 0x56, 0xde, 0x3e, 0xb1, 0x3b, 0x90, 0x46, 0x68, 0x52, 0x57, 0xbd, 0xd6, 0x40, 0xfb, 0x06, 0x67, 0x1a, 0xd1, 0x1c, 0x80, 0x31, 0x7f, 0xa3, 0xb1, 0x79, 0x9d ), MULTIPLIER ( 0x00, 0x6c, 0x03, 0x11, 0x99, 0x97, 0x2a, 0x84, 0x69, 0x16, 0x41, 0x9f, 0x82, 0x8b, 0x9d, 0x24, 0x34, 0xe4, 0x65, 0xe1, 0x50, 0xbd, 0x9c, 0x66, 0xb3, 0xad, 0x3c, 0x2d, 0x6d, 0x1a, 0x3d, 0x1f, 0xa7 ), EXPECTED ( 0x1b, 0xa8, 0x7e, 0x98, 0x2f, 0x7c, 0x47, 0x76, 0x16, 0xb4, 0xd5, 0x13, 0x6b, 0xa5, 0x47, 0x33, 0xe4, 0x00, 0x81, 0xc1, 0xc2, 0xe2, 0x7d, 0x86, 0x4a, 0xa1, 0x78, 0xce, 0x89, 0x3d, 0x12, 0x97 ) ); /* 0x008fadc1a606cb0fb39a1de644815ef6d13b8faa1837f8a88b17fc695a07a0ca6e * * 0x0196da1dac72ff5d2a386ecbe06b65a6a48b8148f6b38a088ca65ed389b74d0fb1 = * 0x351f7bf75ef580249ed6f9ff3996463b0730a1d49b5d36b863e192591157e950 (mod p) */ X25519_MULTIPLY_TEST ( multiply_2, MULTIPLICAND ( 0x00, 0x8f, 0xad, 0xc1, 0xa6, 0x06, 0xcb, 0x0f, 0xb3, 0x9a, 0x1d, 0xe6, 0x44, 0x81, 0x5e, 0xf6, 0xd1, 0x3b, 0x8f, 0xaa, 0x18, 0x37, 0xf8, 0xa8, 0x8b, 0x17, 0xfc, 0x69, 0x5a, 0x07, 0xa0, 0xca, 0x6e ), MULTIPLIER ( 0x01, 0x96, 0xda, 0x1d, 0xac, 0x72, 0xff, 0x5d, 0x2a, 0x38, 0x6e, 0xcb, 0xe0, 0x6b, 0x65, 0xa6, 0xa4, 0x8b, 0x81, 0x48, 0xf6, 0xb3, 0x8a, 0x08, 0x8c, 0xa6, 0x5e, 0xd3, 0x89, 0xb7, 0x4d, 0x0f, 0xb1 ), EXPECTED ( 0x35, 0x1f, 0x7b, 0xf7, 0x5e, 0xf5, 0x80, 0x24, 0x9e, 0xd6, 0xf9, 0xff, 0x39, 0x96, 0x46, 0x3b, 0x07, 0x30, 0xa1, 0xd4, 0x9b, 0x5d, 0x36, 0xb8, 0x63, 0xe1, 0x92, 0x59, 0x11, 0x57, 0xe9, 0x50 ) ); /* 0x016c307511b2b9437a28df6ec4ce4a2bbdc241330b01a9e71fde8a774bcf36d58b * * 0x0117be31111a2a73ed562b0f79c37459eef50bea63371ecd7b27cd813047229389 = * 0x6b43b5185965f8f0920f31ae1b2cefadd7b078fecf68dbeaa17b9c385b558329 (mod p) */ X25519_MULTIPLY_TEST ( multiply_3, MULTIPLICAND ( 0x01, 0x6c, 0x30, 0x75, 0x11, 0xb2, 0xb9, 0x43, 0x7a, 0x28, 0xdf, 0x6e, 0xc4, 0xce, 0x4a, 0x2b, 0xbd, 0xc2, 0x41, 0x33, 0x0b, 0x01, 0xa9, 0xe7, 0x1f, 0xde, 0x8a, 0x77, 0x4b, 0xcf, 0x36, 0xd5, 0x8b ), MULTIPLIER ( 0x01, 0x17, 0xbe, 0x31, 0x11, 0x1a, 0x2a, 0x73, 0xed, 0x56, 0x2b, 0x0f, 0x79, 0xc3, 0x74, 0x59, 0xee, 0xf5, 0x0b, 0xea, 0x63, 0x37, 0x1e, 0xcd, 0x7b, 0x27, 0xcd, 0x81, 0x30, 0x47, 0x22, 0x93, 0x89 ), EXPECTED ( 0x6b, 0x43, 0xb5, 0x18, 0x59, 0x65, 0xf8, 0xf0, 0x92, 0x0f, 0x31, 0xae, 0x1b, 0x2c, 0xef, 0xad, 0xd7, 0xb0, 0x78, 0xfe, 