summaryrefslogtreecommitdiffstats
path: root/init.c
blob: cbae911e380278b75d0810cd7e79f660755f7977 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
/* init.c - MemTest-86  Version 3.0
 *
 * Released under version 2 of the Gnu Public License.
 * By Chris Brady, cbrady@sgi.com
 * ----------------------------------------------------
 * MemTest86+ V1.15 Specific code (GPL V2.0)
 * By Samuel DEMEULEMEESTER, sdemeule@memtest.org
 * http://www.x86-secret.com - http://www.memtest.org
 */

#include "test.h"
#include "defs.h"
#include "config.h"
#include "controller.h"
#include "pci.h"
#include "io.h"

extern short memsz_mode;
extern short firmware;

struct cpu_ident cpu_id;
ulong st_low, st_high;
ulong end_low, end_high;
ulong cal_low, cal_high;
ulong extclock;

static ulong memspeed(ulong src, ulong len, int iter);
static void cpu_type(void);
static void cacheable(void);
static int cpuspeed(void);

static void display_init(void)
{
	int i;
	volatile char *pp;

	serial_echo_init();
        serial_echo_print("INE_SCROLL;24r"); /* Set scroll area row 7-23 */
        serial_echo_print("");   /* Clear Screen */
        serial_echo_print("");
        serial_echo_print("");
        serial_echo_print("");

	/* Clear screen & set background to blue */
	for(i=0, pp=(char *)(SCREEN_ADR); i<80*24; i++) {
		*pp++ = ' ';
		*pp++ = 0x17;
	}

	/* Make the name background red */
 	for(i=0, pp=(char *)(SCREEN_ADR+1); i<TITLE_WIDTH; i++, pp+=2) {
  	*pp = 0x20;
 	}
 	cprint(0, 0, "      Memtest86  v1.15      ");

 	for(i=0, pp=(char *)(SCREEN_ADR+1); i<2; i++, pp+=30) {
	*pp = 0xA4;
 	}
 	cprint(0, 15, "+");

	/* Do reverse video for the bottom display line */
	for(i=0, pp=(char *)(SCREEN_ADR+1+(24 * 160)); i<80; i++, pp+=2) {
	*pp = 0x71;
	}

        serial_echo_print("");
}

/*
 * Initialize test, setup screen and find out how much memory there is.
 */
void init(void)
{
	int i;

	outb(0x8, 0x3f2);  /* Kill Floppy Motor */

	/* Turn on cache */
	set_cache(1);

	/* Setup the display */
	display_init();

	/* Determine the memory map */
	if ((firmware == FIRMWARE_UNKNOWN) && 
		(memsz_mode != SZ_MODE_PROBE)) {
		if (query_linuxbios()) {
			firmware = FIRMWARE_LINUXBIOS;
		}
		else if (query_pcbios()) {
			firmware = FIRMWARE_PCBIOS;
		}
	}

	mem_size();

	/* setup pci */
	pci_init();

	v->test = 0;
	v->testsel = -1;
	v->msg_line = LINE_SCROLL-1;
	v->scroll_start = v->msg_line * 160;

	cprint(LINE_CPU+1, 0, "L1 Cache: Unknown ");
	cprint(LINE_CPU+2, 0, "L2 Cache: Unknown ");
	cprint(LINE_CPU+3, 0, "Memory  : ");
	aprint(LINE_CPU+3, 10, v->test_pages);
	cprint(LINE_CPU+4, 0, "Chipset : ");

	cpu_type();
	
	/* Find the memory controller (inverted from standard) */
	find_controller();

	if (v->rdtsc) {
		cacheable();
		cprint(LINE_TIME, COL_TIME+4, ":  :");
	}
	cprint(0, COL_MID,"Pass   %");
	cprint(1, COL_MID,"Test   %");
	cprint(2, COL_MID,"Test #");
	cprint(3, COL_MID,"Testing: ");
	cprint(4, COL_MID,"Pattern: ");
	cprint(LINE_INFO-2, 0, " WallTime   Cached  RsvdMem   MemMap   Cache  ECC  Test  Pass  Errors ECC Errs");
	cprint(LINE_INFO-1, 0, " ---------  ------  -------  --------  -----  ---  ----  ----  ------ --------");
	cprint(LINE_INFO, COL_TST, "Std");
	cprint(LINE_INFO, COL_PASS, "    0");
	cprint(LINE_INFO, COL_ERR, "     0");
	cprint(LINE_INFO+1, 0, " -----------------------------------------------------------------------------");

	for(i=0; i < 5; i++) {
		cprint(i, COL_MID-2, "| ");
	}
	footer();
	v->printmode=PRINTMODE_ADDRESSES;
	v->numpatn=0;
	find_ticks();
}

