summaryrefslogblamecommitdiffstats
path: root/hacks/petri.c
blob: e97c582f37c06171e02e12f4862d485cb6b51205 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421




































































































































































































































































































































































































































                                                                                        
                             






























































































































































































































































































                                                                                          








                                           



            














































                                                                          
/* petri, simulate mold in a petri dish. v2.7
 * by Dan Bornstein, danfuzz@milk.com
 * with help from Jamie Zawinski, jwz@jwz.org
 * Copyright (c) 1992-1999 Dan Bornstein.
 *
 * Permission to use, copy, modify, distribute, and sell this software and its
 * documentation for any purpose is hereby granted without fee, provided that
 * the above copyright notice appear in all copies and that both that
 * copyright notice and this permission notice appear in supporting
 * documentation.  No representations are made about the suitability of this
 * software for any purpose.  It is provided "as is" without express or 
 * implied warranty.
 *
 *
 * Brief description of options/resources:
 *
 * delay: the delay in microseconds between iterations
 * size: the size of a cell in pixels
 * count: the number of different kinds of mold (minimum: 2)
 * diaglim: the age limit for diagonal growth as a multiplier of orthogonal
 *   growth (minimum: 1, maximum 2). 1 means square growth, 1.414 
 *   (i.e., sqrt(2)) means approximately circular growth, 2 means diamond
 *   growth.
 * anychan: the chance (fraction, between 0 and 1) that at each iteration,
 *   any new cell will be born
 * minorchan: the chance (fraction, between 0 and 1) that, given that new
 *   cells will be added, that only two will be added (a minor cell birth
 *   event)
 * instantdeathchan: the chance (fraction, between 0 and 1) that, given
 *   that death and destruction will happen, that instead of using plague
 *   cells, death will be instantaneous
 * minlifespan: the minimum lifespan of a colony (before black death ensues)
 * maxlifespan: the maximum lifespan of a colony (before black death ensues)
 * minlifespeed: the minimum speed for living cells as a fraction of the
 *   maximum possible speed (fraction, between 0 and 1)
 * maxlifespeed: the maximum speed for living cells as a fraction of the
 *   maximum possible speed (fraction, between 0 and 1)
 * mindeathspeed: the minimum speed for black death cells as a fraction of the
 *   maximum possible speed (fraction, between 0 and 1)
 * maxdeathspeed: the maximum speed for black death cells as a fraction of the
 *   maximum possible speed (fraction, between 0 and 1)
 * originalcolors: if true, count must be 8 or less and the colors are a 
 *   fixed set of primary and secondary colors (the artist's original choices)
 *
 * Interesting settings:
 *
 *      petri -originalcolors -size 8
 *      petri -size 2
 *      petri -size 8 -diaglim 1.8
 *      petri -diaglim 1.1
 *
 *      petri -count 4 -anychan 0.01 -minorchan 1 \
 *              -minlifespan 2000 -maxlifespan 5000
 *
 *      petri -count 3 -anychan 1 -minlifespan 100000 \ 
 *              -instantdeathchan 0
 *
 *      petri -minlifespeed 0.02 -maxlifespeed 0.03 -minlifespan 1 \
 *              -maxlifespan 1 -instantdeathchan 0 -minorchan 0 \
 *              -anychan 0.3 -delay 4000
 */

#include <math.h>
#include "screenhack.h"
#include "spline.h"

#define FLOAT float
#define RAND_FLOAT (((FLOAT) (random() & 0xffff)) / ((FLOAT) 0x10000))

typedef struct cell_s 
{
    unsigned char col;              /*  0      */
    unsigned char isnext;           /*  1      */
    unsigned char nextcol;          /*  2      */
                                    /*  3      */
    struct cell_s *next;            /*  4      */
    struct cell_s *prev;            /*  8    - */
    FLOAT speed;                    /* 12      */
    FLOAT growth;                   /* 16 20 - */
    FLOAT nextspeed;                /* 20 28   */
                                    /* 24 36 - */
} cell;

struct state {
  Display *dpy;
  Window window;

  int arr_width;
  int arr_height;
  int count;

  cell *arr;
  cell *head;
  cell *tail;
  int blastcount;

