summaryrefslogblamecommitdiffstats
path: root/test.c
blob: 864dfccb042e990bd97a98077975207529e4bcd3 (plain) (tree)
1
2
3
4
5
6
7
8
9
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
                                   

                                                      
                 
                                                       
                                         
                                                 
                                                   
                                                                  
   
 

                   


                   
               
 




                                

                              

                                    

                                                                

                   








                                                                    
 





                                                    


                                                           
































                                                                          
 





















































                                                                   
 













                                                                
 











































































                                                                             

 


                                    
                      
 
































































                                                                       




                                   
                      
 



































































































































                                                                                                               


  
                                                                             
                                                                             


                                                                              
                    
 




































                                                                     
 



























































































































                                                               


  
                                                                     
                                          
   
                                                   
 






























































































































































































































































































                                                                                

 
                                                                               
 






































































































































































                                                                      




                                                    
                                                             
 






















































































































































































































































































































                                                                                                     


  
                                 

                                               
                                 
 































                                                                 


  
                                                      
   
                                    
 

                                     
 



                                                          

 











                                                                 
 



                                   
 


                                                         

                         

                                                               
 









































                                                                  
 
 

                                 





                                                           
 

                                
 

                                              
 


                                    
 

                                 
 


                                 
 
/* test.c - MemTest-86  Version 3.4
 *
 * Released under version 2 of the Gnu Public License.
 * By Chris Brady
 * ----------------------------------------------------
 * MemTest86+ V5 Specific code (GPL V2.0)
 * By Samuel DEMEULEMEESTER, sdemeule@memtest.org
 * http://www.canardpc.com - http://www.memtest.org
 * Thanks to Passmark for calculate_chunk() and various comments !
 */

#include "test.h"
#include "config.h"
#include "stdint.h"
#include "cpuid.h"
#include "smp.h"
#include "io.h"

extern struct cpu_ident cpu_id;
extern volatile int    mstr_cpu;
extern volatile int    run_cpus;
extern volatile int    test;
extern volatile int segs, bail;
extern int test_ticks, nticks;
extern struct tseq tseq[];
extern void update_err_counts(void);
extern void print_err_counts(void);
void rand_seed( unsigned int seed1, unsigned int seed2, int me);
ulong rand(int me);
void poll_errors();

// NOTE(jcoiner):
//  Defining 'STATIC' to empty string results in crashes. (It should
//  work fine, of course.) I suspect relocation problems in reloc.c.
//  When we declare these routines static, we use relative addresses
//  for them instead of looking up their addresses in (supposedly
//  relocated) global elf tables, which avoids the crashes.

#define STATIC static
//#define STATIC

#define PREFER_C 0

static const void* const nullptr = 0x0;

// Writes *start and *end with the VA range to test.
//
// me - this threads CPU number
// j - index into v->map for current segment we are testing
// align - number of bytes to align each block to
STATIC void calculate_chunk(ulong** start, ulong** end, int me,
                            int j, int makeMultipleOf) {
    ulong chunk;

    // If we are only running 1 CPU then test the whole block
    if (run_cpus == 1) {
        *start = vv->map[j].start;
        *end = vv->map[j].end;
    } else {

        // Divide the current segment by the number of CPUs
        chunk = (ulong)vv->map[j].end-(ulong)vv->map[j].start;
        chunk /= run_cpus;
		
        // Round down to the nearest desired bitlength multiple
        chunk = (chunk + (makeMultipleOf-1)) &  ~(makeMultipleOf-1);

        // Figure out chunk boundaries
        *start = (ulong*)((ulong)vv->map[j].start+(chunk*me));
        /* Set end addrs for the highest CPU num to the
         * end of the segment for rounding errors */
        /* Also rounds down to boundary if needed, may miss some ram but
           better than crashing or producing false errors. */
        /* This rounding probably will never happen as the segments should
           be in 4096 bytes pages if I understand correctly. */
        if (me == mstr_cpu) {
            *end = (ulong*)(vv->map[j].end);
        } else {
            *end = (ulong*)((ulong)(*start) + chunk);
            (*end)--;
        }
    }
}

/* Call segment_fn() for each up-to-SPINSZ segment between
 * 'start' and 'end'.
 */
void foreach_segment
(ulong* start, ulong* end,
 int me, const void* ctx, segment_fn func) {

    ASSERT(start < end);

    // Confirm 'start' points to an even dword, and 'end'
    // should point to an odd dword
    ASSERT(0   == (((ulong)start) & 0x7));
    ASSERT(0x4 == (((ulong)end)   & 0x7));

    // 'end' may be exactly 0xfffffffc, right at the 4GB boundary.
    //
    // To avoid overflow in our loop tests and length calculations,
    // use dword indices (the '_dw' vars) to avoid overflows.
    ulong start_dw = ((ulong)start) >> 2;
    ulong   end_dw = ((ulong)  end) >> 2;

    // end is always xxxxxffc, but increment end_dw to an
    // address beyond the segment for easier boundary calculations.
    ++end_dw;

    ulong seg_dw     = start_dw;
    ulong seg_end_dw = start_dw;

    int done = 0;
    do {
        do_tick(me);
        { BAILR }

        // ensure no overflow
        ASSERT((seg_end_dw + SPINSZ_DWORDS) > seg_end_dw);
        seg_end_dw += SPINSZ_DWORDS;

        if (seg_end_dw >= end_dw) {
            seg_end_dw = end_dw;
            done++;
        }
        if (seg_dw == seg_end_dw) {
            break;
        }

        ASSERT(((ulong)seg_end_dw) <= 0x40000000);
        ASSERT(seg_end_dw > seg_dw);
        ulong seg_len_dw = seg_end_dw - seg_dw;

        func((ulong*)(seg_dw << 2), seg_len_dw, ctx);

        seg_dw = seg_end_dw;
    } while (!done);
}

/* Calls segment_fn() for each segment in vv->map.
 *
 * Does not slice by CPU number, so it covers the entire memory.
 * Contrast to sliced_foreach_segment().
 */
STATIC void unsliced_foreach_segment
(const void* ctx, int me, segment_fn func) {
    int j;
    for (j=0; j<segs; j++) {
        foreach_segment(vv->map[j].start,
                        vv->map[j].end,
                        me, ctx, func);
    }
}