#define FLAT 0

static unsigned long mapped_window = 1;
void paging_off(void)
{
	if (!v->pae)
		return;
	mapped_window = 1;
	__asm__ __volatile__ (
		/* Disable paging */
		"movl %%cr0, %%eax\n\t"
		"andl $0x7FFFFFFF, %%eax\n\t"
		"movl %%eax, %%cr0\n\t"
		/* Disable pae */
		"movl %%cr4, %%eax\n\t"
		"andl $0xFFFFFFDF, %%eax\n\t"
		:
		:
		: "ax"
		);
}

static void paging_on(void *pdp)
{
	if (!v->pae)
		return;
	__asm__ __volatile__(
		/* Load the page table address */
		"movl %0, %%cr3\n\t"
		/* Enable pae */
		"movl %%cr4, %%eax\n\t"
		"orl $0x00000020, %%eax\n\t"
		"movl %%eax, %%cr4\n\t"
		/* Enable paging */
		"movl %%cr0, %%eax\n\t"
		"orl $0x80000000, %%eax\n\t"
		"movl %%eax, %%cr0\n\t"
		:
		: "r" (pdp)
		: "ax"
		);
}

int map_page(unsigned long page)
{
	unsigned long i;
	struct pde {
		unsigned long addr_lo;
		unsigned long addr_hi;
	};
	extern unsigned char pdp[];
	extern struct pde pd2[];
	unsigned long window = page >> 19;
	if (FLAT || (window == mapped_window)) {
		return 0;
	}
	if (window == 0) {
		return 0;
	}
	if (!v->pae || (window >= 32)) {
		/* Fail either we don't have pae support
		 * or we want an address that is out of bounds
		 * even for pae.
		 */
		return -1;
	}
	/* Compute the page table entries... */
	for(i = 0; i < 1024; i++) {
		pd2[i].addr_lo = ((window & 1) << 31) + ((i & 0x3ff) << 21) + 0xE3;
		pd2[i].addr_hi = (window >> 1);
	}
	paging_off();
	if (window > 1) {
		paging_on(pdp);
	}
	mapped_window = window;
	return 0;
}

void *mapping(unsigned long page_addr)
{
	void *result;
	if (FLAT || (page_addr < 0x80000)) {
		/* If the address is less that 1GB directly use the address */
		result = (void *)(page_addr << 12);
	}
	else {
		unsigned long alias;
		alias = page_addr & 0x7FFFF;
		alias += 0x80000;
		result = (void *)(alias << 12);
	}
	return result;
}

void *emapping(unsigned long page_addr)
{
	void *result;
	result = mapping(page_addr -1);
	/* The result needs to be 256 byte alinged... */
	result = ((unsigned char *)result) + 0xf00;
	return result;
}

unsigned long page_of(void *addr)
{
	unsigned long page;
	page = ((unsigned long)addr) >> 12;
	if (!FLAT && (page >= 0x80000)) {
		page &= 0x7FFFF;
		page += mapped_window << 19;
	}
#if 0
	cprint(LINE_SCROLL -2, 0, "page_of(        )->            ");
	hprint(LINE_SCROLL -2, 8, ((unsigned long)addr));
	hprint(LINE_SCROLL -2, 20, page);
#endif	
	return page;
}


/*
 * Find CPU type and cache sizes
 */
 

void cpu_type(void)
{
	int i, off=0;
	int l1_cache=0, l2_cache=0;
	ulong speed;

	v->rdtsc = 0;
	v->pae = 0;