  GC *coloredGCs;

  int windowWidth;
  int windowHeight;
  int xOffset;
  int yOffset;
  int xSize;
  int ySize;

  FLOAT orthlim;
  FLOAT diaglim;
  FLOAT anychan;
  FLOAT minorchan;
  FLOAT instantdeathchan;
  int minlifespan;
  int maxlifespan;
  FLOAT minlifespeed;
  FLOAT maxlifespeed;
  FLOAT mindeathspeed;
  FLOAT maxdeathspeed;
  Bool originalcolors;

  int warned;
  int delay;
};


#define cell_x(c) (st->arr_width ? ((c) - st->arr) % st->arr_width : 0)
#define cell_y(c) (st->arr_width ? ((c) - st->arr) / st->arr_width : 0)


static int random_life_value (struct state *st)
{
    return (int) ((RAND_FLOAT * (st->maxlifespan - st->minlifespan)) + st->minlifespan);
}

static void setup_random_colormap (struct state *st, XWindowAttributes *xgwa)
{
    XGCValues gcv;
    int lose = 0;
    int ncolors = st->count - 1;
    int n;
    XColor *colors = (XColor *) calloc (sizeof(*colors), st->count*2);
    
    colors[0].pixel = get_pixel_resource (st->dpy, xgwa->colormap,
                                          "background", "Background");
    
    make_random_colormap (xgwa->screen, xgwa->visual, xgwa->colormap,
			  colors+1, &ncolors, True, True, 0, True);
    if (ncolors < 1)
      {
        fprintf (stderr, "%s: couldn't allocate any colors\n", progname);
	exit (-1);
      }
    
    ncolors++;
    st->count = ncolors;
    
    memcpy (colors + st->count, colors, st->count * sizeof(*colors));
    colors[st->count].pixel = get_pixel_resource (st->dpy, xgwa->colormap,
                                              "foreground", "Foreground");
    
    for (n = 1; n < st->count; n++)
    {
	int m = n + st->count;
	colors[n].red = colors[m].red / 2;
	colors[n].green = colors[m].green / 2;
	colors[n].blue = colors[m].blue / 2;
	
	if (!XAllocColor (st->dpy, xgwa->colormap, &colors[n]))
	{
	    lose++;
	    colors[n] = colors[m];
	}
    }

    if (lose)
    {
	fprintf (stderr, 
		 "%s: unable to allocate %d half-intensity colors.\n",
		 progname, lose);
    }
    
    for (n = 0; n < st->count*2; n++) 
    {
	gcv.foreground = colors[n].pixel;
	st->coloredGCs[n] = XCreateGC (st->dpy, st->window, GCForeground, &gcv);
    }

    free (colors);
}

static void setup_original_colormap (struct state *st, XWindowAttributes *xgwa)
{
    XGCValues gcv;
    int lose = 0;
    int n;
    XColor *colors = (XColor *) calloc (sizeof(*colors), st->count*2);
    
    colors[0].pixel = get_pixel_resource (st->dpy, xgwa->colormap,
                                          "background", "Background");

    colors[st->count].pixel = get_pixel_resource (st->dpy, xgwa->colormap,
                                              "foreground", "Foreground");

    for (n = 1; n < st->count; n++)
    {
	int m = n + st->count;
	colors[n].red =   ((n & 0x01) != 0) * 0x8000;
	colors[n].green = ((n & 0x02) != 0) * 0x8000;
	colors[n].blue =  ((n & 0x04) != 0) * 0x8000;

	if (!XAllocColor (st->dpy, xgwa->colormap, &colors[n]))
	{
	    lose++;
	    colors[n] = colors[0];
	}

	colors[m].red   = colors[n].red + 0x4000;
	colors[m].green = colors[n].green + 0x4000;
	colors[m].blue  = colors[n].blue + 0x4000;

	if (!XAllocColor (st->dpy, xgwa->colormap, &colors[m]))
	{
	    lose++;
	    colors[m] = colors[st->count];
	}
    }

    if (lose)
    {
	fprintf (stderr, 
		 "%s: unable to allocate %d colors.\n",
		 progname, lose);
    }
    