/* Calls segment_fn() for each segment to be tested by CPU 'me'.
 *
 * In multicore mode, slices the segments by 'me' (the CPU ordinal
 * number) so that each call will cover only 1/Nth of memory.
 */
STATIC void sliced_foreach_segment
(const void *ctx, int me, segment_fn func) {
    int j;
    ulong *start, *end;  // VAs
    ulong* prev_end = 0;
    for (j=0; j<segs; j++) {
        calculate_chunk(&start, &end, me, j, 64);

        // Ensure no overlap among chunks
        ASSERT(end > start);
        if (prev_end > 0) {
            ASSERT(prev_end < start);
        }
        prev_end = end;

        foreach_segment(start, end, me, ctx, func);
    }
}

STATIC void addr_tst1_seg(ulong* restrict buf,
                          ulong len_dw, const void* unused) {
    // Within each segment:
    //  - choose a low dword offset 'off'
    //  - write pat to *off
    //  - write ~pat to addresses that are above off by
    //    1, 2, 4, ... dwords up to the top of the segment. None
    //    should alias to the original dword.
    //  - write ~pat to addresses that are below off by
    //    1, 2, 4, etc dwords, down to the start of the segment. None
    //    should alias to the original dword. If adding a given offset
    //    doesn't produce a single bit address flip (because it produced
    //    a carry) subtracting the same offset should give a single bit flip.
    //  - repeat this, moving off ahead in increments of 1MB;
    //    this covers address bits within physical memory banks, we hope?

    ulong pat;
    int k;

    for (pat=0x5555aaaa, k=0; k<2; k++) {
        hprint(LINE_PAT, COL_PAT, pat);

        for (ulong off_dw = 0; off_dw < len_dw; off_dw += (1 << 18)) {
            buf[off_dw] = pat;
            pat = ~pat;

            for (ulong more_off_dw = 1; off_dw + more_off_dw < len_dw;
                 more_off_dw = more_off_dw << 1) {
                ASSERT(more_off_dw);  // it should never get to zero
                buf[off_dw + more_off_dw] = pat;
                ulong bad;
                if ((bad = buf[off_dw]) != ~pat) {
                    ad_err1(buf + off_dw,
                            buf + off_dw + more_off_dw,
                            bad, ~pat);
                    break;
                }
            }
            for (ulong more_off_dw = 1; off_dw > more_off_dw;
                 more_off_dw = more_off_dw << 1) {
                ASSERT(more_off_dw);  // it should never get to zero
                buf[off_dw - more_off_dw] = pat;
                ulong bad;
                if ((bad = buf[off_dw]) != ~pat) {
                    ad_err1(buf + off_dw,
                            buf + off_dw - more_off_dw,
                            bad, ~pat);
                    break;
                }
            }
        }
    }
}

/*
 * Memory address test, walking ones
 */
void addr_tst1(int me)
{
    unsliced_foreach_segment(nullptr, me, addr_tst1_seg);
}

STATIC void addr_tst2_init_segment(ulong* p,
                                   ulong len_dw, const void* unused) {
    ulong* pe = p + (len_dw - 1);

    /* Original C code replaced with hand tuned assembly code
     *			for (; p <= pe; p++) {
     *				*p = (ulong)p;
     *			}
     */
    asm __volatile__ (
                      "jmp L91\n\t"
                      ".p2align 4,,7\n\t"
                      "L90:\n\t"
                      "addl $4,%%edi\n\t"
                      "L91:\n\t"
                      "movl %%edi,(%%edi)\n\t"
                      "cmpl %%edx,%%edi\n\t"
                      "jb L90\n\t"
                      : : "D" (p), "d" (pe)
                      );
}

STATIC void addr_tst2_check_segment(ulong* p,
                                    ulong len_dw, const void* unused) {
    ulong* pe = p + (len_dw - 1);

    /* Original C code replaced with hand tuned assembly code
     *			for (; p <= pe; p++) {
     *				if((bad = *p) != (ulong)p) {
     *					ad_err2((ulong)p, bad);
     *				}
     *			}
     */
    asm __volatile__
        (
         "jmp L95\n\t"
         ".p2align 4,,7\n\t"
         "L99:\n\t"
         "addl $4,%%edi\n\t"
         "L95:\n\t"
         "movl (%%edi),%%ecx\n\t"
         "cmpl %%edi,%%ecx\n\t"
         "jne L97\n\t"
         "L96:\n\t"
         "cmpl %%edx,%%edi\n\t"
         "jb L99\n\t"
         "jmp L98\n\t"

         "L97:\n\t"
         "pushl %%edx\n\t"
         "pushl %%ecx\n\t"
         "pushl %%edi\n\t"
         "call ad_err2\n\t"
         "popl %%edi\n\t"
         "popl %%ecx\n\t"
         "popl %%edx\n\t"
         "jmp L96\n\t"

         "L98:\n\t"
         : : "D" (p), "d" (pe)
         : "ecx"
         );
}

/*
 * Memory address test, own address
 */
void addr_tst2(int me)
{
    cprint(LINE_PAT, COL_PAT, "address ");

    /* Write each address with its own address */
    unsliced_foreach_segment(nullptr, me, addr_tst2_init_segment);
    { BAILR }

    /* Each address should have its own address */
    unsliced_foreach_segment(nullptr, me, addr_tst2_check_segment);
}

typedef struct {
    int me;
    ulong xorVal;    
} movinvr_ctx;

STATIC void movinvr_init(ulong* p,
                         ulong len_dw, const void* vctx) {
    ulong* pe = p + (len_dw - 1);
    const movinvr_ctx* ctx = (const movinvr_ctx*)vctx;
    /* Original C code replaced with hand tuned assembly code */
    /*
      for (; p <= pe; p++) {
      *p = rand(me);
      }
    */

    asm __volatile__
        (
         "jmp L200\n\t"
         ".p2align 4,,7\n\t"
         "L201:\n\t"
         "addl $4,%%edi\n\t"
         "L200:\n\t"
         "pushl %%ecx\n\t"
         "call rand\n\t"
         "popl %%ecx\n\t"
         "movl %%eax,(%%edi)\n\t"
         "cmpl %%ebx,%%edi\n\t"
         "jb L201\n\t"
         : : "D" (p), "b" (pe), "c" (ctx->me)
         : "eax"
         );
}

STATIC void movinvr_body(ulong* p, ulong len_dw, const void* vctx) {
    ulong* pe = p + (len_dw - 1);
    const movinvr_ctx* ctx = (const movinvr_ctx*)vctx;

