summaryrefslogtreecommitdiffstats
path: root/src/crypto/des.c
blob: 6918bec3e282760880fa32f095aa6c2c83e0a569 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
/*
 * Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 *
 * You can also choose to distribute this program under the terms of
 * the Unmodified Binary Distribution Licence (as given in the file
 * COPYING.UBDL), provided that you have satisfied its requirements.
 */

FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );

/** @file
 *
 * DES algorithm
 *
 * DES was not designed to be implemented in software, and therefore
 * contains a large number of bit permutation operations that are
 * essentially free in hardware (requiring only wires, no gates) but
 * expensive in software.
 *
 * Since DES is no longer used as a practical block cipher for large
 * volumes of data, we optimise for code size, and do not attempt to
 * obtain fast throughput.
 *
 * The algorithm is specified in NIST SP 800-67, downloadable from
 * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf
 */

#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <byteswap.h>
#include <ipxe/rotate.h>
#include <ipxe/crypto.h>
#include <ipxe/ecb.h>
#include <ipxe/cbc.h>
#include <ipxe/init.h>
#include <ipxe/des.h>

/**
 * DES shift schedule
 *
 * The DES shift schedule (ordered from round 16 down to round 1) is
 * {1,2,2,2,2,2,2,1,2,2,2,2,2,2,1,1}.  In binary, this may be
 * represented as {1,10,10,10,10,10,10,1,10,10,10,10,10,10,1,1} and
 * concatenated (without padding) to produce a single binary integer
 * 1101010101010110101010101011 (equal to 0x0d556aab in hexadecimal).
 *
 * This integer may then be consumed LSB-first, where a 1 bit
 * indicates a shift and the generation of a round key, and a 0 bit
 * indicates a shift without the generation of a round key.
 */
#define DES_SCHEDULE 0x0d556aab

/**
 * Define an element pair in a DES S-box
 *
 * @v x			Upper element of element pair
 * @v y			Lower element of element pair
 *
 * DES S-box elements are 4-bit values.  We encode two values per
 * byte, ordering the elements so that the six-bit input value may be
 * used directly as a lookup index.
 *
 * Specifically, if the input value is {r1,c3,c2,c1,c0,r0}, where
 * {r1,r0} is the table row index and {c3,c2,c1,c0} is the table
 * column index (as used in the DES specification), then:
 *
 *   - {r1,c3,c2,c1,c0} is the byte index into the table
 *
 *   - (4*r0) is the required bit shift to extract the 4-bit value
 */
#define SBYTE( x, y ) ( ( (y) << 4 ) | (x) )

/**
 * Define a row pair in a DES S-box
 *
 * @v x0..xf		Upper row of row pair
 * @v y0..yf		Lower row of row pair
 */
#define SBOX( x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, xa, xb, xc, xd, xe, xf,  \
	      y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, ya, yb, yc, yd, ye, yf ) \
	SBYTE ( x0, y0 ), SBYTE ( x1, y1 ), SBYTE ( x2, y2 ), SBYTE ( x3, y3 ),\
	SBYTE ( x4, y4 ), SBYTE ( x5, y5 ), SBYTE ( x6, y6 ), SBYTE ( x7, y7 ),\
	SBYTE ( x8, y8 ), SBYTE ( x9, y9 ), SBYTE ( xa, ya ), SBYTE ( xb, yb ),\
	SBYTE ( xc, yc ), SBYTE ( xd, yd ), SBYTE ( xe, ye ), SBYTE ( xf, yf )

/** DES S-boxes S1..S8 */
static const uint8_t des_s[8][32] = { {
	/* S1 */
	SBOX ( 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
		0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8 ),
	SBOX (  4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
	       15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 )
}, {
	/* S2 */
	SBOX ( 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
		3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5 ),
	SBOX (  0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
		13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 )
}, {
	/* S3 */
	SBOX ( 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
	       13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1 ),
	SBOX ( 13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
		1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 )
}, {
	/* S4 */
	SBOX (  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
	       13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9 ),
	SBOX ( 10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
		3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 )
}, {
	/* S5 */
	SBOX (  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
	       14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6 ),
	SBOX (  4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
	       11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 )
}, {
	/* S6 */
	SBOX ( 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
	       10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8 ),
	SBOX (  9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
		4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 )
}, {
	/* S7 */
	SBOX (  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
	       13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6 ),
	SBOX (  1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
		6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 )
}, {
	/* S8 */
	SBOX ( 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
		1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2 ),
	SBOX (  7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
		2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 )
} };