    for (n = 0; n < st->count*2; n++) 
    {
	gcv.foreground = colors[n].pixel;
	st->coloredGCs[n] = XCreateGC (st->dpy, st->window, GCForeground, &gcv);
    }

    free (colors);
}

static void
setup_display (struct state *st)
{
    XWindowAttributes xgwa;

    int cell_size = get_integer_resource (st->dpy, "size", "Integer");
    int osize, alloc_size, oalloc;
    int mem_throttle = 0;
    char *s;

    if (cell_size < 1) cell_size = 1;

    osize = cell_size;

    s = get_string_resource (st->dpy, "memThrottle", "MemThrottle");
    if (s)
      {
        int n;
        char c;
        if (1 == sscanf (s, " %d M %c", &n, &c) ||
            1 == sscanf (s, " %d m %c", &n, &c))
          mem_throttle = n * (1 << 20);
        else if (1 == sscanf (s, " %d K %c", &n, &c) ||
                 1 == sscanf (s, " %d k %c", &n, &c))
          mem_throttle = n * (1 << 10);
        else if (1 == sscanf (s, " %d %c", &n, &c))
          mem_throttle = n;
        else
          {
            fprintf (stderr, "%s: invalid memThrottle \"%s\" (try \"10M\")\n",
                     progname, s);
            exit (1);
          }
        
        free (s);
      }

    XGetWindowAttributes (st->dpy, st->window, &xgwa);

    st->originalcolors = get_boolean_resource (st->dpy, "originalcolors", "Boolean");

    st->count = get_integer_resource (st->dpy, "count", "Integer");
    if (st->count < 2) st->count = 2;

    /* number of colors can't be greater than the half depth of the screen. */
    if (st->count > (unsigned int) (1L << (xgwa.depth-1)))
      st->count = (unsigned int) (1L << (xgwa.depth-1));

    /* Actually, since cell->col is of type char, this has to be small. */
    if (st->count >= (unsigned int) (1L << ((sizeof(st->arr[0].col) * 8) - 1)))
      st->count = (unsigned int) (1L << ((sizeof(st->arr[0].col) * 8) - 1));


    if (st->originalcolors && (st->count > 8))
    {
	st->count = 8;
    }

    st->coloredGCs = (GC *) calloc (sizeof(GC), st->count * 2);

    st->diaglim  = get_float_resource (st->dpy, "diaglim", "Float");
    if (st->diaglim < 1.0)
    {
	st->diaglim = 1.0;
    }
    else if (st->diaglim > 2.0)
    {
	st->diaglim = 2.0;
    }
    st->diaglim *= st->orthlim;

    st->anychan  = get_float_resource (st->dpy, "anychan", "Float");
    if (st->anychan < 0.0)
    {
	st->anychan = 0.0;
    }
    else if (st->anychan > 1.0)
    {
	st->anychan = 1.0;
    }
    
    st->minorchan = get_float_resource (st->dpy, "minorchan","Float");
    if (st->minorchan < 0.0)
    {
	st->minorchan = 0.0;
    }
    else if (st->minorchan > 1.0)
    {
	st->minorchan = 1.0;
    }
    
    st->instantdeathchan = get_float_resource (st->dpy, "instantdeathchan","Float");
    if (st->instantdeathchan < 0.0)
    {
	st->instantdeathchan = 0.0;
    }
    else if (st->instantdeathchan > 1.0)
    {
	st->instantdeathchan = 1.0;
    }

    st->minlifespan = get_integer_resource (st->dpy, "minlifespan", "Integer");
    if (st->minlifespan < 1)
    {
	st->minlifespan = 1;
    }

    st->maxlifespan = get_integer_resource (st->dpy, "maxlifespan", "Integer");
    if (st->maxlifespan < st->minlifespan)
    {
	st->maxlifespan = st->minlifespan;
    }

    st->minlifespeed = get_float_resource (st->dpy, "minlifespeed", "Float");
    if (st->minlifespeed < 0.0)
    {
	st->minlifespeed = 0.0;
    }
    else if (st->minlifespeed > 1.0)
    {
	st->minlifespeed = 1.0;
    }