#ifdef CPUID_DEBUG
	dprint(9,0,cpu_id.type,3,1);
	dprint(10,0,cpu_id.model,3,1);
	dprint(11,0,cpu_id.cpuid,3,1);
#endif

	/* If the CPUID instruction is not supported then this is */
	/* a 386, 486 or one of the early Cyrix CPU's */
	if (cpu_id.cpuid < 1) {
		switch (cpu_id.type) {
		case 2:
			/* This is a Cyrix CPU without CPUID */
			i = getCx86(0xfe);
			i &= 0xf0;
			i >>= 4;
			switch(i) {
			case 0:
			case 1:
				cprint(LINE_CPU, 0, "Cyrix Cx486");
				break;
			case 2:
				cprint(LINE_CPU, 0,"Cyrix 5x86");
				break;
			case 3:
				cprint(LINE_CPU, 0,"Cyrix 6x86");
				break;
			case 4:
				cprint(LINE_CPU, 0,"Cyrix MediaGX");
				break;
			case 5:
				cprint(LINE_CPU, 0,"Cyrix 6x86MX");
				break;
			case 6:
				cprint(LINE_CPU, 0,"Cyrix MII");
				break;
			default:
				cprint(LINE_CPU, 0,"Cyrix ???");
				break;
			}
			break;
		case 3:
			cprint(LINE_CPU, 0, "386");
			break;

		case 4:
			cprint(LINE_CPU, 0, "486");
			l1_cache = 8;
			break;
		}
		return;
	}

	/* We have cpuid so we can see if we have pae support */
	if (cpu_id.capability & (1 << X86_FEATURE_PAE)) {
		v->pae = 1;
	}
	switch(cpu_id.vend_id[0]) {
	/* AMD Processors */
	case 'A':
		switch(cpu_id.type) {
		case 4:
			switch(cpu_id.model) {
			case 3:
				cprint(LINE_CPU, 0, "AMD 486DX2");
				break;
			case 7:
				cprint(LINE_CPU, 0, "AMD 486DX2-WB");
				break;
			case 8:
				cprint(LINE_CPU, 0, "AMD 486DX4");
				break;
			case 9:
				cprint(LINE_CPU, 0, "AMD 486DX4-WB");
				break;
			case 14:
				cprint(LINE_CPU, 0, "AMD 5x86-WT");
				break;
			}
			/* Since we can't get CPU speed or cache info return */
			return;
		case 5:
			switch(cpu_id.model) {
			case 0:
			case 1:
			case 2:
			case 3:
				cprint(LINE_CPU, 0, "AMD K5");
				off = 6;
				break;
			case 6:
			case 7:
				cprint(LINE_CPU, 0, "AMD K6");
				off = 6;
				l1_cache = cpu_id.cache_info[3];
				l1_cache += cpu_id.cache_info[7];
				break;
			case 8:
				cprint(LINE_CPU, 0, "AMD K6-2");
				off = 8;
				l1_cache = cpu_id.cache_info[3];
				l1_cache += cpu_id.cache_info[7];
				break;
			case 9:
				cprint(LINE_CPU, 0, "AMD K6-III");
				off = 10;
				l1_cache = cpu_id.cache_info[3];
				l1_cache += cpu_id.cache_info[7];
				l2_cache = (cpu_id.cache_info[11] << 8);
				l2_cache += cpu_id.cache_info[10];
				break;
			}
			break;
		case 6:
			switch(cpu_id.model) {
			case 1:
				cprint(LINE_CPU, 0, "AMD Athlon (0.25)");
				off = 17;
				l2_cache = (cpu_id.cache_info[11] << 8);
				l2_cache += cpu_id.cache_info[10];
				break;
			case 2:
			case 4:
				cprint(LINE_CPU, 0, "AMD Athlon (0.18)");
				off = 17;
				l2_cache = (cpu_id.cache_info[11] << 8);
				l2_cache += cpu_id.cache_info[10];
				break;
			case 6:
				l2_cache = (cpu_id.cache_info[11] << 8);
				l2_cache += cpu_id.cache_info[10];
				if (l2_cache == 64) {
                               		cprint(LINE_CPU, 0, "AMD Duron (0.18)");
                                } else {
                                	cprint(LINE_CPU, 0, "Athlon XP (0.18)");
				}
				off = 16;
				break;
			case 8:
			case 10:
                                l2_cache = (cpu_id.cache_info[11] << 8);
                                l2_cache += cpu_id.cache_info[10];               
                                if (l2_cache == 64) {
                               		cprint(LINE_CPU, 0, "AMD Duron (0.13)");
                                } else {
                                	cprint(LINE_CPU, 0, "Athlon XP (0.13)");
				}
				off = 16;
                                break;
			case 3:
			case 7:
				cprint(LINE_CPU, 0, "AMD Duron");
				off = 9;
				/* Duron stepping 0 CPUID for L2 is broken */
				/* (AMD errata T13)*/
				if (cpu_id.step == 0) { /* stepping 0 */
					/* Hard code the right size*/
					l2_cache = 64;
				} else {
					l2_cache = (cpu_id.cache_info[11] << 8);
					l2_cache += cpu_id.cache_info[10];
				}
				break;
			}
			l1_cache = cpu_id.cache_info[3];
			l1_cache += cpu_id.cache_info[7];
			break;
		case 15:
			switch(cpu_id.model) {
			case 4:
			case 7:
			case 8:
			case 11:
			case 12:
			case 15:
			default:
				cprint(LINE_CPU, 0, "AMD Athlon 64");
                                off = 13;
                                l1_cache = cpu_id.cache_info[3];
				l1_cache += cpu_id.cache_info[7];
                                l2_cache = (cpu_id.cache_info[11] << 8);
                                l2_cache += cpu_id.cache_info[10];
                                break;
			case 5:
				cprint(LINE_CPU, 0, "AMD Opteron");
                                off = 11;
                                l1_cache = cpu_id.cache_info[3];
				l1_cache += cpu_id.cache_info[7];
                                l2_cache = (cpu_id.cache_info[11] << 8);
                                l2_cache += cpu_id.cache_info[10];
                                break;
			}
			break;
		}
		break;