/**
 * Define a bit index within permuted choice 2 (PC2)
 *
 * @v bit		Bit index
 *
 * Permuted choice 2 (PC2) is used to select bits from a concatenated
 * pair of 28-bit registers ("C" and "D") as part of the key schedule.
 * We store these as 32-bit registers and so must add 4 to indexes
 * above 28.
 */
#define DES_PC2( x ) ( (x) + ( ( (x) > 28 ) ? 4 : 0 ) )

/**
 * Define six bits of permuted choice 2 (PC2)
 *
 * @v r1:r0		Bits corresponding to S-box row index
 * @v c3:c0		Bits corresponding to S-box column index
 *
 * There are 8 steps within a DES round (one step per S-box).  Each
 * step requires six bits of the round key, corresponding to the S-box
 * input value {r1,c3,c2,c1,c0,r0}, where {r1,r0} is the table row
 * index and {c3,c2,c1,c0} is the table column index.
 *
 * As an optimisation, we store the least significant of the 6 bits in
 * the sign bit of a signed 8-bit value, and the remaining 5 bits in
 * the least significant 5 bits of the 8-bit value.  See the comments
 * in des_sbox() for further details.
 */
#define DES_PC2R( r1, c3, c2, c1, c0, r0 )				\
	DES_PC2 ( r0 ), /* LSB stored in sign bit */			\
	DES_PC2 ( r0 ), /* Unused bit */				\
	DES_PC2 ( r0 ), /* Unused bit */				\
	DES_PC2 ( r1 ),	/* Remaining 5 bits */				\
	DES_PC2 ( c3 ),	/* ... */					\
	DES_PC2 ( c2 ),	/* ... */					\
	DES_PC2 ( c1 ),	/* ... */					\
	DES_PC2 ( c0 ) 	/* ... */

/**
 * A DES systematic permutation generator
 *
 * Many of the permutations used in DES comprise systematic bit
 * patterns.  We generate these permutations at runtime to save on
 * code size.
 */
struct des_generator {
	/** Permutation */
	uint8_t *permutation;
	/** Seed value */
	uint32_t seed;
};

/**
 * Define a DES permutation generator
 *
 * @v PERMUTATION	Permutation
 * @v OFFSET		Fixed input bit offset (0 or 1)
 * @v INV<n>		Input bit index bit <n> should be inverted
 * @v BIT<n>		Source bit for input bit index bit <n>
 * @ret generator	Permutation generator
 */
#define DES_GENERATOR( PERMUTATION, OFFSET, INV5, BIT5, INV4, BIT4,	\
		       INV3, BIT3, INV2, BIT2, INV1, BIT1, INV0, BIT0 )	\
	{								\
		.permutation = (PERMUTATION),				\
		.seed = ( ( (INV0) << 31 ) | ( (BIT0) << 28 ) |		\
			  ( (INV1) << 27 ) | ( (BIT1) << 24 ) |		\
			  ( (INV2) << 23 ) | ( (BIT2) << 20 ) |		\
			  ( (INV3) << 19 ) | ( (BIT3) << 16 ) |		\
			  ( (INV4) << 15 ) | ( (BIT4) << 12 ) |		\
			  ( (INV5) << 11 ) | ( (BIT5) <<  8 ) |		\
			  ( ( uint32_t ) sizeof (PERMUTATION) - 1 ) |	\
			  (OFFSET) ),					\
	}

/** DES permuted choice 1 (PC1) "C" register */
static uint8_t des_pc1c[29];

/** DES permuted choice 1 (PC1) "D" register */
static uint8_t des_pc1d[33];

