/* geodesicgears, Copyright (c) 2014-2015 Jamie Zawinski * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation. No representations are made about the suitability of this * software for any purpose. It is provided "as is" without express or * implied warranty. * * Inspired by http://bugman123.com/Gears/ * and by http://kennethsnelson.net/PortraitOfAnAtom.pdf */ #define DEFAULTS "*delay: 30000 \n" \ "*count: 4 \n" \ "*wireframe: False \n" \ "*showFPS: False \n" \ "*texFontCacheSize: 100 \n" \ "*suppressRotationAnimation: True\n" \ "*font: -*-helvetica-medium-r-normal-*-*-160-*-*-*-*-*-*\n" \ # define release_geodesic 0 #undef countof #define countof(x) (sizeof((x))/sizeof((*x))) #include "xlockmore.h" #include "involute.h" #include "colors.h" #include "normals.h" #include "rotator.h" #include "gltrackball.h" #include #include "texfont.h" #ifdef USE_GL /* whole file */ #include "gllist.h" #define DEF_SPIN "True" #define DEF_WANDER "True" #define DEF_SPEED "1.0" #define DEF_LABELS "False" #define DEF_NUMBERS "False" #define DEF_TIMEOUT "20" typedef struct { double a, o; } LL; /* latitude + longitude */ /* 10:6 is a mismesh. */ static const struct { enum { PRISM, OCTO, DECA, G14, G18, G32, G92, G182 } type; const GLfloat args[5]; } gear_templates[] = { { PRISM }, { OCTO }, { DECA }, { G14 }, { G18 }, { G32, { 15, 6, 0.4535 }}, /* teeth1, teeth2, radius1 */ { G32, { 15, 12, 0.3560 }}, { G32, { 20, 6, 0.4850 }}, { G32, { 20, 12, 0.3995 }}, /* double of 10:6 */ { G32, { 20, 18, 0.3375 }}, { G32, { 25, 6, 0.5065 }}, { G32, { 25, 12, 0.4300 }}, { G32, { 25, 18, 0.3725 }}, { G32, { 25, 24, 0.3270 }}, { G32, { 30, 12, 0.4535 }}, /* double of 15:6 */ { G32, { 30, 18, 0.3995 }}, { G32, { 30, 24, 0.3560 }}, /* double of 15:12 */ { G32, { 30, 30, 0.3205 }}, { G32, { 35, 12, 0.4710 }}, { G32, { 35, 18, 0.4208 }}, { G32, { 35, 24, 0.3800 }}, { G32, { 35, 30, 0.3450 }}, { G32, { 35, 36, 0.3160 }}, { G32, { 40, 12, 0.4850 }}, /* double of 20:6 */ { G32, { 40, 24, 0.3995 }}, /* double of 10:6, 20:12 */ /*{ G32, { 40, 36, 0.3375 }},*/ /* double of 20:18 */ { G32, { 50, 12, 0.5065 }}, /* double of 25:6 */ { G32, { 50, 24, 0.4300 }}, /* double of 25:12 */ /* These all have phase errors and don't always mesh properly. Maybe we should just omit them? */ { G92, { 35, 36, 16, 0.2660, 0.366 }}, /* teeth1, 2, 3, r1, pitch3 */ { G92, { 25, 36, 11, 0.2270, 0.315 }}, /*{ G92, { 15, 15, 8, 0.2650, 0.356 }},*/ /*{ G92, { 20, 21, 8, 0.2760, 0.355 }},*/ { G92, { 25, 27, 16, 0.2320, 0.359 }}, { G92, { 20, 36, 11, 0.1875, 0.283 }}, { G92, { 30, 30, 16, 0.2585, 0.374 }}, /* double of 15:15:8 */ { G92, { 20, 33, 11, 0.1970, 0.293 }}, /*{ G92, { 10, 12, 8, 0.2030, 0.345 }},*/ { G92, { 30, 33, 16, 0.2455, 0.354 }}, /*{ G92, { 25, 24, 8, 0.3050, 0.375 }},*/ { G92, { 20, 24, 16, 0.2030, 0.346 }}, }; typedef struct sphere_gear sphere_gear; struct sphere_gear { int id; /* name, for debugging */ XYZ axis; /* the vector on which this gear's axis lies */ int direction; /* rotation, +1 or -1 */ GLfloat offset; /* rotational degrees from parent gear */ sphere_gear *parent; /* gear driving this one, or 0 for root */ sphere_gear **children; /* gears driven by this one (no loops) */ sphere_gear **neighbors; /* gears touching this one (circular!) */ int nchildren, children_size; int nneighbors, neighbors_size; const gear *g; /* shape of this gear (shared) */ }; typedef struct { GLXContext *glx_context; rotator *rot; trackball_state *trackball; Bool button_down_p; int ncolors; XColor *colors; GLfloat color1[4], color2[4]; texture_font_data *font; int nshapes, shapes_size; /* how many 'gear' objects there are */ int ngears, gears_size; /* how many 'sphere_gear' objects there are */ gear *shapes; sphere_gear *gears; int which; int mode; /* 0 = normal, 1 = out, 2 = in */ int mode_tick; int next; /* 0 = random, -1 = back, 1 = forward */ time_t draw_time; int draw_tick; char *desc; GLfloat th; /* rotation of the root sphere_gear in degrees. */ } geodesic_configuration; static geodesic_configuration *bps = NULL; static int timeout; static Bool do_spin; static GLfloat speed; static Bool do_wander; static Bool do_labels; static Bool do_numbers; static XrmOptionDescRec opts[] = { { "-spin", ".spin", XrmoptionNoArg, "True" }, { "+spin", ".spin", XrmoptionNoArg, "False" }, { "-speed", ".speed", XrmoptionSepArg, 0 }, { "-wander", ".wander", XrmoptionNoArg, "True" }, { "+wander", ".wander", XrmoptionNoArg, "False" }, { "-labels", ".labels", XrmoptionNoArg, "True" }, { "+labels", ".labels", XrmoptionNoArg, "False" }, { "-numbers", ".numbers",XrmoptionNoArg, "True" }, { "+numbers", ".numbers",XrmoptionNoArg, "False" }, { "-timeout", ".timeout",XrmoptionSepArg, 0 }, }; static argtype vars[] = { {&do_spin, "spin", "Spin", DEF_SPIN, t_Bool}, {&do_wander, "wander", "Wander", DEF_WANDER, t_Bool}, {&speed, "speed", "Speed", DEF_SPEED, t_Float}, {&do_labels, "labels", "Labels", DEF_LABELS, t_Bool}, {&do_numbers,"numbers","Numbers",DEF_NUMBERS,t_Bool}, {&timeout, "timeout","Seconds",DEF_TIMEOUT,t_Int}, }; ENTRYPOINT