    /* Original C code replaced with hand tuned assembly code */
				
    /*for (; p <= pe; p++) {
      num = rand(me);
      if (i) {
      num = ~num;
      }
      if ((bad=*p) != num) {
      mt86_error((ulong*)p, num, bad);
      }
      *p = ~num;
      }*/

    asm __volatile__
        (
         "pushl %%ebp\n\t"

         // Skip first increment
         "jmp L26\n\t"
         ".p2align 4,,7\n\t"

         // increment 4 bytes (32-bits)
         "L27:\n\t"
         "addl $4,%%edi\n\t"

         // Check this byte
         "L26:\n\t"

         // Get next random number, pass in me(edx), random value returned in num(eax)
         // num = rand(me);
         // cdecl call maintains all registers except eax, ecx, and edx
         // We maintain edx with a push and pop here using it also as an input
         // we don't need the current eax value and want it to change to the return value
         // we overwrite ecx shortly after this discarding its current value
         "pushl %%edx\n\t" // Push function inputs onto stack
         "call rand\n\t"
         "popl %%edx\n\t" // Remove function inputs from stack

         // XOR the random number with xorVal(ebx), which is either 0xffffffff or 0 depending on the outer loop
         // if (i) { num = ~num; }
         "xorl %%ebx,%%eax\n\t"

         // Move the current value of the current position p(edi) into bad(ecx)
         // (bad=*p)
         "movl (%%edi),%%ecx\n\t"

         // Compare bad(ecx) to num(eax)
         "cmpl %%eax,%%ecx\n\t"

         // If not equal jump the error case
         "jne L23\n\t"

         // Set a new value or not num(eax) at the current position p(edi)
         // *p = ~num;
         "L25:\n\t"
         "movl $0xffffffff,%%ebp\n\t"
         "xorl %%ebp,%%eax\n\t"
         "movl %%eax,(%%edi)\n\t"

         // Loop until current position p(edi) equals the end position pe(esi)
         "cmpl %%esi,%%edi\n\t"
         "jb L27\n\t"
         "jmp L24\n"

         // Error case
         "L23:\n\t"
         // Must manually maintain eax, ecx, and edx as part of cdecl call convention
         "pushl %%edx\n\t"
         "pushl %%ecx\n\t" // Next three pushes are functions input
         "pushl %%eax\n\t"
         "pushl %%edi\n\t"
         "call mt86_error\n\t"
         "popl %%edi\n\t" // Remove function inputs from stack and restore register values
         "popl %%eax\n\t"
         "popl %%ecx\n\t"
         "popl %%edx\n\t"
         "jmp L25\n" 

         "L24:\n\t"
         "popl %%ebp\n\t"
         :: "D" (p), "S" (pe), "b" (ctx->xorVal),
          "d" (ctx->me)
         : "eax", "ecx"
         );
}

/*
 * Test all of memory using a "half moving inversions" algorithm using random
 * numbers and their complement as the data pattern. Since we are not able to
 * produce random numbers in reverse order testing is only done in the forward
 * direction.
 */
void movinvr(int me)
{
    int i, seed1, seed2;

    movinvr_ctx ctx;
    ctx.me = me;
    ctx.xorVal = 0;

    /* Initialize memory with initial sequence of random numbers.  */
    if (cpu_id.fid.bits.rdtsc) {
        asm __volatile__ ("rdtsc":"=a" (seed1),"=d" (seed2));
    } else {
        seed1 = 521288629 + vv->pass;
        seed2 = 362436069 - vv->pass;
    }

    /* Display the current seed */
    if (mstr_cpu == me) hprint(LINE_PAT, COL_PAT, seed1);
    rand_seed(seed1, seed2, me);

    sliced_foreach_segment(&ctx, me, movinvr_init);
    { BAILR }

    /* Do moving inversions test. Check for initial pattern and then
     * write the complement for each memory location.
     */
    for (i=0; i<2; i++) {
        rand_seed(seed1, seed2, me);

        if (i) {
            ctx.xorVal = 0xffffffff;
        } else {
            ctx.xorVal = 0;
        }

        sliced_foreach_segment(&ctx, me, movinvr_body);
        { BAILR }
    }
}

typedef struct {
    ulong p1;
    ulong p2;
} movinv1_ctx;

STATIC void movinv1_init(ulong* start,
                         ulong len_dw, const void* vctx) {
    const movinv1_ctx* ctx = (const movinv1_ctx*)vctx;

    ulong p1 = ctx->p1;
    ulong* p = start;

    asm __volatile__
        (
         "rep\n\t"
         "stosl\n\t"
         : : "c" (len_dw), "D" (p), "a" (p1)
         );
}

STATIC void movinv1_bottom_up(ulong* start,
                              ulong len_dw, const void* vctx) {
    const movinv1_ctx* ctx = (const movinv1_ctx*)vctx;
    ulong p1 = ctx->p1;
    ulong p2 = ctx->p2;
    ulong* p = start;
    ulong* pe = p + (len_dw - 1);

    // Original C code replaced with hand tuned assembly code 
    // seems broken
    /*for (; p <= pe; p++) {
      if ((bad=*p) != p1) {
      mt86_error((ulong*)p, p1, bad);
      }
      *p = p2;
      }*/

    asm __volatile__
        (
         "jmp L2\n\t"
         ".p2align 4,,7\n\t"
         "L0:\n\t"
         "addl $4,%%edi\n\t"
         "L2:\n\t"
         "movl (%%edi),%%ecx\n\t"
         "cmpl %%eax,%%ecx\n\t"
         "jne L3\n\t"
         "L5:\n\t"
         "movl %%ebx,(%%edi)\n\t"
         "cmpl %%edx,%%edi\n\t"
         "jb L0\n\t"
         "jmp L4\n"

         "L3:\n\t"
         "pushl %%edx\n\t"
         "pushl %%ebx\n\t"
         "pushl %%ecx\n\t"
         "pushl %%eax\n\t"
         "pushl %%edi\n\t"
         "call mt86_error\n\t"
         "popl %%edi\n\t"
         "popl %%eax\n\t"
         "popl %%ecx\n\t"
         "popl %%ebx\n\t"
         "popl %%edx\n\t"
         "jmp L5\n"

         "L4:\n\t"
         :: "a" (p1), "D" (p), "d" (pe), "b" (p2)
         : "ecx"
         );
}