/** DES permuted choice 2 (PC2) */
static const uint8_t des_pc2[65] = {
	DES_PC2R ( 14, 17, 11, 24,  1,  5 ),
	DES_PC2R (  3, 28, 15,  6, 21, 10 ),
	DES_PC2R ( 23, 19, 12,  4, 26,  8 ),
	DES_PC2R ( 16,  7, 27, 20, 13,  2 ),
	DES_PC2R ( 41, 52, 31, 37, 47, 55 ),
	DES_PC2R ( 30, 40, 51, 45, 33, 48 ),
	DES_PC2R ( 44, 49, 39, 56, 34, 53 ),
	DES_PC2R ( 46, 42, 50, 36, 29, 32 ),
	0 /* terminator */
};

/** DES initial permutation (IP) */
static uint8_t des_ip[65];

/** DES data permutation (P) */
static const uint8_t des_p[33] = {
	16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,
	 2,  8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25,
	 0 /* terminator */
};

/** DES final / inverse initial permutation (FP / IP^-1) */
static uint8_t des_fp[65];

/** DES permutation generators */
static struct des_generator des_generators[] = {

	/* The DES initial permutation transforms the bit index
	 * {x5,x4,x3,x2,x1,x0}+1 into {~x2,~x1,~x0,x4,x3,~x5}+1
	 */
	DES_GENERATOR ( des_ip, 1, 1, 2, 1, 1, 1, 0, 0, 4, 0, 3, 1, 5 ),

	/* The DES final permutation transforms the bit index
	 * {x5,x4,x3,x2,x1,x0}+1 into {~x0,x2,x1,~x5,~x4,~x3}+1
	 *
	 * There is an asymmetry in the DES block diagram for the last
	 * of the 16 rounds, which is functionally equivalent to
	 * performing 16 identical rounds and then swapping the left
	 * and right halves before applying the final permutation.  We
	 * may therefore account for this asymmetry by inverting the
	 * MSB in each bit index, to point to the corresponding bit in
	 * the other half.
	 *
	 * This is equivalent to using a permutation that transforms
	 * {x5,x4,x3,x2,x1,x0}+1 into {x0,x2,x1,~x5,~x4,~x3}+1
	 */
	DES_GENERATOR ( des_fp, 1, 0, 0, 0, 2, 0, 1, 1, 5, 1, 4, 1, 3 ),

	/* The "C" half of DES permuted choice 1 (PC1) transforms the
	 * bit index {x5,x4,x3,x2,x1,x0}+1 into {~x2,~x1,~x0,x5,x4,x3}+1
	 */
	DES_GENERATOR ( des_pc1c, 1, 1, 2, 1, 1, 1, 0, 0, 5, 0, 4, 0, 3 ),

	/* The "D" half of DES permuted choice 1 (PC1) transforms the
	 * bit index {x5,x4,x3,x2,x1,x0}+1 into {~x2,~x1,~x0,~x5,~x4,~x3}+0
	 *
	 * Due to the idosyncratic design choice of using 28-bit
	 * registers in the DES key expansion schedule, the final four
	 * permutation values appear at indices [28:31] instead of
	 * [24:27].  This is adjusted for in @c des_setkey().
	 */
	DES_GENERATOR ( des_pc1d, 0, 1, 2, 1, 1, 1, 0, 1, 5, 1, 4, 1, 3 ),
};

/**
 * Generate DES permutation
 *
 * @v generator		Generator
 */
static __attribute__ (( noinline )) void
des_generate ( struct des_generator *generator ) {
	uint8_t *permutation = generator->permutation;
	uint32_t seed = generator->seed;
	unsigned int index = 0;
	uint8_t accum;
	uint8_t bit;

	/* Generate permutations
	 *
	 * This loop is optimised for code size on a
	 * register-constrained architecture such as i386.
	 */
	do {
		/* Rotate seed to access MSB's bit descriptor */
		seed = ror32 ( seed, 8 );

		/* Initialise accumulator with six flag bits */
		accum = 0xfc;

		/* Accumulate bits until all six flag bits are cleared */
		do {
			/* Extract specified bit from index.  Use a
			 * rotation instead of a shift, since this
			 * will allow the mask to be elided.
			 */
			bit = ror8 ( index, ( seed & 0x07 ) );
			seed = ror32 ( seed, 3 );