ModeSpecOpt geodesic_opts = { countof(opts), opts, countof(vars), vars, NULL}; #undef BELLRAND #define BELLRAND(n) ((frand((n)) + frand((n)) + frand((n))) / 3) static XYZ cross_product (XYZ a, XYZ b) { XYZ c; c.x = (a.y * b.z) - (a.z * b.y); c.y = (a.z * b.x) - (a.x * b.z); c.z = (a.x * b.y) - (a.y * b.x); return c; } static GLfloat dot_product (XYZ a, XYZ b) { return (a.x * b.x) + (a.y * b.y) + (a.z * b.z); } static XYZ normalize (XYZ v) { GLfloat d = sqrt ((v.x * v.x) + (v.y * v.y) + (v.z * v.z)); if (d == 0) v.x = v.y = v.z = 0; else { v.x /= d; v.y /= d; v.z /= d; } return v; } static XYZ polar_to_cartesian (LL v) { XYZ p; p.x = cos (v.a) * cos (v.o); p.y = cos (v.a) * sin (v.o); p.z = sin (v.a); return p; } static gear * add_gear_shape (ModeInfo *mi, GLfloat radius, int teeth) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; int wire = MI_IS_WIREFRAME(mi); gear *g; int i; if (bp->nshapes >= bp->shapes_size - 1) { bp->shapes_size = bp->shapes_size * 1.2 + 4; bp->shapes = (gear *) realloc (bp->shapes, bp->shapes_size * sizeof(*bp->shapes)); } g = &bp->shapes[bp->nshapes++]; memset (g, 0, sizeof(*g)); g->r = radius; g->nteeth = teeth; g->ratio = 1; g->tooth_h = g->r / (teeth * 0.4); if (g->tooth_h > 0.06) /* stubbier teeth when small tooth count. */ g->tooth_h *= 0.6; g->thickness = 0.05 + BELLRAND(0.15); g->thickness2 = g->thickness / 4; g->thickness3 = g->thickness; g->size = wire ? INVOLUTE_SMALL : INVOLUTE_LARGE; /* Move the disc's origin inward to make the edge of the disc be tangent to the unit sphere. */ g->z = 1 - sqrt (1 - (g->r * g->r)); /* #### This isn't quite right */ g->tooth_slope = 1 + ((g->z * 2) / g->r); /* Decide on shape of gear interior: - just a ring with teeth; - that, plus a thinner in-set "plate" in the middle; - that, plus a thin raised "lip" on the inner plate; - or, a wide lip (really, a thicker third inner plate.) */ if (wire) ; else if ((random() % 10) == 0) { /* inner_r can go all the way in; there's no inset disc. */ g->inner_r = (g->r * 0.3) + frand((g->r - g->tooth_h/2) * 0.6); g->inner_r2 = 0; g->inner_r3 = 0; } else { /* inner_r doesn't go in very far; inner_r2 is an inset disc. */ g->inner_r = (g->r * 0.5) + frand((g->r - g->tooth_h) * 0.4); g->inner_r2 = (g->r * 0.1) + frand(g->inner_r * 0.5); g->inner_r3 = 0; if (g->inner_r2 > (g->r * 0.2)) { int nn = (random() % 10); if (nn <= 2) g->inner_r3 = (g->r * 0.1) + frand(g->inner_r2 * 0.2); else if (nn <= 7 && g->inner_r2 >= 0.1) g->inner_r3 = g->inner_r2 - 0.01; } } /* If we have three discs, sometimes make the middle disc be spokes. */ if (g->inner_r3 && ((random() % 5) == 0)) { g->spokes = 2 + BELLRAND (5); g->spoke_thickness = 1 + frand(7.0); if (g->spokes == 2 && g->spoke_thickness < 2) g->spoke_thickness += 1; } /* Sometimes add little nubbly bits, if there is room. */ if (!wire && g->nteeth > 5) { double size = 0; involute_biggest_ring (g, 0, &size, 0); if (size > g->r * 0.2 && (random() % 5) == 0) { g->nubs = 1 + (random() % 16); if (g->nubs > 8) g->nubs = 1; } } /* Decide how complex the polygon model should be. */ { double pix = g->tooth_h * MI_HEIGHT(mi); /* approx. tooth size in pixels */ if (pix <= 4) g->size = INVOLUTE_SMALL; else if (pix <= 8) g->size = INVOLUTE_MEDIUM; else if (pix <= 30) g->size = INVOLUTE_LARGE; else g->size = INVOLUTE_HUGE; } if (g->inner_r3 > g->inner_r2) abort(); if (g->inner_r2 > g->inner_r) abort(); if (g->inner_r > g->r) abort(); i = random() % bp->ncolors; g->color[0] = bp->colors[i].red / 65536.0; g->color[1] = bp->colors[i].green / 65536.0; g->color[2] = bp->colors[i].blue / 65536.0; g->color[3] = 1; i = (i + bp->ncolors / 2) % bp->ncolors; g->color2[0] = bp->colors[i].red / 65536.0; g->color2[1] = bp->colors[i].green / 65536.0; g->color2[2] = bp->colors[i].blue / 65536.0; g->color2[3] = 1; g->dlist = glGenLists (1); glNewList (g->dlist, GL_COMPILE); #if 1 { gear G, *g2 = &G; *g2 = *g; /* Move the gear inward so that its outer edge is on the disc, instead of its midpoint. */ g2->z += g2->thickness/2; /* 'radius' is at the surface but 'g->r' is at the center, so we need to reverse the slope computation that involute.c does. */ g2->r /= (1 + (g2->thickness * g2->tooth_slope / 2)); glPushMatrix(); glTranslatef(g2->x, g2->y, -g2->z); /* Line up the center of the point of tooth 0 with "up". */ glRotatef (90, 0, 0, 1); glRotatef (180, 0, 1, 0); glRotatef (-360.0 / g2->nteeth / 4, 0, 0, 1); g->polygons = draw_involute_gear (g2, wire); glPopMatrix(); } # else /* draw discs */ { glPushMatrix(); glTranslatef(g->x, g->y, -g->z); glLineWidth (2); glFrontFace (GL_CCW); glNormal3f(0, 0, 1); glColor3f(0, 0, 0); glDisable (GL_LIGHTING); glBegin(GL_LINES); glVertex3f (0, 0, 0); glVertex3f (0, radius, 0); glEnd(); glColor3f(0.5, 0.5, 