STATIC void movinv1_top_down(ulong* start,
                             ulong len_dw, const void* vctx) {
    const movinv1_ctx* ctx = (const movinv1_ctx*)vctx;
    ulong p1 = ctx->p1;
    ulong p2 = ctx->p2;
    ulong* p = start + (len_dw - 1);
    ulong* pe = start;

    //Original C code replaced with hand tuned assembly code
    // seems broken
    /*do {
      if ((bad=*p) != p2) {
      mt86_error((ulong*)p, p2, bad);
      }
      *p = p1;
      } while (--p >= pe);*/

    asm __volatile__
        (
         "jmp L9\n\t"
         ".p2align 4,,7\n\t"
         "L11:\n\t"
         "subl $4, %%edi\n\t"
         "L9:\n\t"
         "movl (%%edi),%%ecx\n\t"
         "cmpl %%ebx,%%ecx\n\t"
         "jne L6\n\t"
         "L10:\n\t"
         "movl %%eax,(%%edi)\n\t"
         "cmpl %%edi, %%edx\n\t"
         "jne L11\n\t"
         "jmp L7\n\t"

         "L6:\n\t"
         "pushl %%edx\n\t"
         "pushl %%eax\n\t"
         "pushl %%ecx\n\t"
         "pushl %%ebx\n\t"
         "pushl %%edi\n\t"
         "call mt86_error\n\t"
         "popl %%edi\n\t"
         "popl %%ebx\n\t"
         "popl %%ecx\n\t"
         "popl %%eax\n\t"
         "popl %%edx\n\t"
         "jmp L10\n"

         "L7:\n\t"
         :: "a" (p1), "D" (p), "d" (pe), "b" (p2)
         : "ecx"
         );
}

/*
 * Test all of memory using a "moving inversions" algorithm using the
 * pattern in p1 and its complement in p2.
 */
void movinv1 (int iter, ulong p1, ulong p2, int me)
{
    int i;

    /* Display the current pattern */
    if (mstr_cpu == me) hprint(LINE_PAT, COL_PAT, p1);

    movinv1_ctx ctx;
    ctx.p1 = p1;
    ctx.p2 = p2;
    sliced_foreach_segment(&ctx, me, movinv1_init);
    { BAILR }

    /* Do moving inversions test. Check for initial pattern and then
     * write the complement for each memory location. Test from bottom
     * up and then from the top down.  */
    for (i=0; i<iter; i++) {
        sliced_foreach_segment(&ctx, me, movinv1_bottom_up);
        { BAILR }

        // NOTE(jcoiner):
        // For the top-down pass, the original 5.01 code iterated over
        // 'segs' in from n-1 down to 0, and then within each mapped segment,
        // it would form the SPINSZ windows from the top down -- thus forming
        // a different set of windows than the bottom-up pass, when the segment
        // is not an integer number of windows.
        //
        // My guess is that this buys us very little additional coverage, that
        // the value in going top-down happens at the word or cache-line level
        // and that there's little to be gained from reversing the direction of
        // the outer loops. So I'm leaving a 'direction' bit off of the
        // foreach_segment() routines for now.
        sliced_foreach_segment(&ctx, me, movinv1_top_down);
        { BAILR }
    }
}

typedef struct {
    ulong p1;
    ulong lb;
    ulong hb;
    int sval;
    int off;
} movinv32_ctx;

STATIC void movinv32_init(ulong* restrict buf,
                          ulong len_dw, const void* vctx) {
    const movinv32_ctx* restrict ctx = (const movinv32_ctx*)vctx;

    ulong* p = buf;
    ulong* pe = buf + (len_dw - 1);

    int k = ctx->off;
    ulong pat = ctx->p1;
    ulong lb = ctx->lb;
    int sval = ctx->sval;

    /* Original C code replaced with hand tuned assembly code
     *			while (p <= pe) {
     *				*p = pat;
     *				if (++k >= 32) {
     *					pat = lb;
     *					k = 0;
     *				} else {
     *					pat = pat << 1;
     *					pat |= sval;
     *				}
     *				p++;
     *			}
     */
    asm __volatile__
        (
         "jmp L20\n\t"
         ".p2align 4,,7\n\t"
         "L923:\n\t"
         "addl $4,%%edi\n\t"
         "L20:\n\t"
         "movl %%ecx,(%%edi)\n\t"
         "addl $1,%%ebx\n\t"
         "cmpl $32,%%ebx\n\t"
         "jne L21\n\t"
         "movl %%esi,%%ecx\n\t"
         "xorl %%ebx,%%ebx\n\t"
         "jmp L22\n"
         "L21:\n\t"
         "shll $1,%%ecx\n\t"
         "orl %%eax,%%ecx\n\t"
         "L22:\n\t"
         "cmpl %%edx,%%edi\n\t"
         "jb L923\n\t"
         :: "D" (p),"d" (pe),"b" (k),"c" (pat),
           "a" (sval), "S" (lb)
         );
}

STATIC void movinv32_bottom_up(ulong* restrict buf, ulong len_dw,
                               const void* vctx) {
    const movinv32_ctx* restrict ctx = (const movinv32_ctx*)vctx;

    ulong* p = buf;
    ulong* pe = buf + (len_dw - 1);

    int k = ctx->off;
    ulong pat = ctx->p1;
    ulong lb = ctx->lb;
    int sval = ctx->sval;

    /* Original C code replaced with hand tuned assembly code
     *				while (1) {
     *					if ((bad=*p) != pat) {
     *						mt86_error((ulong*)p, pat, bad);
     *					}
     *					*p = ~pat;
     *					if (p >= pe) break;
     *					p++;
     *
     *					if (++k >= 32) {
     *						pat = lb;
     *						k = 0;
     *					} else {
     *						pat = pat << 1;
     *						pat |= sval;
     *					}
     *				}
     */
    asm __volatile__
        (
         "pushl %%ebp\n\t"
         "jmp L30\n\t"
         ".p2align 4,,7\n\t"
         "L930:\n\t"
         "addl $4,%%edi\n\t"
         "L30:\n\t"
         "movl (%%edi),%%ebp\n\t"
         "cmpl %%ecx,%%ebp\n\t"
         "jne L34\n\t"