	/* Intel Processors */
	case 'G':
		if (cpu_id.type == 4) {
			switch(cpu_id.model) {
			case 0:
			case 1:
				cprint(LINE_CPU, 0, "Intel 486DX");
				off = 11;
				break;
			case 2:
				cprint(LINE_CPU, 0, "Intel 486SX");
				off = 11;
				break;
			case 3:
				cprint(LINE_CPU, 0, "Intel 486DX2");
				off = 12;
				break;
			case 4:
				cprint(LINE_CPU, 0, "Intel 486SL");
				off = 11;
				break;
			case 5:
				cprint(LINE_CPU, 0, "Intel 486SX2");
				off = 12;
				break;
			case 7:
				cprint(LINE_CPU, 0, "Intel 486DX2-WB");
				off = 15;
				break;
			case 8:
				cprint(LINE_CPU, 0, "Intel 486DX4");
				off = 12;
				break;
			case 9:
				cprint(LINE_CPU, 0, "Intel 486DX4-WB");
				off = 15;
				break;
			}
			/* Since we can't get CPU speed or cache info return */
			return;
		}

		/* Get the cache info */
		for (i=0; i<16; i++) {
#ifdef CPUID_DEBUG
			dprint(12,i*3,cpu_id.cache_info[i],2,1);
#endif
			switch(cpu_id.cache_info[i]) {
			case 0x6:
			case 0xa:
			case 0x66:
				l1_cache += 8;
				break;
			case 0x8:
			case 0xc:
			case 0x67:
			case 0x60:
				l1_cache += 16;
				break;
			case 0x68:
			case 0x2c:
			case 0x30:
				l1_cache += 32;
				break;
			case 0x40:
				l2_cache = 0;
				break;
			case 0x41:
			case 0x79:
			case 0x39:
			case 0x3b:
				l2_cache = 128;
				break;
			case 0x42:
			case 0x7a:
			case 0x82:
			case 0x3c:
				l2_cache = 256;
				break;
			case 0x43:
			case 0x7b:
			case 0x83:
			case 0x86:
				l2_cache = 512;
				break;
			case 0x44:
			case 0x7c:
			case 0x84:
			case 0x87:
				l2_cache = 1024;
				break;
			case 0x45:
			case 0x7d:
			case 0x85:
				l2_cache = 2048;
				break;
			}
		}