    st->maxlifespeed = get_float_resource (st->dpy, "maxlifespeed", "Float");
    if (st->maxlifespeed < st->minlifespeed)
    {
	st->maxlifespeed = st->minlifespeed;
    }
    else if (st->maxlifespeed > 1.0)
    {
	st->maxlifespeed = 1.0;
    }

    st->mindeathspeed = get_float_resource (st->dpy, "mindeathspeed", "Float");
    if (st->mindeathspeed < 0.0)
    {
	st->mindeathspeed = 0.0;
    }
    else if (st->mindeathspeed > 1.0)
    {
	st->mindeathspeed = 1.0;
    }

    st->maxdeathspeed = get_float_resource (st->dpy, "maxdeathspeed", "Float");
    if (st->maxdeathspeed < st->mindeathspeed)
    {
	st->maxdeathspeed = st->mindeathspeed;
    }
    else if (st->maxdeathspeed > 1.0)
    {
	st->maxdeathspeed = 1.0;
    }

    st->minlifespeed *= st->diaglim;
    st->maxlifespeed *= st->diaglim;
    st->mindeathspeed *= st->diaglim;
    st->maxdeathspeed *= st->diaglim;

    st->windowWidth = xgwa.width;
    st->windowHeight = xgwa.height;
    
    st->arr_width = st->windowWidth / cell_size;
    st->arr_height = st->windowHeight / cell_size;

    alloc_size = sizeof(cell) * st->arr_width * st->arr_height;
    oalloc = alloc_size;

    if (mem_throttle > 0)
      while (cell_size < st->windowWidth/10 &&
             cell_size < st->windowHeight/10 &&
             alloc_size > mem_throttle)
        {
          cell_size++;
          st->arr_width = st->windowWidth / cell_size;
          st->arr_height = st->windowHeight / cell_size;
          alloc_size = sizeof(cell) * st->arr_width * st->arr_height;
        }

    if (osize != cell_size)
      {
        if (0 && !st->warned)
          {
            fprintf (stderr,
             "%s: throttling cell size from %d to %d because of %dM limit.\n",
                     progname, osize, cell_size, mem_throttle / (1 << 20));
            fprintf (stderr, "%s: %dx%dx%d = %.1fM, %dx%dx%d = %.1fM.\n",
                     progname,
                     st->windowWidth, st->windowHeight, osize,
                     ((float) oalloc) / (1 << 20),
                     st->windowWidth, st->windowHeight, cell_size,
                     ((float) alloc_size) / (1 << 20));
            st->warned = 1;
          }
      }

    st->xSize = st->arr_width ? st->windowWidth / st->arr_width : 0;
    st->ySize = st->arr_height ? st->windowHeight / st->arr_height : 0;
    if (st->xSize > st->ySize)
    {
	st->xSize = st->ySize;
    }
    else
    {
	st->ySize = st->xSize;
    }
    
    st->xOffset = (st->windowWidth - (st->arr_width * st->xSize)) / 2;
    st->yOffset = (st->windowHeight - (st->arr_height * st->ySize)) / 2;

    if (st->originalcolors)
    {
	setup_original_colormap (st, &xgwa);
    }
    else
    {
	setup_random_colormap (st, &xgwa);
    }
}

static void drawblock (struct state *st, int x, int y, unsigned char c)
{
  if (st->xSize == 1 && st->ySize == 1)
    XDrawPoint (st->dpy, st->window, st->coloredGCs[c], x + st->xOffset, y + st->yOffset);
  else
    XFillRectangle (st->dpy, st->window, st->coloredGCs[c],
		    x * st->xSize + st->xOffset, y * st->ySize + st->yOffset,
		    st->xSize, st->ySize);
}

static void setup_arr (struct state *st)
{
    int x, y;

    if (st->arr != NULL)
    {
	free (st->arr);
    }

    XFillRectangle (st->dpy, st->window, st->coloredGCs[0], 0, 0, 
		    st->windowWidth, st->windowHeight);
    
    if (!st->arr_width) st->arr_width = 1;
    if (!st->arr_height) st->arr_height = 1;