         "L35:\n\t"
         "notl %%ecx\n\t"
         "movl %%ecx,(%%edi)\n\t"
         "notl %%ecx\n\t"
         "incl %%ebx\n\t"
         "cmpl $32,%%ebx\n\t"
         "jne L31\n\t"
         "movl %%esi,%%ecx\n\t"
         "xorl %%ebx,%%ebx\n\t"
         "jmp L32\n"
         "L31:\n\t"
         "shll $1,%%ecx\n\t"
         "orl %%eax,%%ecx\n\t"
         "L32:\n\t"
         "cmpl %%edx,%%edi\n\t"
         "jb L930\n\t"
         "jmp L33\n\t"

         "L34:\n\t"
         "pushl %%esi\n\t"
         "pushl %%eax\n\t"
         "pushl %%ebx\n\t"
         "pushl %%edx\n\t"
         "pushl %%ebp\n\t"
         "pushl %%ecx\n\t"
         "pushl %%edi\n\t"
         "call mt86_error\n\t"
         "popl %%edi\n\t"
         "popl %%ecx\n\t"
         "popl %%ebp\n\t"
         "popl %%edx\n\t"
         "popl %%ebx\n\t"
         "popl %%eax\n\t"
         "popl %%esi\n\t"
         "jmp L35\n"

         "L33:\n\t"
         "popl %%ebp\n\t"
         : "=b" (k),"=c" (pat)
         : "D" (p),"d" (pe),"b" (k),"c" (pat),
           "a" (sval), "S" (lb)
         );
}

STATIC void movinv32_top_down(ulong* restrict buf,
                              ulong len_dw, const void* vctx) {
    const movinv32_ctx* restrict ctx = (const movinv32_ctx*)vctx;

    ulong* pe = buf;
    ulong* p = buf + (len_dw - 1);

    int k = ctx->off;
    ulong pat = ctx->p1;
    ulong hb = ctx->hb;
    int sval = ctx->sval;
    ulong p3 = (ulong)sval << 31;

    // Advance 'k' and 'pat' to where they would have been
    // at the end of the corresponding bottom_up segment.
    //
    // The '-1' is because we didn't advance 'k' or 'pat'
    // on the final bottom_up loop, so they're off by one...
    ulong mod_len = (len_dw - 1) % 32;
    for (int i = 0; i < mod_len; i++) {
        if (++k >= 32) {
            pat = ctx->lb;
            k = 0;
        } else {
            pat = pat << 1;
            pat |= sval;
        }
    }

    // Increment 'k' only because the code below has an off-by-one
    // interpretation of 'k' relative to the bottom_up routine.
    // There it ranges from 0:31, and here it ranges from 1:32.
    k++;

    /* Original C code replaced with hand tuned assembly code */
#if PREFER_C
    ulong bad;
    while(1) {
        if ((bad=*p) != ~pat) {
            mt86_error((ulong*)p, ~pat, bad);
        }
        *p = pat;
        if (p <= pe) break;
        p--;

        if (--k <= 0) {
            k = 32;
            pat = hb;
        } else {
            pat = pat >> 1;
            pat |= p3;
        }
    };
#else
    asm __volatile__
        (
         "pushl %%ebp\n\t"
         "jmp L40\n\t"
         ".p2align 4,,7\n\t"
         "L49:\n\t"
         "subl $4,%%edi\n\t"
         "L40:\n\t"
         "movl (%%edi),%%ebp\n\t"
         "notl %%ecx\n\t"
         "cmpl %%ecx,%%ebp\n\t"
         "jne L44\n\t"

         "L45:\n\t"
         "notl %%ecx\n\t"
         "movl %%ecx,(%%edi)\n\t"
         "decl %%ebx\n\t"
         "cmpl $0,%%ebx\n\t"
         "jg L41\n\t"
         "movl %%esi,%%ecx\n\t"
         "movl $32,%%ebx\n\t"
         "jmp L42\n"
         "L41:\n\t"
         "shrl $1,%%ecx\n\t"
         "orl %%eax,%%ecx\n\t"
         "L42:\n\t"
         "cmpl %%edx,%%edi\n\t"
         "ja L49\n\t"
         "jmp L43\n\t"

         "L44:\n\t"
         "pushl %%esi\n\t"
         "pushl %%eax\n\t"
         "pushl %%ebx\n\t"
         "pushl %%edx\n\t"
         "pushl %%ebp\n\t"
         "pushl %%ecx\n\t"
         "pushl %%edi\n\t"
         "call mt86_error\n\t"
         "popl %%edi\n\t"
         "popl %%ecx\n\t"
         "popl %%ebp\n\t"
         "popl %%edx\n\t"
         "popl %%ebx\n\t"
         "popl %%eax\n\t"
         "popl %%esi\n\t"
         "jmp L45\n"

         "L43:\n\t"
         "popl %%ebp\n\t"
         : : "D" (p),"d" (pe),"b" (k),"c" (pat),
           "a" (p3), "S" (hb)
         );
#endif
}

void movinv32(int iter, ulong p1, ulong lb, ulong hb, int sval, int off,int me)
{
    // First callsite:
    //  - p1 has 1 bit set (somewhere)
    //  - lb = 1 ("low bit")
    //  - hb = 0x80000000 ("high bit")
    //  - sval = 0
    //  - 'off' indicates the position of the set bit in p1
    //
    // Second callsite is the same, but inverted:
    //  - p1 has 1 bit clear (somewhere)
    //  - lb = 0xfffffffe
    //  - hb = 0x7fffffff
    //  - sval = 1
    //  - 'off' indicates the position of the cleared bit in p1

    movinv32_ctx ctx;
    ctx.p1 = p1;
    ctx.lb = lb;
    ctx.hb = hb;
    ctx.sval = sval;
    ctx.off = off;

    /* Display the current pattern */
    if (mstr_cpu == me) hprint(LINE_PAT, COL_PAT, p1);

    sliced_foreach_segment(&ctx, me, movinv32_init);
    { BAILR }

    /* Do moving inversions test. Check for initial pattern and then
     * write the complement for each memory location. Test from bottom
     * up and then from the top down.  */
    for (int i=0; i<iter; i++) {
        sliced_foreach_segment(&ctx, me, movinv32_bottom_up);
        { BAILR }

        sliced_foreach_segment(&ctx, me, movinv32_top_down);
        { BAILR }
    }
}

typedef struct {
    int offset;
    ulong p1;
    ulong p2;
} modtst_ctx;