		switch(cpu_id.type) {
		case 5:
			switch(cpu_id.model) {
			case 0:
			case 1:
			case 2:
			case 3:
			case 7:
				cprint(LINE_CPU, 0, "Pentium");
				if (l1_cache == 0) {
					l1_cache = 8;
				}
				off = 7;
				break;
			case 4:
			case 8:
				cprint(LINE_CPU, 0, "Pentium-MMX");
				if (l1_cache == 0) {
					l1_cache = 16;
				}
				off = 11;
				break;
			}
			break;
		case 6:
			switch(cpu_id.model) {
			case 0:
			case 1:
				cprint(LINE_CPU, 0, "Pentium Pro");
				off = 11;
				break;
			case 3:
				cprint(LINE_CPU, 0, "Pentium II");
				off = 10;
				break;
			case 5:
				if (l2_cache == 0) {
					cprint(LINE_CPU, 0, "Celeron");
					off = 7;
				} else {
					cprint(LINE_CPU, 0, "Pentium II");
					off = 10;
				}
				break;
			case 6:
				if (l2_cache == 128) {
					cprint(LINE_CPU, 0, "Celeron");
					off = 7;
				} else {
					cprint(LINE_CPU, 0, "Pentium II");
					off = 10;
				}
				break;
			case 7:
			case 8:
			case 10:
			case 11:
				if (l2_cache == 128) {
					cprint(LINE_CPU, 0, "Celeron");
					off = 7;
				} else {
					cprint(LINE_CPU, 0, "Pentium III");
					off = 11;
				}
				break;
			case 9:
				if (l2_cache == 512) {
					cprint(LINE_CPU, 0, "Celeron M (0.13)");
				} else {
					cprint(LINE_CPU, 0, "Pentium M (0.13)");
				}
				off = 16;
				break;
			case 13:
				if (l2_cache == 512) {
					cprint(LINE_CPU, 0, "Celeron M (0.09)");
				} else {
					cprint(LINE_CPU, 0, "Pentium M (0.09)");
				}
				off = 16;
				break;
			}
			break;
		case 15:
			switch(cpu_id.model) {
			case 0:
			case 1:			
				if (l2_cache == 128) {
                                cprint(LINE_CPU, 0, "Celeron (0.18)");
                                off = 14;	
                                } else {
                                cprint(LINE_CPU, 0, "Pentium 4 (0.18)");
                                off = 16;
                        	}
				break;
			case 2:
                                if (l2_cache == 128) {
                                cprint(LINE_CPU, 0, "Celeron (0.13)");
                                off = 14;	
                                } else {
                                cprint(LINE_CPU, 0, "Pentium 4 (0.13)");
                                off = 16;
                        	}
                                break;
			case 3:
                                if (l2_cache == 256) {
                                cprint(LINE_CPU, 0, "Celeron (0.09)");
                                off = 14;	
                                } else {
                                cprint(LINE_CPU, 0, "Pentium 4 (0.09)");
                                off = 16;
                        	}
                                break;
			}
	                break;

		}
		break;

	/* Cyrix Processors with CPUID */
	case 'C':
		switch(cpu_id.model) {
		case 0:
			cprint(LINE_CPU, 0, "Cyrix 6x86MX/MII");
			off = 16;
			break;
		case 4:
			cprint(LINE_CPU, 0, "Cyrix GXm");
			off = 9;
			break;
		}
		return;
		break;

	/* Unknown processor */
	default:
		off = 3;
		/* Make a guess at the family */
		switch(cpu_id.type) {
		case 5:
			cprint(LINE_CPU, 0, "586");
			return;
		case 6:
			cprint(LINE_CPU, 0, "686");
			return;
		}
	}