0xcf, 0x68, 0xdb, 0xea, 0xa1, 0x7b, 0x9c, 0x38, 0x5b, 0x55, 0x83, 0x29 ) ); /* 0x020b1f9163ce9ff57f43b7a3a69a8dca03580d7b71d8f564135be6128e18c26797 * * 0x018d5288f1142c3fe860e7a113ec1b8ca1f91e1d4c1ff49b7889463e85759cde66 = * 0x28a77d3c8a14323d63b288dbd40315b3f192b8485d86a02cb87d3dfb7a0b5447 (mod p) */ X25519_MULTIPLY_TEST ( multiply_4, MULTIPLICAND ( 0x02, 0x0b, 0x1f, 0x91, 0x63, 0xce, 0x9f, 0xf5, 0x7f, 0x43, 0xb7, 0xa3, 0xa6, 0x9a, 0x8d, 0xca, 0x03, 0x58, 0x0d, 0x7b, 0x71, 0xd8, 0xf5, 0x64, 0x13, 0x5b, 0xe6, 0x12, 0x8e, 0x18, 0xc2, 0x67, 0x97 ), MULTIPLIER ( 0x01, 0x8d, 0x52, 0x88, 0xf1, 0x14, 0x2c, 0x3f, 0xe8, 0x60, 0xe7, 0xa1, 0x13, 0xec, 0x1b, 0x8c, 0xa1, 0xf9, 0x1e, 0x1d, 0x4c, 0x1f, 0xf4, 0x9b, 0x78, 0x89, 0x46, 0x3e, 0x85, 0x75, 0x9c, 0xde, 0x66 ), EXPECTED ( 0x28, 0xa7, 0x7d, 0x3c, 0x8a, 0x14, 0x32, 0x3d, 0x63, 0xb2, 0x88, 0xdb, 0xd4, 0x03, 0x15, 0xb3, 0xf1, 0x92, 0xb8, 0x48, 0x5d, 0x86, 0xa0, 0x2c, 0xb8, 0x7d, 0x3d, 0xfb, 0x7a, 0x0b, 0x54, 0x47 ) ); /* 0x023139d32c93cd59bf5c941cf0dc98d2c1e2acf72f9e574f7aa0ee89aed453dd32 * * 0x03146d3f31fc377a4c4a15544dc5e7ce8a3a578a8ea9488d990bbb259911ce5dd2 = * 0x4bdb7a35c0a5182000aa67554741e88cfdf460a78c6fae07adf83d2f005d2767 (mod p) */ X25519_MULTIPLY_TEST ( multiply_5, MULTIPLICAND ( 0x02, 0x31, 0x39, 0xd3, 0x2c, 0x93, 0xcd, 0x59, 0xbf, 0x5c, 0x94, 0x1c, 0xf0, 0xdc, 0x98, 0xd2, 0xc1, 0xe2, 0xac, 0xf7, 0x2f, 0x9e, 0x57, 0x4f, 0x7a, 0xa0, 0xee, 0x89, 0xae, 0xd4, 0x53, 0xdd, 0x32 ), MULTIPLIER ( 0x03, 0x14, 0x6d, 0x3f, 0x31, 0xfc, 0x37, 0x7a, 0x4c, 0x4a, 0x15, 0x54, 0x4d, 0xc5, 0xe7, 0xce, 0x8a, 0x3a, 0x57, 0x8a, 0x8e, 0xa9, 0x48, 0x8d, 0x99, 0x0b, 0xbb, 0x25, 0x99, 0x11, 0xce, 0x5d, 0xd2 ), EXPECTED ( 0x4b, 0xdb, 0x7a, 0x35, 0xc0, 0xa5, 0x18, 0x20, 0x00, 0xaa, 0x67, 0x55, 0x47, 0x41, 0xe8, 0x8c, 0xfd, 0xf4, 0x60, 0xa7, 0x8c, 0x6f, 0xae, 0x07, 0xad, 0xf8, 0x3d, 0x2f, 0x00, 0x5d, 0x27, 0x67 ) ); /* 0x01d58842dea2bc372f7412b29347294739614ff3d719db3ad0ddd1dfb23b982ef8 ^ -1 = * 0x093ff51750809d181a9a5481c564e37cff618def8ec45f464b1a6e24f8b826bd (mod p) */ X25519_INVERT_TEST ( invert_1, INVERTEND ( 0x01, 0xd5, 0x88, 0x42, 0xde, 0xa2, 0xbc, 0x37, 0x2f, 0x74, 0x12, 0xb2, 0x93, 0x47, 0x29, 0x47, 0x39, 0x61, 0x4f, 0xf3, 0xd7, 0x19, 0xdb, 0x3a, 0xd0, 0xdd, 0xd1, 0xdf, 0xb2, 0x3b, 0x98, 0x2e, 0xf8 ), EXPECTED ( 0x09, 0x3f, 0xf5, 