    st->arr = (cell *) calloc (sizeof(cell), st->arr_width * st->arr_height);  
    if (!st->arr)
      {
        fprintf (stderr, "%s: out of memory allocating %dx%d grid\n",
                 progname, st->arr_width, st->arr_height);
        exit (1);
      }

    for (y = 0; y < st->arr_height; y++)
    {
      int row = y * st->arr_width;
       for (x = 0; x < st->arr_width; x++) 
	{
	    st->arr[row+x].speed = 0.0;
	    st->arr[row+x].growth = 0.0;
	    st->arr[row+x].col = 0;
	    st->arr[row+x].isnext = 0;
	    st->arr[row+x].next = 0;
	    st->arr[row+x].prev = 0;
	}
    }

    if (st->head == NULL)
    {
	st->head = (cell *) malloc (sizeof (cell));
    }
    
    if (st->tail == NULL)
    {
	st->tail = (cell *) malloc (sizeof (cell));
    }

    st->head->next = st->tail;
    st->head->prev = st->head;
    st->tail->next = st->tail;
    st->tail->prev = st->head;

    st->blastcount = random_life_value (st);
}

static void newcell (struct state *st, cell *c, unsigned char col, FLOAT sp)
{
    if (! c) return;
    
    if (c->col == col) return;
    
    c->nextcol = col;
    c->nextspeed = sp;
    c->isnext = 1;
    
    if (c->prev == 0) {
	c->next = st->head->next;
	c->prev = st->head;
	st->head->next = c;
	c->next->prev = c;
    }
}

static void killcell (struct state *st, cell *c)
{
    c->prev->next = c->next;
    c->next->prev = c->prev;
    c->prev = 0;
    c->speed = 0.0;
    drawblock (st, cell_x(c), cell_y(c), c->col);
}


static void randblip (struct state *st, int doit)
{
    int n;
    int b = 0;
    if (!doit 
	&& (st->blastcount-- >= 0) 
	&& (RAND_FLOAT > st->anychan))
    {
	return;
    }
    
    if (st->blastcount < 0) 
    {
	b = 1;
	n = 2;
	st->blastcount = random_life_value (st);
	if (RAND_FLOAT < st->instantdeathchan)
	{
	    /* clear everything every so often to keep from getting into a
	     * rut */
	    setup_arr (st);
	    b = 0;
	}
    }
    else if (RAND_FLOAT <= st->minorchan) 
    {
	n = 2;
    }
    else 
    {
	n = random () % 3 + 3;
    }
    
    while (n--) 
    {
      int x = st->arr_width ? random () % st->arr_width : 0;
      int y = st->arr_height ? random () % st->arr_height : 0;
	int c;
	FLOAT s;
	if (b)
	{
	    c = 0;
	    s = RAND_FLOAT * (st->maxdeathspeed - st->mindeathspeed) + st->mindeathspeed;
	}
	else
	{
	    c = ((st->count - 1) ? random () % (st->count-1) : 0) + 1;
	    s = RAND_FLOAT * (st->maxlifespeed - st->minlifespeed) + st->minlifespeed;
	}
	newcell (st, &st->arr[y * st->arr_width + x], c, s);
    }
}

static void update (struct state *st)
{
    cell *a;
    
    for (a = st->head->next; a != st->tail; a = a->next) 
    {
	static const XPoint all_coords[] = {{-1, -1}, {-1, 1}, {1, -1}, {1, 1},
                                            {-1,  0}, { 1, 0}, {0, -1}, {0, 1},
                                            {99, 99}};

        const XPoint *coords = 0;

        if (a->speed == 0) continue;
        a->growth += a->speed;

	if (a->growth >= st->diaglim) 
	{
	    coords = all_coords;
	}
        else if (a->growth >= st->orthlim)
	{
	    coords = &all_coords[4];
	}
	else
	{
	    continue;
	}

	while (coords->x != 99)
	{
	    int x = cell_x(a) + coords->x;
	    int y = cell_y(a) + coords->y;
	    coords++;

	    if (x < 0) x = st->arr_width - 1;
	    else if (x >= st->arr_width) x = 0;
	    
	    if (y < 0) y = st->arr_height - 1;
	    else if (y >= st->arr_height) y = 0;
	    