	/* We are here only if the CPU type supports the rdtsc instruction */

	/* Print CPU speed */
	if ((speed = cpuspeed()) > 0) {
		if (speed < 1000000-50) {
			speed += 50; /* for rounding */
			cprint(LINE_CPU, off, "    . MHz");
			dprint(LINE_CPU, off+1, speed/1000, 3, 1);
			dprint(LINE_CPU, off+5, (speed/100)%10, 1, 0);
		} else {
			speed += 500; /* for rounding */
			cprint(LINE_CPU, off, "      Mhz");
			dprint(LINE_CPU, off, speed/1000, 5, 0);
		}
		extclock = speed;
	}

	/* Print out L1 cache info */
	/* To measure L1 cache speed we use a block size that is 1/4th */
	/* of the total L1 cache size since half of it is for instructions */
	if (l1_cache) {
		cprint(LINE_CPU+1, 10, "    K      ");
		dprint(LINE_CPU+1, 11, l1_cache, 3, 0);
		if ((speed=memspeed((ulong)mapping(0x100),
				(l1_cache / 4) * 1024, 50))) {
			cprint(LINE_CPU+1, 15, "      MB/s");
			dprint(LINE_CPU+1, 15, speed, 6, 0);
		}
	}

	/* Print out L2 cache info */
	/* We measure the L2 cache speed by using a block size that is */
	/* the size of the L1 cache.  We have to fudge if the L1 */
	/* cache is bigger than the L2 */
	if (l2_cache) {
		cprint(LINE_CPU+2, 9, "     K     ");
		cprint(LINE_CPU+2, 0, "L2 Cache:    ?K");
		dprint(LINE_CPU+2, 10, l2_cache, 4, 0);

		if (l2_cache < l1_cache) {
			i = l1_cache / 4 + l2_cache / 4;
		} else {
			i = l1_cache;
		}
		if ((speed=memspeed((ulong)mapping(0x100), i*1024, 50))) {
			cprint(LINE_CPU+2, 15, "      MB/s");
			dprint(LINE_CPU+2, 15, speed, 6, 0);
		}
	}

	/* Determine memory speed.  To find the memory spped we use */
	/* A block size that is 5x the sum of the L1 and L2 caches */
	i = (l2_cache + l1_cache) * 5;

	/* Make sure that we have enough memory to do the test */
	if ((1 + (i * 2)) > (v->plim_upper << 2)) {
		i = ((v->plim_upper <<2) - 1) / 2;
	}
	if((speed = memspeed((ulong)mapping(0x100), i*1024, 40))) {
		cprint(LINE_CPU+3, 15, "      MB/s");
		dprint(LINE_CPU+3, 15, speed, 6, 0);
	}

	/* Record the sarting time */
        asm __volatile__ ("rdtsc":"=a" (v->startl),"=d" (v->starth));
        v->snapl = v->startl;
        v->snaph = v->starth;
	v->rdtsc = 1;
	if (l1_cache == 0) { l1_cache = 66; }
	if (l2_cache == 0) { l1_cache = 666; }
}

/* Find cache-able memory size */
static void cacheable(void)
{
	ulong speed, pspeed;
	ulong paddr, mem_top, cached;

	mem_top = v->pmap[v->msegs - 1].end;
	cached = v->test_pages;
	pspeed = 0;
	for (paddr=0x200; paddr <= mem_top - 64; paddr+=0x400) {
		int i;
		int found;
		/* See if the paddr is at a testable location */
		found = 0;
		for(i = 0; i < v->msegs; i++) {
			if ((v->pmap[i].start >= paddr)  &&
				(v->pmap[i].end <= (paddr + 32))) {
				found = 1;
				break;
			}
		}
		if (!found) {
			continue;
		}
		/* Map the range and perform the test */
		map_page(paddr);
		speed = memspeed((ulong)mapping(paddr), 32*4096, 1);
		if (pspeed) {
			if (speed < pspeed) {
				cached -= 32;
			}
			pspeed = (ulong)((float)speed * 0.7);
		}
	}
	aprint(LINE_INFO, COL_CACHE_TOP, cached);
	/* Ensure the default set of pages are mapped */
	map_page(0);
	map_page(0x80000);
}


/* #define TICKS 5 * 11832 (count = 6376)*/
/* #define TICKS (65536 - 12752) */
#define TICKS (65536 - 8271)

/* Returns CPU clock in khz */
static int cpuspeed(void)
{
	int loops;

