summaryrefslogtreecommitdiffstats
path: root/hacks/flow.c
blob: 6dddd8e0a99434eae64279f7f3e805c6592567ff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4 -*- */
/* flow --- flow of strange bees */

#if 0
static const char sccsid[] = "@(#)flow.c	5.00 2000/11/01 xlockmore";
#endif

/*-
 * Copyright (c) 1996 by Tim Auckland <tda10.geo@yahoo.com>
 * Incorporating some code from Stephen Davies Copyright (c) 2000
 *
 * Search code based on techniques described in "Strange Attractors:
 * Creating Patterns in Chaos" by Julien C. Sprott
 *
 * Permission to use, copy, modify, and distribute this software and its
 * documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appear in all copies and that
 * both that copyright notice and this permission notice appear in
 * supporting documentation.
 *
 * This file is provided AS IS with no warranties of any kind.  The author
 * shall have no liability with respect to the infringement of copyrights,
 * trade secrets or any patents by this file or any part thereof.  In no
 * event will the author be liable for any lost revenue or profits or
 * other special, indirect and consequential damages.
 *
 * "flow" shows a variety of continuous phase-space flows around strange
 * attractors.  It includes the well-known Lorentz mask (the "Butterfly"
 * of chaos fame), two forms of Rossler's "Folded Band" and Poincare'
 * sections of the "Birkhoff Bagel" and Duffing's forced occilator.  "flow"
 * can now discover new attractors.
 *
 * Revision History:
 *
 * 29-Oct-2004: [TDA] Discover Attractors unknown to science.
 *   Replace 2D rendering of Periodic Attractors with a 3D
 *   'interrupted' rendering.  Replace "-/+allow2d" with "-/+periodic"
 *   Replace all ODE formulae with completely generic forms.
 *   Add '-search' option to perform background high-speed discovery
 *   for completely new attractors without impacting rendering
 *   performance.
 *   Use gaussian distribution for initial point positions and for
 *   parameter search.
 *   Add "+dbuf" option to allow Double-Buffering to be turned off on
 *   slow X servers.
 *   Remove redundant '-zoom' option.  Now automatically zooms if both
 *   rotation and riding are permitted.
 *   Replace dynamic bounding box with static one pre-calculated
 *   during discovery phase.
 *   Simplify and fix bounding box clipping code.  Should now be safe
 *   to run without double buffer on all XFree86 servers if desired.
 * 12-Oct-2004: [TDA] Merge Xscreensaver and Xlockmore branches
 *   Added Chalky's orbital camera, but made the zooming work by
 *   flying the camera rather than interpolating the view transforms.
 *   Added Chalky's Bounding Box, but time-averaged the boundaries to
 *   let the lost bees escape.
 *   Added Chalky's 'view-frustrum' clipping, but only applying it to
 *   the Bounding Box.  Trails make clipping less useful.
 *   Added Chalky's "-slow" and "-freeze" options for compatibility,
 *   but haven't implemented the features, since the results are ugly
 *   and make no mathematical contribution.
 *   Added Double-Buffering as a work-around for a persistent XFree86
 *   bug that left debris on the screen.
 * 21-Mar-2003: [TDA] Trails added (XLockmore branch)
 * 01-Nov-2000: [TDA] Allocation checks (XLockmore branch)
 * 21-Feb-2000: [Chalky] Major hackage (Stephen Davies, chalky@null.net)
 *   (Xscreensaver branch)
 *   Forced perspective mode, added 3d box around attractor which
 *   involved coding 3d-planar-clipping against the view-frustrum
 *   thingy. Also made view alternate between piggybacking on a 'bee'
 *   to zooming around outside the attractor. Most bees slow down and
 *   stop, to make the structure of the attractor more obvious.
* 28-Jan-1999: [TDA] Catch 'lost' bees in flow.c and disable them.
 *   (XLockmore branch)
 *   I chose to disable them rather than reinitialise them because
 *   reinitialising can produce fake attractors.
 *   This has allowed me to relax some of the parameters and initial
 *   conditions slightly to catch some of the more extreme cases.  As a
 *   result you may see some bees fly away at the start - these are the ones
 *   that 'missed' the attractor.  If the bee with the camera should fly
 *   away the mode will restart  :-)
 * 31-Nov-1998: [TDA] Added Duffing  (what a strange day that was :) DAB)
 *   Duffing's forced oscillator has been added to the formula list and
 *   the parameters section has been updated to display it in Poincare'
 *   section.
 * 30-Nov-1998: [TDA] Added travelling perspective option
 *   A more exciting point-of-view has been added to all autonomous flows.
 *   This views the flow as seen by a particle moving with the flow.  In the
 *   metaphor of the original code, I've attached a camera to one of the
 *   trained bees!
 * 30-Nov-1998: [TDA] Much code cleanup.
 * 09-Apr-1997: [TDA] Ported to xlockmore-4
 * 18-Jul-1996: Adapted from swarm.c Copyright (c) 1991 by Patrick J. Naughton.
 * 31-Aug-1990: Adapted from xswarm by Jeff Butterworth. (butterwo@ncsc.org).
 */