0x17, 0x50, 0x80, 0x9d, 0x18, 0x1a, 0x9a, 0x54, 0x81, 0xc5, 0x64, 0xe3, 0x7c, 0xff, 0x61, 0x8d, 0xef, 0x8e, 0xc4, 0x5f, 0x46, 0x4b, 0x1a, 0x6e, 0x24, 0xf8, 0xb8, 0x26, 0xbd ) ); /* 0x02efc89849b3aa7efe4458a885ab9099a435a240ae5af305535ec42e0829a3b2e9 ^ -1 = * 0x591607b163e89d0ac33a62c881e984a25d3826e3db5ce229af240dc58e5b579a (mod p) */ X25519_INVERT_TEST ( invert_2, INVERTEND ( 0x02, 0xef, 0xc8, 0x98, 0x49, 0xb3, 0xaa, 0x7e, 0xfe, 0x44, 0x58, 0xa8, 0x85, 0xab, 0x90, 0x99, 0xa4, 0x35, 0xa2, 0x40, 0xae, 0x5a, 0xf3, 0x05, 0x53, 0x5e, 0xc4, 0x2e, 0x08, 0x29, 0xa3, 0xb2, 0xe9 ), EXPECTED ( 0x59, 0x16, 0x07, 0xb1, 0x63, 0xe8, 0x9d, 0x0a, 0xc3, 0x3a, 0x62, 0xc8, 0x81, 0xe9, 0x84, 0xa2, 0x5d, 0x38, 0x26, 0xe3, 0xdb, 0x5c, 0xe2, 0x29, 0xaf, 0x24, 0x0d, 0xc5, 0x8e, 0x5b, 0x57, 0x9a ) ); /* 0x003eabedcbbaa80dd488bd64072bcfbe01a28defe39bf0027312476f57a5e5a5ab ^ -1 = * 0x7d87c2e565b27c5038181a0a7cae9ebe826c8afc1f77128a4d62cce96d2759a2 (mod p) */ X25519_INVERT_TEST ( invert_3, INVERTEND ( 0x00, 0x3e, 0xab, 0xed, 0xcb, 0xba, 0xa8, 0x0d, 0xd4, 0x88, 0xbd, 0x64, 0x07, 0x2b, 0xcf, 0xbe, 0x01, 0xa2, 0x8d, 0xef, 0xe3, 0x9b, 0xf0, 0x02, 0x73, 0x12, 0x47, 0x6f, 0x57, 0xa5, 0xe5, 0xa5, 0xab ), EXPECTED ( 0x7d, 0x87, 0xc2, 0xe5, 0x65, 0xb2, 0x7c, 0x50, 0x38, 0x18, 0x1a, 0x0a, 0x7c, 0xae, 0x9e, 0xbe, 0x82, 0x6c, 0x8a, 0xfc, 0x1f, 0x77, 0x12, 0x8a, 0x4d, 0x62, 0xcc, 0xe9, 0x6d, 0x27, 0x59, 0xa2 ) ); /* 0x008e944239b02b61c4a3d70628ece66fa2fd5166e6451b4cf36123fdf77656af72 ^ -1 = * 0x08e96161a0eee1b29af396f154950d5c715dc61aff66ee97377ab22adf3321d7 (mod p) */ X25519_INVERT_TEST ( invert_4, INVERTEND ( 0x00, 0x8e, 0x94, 0x42, 0x39, 0xb0, 0x2b, 0x61, 0xc4, 0xa3, 0xd7, 0x06, 0x28, 0xec, 0xe6, 0x6f, 0xa2, 0xfd, 0x51, 0x66, 0xe6, 0x45, 0x1b, 0x4c, 0xf3, 0x61, 0x23, 0xfd, 0xf7, 0x76, 0x56, 0xaf, 0x72 ), EXPECTED ( 0x08, 0xe9, 0x61, 0x61, 0xa0, 0xee, 0xe1, 0xb2, 0x9a, 0xf3, 0x96, 0xf1, 0x54, 0x95, 0x0d, 0x5c, 0x71, 0x5d, 0xc6, 0x1a, 0xff, 0x66, 0xee, 0x97, 0x37, 0x7a, 0xb2, 0x2a, 0xdf, 0x33, 0x21, 0xd7 ) ); /* 0x00d261a7ab3aa2e4f90e51f30dc6a7ee39c4b032ccd7c524a55304317faf42e12f ^ -1 = * 0x0738781c0aeabfbe6e840c85bd30996ef71bc54988ce16cedd5ab4f30c281597 (mod p) */ X25519_INVERT_TEST ( invert_5, INVERTEND ( 0x00, 0xd2, 0x61, 0xa7, 0xab, 0x3a, 0xa2, 0xe4, 0xf9, 0x0e, 0x51, 0xf3, 0x0d, 0xc6, 0xa7, 