			/* Toggle bit if applicable */
			bit ^= seed;
			seed = ror32 ( seed, 1 );

			/* Add bit to accumulator and clear one flag bit */
			accum <<= 1;
			accum |= ( bit & 0x01 );

		} while ( accum & 0x80 );

		/* Add constant offset if applicable */
		accum += ( seed & 0x01 );

		/* Store permutation */
		permutation[index] = accum;

		/* Loop until reaching length (which is always even) */
	} while ( ++index < ( seed & 0xfe ) );
	DBGC2 ( permutation, "DES generated permutation %p:\n", permutation );
	DBGC2_HDA ( permutation, 0, permutation,
		    ( ( seed & 0xfe ) + 1 /* zero terminator */ ) );
}

/**
 * Initialise permutations
 */
static void des_init ( void ) {
	unsigned int i;

	/* Generate all generated permutations */
	for ( i = 0 ; i < ( sizeof ( des_generators ) /
			    sizeof ( des_generators[0] ) ) ; i++ ) {
		des_generate ( &des_generators[i] );
	}
}

/** Initialisation function */
struct init_fn des_init_fn __init_fn ( INIT_NORMAL ) = {
	.initialise = des_init,
};

/**
 * Perform bit permutation
 *
 * @v permutation	Bit permutation (zero-terminated)
 * @v in		Input value
 * @v out		Output value
 */
static void des_permute ( const uint8_t *permutation, const uint8_t *in,
			  uint8_t *out ) {
	uint8_t mask = 0x80;
	uint8_t accum = 0;
	unsigned int bit;

	/* Extract individual input bits to construct output value */
	while ( ( bit = *(permutation++) ) ) {
		bit--;
		if ( in[ bit / 8 ] & ( 0x80 >> ( bit % 8 ) ) )
			accum |= mask;
		*out = accum;
		mask = ror8 ( mask, 1 );
		if ( mask == 0x80 ) {
			out++;
			accum = 0;
		}
	}
}

/**
 * Perform DES S-box substitution
 *
 * @v in		32-bit input value (native endian)
 * @v rkey		48-bit round key
 * @ret out		32-bit output value (native endian)
 */
static uint32_t des_sbox ( uint32_t in, const union des_round_key *rkey ) {
	uint32_t out = 0;
	uint32_t lookup;
	int32_t key;
	uint8_t sub;
	unsigned int i;

	/* Perform input expansion, key addition, and S-box substitution */
	for ( i = 0 ; i < 8 ; i++ ) {

		/* Rotate input and output */
		out = rol32 ( out, 4 );
		in = rol32 ( in, 4 );

		/* Extract step key from relevant 6 bits of round key
		 *
		 * The least significant of the 6 bits (corresponding
		 * to bit r0 in the S-box lookup index) is stored in
		 * the sign bit of the step key byte.  It will
		 * therefore be propagated via sign extension to the
		 * MSB of the 32-bit step key.
		 *
		 * The remaining 5 of the 6 bits (corresponding to
		 * bits {r1,c3,c2,c1,c0} in the S-box lookup index)
		 * are stored in the least significant 5 bits of the
		 * step key byte and will end up in the least
		 * significant 5 bits of the 32-bit step key.
		 */
		key = rkey->step[i];

		/* Add step key to input to produce S-box lookup index
		 *
		 * We do not ever perform an explicit expansion of the
		 * input value from 32 to 48 bits.  Instead, we rotate
		 * the 32-bit input value by 4 bits on each step, and
		 * extract the relevant 6 bits.
		 *
		 * The least significant of the 6 bits (corresponding
		 * to bit r0 in the S-box lookup index) is currently
		 * in the MSB of the 32-bit (rotated) input value.
		 *
		 * The remaining 5 of the 6 bits (corresponding to
		 * bits {r1,c3,c2,c1,c0} in the S-box lookup index)
		 * are currently in the least significant 5 bits of
		 * the 32-bit (rotated) input value.
		 *
		 * This aligns with the placement of the bits in the
		 * step key (see above), and we can therefore perform
		 * a single XOR to add the 6-bit step key to the
		 * relevant 6 bits of the input value.
		 */
		lookup = ( in ^ key );