	/* Setup timer */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
	outb(0xb0, 0x43); 
	outb(TICKS & 0xff, 0x42);
	outb(TICKS >> 8, 0x42);

	asm __volatile__ ("rdtsc":"=a" (st_low),"=d" (st_high));

	loops = 0;
	do {
		loops++;
	} while ((inb(0x61) & 0x20) == 0);

	asm __volatile__ (
		"rdtsc\n\t" \
		"subl st_low,%%eax\n\t" \
		"sbbl st_high,%%edx\n\t" \
		:"=a" (end_low), "=d" (end_high)
	);

	/* Make sure we have a credible result */
	if (loops < 4 || end_low < 50000) {
		return(-1);
	}
	v->clks_msec = end_low/48;
	return(v->clks_msec);
}

/* Measure cache/memory speed by copying a block of memory. */
/* Returned value is kbytes/second */
static ulong memspeed(ulong src, ulong len, int iter)
{
	ulong dst;
	ulong wlen;
	int i;

	dst = src + len;
	wlen = len / 4;  /* Length is bytes */

	/* Calibrate the overhead with a zero word copy */
	asm __volatile__ ("rdtsc":"=a" (st_low),"=d" (st_high));
	for (i=0; i<iter; i++) {
		asm __volatile__ (
			"movl %0,%%esi\n\t" \
       		 	"movl %1,%%edi\n\t" \
       		 	"movl %2,%%ecx\n\t" \
       		 	"cld\n\t" \
       		 	"rep\n\t" \
       		 	"movsl\n\t" \
				:: "g" (src), "g" (dst), "g" (0)
			: "esi", "edi", "ecx"
		);
	}
	asm __volatile__ ("rdtsc":"=a" (cal_low),"=d" (cal_high));

	/* Compute the overhead time */
	asm __volatile__ (
		"subl %2,%0\n\t"
		"sbbl %3,%1"
		:"=a" (cal_low), "=d" (cal_high)
		:"g" (st_low), "g" (st_high),
		"0" (cal_low), "1" (cal_high)
	);

	/* Do the first copy to prime the cache */
	asm __volatile__ (
		"movl %0,%%esi\n\t" \
		"movl %1,%%edi\n\t" \
       	 	"movl %2,%%ecx\n\t" \
       	 	"cld\n\t" \
       	 	"rep\n\t" \
       	 	"movsl\n\t" \
			:: "g" (src), "g" (dst), "g" (wlen)
		: "esi", "edi", "ecx"
	);

	/* Now measure the speed */
	asm __volatile__ ("rdtsc":"=a" (st_low),"=d" (st_high));
	for (i=0; i<iter; i++) {
	        asm __volatile__ (
			"movl %0,%%esi\n\t" \
       	 		"movl %1,%%edi\n\t" \
       	 		"movl %2,%%ecx\n\t" \
       	 		"cld\n\t" \
       	 		"rep\n\t" \
       	 		"movsl\n\t" \
				:: "g" (src), "g" (dst), "g" (wlen)
			: "esi", "edi", "ecx"
		);
	}
	asm __volatile__ ("rdtsc":"=a" (end_low),"=d" (end_high));

	/* Compute the elapsed time */
	asm __volatile__ (
		"subl %2,%0\n\t"
		"sbbl %3,%1"
		:"=a" (end_low), "=d" (end_high)
		:"g" (st_low), "g" (st_high),
		"0" (end_low), "1" (end_high)
	);
	/* Subtract the overhead time */
	asm __volatile__ (
		"subl %2,%0\n\t"
		"sbbl %3,%1"
		:"=a" (end_low), "=d" (end_high)
		:"g" (cal_low), "g" (cal_high),
		"0" (end_low), "1" (end_high)
	);

	/* Make sure that the result fits in 32 bits */
	if (end_high) {
		return(0);
	}

	/* Since a copy does both a read & write we need to adjuect the time */
	end_low /= 2;

	/* Convert to clocks/KB */
	end_low /= len;
	end_low *= 1024;
	end_low /= iter;
	if (end_low == 0) {
		return(0);
	}

	/* Convert to kbytes/sec */
	return((v->clks_msec)/end_low);
}