0.5); glBegin(wire ? GL_LINE_LOOP : GL_TRIANGLE_FAN); { GLfloat th; GLfloat step = M_PI * 2 / 128; /* radius *= 1.005; */ glVertex3f (0, 0, 0); for (th = 0; th < M_PI * 2 + step; th += step) { GLfloat x = cos(th) * radius; GLfloat y = sin(th) * radius; glVertex3f (x, y, 0); } } glEnd(); if (!wire) glEnable(GL_LIGHTING); glPopMatrix(); } # endif /* 0 */ glEndList (); return g; } static void add_sphere_gear (ModeInfo *mi, gear *g, XYZ axis) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; sphere_gear *gg; int i; axis = normalize (axis); /* If there's already a gear on this axis, don't duplicate it. */ for (i = 0; i < bp->ngears; i++) { XYZ o = bp->gears[i].axis; if (o.x == axis.x && o.y == axis.y && o.z == axis.z) return; } if (bp->ngears >= bp->gears_size - 1) { bp->gears_size = bp->gears_size * 1.2 + 10; bp->gears = (sphere_gear *) realloc (bp->gears, bp->gears_size * sizeof(*bp->gears)); } gg = &bp->gears[bp->ngears]; memset (gg, 0, sizeof(*gg)); gg->id = bp->ngears; gg->axis = axis; gg->direction = 0; gg->g = g; bp->ngears++; } static void free_sphere_gears (ModeInfo *mi) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; int i; for (i = 0; i < bp->nshapes; i++) { if (bp->shapes[i].dlist) glDeleteLists (bp->shapes[i].dlist, 1); } free (bp->shapes); bp->nshapes = 0; bp->shapes_size = 0; bp->shapes = 0; for (i = 0; i < bp->ngears; i++) { sphere_gear *g = &bp->gears[i]; if (g->children) free (g->children); if (g->neighbors) free (g->neighbors); } free (bp->gears); bp->ngears = 0; bp->gears_size = 0; bp->gears = 0; } /* Is the gear a member of the list? */ static Bool gear_list_member (sphere_gear *g, sphere_gear **list, int count) { int i; for (i = 0; i < count; i++) if (list[i] == g) return True; return False; } /* Add the gear to the list, resizing it as needed. */ static void gear_list_push (sphere_gear *g, sphere_gear ***listP, int *countP, int *sizeP) { if (*countP >= (*sizeP) - 1) { *sizeP = (*sizeP) * 1.2 + 4; *listP = (sphere_gear **) realloc (*listP, (*sizeP) * sizeof(**listP)); } (*listP)[*countP] = g; (*countP)++; } /* Mark child and parent as being mutual neighbors. */ static void link_neighbors (sphere_gear *parent, sphere_gear *child) { if (child == parent) abort(); /* Add child to parent's list of neighbors */ if (! gear_list_member (child, parent->neighbors, parent->nneighbors)) { gear_list_push (child, &parent->neighbors, &parent->nneighbors, &parent->neighbors_size); /* fprintf(stderr, "neighbor %2d -> %2d (%d)\n", parent->id, child->id, parent->nneighbors); */ } /* Add parent to child's list of neighbors */ if (! gear_list_member (parent, child->neighbors, child->nneighbors)) { gear_list_push (parent, &child->neighbors, &child->nneighbors, &child->neighbors_size); /* fprintf(stderr, "neighbor %2d <- %2d\n", parent->id, child->id); */ } } /* Mark child as having parent, and vice versa. */ static void link_child (sphere_gear *parent, sphere_gear *child) { if (child == parent) abort(); if (child->parent) return; gear_list_push (child, &parent->children, &parent->nchildren, &parent->children_size); child->parent = parent; /* fprintf(stderr, "child %2d -> %2d (%d)\n", parent->id, child->id, parent->nchildren); */ } static void link_children (sphere_gear *); static void link_children (sphere_gear *parent) { int i; # if 1 /* depth first */ for (i = 0; i < parent->nneighbors; i++) { sphere_gear *child = parent->neighbors[i]; if (! child->parent) { link_child (parent, child); link_children (child); } } # else /* breadth first */ for (i = 0; i < parent->nneighbors; i++) { sphere_gear *child = parent->neighbors[i]; if (! child->parent) link_child (parent, child); } for (i = 0; i < parent->nchildren; i++) { sphere_gear *child = parent->children[i]; link_children (child); } # endif } /* Whether the two gears touch. */ static Bool gears_touch_p (ModeInfo *mi, sphere_gear *a, sphere_gear *b) { /* We need to know if the two discs on the surface overlap. Find the angle between the axis of each disc, and a point on its edge: the axis between the hypotenuse and adjacent of a right triangle between the disc's radius and the origin. R _____ |_| / | / 1 | / |t/ t = asin(R) |/ Find the angle between the axes of the two discs. | | / angle = acos (v1 dot v2) 1 | / axis = v1 cross v2 | / 1 | / |/ If the sum of the first two angles is less than the third angle, they touch. */ XYZ p1 = a->axis; XYZ p2 = b->axis; double t1 = asin (a->g->r); double t2 = asin (b->g->r); double th = acos (dot_product (p1, p2)); return (t1 + t2 >= th); } /* Set the rotation direction for the gear and its kids. */ static void orient_gears (ModeInfo *mi, sphere_gear *g) { int i; if (g->parent) g->direction = -g->parent->direction; for (i = 0; i < g->nchildren; i++) orient_gears (mi, g->children[i]); } /* Returns the global model coordinates of the given tooth of a gear. */ static XYZ tooth_coords (const sphere_gear *s, int tooth) { const