		/* Look up S[i][in ^ key] from S-box
		 *
		 * We have bits {r1,c3,c2,c1,c0} in the least
		 * significant 5 bits of the lookup index, and so can
		 * use the masked lookup index directly as a byte
		 * index into the relevant S-box to extract the byte
		 * containing both {r1,c3,c2,c1,c0,'0'} and
		 * {r1,c3,c2,c1,c0,'1'}.
		 *
		 * We then use the MSB of the 32-bit lookup index to
		 * extract the relevant nibble for the full lookup
		 * index {r1,c3,c2,c1,c0,r0}.
		 */
		sub = des_s[i][ lookup & 0x1f ];
		sub >>= ( ( lookup >> 29 ) & 4 );
		sub &= 0x0f;

		/* Substitute S[i][input ^ key] into output */
		out |= sub;
	}

	return out;
}

/**
 * Perform a single DES round
 *
 * @v block		DES block
 * @v rkey		48-bit round key
 */
static void des_round ( union des_block *block,
			const union des_round_key *rkey ) {
	union des_dword sbox;
	uint32_t left;
	uint32_t right;

	/* Extract left and right halves L[n-1] and R[n-1] */
	left = block->left.dword;
	right = block->right.dword;
	DBGC2 ( block, "DES L=%08x R=%08x K=%08x%08x", be32_to_cpu ( left ),
		be32_to_cpu ( right ), be32_to_cpu ( rkey->dword[0] ),
		be32_to_cpu ( rkey->dword[1] ) );

	/* L[n] = R[n-1] */
	block->left.dword = right;

	/* Calculate Feistel function f(R[n-1], K[n]) */
	sbox.dword = cpu_to_be32 ( des_sbox ( be32_to_cpu ( right ), rkey ) );
	des_permute ( des_p, sbox.byte, block->right.byte );

	/* R[n] = L[n-1] + f(R[n-1], K[n]) */
	block->right.dword ^= left;
	DBGC2 ( block, " => L=%08x R=%08x\n",
		be32_to_cpu ( block->left.dword ),
		be32_to_cpu ( block->right.dword ) );
}

/**
 * Perform all DES rounds
 *
 * @v in		Input DES block
 * @v out		Output DES block
 * @v rkey		Starting 48-bit round key
 * @v offset		Byte offset between round keys
 */
static void des_rounds ( const union des_block *in, union des_block *out,
			 const union des_round_key *rkey,
			 ssize_t offset ) {
	union des_block tmp;
	unsigned int i;

	/* Apply initial permutation */
	des_permute ( des_ip, in->byte, tmp.byte );

	/* Perform all DES rounds, consuming keys in the specified order */
	for ( i = 0 ; i < DES_ROUNDS ; i++ ) {
		des_round ( &tmp, rkey );
		rkey = ( ( ( void * ) rkey ) + offset );
	}

	/* Apply final permutation */
	DBGC ( &tmp, "DES %scrypted %08x%08x => ",
	       ( ( offset > 0 ) ? "en" : "de" ), be32_to_cpu ( in->dword[0] ),
	       be32_to_cpu ( in->dword[1] ) );
	des_permute ( des_fp, tmp.byte, out->byte );
	DBGC ( &tmp, "%08x%08x\n", be32_to_cpu ( out->dword[0] ),
	       be32_to_cpu ( out->dword[1] ) );
}

/**
 * Rotate 28-bit word
 *
 * @v dword		28-bit dword value
 * @ret dword		Rotated 28-bit dword value
 */
static uint32_t des_rol28 ( uint32_t dword ) {
	int32_t sdword;

	/* Convert to native-endian */
	sdword = be32_to_cpu ( dword );

	/* Signed shift right by 4 places to copy bit 31 to bits 27:31 */
	sdword >>= 4;

	/* Rotate left */
	sdword = rol32 ( sdword, 1 );

	/* Shift left by 4 places to restore bit positions */
	sdword <<= 4;

	/* Convert back to big-endian */
	dword = cpu_to_be32 ( sdword );

	return dword;
}

/**
 * Set key
 *
 * @v ctx		Context
 * @v key		Key
 * @v keylen		Key length
 * @ret rc		Return status code
 */
static int des_setkey ( void *ctx, const void *key, size_t keylen ) {
	struct des_context *des = ctx;
	union des_round_key *rkey = des->rkey;
	union des_block reg;
	uint32_t schedule;