#ifdef STANDALONE
# define MODE_flow
# define DEFAULTS   "*delay:       10000 \n" \
					"*count:       3000  \n" \
					"*size:        -10   \n" \
					"*cycles:      10000 \n" \
					"*ncolors:     200   \n"

# define release_flow 0
# define reshape_flow 0
# define flow_handle_event 0
# include "xlockmore.h"		/* in xscreensaver distribution */
#else /* STANDALONE */
# include "xlock.h"		/* in xlockmore distribution */
#endif /* STANDALONE */

#ifdef MODE_flow

#define DEF_ROTATE   "TRUE"
#define DEF_RIDE     "TRUE"
#define DEF_BOX      "TRUE"
#define DEF_PERIODIC "TRUE"
#define DEF_SEARCH   "TRUE"
#define DEF_DBUF     "TRUE"

static Bool rotatep;
static Bool ridep;
static Bool boxp;
static Bool periodicp;
static Bool searchp;
static Bool dbufp;

static XrmOptionDescRec opts[] = {
	{"-rotate",   ".flow.rotate",   XrmoptionNoArg, "on"},
	{"+rotate",   ".flow.rotate",   XrmoptionNoArg, "off"},
	{"-ride",     ".flow.ride",     XrmoptionNoArg, "on"},
	{"+ride",     ".flow.ride",     XrmoptionNoArg, "off"},
	{"-box",      ".flow.box",      XrmoptionNoArg, "on"},
	{"+box",      ".flow.box",      XrmoptionNoArg, "off"},
	{"-periodic", ".flow.periodic", XrmoptionNoArg, "on"},
	{"+periodic", ".flow.periodic", XrmoptionNoArg, "off"},
	{"-search",   ".flow.search",   XrmoptionNoArg, "on"},
	{"+search",   ".flow.search",   XrmoptionNoArg, "off"},
	{"-dbuf",     ".flow.dbuf",     XrmoptionNoArg, "on"},
	{"+dbuf",     ".flow.dbuf",     XrmoptionNoArg, "off"},
};

static argtype vars[] = {
    {&rotatep,   "rotate",   "Rotate",   DEF_ROTATE,   t_Bool},
    {&ridep,     "ride",     "Ride",     DEF_RIDE,     t_Bool},
    {&boxp,      "box",      "Box",      DEF_BOX,      t_Bool},
    {&periodicp, "periodic", "Periodic", DEF_PERIODIC, t_Bool}, 
    {&searchp,   "search",   "Search",   DEF_SEARCH,   t_Bool}, 
    {&dbufp,     "dbuf",     "Dbuf",     DEF_DBUF,     t_Bool}, 
};

static OptionStruct desc[] = {
    {"-/+rotate",   "turn on/off rotating around attractor."},
    {"-/+ride",     "turn on/off ride in the flow."},
    {"-/+box",      "turn on/off bounding box."},
    {"-/+periodic", "turn on/off periodic attractors."},
    {"-/+search",   "turn on/off search for new attractors."},
    {"-/+dbuf",     "turn on/off double buffering."},
};