gear *g = s->g; GLfloat off = s->offset * (M_PI / 180) * g->ratio * s->direction; GLfloat th = (tooth * M_PI * 2 / g->nteeth) - off; XYZ axis; GLfloat angle; XYZ from = { 0, 1, 0 }; XYZ to = s->axis; XYZ p0, p1, p2; GLfloat x, y, z, C, S, m[4][4]; axis = cross_product (from, to); angle = acos (dot_product (from, to)); p0 = normalize (axis); x = p0.x; y = p0.y; z = p0.z; C = cos(angle); S = sin(angle); /* this is what glRotatef does */ m[0][0] = x*x * (1 - C) + C; m[1][0] = x*y * (1 - C) - z*S; m[2][0] = x*z * (1 - C) + y*S; m[3][0] = 0; m[0][1] = y*x * (1 - C) + z*S; m[1][1] = y*y * (1 - C) + C; m[2][1] = y*z * (1 - C) - x*S; m[3][1] = 0; m[0][2] = x*z * (1 - C) - y*S; m[1][2] = y*z * (1 - C) + x*S; m[2][2] = z*z * (1 - C) + C; m[3][2] = 0; m[0][3] = 0; m[1][3] = 0; m[2][3] = 0; m[3][3] = 1; /* The point to transform */ p1.x = g->r * sin (th); p1.z = g->r * cos (th); p1.y = 1 - g->z; p1 = normalize (p1); /* transformation result */ p2.x = p1.x * m[0][0] + p1.y * m[1][0] + p1.z * m[2][0] + m[3][0]; p2.y = p1.x * m[0][1] + p1.y * m[1][1] + p1.z * m[2][1] + m[3][1]; p2.z = p1.x * m[0][2] + p1.y * m[1][2] + p1.z * m[2][2] + m[3][2]; return p2; } /* Returns the number of the tooth of the first gear that is closest to any tooth of its parent. Also the position of the parent tooth. */ static int parent_tooth (const sphere_gear *s, XYZ *parent) { const sphere_gear *s2 = s->parent; int i, j; GLfloat min_dist = 99999; int min_tooth = 0; XYZ min_parent = { 0, 0, 0 }; if (s2) for (i = 0; i < s->g->nteeth; i++) { XYZ p1 = tooth_coords (s, i); for (j = 0; j < s2->g->nteeth; j++) { XYZ p2 = tooth_coords (s2, j); XYZ d; GLfloat dist; d.x = p1.x - p2.x; d.y = p1.y - p2.y; d.z = p1.z - p2.z; dist = sqrt (d.x*d.x + d.y*d.y + d.z*d.z); if (dist < min_dist) { min_dist = dist; min_parent = p2; min_tooth = i; } } } *parent = min_parent; return min_tooth; } /* Make all of the gear's children's teeth mesh properly. */ static void align_gear_teeth (sphere_gear *s); static void align_gear_teeth (sphere_gear *s) { int i; XYZ pc; if (s->parent) { /* Iterate this gear's offset until we find a value for it that minimizes the distance between this gear's parent-pointing tooth, and the corresponding tooth on the parent. */ int pt = parent_tooth (s, &pc); GLfloat range = 360 / s->g->nteeth; GLfloat steps = 64; GLfloat min_dist = 999999; GLfloat min_off = 0; GLfloat off; for (off = -range/2; off < range/2; off += range/steps) { XYZ tc, d; GLfloat dist; s->offset = off; tc = tooth_coords (s, pt); d.x = pc.x - tc.x; d.y = pc.y - tc.y; d.z = pc.z - tc.z; dist = sqrt (d.x*d.x + d.y*d.y + d.z*d.z); if (dist < min_dist) { min_dist = dist; min_off = off; } } s->offset = min_off; } /* Now do the children. We have to do it in parent/child order because the offset we just computed for the parent affects everyone downstream. */ for (i = 0; i < s->nchildren; i++) align_gear_teeth (s->children[i]); } static void describe_gears (ModeInfo *mi) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; int gears_per_teeth[1000]; int i; int lines = 0; memset (gears_per_teeth, 0, sizeof(gears_per_teeth)); for (i = 0; i < bp->ngears; i++) gears_per_teeth[bp->gears[i].g->nteeth]++; if (bp->desc) free (bp->desc); bp->desc = (char *) malloc (80 * bp->ngears); *bp->desc = 0; for (i = 0; i < countof(gears_per_teeth); i++) if (gears_per_teeth[i]) { sprintf (bp->desc + strlen(bp->desc), "%s%d gears with %d teeth", (lines > 0 ? ",\n" : ""), gears_per_teeth[i], i); lines++; } if (lines > 1) sprintf (bp->desc + strlen(bp->desc), ",\n%d gears total", bp->ngears); strcat (bp->desc, "."); } /* Takes the gears and makes an arbitrary DAG of them in order to compute direction and gear ratios. */ static void sort_gears (ModeInfo *mi) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; sphere_gear *root = 0; int i, j; /* For each gear, compare it against every other gear. If they touch, mark them as being each others' neighbors. */ for (i = 0; i < bp->ngears; i++) { sphere_gear *a = &bp->gears[i]; for (j = 0; j < bp->ngears; j++) { sphere_gear *b = &bp->gears[j]; if (a == b) continue; if (gears_touch_p (mi, a, b)) link_neighbors (a, b); } } bp->gears[0].parent = &bp->gears[0]; /* don't give this one a parent */ link_children (&bp->gears[0]); bp->gears[0].parent = 0; # if 0 for (i = 0; i < bp->ngears; i++) { fprintf (stderr, "%2d: p = %2d; k(%d, %d) = ", i, bp->gears[i].parent ? bp->gears[i].parent->id : -1, bp->gears[i].nneighbors, bp->gears[i].nchildren); for (j = 0; j < bp->gears[i].nneighbors; j++) fprintf (stderr, "%2d ", (int) bp->gears[i].neighbors[j]->id); fprintf (stderr, "\t\t"); if (j < 5) fprintf (stderr, "\t"); for (j = 0; j < bp->gears[i].nchildren; j++) fprintf (stderr, "%2d ", (int) bp->gears[i].children[j]->id); fprintf (stderr,"\n"); } fprintf (stderr,"\n"); # endif /* 0 */ /* If there is more than one gear with no parent, we fucked up. */ root = 