	/* Validate key length */
	if ( keylen != DES_BLOCKSIZE )
		return -EINVAL;
	DBGC ( des, "DES %p new key:\n", des );
	DBGC_HDA ( des, 0, key, keylen );

	/* Apply permuted choice 1 */
	des_permute ( des_pc1c, key, reg.c.byte );
	des_permute ( des_pc1d, key, reg.d.byte );
	reg.d.byte[3] <<= 4; /* see comment for @c des_pc1d */
	DBGC2 ( des, "DES %p C[ 0]=%07x D[ 0]=%07x\n",
		des, ( be32_to_cpu ( reg.c.dword ) >> 4 ),
		( be32_to_cpu ( reg.d.dword ) >> 4 ) );

	/* Generate round keys */
	for ( schedule = DES_SCHEDULE ; schedule ; schedule >>= 1 ) {

		/* Shift 28-bit words */
		reg.c.dword = des_rol28 ( reg.c.dword );
		reg.d.dword = des_rol28 ( reg.d.dword );

		/* Skip rounds according to shift schedule */
		if ( ! ( schedule & 1 ) )
			continue;

		/* Apply permuted choice 2 */
		des_permute ( des_pc2, reg.byte, rkey->byte );
		DBGC2 ( des, "DES %p C[%2zd]=%07x D[%2zd]=%07x K[%2zd]="
			"%08x%08x\n", des, ( ( rkey - des->rkey ) + 1 ),
			( be32_to_cpu ( reg.c.dword ) >> 4 ),
			( ( rkey - des->rkey ) + 1 ),
			( be32_to_cpu ( reg.d.dword ) >> 4 ),
			( ( rkey - des->rkey ) + 1 ),
			be32_to_cpu ( rkey->dword[0] ),
			be32_to_cpu ( rkey->dword[1] ) );

		/* Move to next key */
		rkey++;
	}

	/* Sanity check */
	assert ( rkey == &des->rkey[DES_ROUNDS] );

	return 0;
}

/**
 * Encrypt data
 *
 * @v ctx		Context
 * @v src		Data to encrypt
 * @v dst		Buffer for encrypted data
 * @v len		Length of data
 */
static void des_encrypt ( void *ctx, const void *src, void *dst, size_t len ) {
	struct des_context *des = ctx;

	/* Sanity check */
	assert ( len == DES_BLOCKSIZE );

	/* Cipher using keys in forward direction */
	des_rounds ( src, dst, &des->rkey[0], sizeof ( des->rkey[0] ) );
}

/**
 * Decrypt data
 *
 * @v ctx		Context
 * @v src		Data to decrypt
 * @v dst		Buffer for decrypted data
 * @v len		Length of data
 */
static void des_decrypt ( void *ctx, const void *src, void *dst, size_t len ) {
	struct des_context *des = ctx;

	/* Sanity check */
	assert ( len == DES_BLOCKSIZE );

	/* Cipher using keys in reverse direction */
	des_rounds ( src, dst, &des->rkey[ DES_ROUNDS - 1 ],
		     -sizeof ( des->rkey[0] ) );
}

/** Basic DES algorithm */
struct cipher_algorithm des_algorithm = {
	.name = "des",
	.ctxsize = sizeof ( struct des_context ),
	.blocksize = DES_BLOCKSIZE,
	.alignsize = 0,
	.authsize = 0,
	.setkey = des_setkey,
	.setiv = cipher_null_setiv,
	.encrypt = des_encrypt,
	.decrypt = des_decrypt,
	.auth = cipher_null_auth,
};

/* DES in Electronic Codebook mode */
ECB_CIPHER ( des_ecb, des_ecb_algorithm,
	     des_algorithm, struct des_context, DES_BLOCKSIZE );

/* DES in Cipher Block Chaining mode */
CBC_CIPHER ( des_cbc, des_cbc_algorithm,
	     des_algorithm, struct des_context, DES_BLOCKSIZE );