	    newcell (st, &st->arr[y * st->arr_width + x], a->col, a->speed);
	}

	if (a->growth >= st->diaglim) 
	    killcell (st, a);
    }

    randblip (st, (st->head->next) == st->tail);

    for (a = st->head->next; a != st->tail; a = a->next)
    {
	if (a->isnext) 
	{
	    a->isnext = 0;
	    a->speed = a->nextspeed;
	    a->growth = 0.0;
	    a->col = a->nextcol;
	    drawblock (st, cell_x(a), cell_y(a), a->col + st->count);
	}
    }
}

static void *
petri_init (Display *dpy, Window win)
{
    struct state *st = (struct state *) calloc (1, sizeof(*st));
    st->dpy = dpy;
    st->window = win;

    st->delay = get_integer_resource (st->dpy, "delay", "Delay");
    st->orthlim = 1;

    setup_display (st);
    setup_arr (st);
    randblip (st, 1);
    
    return st;
}

static unsigned long
petri_draw (Display *dpy, Window window, void *closure)
{
  struct state *st = (struct state *) closure;
  update (st);
  return st->delay;
}

static void
petri_reshape (Display *dpy, Window window, void *closure, 
                 unsigned int w, unsigned int h)
{
}

static Bool
petri_event (Display *dpy, Window window, void *closure, XEvent *event)
{
  return False;
}

static void
petri_free (Display *dpy, Window window, void *closure)
{
  struct state *st = (struct state *) closure;
  if (st->arr) free (st->arr);
  if (st->head) free (st->head);
  if (st->tail) free (st->tail);
  if (st->coloredGCs) {
    int i;
    for (i = 0; i < st->count*2; i++)
      XFreeGC (st->dpy, st->coloredGCs[i]);
    free (st->coloredGCs);
  }
  free (st);
}


static const char *petri_defaults [] = {
  ".background:		black",
  ".foreground:		white",
  "*fpsSolid:		true",
  "*delay:		10000",
  "*count:		20",
  "*size:		2",
  "*diaglim:		1.414",
  "*anychan:		0.0015",
  "*minorchan:		0.5",
  "*instantdeathchan:	0.2",
  "*minlifespan:	500",
  "*maxlifespan:	1500",
  "*minlifespeed:	0.04",
  "*maxlifespeed:	0.13",
  "*mindeathspeed:	0.42",
  "*maxdeathspeed:	0.46",
  "*originalcolors:	false",
  "*memThrottle:        22M",	/* don't malloc more than this much.
                                   Scale the pixels up if necessary. */
#ifdef HAVE_MOBILE
  "*ignoreRotation:     True",
#endif
    0
};

static XrmOptionDescRec petri_options [] = {
  { "-delay",		 ".delay",		XrmoptionSepArg, 0 },
  { "-size",		 ".size",		XrmoptionSepArg, 0 },
  { "-count",		 ".count",		XrmoptionSepArg, 0 },
  { "-diaglim",		 ".diaglim",		XrmoptionSepArg, 0 },
  { "-anychan",		 ".anychan",		XrmoptionSepArg, 0 },
  { "-minorchan",	 ".minorchan",		XrmoptionSepArg, 0 },
  { "-instantdeathchan", ".instantdeathchan",	XrmoptionSepArg, 0 },
  { "-minlifespan",	 ".minlifespan",	XrmoptionSepArg, 0 },
  { "-maxlifespan",	 ".maxlifespan",	XrmoptionSepArg, 0 },
  { "-minlifespeed",	 ".minlifespeed",	XrmoptionSepArg, 0 },
  { "-maxlifespeed",	 ".maxlifespeed",	XrmoptionSepArg, 0 },
  { "-mindeathspeed",	 ".mindeathspeed",	XrmoptionSepArg, 0 },
  { "-maxdeathspeed",	 ".maxdeathspeed",	XrmoptionSepArg, 0 },
  { "-originalcolors",	 ".originalcolors",	XrmoptionNoArg,  "true" },
  { "-mem-throttle",	 ".memThrottle",	XrmoptionSepArg,  0 },
  { 0, 0, 0, 0 }
};


XSCREENSAVER_MODULE ("Petri", petri)