0; for (i = 0; i < bp->ngears; i++) { sphere_gear *g = &bp->gears[i]; if (!g->parent) root = g; } if (! root) abort(); root->direction = 1; orient_gears (mi, root); /* If there are any gears with no direction, they aren't reachable. */ for (i = 0; i < bp->ngears; i++) { sphere_gear *g = &bp->gears[i]; if (g->direction == 0) fprintf(stderr,"INTERNAL ERROR: unreachable: %d\n", g->id); } align_gear_teeth (root); describe_gears (mi); } /* Create 5 identical gears arranged on the faces of a uniform triangular prism. */ static void make_prism (ModeInfo *mi) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; gear *g; XYZ a; int i; int teeth = 4 * (4 + (int) (BELLRAND(20))); if (teeth % 4) abort(); /* must be a multiple of 4 */ g = add_gear_shape (mi, 0.7075, teeth); a.x = 0; a.y = 0; a.z = 1; add_sphere_gear (mi, g, a); a.z = -1; add_sphere_gear (mi, g, a); a.z = 0; for (i = 0; i < 3; i++) { GLfloat th = i * M_PI * 2 / 3; a.x = cos (th); a.y = sin (th); add_sphere_gear (mi, g, a); } if (bp->ngears != 5) abort(); } /* Create 8 identical gears arranged on the faces of an octohedron (or alternately, arranged on the diagonals of a cube.) */ static void make_octo (ModeInfo *mi) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; static const XYZ verts[] = {{ -1, -1, -1 }, { -1, -1, 1 }, { -1, 1, 1 }, { -1, 1, -1 }, { 1, -1, 1 }, { 1, -1, -1 }, { 1, 1, -1 }, { 1, 1, 1 }}; gear *g; int i; int teeth = 4 * (4 + (int) (BELLRAND(20))); if (teeth % 4) abort(); /* must be a multiple of 4 */ g = add_gear_shape (mi, 0.578, teeth); for (i = 0; i < countof(verts); i++) add_sphere_gear (mi, g, verts[i]); if (bp->ngears != 8) abort(); } /* Create 10 identical gears arranged on the faces of ... something. I'm not sure what polyhedron is the basis of this. */ static void make_deca (ModeInfo *mi) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; gear *g; XYZ a; int i, j; int teeth = 4 * (4 + (int) (BELLRAND(15))); if (teeth % 4) abort(); /* must be a multiple of 4 */ g = add_gear_shape (mi, 0.5415, teeth); a.x = 0; a.y = 0; a.z = 1; add_sphere_gear (mi, g, a); a.z = -1; add_sphere_gear (mi, g, a); for (j = -1; j <= 1; j += 2) { GLfloat off = (j < 0 ? 0 : M_PI / 4); LL v; v.a = j * M_PI * 0.136; /* #### Empirical. What is this? */ for (i = 0; i < 4; i++) { v.o = i * M_PI / 2 + off; a = polar_to_cartesian (v); add_sphere_gear (mi, g, a); } } if (bp->ngears != 10) abort(); } /* Create 14 identical gears arranged on the faces of ... something. I'm not sure what polyhedron is the basis of this. */ static void make_14 (ModeInfo *mi) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; gear *g; XYZ a; int i; GLfloat r = 0.4610; int teeth = 6 * (2 + (int) (BELLRAND(4))); if (teeth % 6) abort(); /* must be a multiple of 6. I think? */ /* mismeshes: 24 30 34 36 42 48 54 60 */ /* North, south */ g = add_gear_shape (mi, r, teeth); a.x = 0; a.y = 0; a.z = 1; add_sphere_gear (mi, g, a); a.z = -1; add_sphere_gear (mi, g, a); /* Equator */ a.z = 0; for (i = 0; i < 4; i++) { GLfloat th = i * M_PI * 2 / 4 + (M_PI / 4); a.x = cos(th); a.y = sin(th); add_sphere_gear (mi, g, a); } /* The other 8 */ g = add_gear_shape (mi, r, teeth); for (i = 0; i < 4; i++) { LL v; v.a = M_PI * 0.197; /* #### Empirical. Also, wrong. What is this? */ v.o = i * M_PI * 2 / 4; a = polar_to_cartesian (v); add_sphere_gear (mi, g, a); v.a = -v.a; a = polar_to_cartesian (v); add_sphere_gear (mi, g, a); } if (bp->ngears != 14) abort(); } /* Create 18 identical gears arranged on the faces of ... something. I'm not sure what polyhedron is the basis of this. */ static void make_18 (ModeInfo *mi) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; gear *g, *g2; XYZ a; int i; GLfloat r = 0.3830; int sizes[] = { 8, 12, 16, 20 }; /* 10, 14, 18, 26 and 34 don't work */ int teeth = sizes[random() % countof(sizes)] * (1 + (random() % 4)); /* North, south */ g = add_gear_shape (mi, r, teeth); a.x = 0; a.y = 0; a.z = 1; add_sphere_gear (mi, g, a); a.z = -1; add_sphere_gear (mi, g, a); /* Equator */ g2 = add_gear_shape (mi, r, teeth); a.z = 0; for (i = 0; i < 8; i++) { GLfloat th = i * M_PI * 2 / 8 + (M_PI / 4); a.x = cos(th); a.y = sin(th); add_sphere_gear (mi, (i & 1 ? g : g2), a); } /* The other 16 */ g = add_gear_shape (mi, r, teeth); for (i = 0; i < 4; i++) { LL v; v.a = M_PI * 0.25; v.o = i * M_PI * 2 / 4; a = polar_to_cartesian (v); add_sphere_gear (mi, g, a); v.a = -v.a; a = polar_to_cartesian (v); add_sphere_gear (mi, g, a); } if (bp->ngears != 18) abort(); } /* Create 32 gears arranged along a truncated icosahedron: One gear on each of the 20 faces, and one on each of the 12 vertices. */ static void make_32 (ModeInfo *mi, const GLfloat *args) { /* http://bugman123.com/Gears/32GearSpheres/ */ geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; GLfloat th0 = atan (0.5); /* lat division: 26.57 deg */ GLfloat s = M_PI / 5; /* lon division: 72 deg */ int i; int teeth1 = args[0]; int teeth2 = args[1]; GLfloat r1 = args[2]; GLfloat ratio = teeth2 / (GLfloat) teeth1; GLfloat r2 = r1 * ratio; gear *gear1, *gear2; if (teeth1 % 5) abort(); if (teeth2 % 6) abort(); gear1 = add_gear_shape (mi, r1, teeth1); gear2 = add_gear_shape (mi, r2, teeth2); gear2->ratio = 1 / ratio; { XYZ a = { 0, 0, 1 }; XYZ b = { 0, 0, -1 }; add_sphere_gear (mi, gear1, a); add_sphere_gear (mi, gear1, b); } for (i = 0; i < 10; i++) { GLfloat th1 = s * i; GLfloat th2 = s * (i+1); GLfloat th3 = s * (i+2); LL v1, v2, v3, vc; XYZ p1, p2, p3, pc, pc2; v1.a = th0; v1.o = th1; v2.a = th0; v2.o = th3; v3.a = -th0; v3.o = th2; vc.a = M_PI/2; vc.o = th2; if (! (i & 1)) /* southern hemisphere */ { v1.a = -v1.a; v2.a = -v2.a; v3.a = -v3.a; vc.a = -vc.a; } p1 = polar_to_cartesian (v1); p2 = polar_to_cartesian (v2); p3 = polar_to_cartesian (v3); pc = polar_to_cartesian (vc); /* Two faces: 123 and 12c. */ add_sphere_gear (mi, gear1, p1); /* left shared point of 2 triangles */ pc2.x = (p1.x + p2.x + p3.x) / 3; /* center of bottom triangle */ pc2.y = (p1.y + p2.y + p3.y) / 3; pc2.z = (p1.z + p2.z + p3.z) / 3; add_sphere_gear (mi, gear2, pc2); pc2.x = (p1.x + p2.x + pc.x) / 3; /* center of top triangle */ pc2.y = (p1.y + p2.y + pc.y) / 3; pc2.z = (p1.z + p2.z + pc.z) / 3; add_sphere_gear (mi, gear2, pc2); } if (bp->ngears != 32) abort(); } /* Create 92 gears arranged along a geodesic sphere: 20 + 12 + 60. (frequency 3v, class-I geodesic tessellation of an icosahedron) */ static void make_92 (ModeInfo *mi, const GLfloat *args) { /* http://bugman123.com/Gears/92GearSpheres/ */ geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; GLfloat th0 = atan (0.5); /* lat division: 26.57 deg */ GLfloat s = M_PI / 5; /* lon division: 72 deg */ int i; int tscale = 2; /* These don't mesh properly, so let's increase the number of teeth so that it's not so obvious. */ int teeth1 = args[0] * tscale; int teeth2 = args[1] * tscale; int teeth3 = args[2] * tscale; GLfloat r1 = args[3]; GLfloat ratio2 = teeth2 / (GLfloat) teeth1; GLfloat ratio3 = teeth3 / (GLfloat) teeth2; GLfloat r2 = r1 * ratio2; GLfloat r3 = r2 * ratio3; GLfloat r4 = args[4]; /* #### Empirical. Not sure what its basis is. */ GLfloat r5 = 1 - r4; gear *gear1, *gear2, *gear3; gear1 = add_gear_shape (mi, r1, teeth1); gear2 = add_gear_shape (mi, r2, teeth2); gear3 = add_gear_shape (mi, r3, teeth3); gear2->ratio = 1 / ratio2; gear3->ratio = 1 / ratio3; { XYZ a = { 0, 0, 1 }; XYZ b = { 0, 0, -1 }; add_sphere_gear (mi, gear1, a); add_sphere_gear (mi, gear1, b); } for (i = 0; i < 10; i++) { GLfloat th1 = s * i; GLfloat th2 = s * (i+1); GLfloat th3 = s * (i+2); LL v1, v2, v3, vc; XYZ p1, p2, p3, pc, pc2; v1.a = th0; v1.o = th1; v2.a = th0; v2.o = th3; v3.a = -th0; v3.o = th2; vc.a = M_PI/2; vc.o = th2; if (! (i & 1)) /* southern hemisphere */ { v1.a = -v1.a; v2.a = -v2.a; v3.a = -v3.a; vc.a = -vc.a; } p1 = polar_to_cartesian (v1); p2 = polar_to_cartesian (v2); p3 = polar_to_cartesian (v3); pc = polar_to_cartesian (vc); /* Two faces: 123 and 12c. */ add_sphere_gear (mi, gear1, p1); /* left shared point of 2 triangles */ pc2.x = (p1.x + p2.x + p3.x) / 3; /* center of bottom triangle */ pc2.y = (p1.y + p2.y + p3.y) / 3; pc2.z = (p1.z + p2.z + p3.z) / 3; add_sphere_gear (mi, gear2, pc2); pc2.x = (p1.x + p2.x + pc.x) / 3; /* center of top triangle */ pc2.y = (p1.y + p2.y + pc.y) / 3; pc2.z = (p1.z + p2.z + pc.z) / 3; add_sphere_gear (mi, gear2, pc2); /* left edge of bottom triangle, 1/3 in */ pc2.x = p1.x + (p3.x - p1.x) * r4; pc2.y = p1.y + (p3.y - p1.y) * r4; pc2.z = p1.z + (p3.z - p1.z) * r4; add_sphere_gear (mi, gear3, pc2); /* left edge of bottom triangle, 2/3 in */ pc2.x = p1.x + (p3.x - p1.x) * r5; pc2.y = p1.y + (p3.y - p1.y) * r5; pc2.z = p1.z + (p3.z - p1.z) * r5; add_sphere_gear (mi, gear3, pc2); /* left edge of top triangle, 1/3 in */ pc2.x = p1.x + (pc.x - p1.x) * r4; pc2.y = p1.y + (pc.y - p1.y) * r4; pc2.z = p1.z + (pc.z - p1.z) * r4; add_sphere_gear (mi, gear3, pc2); /* left edge of top triangle, 2/3 in */ pc2.x = p1.x + (pc.x - p1.x) * r5; pc2.y = p1.y + (pc.y - p1.y) * r5; pc2.z = p1.z + (pc.z - p1.z) * r5; add_sphere_gear (mi, gear3, pc2); /* center of shared edge, 1/3 in */ pc2.x = p1.x + (p2.x - p1.x) * r4; pc2.y = p1.y + (p2.y - p1.y) * r4; pc2.z = p1.z + (p2.z - p1.z) * r4; add_sphere_gear (mi, gear3, pc2); /* center of shared edge, 2/3 in */ pc2.x = p1.x + (p2.x - p1.x) * r5; pc2.y = p1.y + (p2.y - p1.y) * r5; pc2.z = p1.z + (p2.z - p1.z) * r5; add_sphere_gear (mi, gear3, pc2); } if (bp->ngears != 92) abort(); } static void make_182 (ModeInfo *mi, const GLfloat *args) { /* #### TODO: http://bugman123.com/Gears/182GearSpheres/ */ abort(); } /* Window management, etc */ ENTRYPOINT void reshape_geodesic (ModeInfo *mi, int width, int height) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; GLfloat h = (GLfloat) height / (GLfloat) width; int y = 0; if (width > height * 5) { /* tiny window: show middle */ height = width * 9/16; y = -height/2; h = height / (GLfloat) width; } glXMakeCurrent(MI_DISPLAY(mi), MI_WINDOW(mi), *bp->glx_context); glViewport (0, y, (GLint) width, (GLint) height); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective (30.0, 1/h, 1.0, 100.