STATIC void modtst_sparse_writes(ulong* restrict start,
                                 ulong len_dw, const void* vctx) {
    const modtst_ctx* restrict ctx = (const modtst_ctx*)vctx;
    ulong p1 = ctx->p1;
    ulong offset = ctx->offset;

#if PREFER_C
    for (ulong i = offset; i < len_dw; i += MOD_SZ) {
        start[i] = p1;
    }
#else
    ulong* p = start + offset;
    ulong* pe = start + len_dw;
    asm __volatile__
        (
         "jmp L60\n\t"
         ".p2align 4,,7\n\t"

         "L60:\n\t"
         "movl %%eax,(%%edi)\n\t"
         "addl $80,%%edi\n\t"
         "cmpl %%edx,%%edi\n\t"
         "jb L60\n\t"
         :: "D" (p), "d" (pe), "a" (p1)
         );
#endif
}

STATIC void modtst_dense_writes(ulong* restrict start, ulong len_dw,
                                const void* vctx) {
    const modtst_ctx* restrict ctx = (const modtst_ctx*)vctx;
    ulong p2 = ctx->p2;
    ulong offset = ctx->offset;

    ASSERT(offset < MOD_SZ);

    ulong k = 0;
#if PREFER_C
    for (ulong i = 0; i < len_dw; i++) {
        if (k != offset) {
            start[i] = p2;
        }
        if (++k >= MOD_SZ) {
            k = 0;
        }
    }
#else
    ulong* pe = start + (len_dw - 1);
    asm __volatile__
        (
         "jmp L50\n\t"
         ".p2align 4,,7\n\t"

         "L54:\n\t"
         "addl $4,%%edi\n\t"
         "L50:\n\t"
         "cmpl %%ebx,%%ecx\n\t"
         "je L52\n\t"
         "movl %%eax,(%%edi)\n\t"
         "L52:\n\t"
         "incl %%ebx\n\t"
         "cmpl $19,%%ebx\n\t"
         "jle L53\n\t"
         "xorl %%ebx,%%ebx\n\t"
         "L53:\n\t"
         "cmpl %%edx,%%edi\n\t"
         "jb L54\n\t"
         : : "D" (start), "d" (pe), "a" (p2),
           "b" (k), "c" (offset)
         );
#endif
}

STATIC void modtst_check(ulong* restrict start,
                         ulong len_dw, const void* vctx) {
    const modtst_ctx* restrict ctx = (const modtst_ctx*)vctx;
    ulong p1 = ctx->p1;
    ulong offset = ctx->offset;

    ASSERT(offset < MOD_SZ);

#if PREFER_C
    ulong bad;
    for (ulong i = offset; i < len_dw; i += MOD_SZ) {
        if ((bad = start[i]) != p1)
            mt86_error(start + i, p1, bad);
    }
#else
    ulong* p = start + offset;
    ulong* pe = start + len_dw;
    asm __volatile__
        (
         "jmp L70\n\t"
         ".p2align 4,,7\n\t"

         "L70:\n\t"
         "movl (%%edi),%%ecx\n\t"
         "cmpl %%eax,%%ecx\n\t"
         "jne L71\n\t"
         "L72:\n\t"
         "addl $80,%%edi\n\t"
         "cmpl %%edx,%%edi\n\t"
         "jb L70\n\t"
         "jmp L73\n\t"

         "L71:\n\t"
         "pushl %%edx\n\t"
         "pushl %%ecx\n\t"
         "pushl %%eax\n\t"
         "pushl %%edi\n\t"
         "call mt86_error\n\t"
         "popl %%edi\n\t"
         "popl %%eax\n\t"
         "popl %%ecx\n\t"
         "popl %%edx\n\t"
         "jmp L72\n"

         "L73:\n\t"
         : : "D" (p), "d" (pe), "a" (p1)
         : "ecx"
         );
#endif
}

/*
 * Test all of memory using modulo X access pattern.
 */
void modtst(int offset, int iter, ulong p1, ulong p2, int me)
{
    modtst_ctx ctx;
    ctx.offset = offset;
    ctx.p1 = p1;
    ctx.p2 = p2;

    /* Display the current pattern */
    if (mstr_cpu == me) {
        hprint(LINE_PAT, COL_PAT-2, p1);
        cprint(LINE_PAT, COL_PAT+6, "-");
        dprint(LINE_PAT, COL_PAT+7, offset, 2, 1);
    }

    /* Write every nth location with pattern */
    sliced_foreach_segment(&ctx, me, modtst_sparse_writes);
    { BAILR }

    /* Write the rest of memory "iter" times with the pattern complement */
    for (ulong i=0; i<iter; i++) {
        sliced_foreach_segment(&ctx, me, modtst_dense_writes);
        { BAILR }
    }

    /* Now check every nth location */
    sliced_foreach_segment(&ctx, me, modtst_check);
}

#if PREFER_C

STATIC void movsl(ulong* dest,
           ulong* src,
           ulong size_in_dwords) {
    /* Logically equivalent to:

    for (ulong i = 0; i < size_in_dwords; i++)
        dest[i] = src[i];

    However: the movsl instruction does the entire loop
    in one instruction -- this is probably how 'memcpy'
    is implemented -- so hardware makes it very fast.

    Even in PREFER_C mode, we want the brute force of movsl!
    */
    asm __volatile__
        (
         "cld\n"
         "jmp L1189\n\t"

         ".p2align 4,,7\n\t"
         "L1189:\n\t"

         "movl %1,%%edi\n\t" // dest
         "movl %0,%%esi\n\t" // src
         "movl %2,%%ecx\n\t" // len in dwords
         "rep\n\t"
         "movsl\n\t"

         :: "g" (src), "g" (dest), "g" (size_in_dwords)
         : "edi", "esi", "ecx"
         );
}
#endif  // PREFER_C

STATIC ulong block_move_normalize_len_dw(ulong len_dw) {
    // The block_move test works with sets of 64-byte blocks,
    // so ensure our total length is a multiple of 64.
    //
    // In fact, since we divide the region in half, and each half-region
    // is a set of 64-byte blocks, the full region should be a multiple of 128
    // bytes.
    //
    // Note that there's no requirement for the start address of the region to
    // be 64-byte aligned, it can be any dword.
    ulong result = (len_dw >> 5) << 5;
    ASSERT(result > 0);
    return result;
}

STATIC void block_move_init(ulong* restrict buf,
                            ulong len_dw, const void* unused_ctx) {
    len_dw = block_move_normalize_len_dw(len_dw);