0xee, 0x39, 0xc4, 0xb0, 0x32, 0xcc, 0xd7, 0xc5, 0x24, 0xa5, 0x53, 0x04, 0x31, 0x7f, 0xaf, 0x42, 0xe1, 0x2f ), EXPECTED ( 0x07, 0x38, 0x78, 0x1c, 0x0a, 0xea, 0xbf, 0xbe, 0x6e, 0x84, 0x0c, 0x85, 0xbd, 0x30, 0x99, 0x6e, 0xf7, 0x1b, 0xc5, 0x49, 0x88, 0xce, 0x16, 0xce, 0xdd, 0x5a, 0xb4, 0xf3, 0x0c, 0x28, 0x15, 0x97 ) ); /* Base: 0xe6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c * Scalar: 0xa546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4 * Result: 0xc3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552 */ X25519_KEY_TEST ( rfc7748_1, 1, 0, BASE ( 0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c ), SCALAR ( 0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4 ), EXPECTED ( 0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90, 0x8e, 0x94, 0xea, 0x4d, 0xf2, 0x8d, 0x08, 0x4f, 0x32, 0xec, 0xcf, 0x03, 0x49, 0x1c, 0x71, 0xf7, 0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2, 0x85, 0x52 ) ); /* Base: 0xe5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493 * Scalar: 0x4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d * Result: 0x95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957 */ X25519_KEY_TEST ( rfc7748_2, 1, 0, BASE ( 0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3, 0xf4, 0xb7, 0x95, 0x9d, 0x05, 0x38, 0xae, 0x2c, 0x31, 0xdb, 0xe7, 0x10, 0x6f, 0xc0, 0x3c, 0x3e, 0xfc, 0x4c, 0xd5, 0x49, 0xc7, 0x15, 0xa4, 0x93 ), SCALAR ( 0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c, 0x5a, 0xd2, 0x26, 0x91, 0x95, 0x7d, 0x6a, 0xf5, 0xc1, 0x1b, 0x64, 0x21, 0xe0, 0xea, 0x01, 0xd4, 0x2c, 0xa4, 0x16, 0x9e, 0x79, 0x18, 0xba, 0x0d ), EXPECTED ( 0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad, 0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8, 0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f, 0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac, 0x79, 0x57 ) ); /* Base: 0x0900000000000000000000000000000000000000000000000000000000000000 * Scalar: 0x0900000000000000000000000000000000000000000000000000000000000000 * Result: 0x422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079 */ X25519_KEY_TEST ( rfc7748_3, 1, 0, BASE ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), SCALAR ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), EXPECTED ( 0x42, 0x2c, 0x8e, 0x7a, 0x62, 0x27, 