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt( 0.0, 0.0, 30.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); # ifdef HAVE_MOBILE /* Keep it the same relative size when rotated. */ { int o = (int) current_device_rotation(); if (o != 0 && o != 180 && o != -180) glScalef (1/h, 1/h, 1/h); } # endif glClear(GL_COLOR_BUFFER_BIT); } static void pick_shape (ModeInfo *mi, time_t last) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; int count = countof (gear_templates); if (bp->colors) free (bp->colors); bp->ncolors = 1024; bp->colors = (XColor *) calloc(bp->ncolors, sizeof(XColor)); make_smooth_colormap (0, 0, 0, bp->colors, &bp->ncolors, False, 0, False); free_sphere_gears (mi); if (last == 0) { bp->which = random() % count; } else if (bp->next < 0) { bp->which--; if (bp->which < 0) bp->which = count-1; bp->next = 0; } else if (bp->next > 0) { bp->which++; if (bp->which >= count) bp->which = 0; bp->next = 0; } else { int n = bp->which; while (n == bp->which) n = random() % count; bp->which = n; } switch (gear_templates[bp->which].type) { case PRISM: make_prism (mi); break; case OCTO: make_octo (mi); break; case DECA: make_deca (mi); break; case G14: make_14 (mi); break; case G18: make_18 (mi); break; case G32: make_32 (mi, gear_templates[bp->which].args); break; case G92: make_92 (mi, gear_templates[bp->which].args); break; case G182: make_182(mi, gear_templates[bp->which].args); break; default: abort(); break; } sort_gears (mi); } ENTRYPOINT void init_geodesic (ModeInfo *mi) { geodesic_configuration *bp; int wire = MI_IS_WIREFRAME(mi); MI_INIT (mi, bps); bp = &bps[MI_SCREEN(mi)]; bp->glx_context = init_GL(mi); reshape_geodesic (mi, MI_WIDTH(mi), MI_HEIGHT(mi)); { static GLfloat cspec[4] = {1.0, 1.0, 1.0, 1.0}; static const GLfloat shiny = 128.0; static GLfloat pos[4] = {1.0, 1.0, 1.0, 0.0}; static GLfloat amb[4] = {0.0, 0.0, 0.0, 1.0}; static GLfloat dif[4] = {1.0, 1.0, 1.0, 1.0}; static GLfloat spc[4] = {0.0, 1.0, 1.0, 1.0}; glLightfv(GL_LIGHT0, GL_POSITION, pos); glLightfv(GL_LIGHT0, GL_AMBIENT, amb); glLightfv(GL_LIGHT0, GL_DIFFUSE, dif); glLightfv(GL_LIGHT0, GL_SPECULAR, spc); glMaterialfv (GL_FRONT, GL_SPECULAR, cspec); glMateriali (GL_FRONT, GL_SHININESS, shiny); } if (! wire) { glEnable (GL_DEPTH_TEST); glEnable (GL_BLEND); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_LIGHTING); glEnable (GL_LIGHT0); } if (! bp->rot) { double spin_speed = 0.25 * speed; double wander_speed = 0.01 * speed; double spin_accel = 0.2; bp->rot = make_rotator (do_spin ? spin_speed : 0, do_spin ? spin_speed : 0, do_spin ? spin_speed : 0, spin_accel, do_wander ? wander_speed : 0, True); bp->trackball = gltrackball_init (True); } bp->font = load_texture_font (MI_DISPLAY(mi), "font"); pick_shape (mi, 0); } ENTRYPOINT Bool geodesic_handle_event (ModeInfo *mi, XEvent *event) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; if (gltrackball_event_handler (event, bp->trackball, MI_WIDTH (mi), MI_HEIGHT (mi), &bp->button_down_p)) return True; else { if (event->xany.type == KeyPress) { KeySym keysym; char c = 0; XLookupString (&event->xkey, &c, 1, &keysym, 0); if (c == '<' || c == ',' || c == '-' || c == '_' || keysym == XK_Left || keysym == XK_Up || keysym == XK_Prior) { bp->next = -1; goto SWITCH; } else if (c == '>' || c == '.' || c == '=' || c == '+' || keysym == XK_Right || keysym == XK_Down || keysym == XK_Next) { bp->next = 1; goto SWITCH; } } if (screenhack_event_helper (MI_DISPLAY(mi), MI_WINDOW(mi), event)) { SWITCH: bp->mode = 1; bp->mode_tick = 4; return True; } } return False; } ENTRYPOINT void draw_geodesic (ModeInfo *mi) { time_t now = time ((time_t *) 0); int wire = MI_IS_WIREFRAME(mi); geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; Display *dpy = MI_DISPLAY(mi); Window window = MI_WINDOW(mi); if (!bp->glx_context) return; glXMakeCurrent(MI_DISPLAY(mi), MI_WINDOW(mi), *bp->glx_context); if (bp->draw_time == 0) { pick_shape (mi, bp->draw_time); bp->draw_time = now; } else if (bp->mode == 0) { if (bp->draw_tick++ > 10) { if (bp->draw_time == 0) bp->draw_time = now; bp->draw_tick = 0; if (!bp->button_down_p && bp->draw_time + timeout <= now) { /* randomize every -timeout seconds */ bp->mode = 1; /* go out */ bp->mode_tick = 10 / speed; bp->draw_time = now; } } } else if (bp->mode == 1) /* out */ { if (--bp->mode_tick <= 0) { bp->mode_tick = 10 / speed; bp->mode = 2; /* go in */ pick_shape (mi, bp->draw_time); bp->draw_time = now; } } else if (bp->mode == 2) /* in */ { if (--bp->mode_tick <= 0) bp->mode = 0; /* normal */ } else abort(); if (! wire) glShadeModel(GL_SMOOTH); glEnable(GL_DEPTH_TEST); glEnable(GL_NORMALIZE); glEnable(GL_CULL_FACE); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix (); { double x, y, z; get_position (bp->rot, &x, &y, &z, !bp->button_down_p); glTranslatef((x - 0.5) * 8, (y - 0.5) * 8, (z - 0.5) * 17); gltrackball_rotate (bp->trackball); get_rotation (bp->rot, &x, &y, &z, !bp->button_down_p); glRotatef (x * 360, 1.0, 0.0, 0.0); glRotatef (y * 360, 0.0, 1.0, 0.0); glRotatef (z * 360, 0.0, 0.0, 1.0); } mi->polygon_count = 0; glScalef (6, 6, 6); if (bp->ngears < 14) glScalef (0.8, 0.8, 0.8); /* make these a little easier to see */ if (bp->mode != 0) { GLfloat s = (bp->mode == 1 ? bp->mode_tick / (10 / speed) : ((10 / speed) - bp->mode_tick + 1) / (10 / speed)); glScalef (s, s, s); } { int i; for (i = 0; i < bp->ngears; i++) { const sphere_gear *s = &bp->gears[i]; const gear *g = s->g; XYZ axis; XYZ from = { 0, 1, 0 }; XYZ to = s->axis; GLfloat angle; GLfloat off = s->offset; /* If an even number of teeth, offset by 1/2 tooth width. */ if (s->direction > 0 && !(g->nteeth & 1)) off += 360 / g->nteeth / 2; axis = cross_product (from, to); angle = acos (dot_product (from, to)); glPushMatrix(); glTranslatef (to.x, to.y, to.z); glRotatef (angle / M_PI * 180, axis.x, axis.y, axis.z); glRotatef (-90, 1, 0, 0); glRotatef(180, 0, 0, 1); glRotatef ((bp->th - off) * g->ratio * s->direction, 0, 0, 1); glCallList (g->dlist); mi->polygon_count += g->polygons; glPopMatrix(); #if 0 { /* Draw tooth vectors */ GLfloat r = 1 - g->z; XYZ pc; int pt = parent_tooth (s, &pc); int t; glDisable(GL_LIGHTING); glLineWidth (8); for (t = 0; t < g->nteeth; t++) { XYZ p = tooth_coords (s, t); XYZ p2; p2.x = (r * s->axis.x + p.x) / 2; p2.y = (r * s->axis.y + p.y) / 2; p2.z = (r * s->axis.z + p.z) / 2; if (t == pt) glColor3f(1,0,1); else glColor3f(0,1,1); glBegin(GL_LINES); glVertex3f (p.x, p.y, p.z); glVertex3f (p2.x, p2.y, p2.z); glEnd(); } if (!wire) glEnable(GL_LIGHTING); glLineWidth (1); } #endif #if 0 { /* Draw the parent/child DAG */ GLfloat s1 = 1.1; GLfloat s2 = s->parent ? s1 : 1.5; GLfloat s3 = 1.0; XYZ p1 = s->axis; XYZ p2 = s->parent ? s->parent->axis : p1; glDisable(GL_LIGHTING); glColor3f(0,0,1); glBegin(GL_LINES); glVertex3f (s1 * p1.x, s1 * p1.y, s1 * p1.z); glVertex3f (s2 * p2.x, s2 * p2.y, s2 * p2.z); glVertex3f (s1 * p1.x, s1 * p1.y, s1 * p1.z); glVertex3f (s3 * p1.x, s3 * p1.y, s3 * p1.z); glEnd(); if (!wire) glEnable(GL_LIGHTING); } #endif } /* We need to draw the fonts in a second pass in order to make transparency (as a result of anti-aliasing) work properly. */ if (do_numbers && bp->mode == 0) for (i = 0; i < bp->ngears; i++) { const sphere_gear *s = &bp->gears[i]; const gear *g = s->g; XYZ axis; XYZ from = { 0, 1, 0 }; XYZ to = s->axis; GLfloat angle; GLfloat off = s->offset; int w, h, j; char buf[100]; XCharStruct e; /* If an even number of teeth, offset by 1/2 tooth width. */ if (s->direction > 0 /* && !(g->nteeth & 1) */) off += 360 / g->nteeth / 2; axis = cross_product (from, to); angle = acos (dot_product (from, to)); glPushMatrix(); glTranslatef(to.x, to.y, to.z); glRotatef (angle / M_PI * 180, axis.x, axis.y, axis.z); glRotatef (-90, 1, 0, 0); glRotatef(180, 0, 0, 1); glRotatef ((bp->th - off) * g->ratio * s->direction, 0, 0, 1); glDisable (GL_LIGHTING); glColor3f(1, 1, 0); glPushMatrix(); glScalef(0.005, 0.005, 0.005); sprintf (buf, "%d", i); texture_string_metrics (bp->font, buf, &e, 0, 0); w = e.width; h = e.ascent + e.descent; glTranslatef (-w/2, -h/2, 0); print_texture_string (bp->font, buf); glPopMatrix(); # if 1 for (j = 0; j < g->nteeth; j++) /* Number the teeth */ { GLfloat ss = 0.08 * g->r / g->nteeth; GLfloat r = g->r * 0.88; GLfloat th = M_PI - (j * M_PI * 2 / g->nteeth + M_PI/2); glPushMatrix(); glTranslatef (r * cos(th), r * sin(th), -g->z + 0.01); glScalef(ss, ss, ss); sprintf (buf, "%d", j + 1); texture_string_metrics (bp->font, buf, &e, 0, 0); w = e.width; h = e.ascent + e.descent; glTranslatef (-w/2, -h/2, 0); print_texture_string (bp->font, buf); glPopMatrix(); } # endif glPopMatrix(); if (!wire) glEnable(GL_LIGHTING); } bp->th += 0.7 * speed; /* Don't mod this to 360 - causes glitches. */ } if (do_labels && bp->mode == 0) { glColor3f (1, 1, 0); print_texture_label (mi->dpy, bp->font, mi->xgwa.width, mi->xgwa.height, 1, bp->desc); } glPopMatrix (); if (mi->fps_p) do_fps (mi); glFinish(); glXSwapBuffers(dpy, window); } ENTRYPOINT void free_geodesic (ModeInfo *mi) { geodesic_configuration *bp = &bps[MI_SCREEN(mi)]; if (!bp->glx_context) return; glXMakeCurrent(MI_DISPLAY(mi), MI_WINDOW(mi), *bp->glx_context); if (bp->font) free_texture_font (bp->font); if (bp->colors) free (bp->colors); if (mi) free_sphere_gears (mi); if (bp->desc) free (bp->desc); if (bp->trackball) gltrackball_free (bp->trackball); if (bp->rot) free_rotator (bp->rot); } XSCREENSAVER_MODULE_2 ("GeodesicGears", geodesicgears, geodesic) #endif /* USE_GL */