    // Compute 'len' in units of 64-byte chunks:
    ulong len = len_dw >> 4;

    // We only need to initialize len/2, since we'll just copy
    // the first half onto the second half in the move step.
    len = len >> 1;

    ulong base_val = 1;
#if PREFER_C
    while(len > 0) {
        ulong neg_val = ~base_val;

        // Set a block of 64 bytes   //   first block DWORDS are:
        buf[0] = base_val;             //   0x00000001
        buf[1] = base_val;             //   0x00000001
        buf[2] = base_val;             //   0x00000001
        buf[3] = base_val;             //   0x00000001
        buf[4] = neg_val;              //   0xfffffffe
        buf[5] = neg_val;              //   0xfffffffe
        buf[6] = base_val;             //   0x00000001
        buf[7] = base_val;             //   0x00000001
        buf[8] = base_val;             //   0x00000001
        buf[9] = base_val;             //   0x00000001
        buf[10] = neg_val;             //   0xfffffffe
        buf[11] = neg_val;             //   0xfffffffe
        buf[12] = base_val;            //   0x00000001
        buf[13] = base_val;            //   0x00000001
        buf[14] = neg_val;             //   0xfffffffe
        buf[15] = neg_val;             //   0xfffffffe

        buf += 16;  // advance to next 64-byte block
        len--;

        // Rotate the bit left, including an all-zero state.
        // It can't hurt to have a periodicity of 33 instead of
        // a power of two.
        if (base_val == 0) {
            base_val = 1;
        } else if (base_val & 0x80000000) {
            base_val = 0;
        } else {
            base_val = base_val << 1;
        }
    }
#else
    asm __volatile__
        (
         "jmp L100\n\t"

         ".p2align 4,,7\n\t"
         "L100:\n\t"

         // First loop eax is 0x00000001, edx is 0xfffffffe
         "movl %%eax, %%edx\n\t"
         "notl %%edx\n\t"

         // Set a block of 64-bytes	// First loop DWORDS are 
         "movl %%eax,0(%%edi)\n\t"	// 0x00000001
         "movl %%eax,4(%%edi)\n\t"	// 0x00000001
         "movl %%eax,8(%%edi)\n\t"	// 0x00000001
         "movl %%eax,12(%%edi)\n\t"	// 0x00000001
         "movl %%edx,16(%%edi)\n\t"	// 0xfffffffe
         "movl %%edx,20(%%edi)\n\t"	// 0xfffffffe
         "movl %%eax,24(%%edi)\n\t"	// 0x00000001
         "movl %%eax,28(%%edi)\n\t"	// 0x00000001
         "movl %%eax,32(%%edi)\n\t"	// 0x00000001
         "movl %%eax,36(%%edi)\n\t"	// 0x00000001
         "movl %%edx,40(%%edi)\n\t"	// 0xfffffffe
         "movl %%edx,44(%%edi)\n\t"	// 0xfffffffe
         "movl %%eax,48(%%edi)\n\t"	// 0x00000001
         "movl %%eax,52(%%edi)\n\t"	// 0x00000001
         "movl %%edx,56(%%edi)\n\t"	// 0xfffffffe
         "movl %%edx,60(%%edi)\n\t"	// 0xfffffffe

         // rotate left with carry, 
         // second loop eax is		 0x00000002
         // second loop edx is (~eax) 0xfffffffd
         "rcll $1, %%eax\n\t"		
			
         // Move current position forward 64-bytes (to start of next block)
         "leal 64(%%edi), %%edi\n\t"

         // Loop until end
         "decl %%ecx\n\t"
         "jnz  L100\n\t"

         : : "D" (buf), "c" (len), "a" (base_val)
         : "edx"
         );
#endif
}

typedef struct {
    int iter;
    int me;
} block_move_ctx;

STATIC void block_move_move(ulong* restrict buf,
                            ulong len_dw, const void* vctx) {
    const block_move_ctx* restrict ctx = (const block_move_ctx*)vctx;
    ulong iter = ctx->iter;
    int me = ctx->me;

    len_dw = block_move_normalize_len_dw(len_dw);

    /* Now move the data around 
     * First move the data up half of the segment size we are testing
     * Then move the data to the original location + 32 bytes
     */
    ulong half_len_dw = len_dw / 2; // Half the size of this block in DWORDS
    ASSERT(half_len_dw > 8);

    ulong* mid = buf + half_len_dw;    // VA at mid-point of this block.
    for (int i=0; i<iter; i++) {
        if (i > 0) {
            // foreach_segment() called this before the 0th iteration,
            // so don't tick twice in quick succession.
            do_tick(me);
        }
        { BAILR }

#if PREFER_C
        // Move first half to 2nd half:
        movsl(/*dest=*/ mid, /*src=*/ buf, half_len_dw);

        // Move the second half, less the last 8 dwords
        // to the first half plus an offset of 8 dwords.
        movsl(/*dest=*/ buf + 8, /*src=*/ mid, half_len_dw - 8);

        // Finally, move the last 8 dwords of the 2nd half
        // to the first 8 dwords of the first half.
        movsl(/*dest=*/ mid + half_len_dw - 8, /*src=*/ buf, 8);
#else
        asm __volatile__
            (
             "cld\n"
             "jmp L110\n\t"

             ".p2align 4,,7\n\t"
             "L110:\n\t"

             //
             // At the end of all this 
             // - the second half equals the inital value of the first half
             // - the first half is right shifted 32-bytes (with wrapping)
             //

             // Move first half to second half
             "movl %1,%%edi\n\t" // Destination 'mid' (mid point)
             "movl %0,%%esi\n\t" // Source, 'buf' (start point)
             "movl %2,%%ecx\n\t" // Length, 'half_len_dw' (size of a half in DWORDS)
             "rep\n\t"
             "movsl\n\t"

             // Move the second half, less the last 32-bytes. To the first half, offset plus 32-bytes
             "movl %0,%%edi\n\t"
             "addl $32,%%edi\n\t"   // Destination 'buf' plus 32 bytes
             "movl %1,%%esi\n\t"    // Source, 'mid'
             "movl %2,%%ecx\n\t"
             "subl $8,%%ecx\n\t"    // Length, 'half_len_dw'
             "rep\n\t"
             "movsl\n\t"