0xd7, 0xbc, 0xa1, 0x35, 0x0b, 0x3e, 0x2b, 0xb7, 0x27, 0x9f, 0x78, 0x97, 0xb8, 0x7b, 0xb6, 0x85, 0x4b, 0x78, 0x3c, 0x60, 0xe8, 0x03, 0x11, 0xae, 0x30, 0x79 ) ); /* Base: 0x0900000000000000000000000000000000000000000000000000000000000000 * Scalar: 0x0900000000000000000000000000000000000000000000000000000000000000 * Result: 0xb1a5a73158904c020866c13939dd7e1aa26852ee1d2609c92e5a8f1debe2150a * (after 100 iterations) * * RFC7748 gives test vectors for 1000 and 1000000 iterations with * these starting values. This test case stops after 100 iterations * to avoid a pointlessly slow test cycle in the common case of * running tests under Valgrind. */ X25519_KEY_TEST ( rfc7748_4_100, 100, 0, BASE ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), SCALAR ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ), EXPECTED ( 0xb1, 0xa5, 0xa7, 0x31, 0x58, 0x90, 0x4c, 0x02, 0x08, 0x66, 0xc1, 0x39, 0x39, 0xdd, 0x7e, 0x1a, 0xa2, 0x68, 0x52, 0xee, 0x1d, 0x26, 0x09, 0xc9, 0x2e, 0x5a, 0x8f, 0x1d, 0xeb, 0xe2, 0x15, 0x0a ) ); /* Base: 2^255 - 19 + 1 (deliberately malicious public key) * Scalar: 0x000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f * Result: Failure (all zeros) */ X25519_KEY_TEST ( malicious, 1, 1, BASE ( 0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f ), SCALAR ( 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f ), EXPECTED ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ) ); /** * Perform X25519 self-tests * */ static void x25519_test_exec ( void ) { /* Perform multiplication tests */ x25519_multiply_ok ( &multiply_small ); x25519_multiply_ok ( &multiply_k_p ); x25519_multiply_ok ( &multiply_1 ); x25519_multiply_ok ( &multiply_2 ); x25519_multiply_ok ( &multiply_3 ); x25519_multiply_ok ( &multiply_4 ); x25519_multiply_ok ( &multiply_5 ); /* Perform multiplicative inversion tests */ x25519_invert_ok ( &invert_1 ); x25519_invert_ok ( &invert_2 ); x25519_invert_ok ( &invert_3 ); x25519_invert_ok ( &invert_4 ); x25519_invert_ok ( &invert_5 ); /* Perform key exchange tests */ x25519_key_ok ( &rfc7748_1 ); x25519_key_ok ( &rfc7748_2 ); x25519_key_ok ( &rfc7748_3 ); x25519_key_ok ( &rfc7748_4_100 ); x25519_key_ok ( &malicious ); } /** X25519 self-test */ struct self_test x25519_test __self_test = { .name = "x25519", .exec = x25519_test_exec, };