             // Move last 8 DWORDS (32-bytes) of the second half to the start of the first half
             "movl %0,%%edi\n\t"    // Destination 'buf'
             // Source, 8 DWORDS from the end of the second half, left over by the last rep/movsl
             "movl $8,%%ecx\n\t"    // Length, 8 DWORDS (32-bytes)
             "rep\n\t"
             "movsl\n\t"

             :: "g" (buf), "g" (mid), "g" (half_len_dw)
             : "edi", "esi", "ecx"
             );
#endif        
    }
}

STATIC void block_move_check(ulong* restrict buf,
                             ulong len_dw, const void* unused_ctx) {
    len_dw = block_move_normalize_len_dw(len_dw);

    /* Now check the data.
     * This is rather crude, we just check that the
     * adjacent words are the same.
     */
#if PREFER_C
    for (ulong i = 0; i < len_dw; i = i + 2) {
        if (buf[i] != buf[i+1]) {
            mt86_error(buf+i, buf[i], buf[i+1]);
        }
    }
#else
    ulong* pe = buf + (len_dw - 2);
    asm __volatile__
        (
         "jmp L120\n\t"

         ".p2align 4,,7\n\t"
         "L124:\n\t"
         "addl $8,%%edi\n\t" // Next QWORD
         "L120:\n\t"

         // Compare adjacent DWORDS
         "movl (%%edi),%%ecx\n\t"
         "cmpl 4(%%edi),%%ecx\n\t"
         "jnz L121\n\t" // Print error if they don't match

         // Loop until end of block
         "L122:\n\t"
         "cmpl %%edx,%%edi\n\t"
         "jb L124\n"
         "jmp L123\n\t"

         "L121:\n\t"
         // eax not used so we don't need to save it as per cdecl
         // ecx is used but not restored, however we don't need it's value anymore after this point
         "pushl %%edx\n\t"
         "pushl 4(%%edi)\n\t"
         "pushl %%ecx\n\t"
         "pushl %%edi\n\t"
         "call mt86_error\n\t"
         "popl %%edi\n\t"
         "addl $8,%%esp\n\t"
         "popl %%edx\n\t"
         "jmp L122\n"
         "L123:\n\t"
         :: "D" (buf), "d" (pe)
         : "ecx"
         );
#endif
}

/*
 * Test memory using block moves 
 * Adapted from Robert Redelmeier's burnBX test
 */
void block_move(int iter, int me)
{
    cprint(LINE_PAT, COL_PAT-2, "          ");

    block_move_ctx ctx;
    ctx.iter = iter;
    ctx.me = me;

    /* Initialize memory with the initial pattern.  */
    sliced_foreach_segment(&ctx, me, block_move_init);
    { BAILR }
    s_barrier();

    /* Now move the data around */
    sliced_foreach_segment(&ctx, me, block_move_move);
    { BAILR }
    s_barrier();

    /* And check it. */
    sliced_foreach_segment(&ctx, me, block_move_check);
}

typedef struct {
    ulong pat;
} bit_fade_ctx;

STATIC void bit_fade_fill_seg(ulong* restrict p,
                              ulong len_dw, const void* vctx) {
    const bit_fade_ctx* restrict ctx = (const bit_fade_ctx*)vctx;
    ulong pat = ctx->pat;

    for (ulong i = 0; i < len_dw; i++) {
        p[i] = pat;
    }
}

/*
 * Test memory for bit fade, fill memory with pattern.
 */
void bit_fade_fill(ulong p1, int me)
{
    /* Display the current pattern */
    hprint(LINE_PAT, COL_PAT, p1);

    /* Initialize memory with the initial pattern.  */
    bit_fade_ctx ctx;
    ctx.pat = p1;
    unsliced_foreach_segment(&ctx, me, bit_fade_fill_seg);
}

STATIC void bit_fade_chk_seg(ulong* restrict p,
                             ulong len_dw, const void* vctx) {
    const bit_fade_ctx* restrict ctx = (const bit_fade_ctx*)vctx;
    ulong pat = ctx->pat;

    for (ulong i = 0; i < len_dw; i++) {
        ulong bad;
        if ((bad=p[i]) != pat) {
            mt86_error(p+i, pat, bad);
        }
    }
}

void bit_fade_chk(ulong p1, int me)
{
    bit_fade_ctx ctx;
    ctx.pat = p1;

    /* Make sure that nothing changed while sleeping */
    unsliced_foreach_segment(&ctx, me, bit_fade_chk_seg);
}

/* Sleep for N seconds */
void sleep(long n, int flag, int me,
           int sms /* interpret 'n' as milliseconds instead */)
{
    ulong sh, sl, l, h, t, ip=0;

    /* save the starting time */
    asm __volatile__(
                     "rdtsc":"=a" (sl),"=d" (sh));

    /* loop for n seconds */
    while (1) {
        asm __volatile__(
                         "rep ; nop\n\t"
                         "rdtsc":"=a" (l),"=d" (h));
        asm __volatile__ (
                          "subl %2,%0\n\t"
                          "sbbl %3,%1"
                          :"=a" (l), "=d" (h)
                          :"g" (sl), "g" (sh),
                           "0" (l), "1" (h));

        if (sms != 0) {
            t = h * ((unsigned)0xffffffff / vv->clks_msec);
            t += (l / vv->clks_msec);
        } else {
            t = h * ((unsigned)0xffffffff / vv->clks_msec) / 1000;
            t += (l / vv->clks_msec) / 1000;
        }

        /* Is the time up? */
        if (t >= n) {
            break;
        }

        /* Only display elapsed time if flag is set */
        if (flag == 0) {
            continue;
        }

        if (t != ip) {
            do_tick(me);
            { BAILR }
            ip = t;
        }
    }
}

void beep(unsigned int frequency)
{
#if 0
    // BOZO(jcoiner)
    // Removed this, we need to define outb_p() and inb_p()
    // before reintroducing it.
#else
    unsigned int count = 1193180 / frequency;

    // Switch on the speaker
    outb_p(inb_p(0x61)|3, 0x61);

    // Set command for counter 2, 2 byte write
    outb_p(0xB6, 0x43);

    // Select desired Hz
    outb_p(count & 0xff, 0x42);
    outb((count >> 8) & 0xff, 0x42);

    // Block for 100 microseconds
    sleep(100, 0, 0, 1);

    // Switch off the speaker
    outb(inb_p(0x61)&0xFC, 0x61);
#endif
}