ENTRYPOINT ModeSpecOpt flow_opts =
{sizeof opts / sizeof opts[0], opts,
 sizeof vars / sizeof vars[0], vars, desc};

#ifdef USE_MODULES
ModStruct   flow_description = {
	"flow", "init_flow", "draw_flow", NULL,
	"refresh_flow", "init_flow", "free_flow", &flow_opts,
	1000, 1024, 10000, -10, 200, 1.0, "",
	"Shows dynamic strange attractors", 0, NULL
};

#endif

typedef struct { double x, y, z; } dvector;

#define N_PARS 20 /* Enough for Full Cubic or Periodic Cubic */
typedef dvector Par[N_PARS];
enum { /* Name the parameter indices to make it easier to write
		  standard examples */
	C,
	X,XX,XXX,XXY,XXZ,XY,XYY,XYZ,XZ,XZZ,
	Y,YY,YYY,YYZ,YZ,YZZ,
	Z,ZZ,ZZZ,
	SINY = XY /* OK to overlap in this case */
};

/* Camera target [TDA] */
typedef enum {
	ORBIT = 0,
	BEE = 1
} Chaseto;

/* Macros */
#define IX(C) ((C) * segindex + sp->cnsegs[(C)])
#define B(t,b)	(sp->p + (t) + (b) * sp->taillen)
#define X(t,b)	(B((t),(b))->x)
#define Y(t,b)	(B((t),(b))->y)
#define Z(t,b)	(B((t),(b))->z)
#define balance_rand(v)	((LRAND()/MAXRAND*(v))-((v)/2))	/* random around 0 */
#define LOST_IN_SPACE 2000.0
#define INITIALSTEP 0.04
#define EYEHEIGHT   0.005
#define MINTRAIL 2
#define BOX_L 36

/* Points that make up the box (normalized coordinates) */
static const double box[][3] = {
	{1,1,1},   /* 0 */
	{1,1,-1},  /* 1 */
	{1,-1,-1}, /* 2 */
	{1,-1,1},  /* 3 */
	{-1,1,1},  /* 4 */
	{-1,1,-1}, /* 5 */
	{-1,-1,-1},/* 6 */
	{-1,-1,1}, /* 7 */
	{1, .8, .8},
	{1, .8,-.8},
	{1,-.8,-.8},
	{1,-.8, .8},
	{ .8,1, .8},
	{ .8,1,-.8},
	{-.8,1,-.8},
	{-.8,1, .8},
	{ .8, .8,1},
	{ .8,-.8,1},
	{-.8,-.8,1},
	{-.8, .8,1},
	{-1, .8, .8},
	{-1, .8,-.8},
	{-1,-.8,-.8},
	{-1,-.8, .8},
	{ .8,-1, .8},
	{ .8,-1,-.8},
	{-.8,-1,-.8},
	{-.8,-1, .8},
	{ .8, .8,-1},
	{ .8,-.8,-1},
	{-.8,-.8,-1},
	{-.8, .8,-1}
};

/* Lines connecting the box dots */
static const double lines[][2] = {
	{0,1}, {1,2}, {2,3}, {3,0}, /* box */
	{4,5}, {5,6}, {6,7}, {7,4},
	{0,4}, {1,5}, {2,6}, {3,7},
	{4+4,5+4}, {5+4,6+4}, {6+4,7+4}, {7+4,4+4},
	{4+8,5+8}, {5+8,6+8}, {6+8,7+8}, {7+8,4+8},
	{4+12,5+12}, {5+12,6+12}, {6+12,7+12}, {7+12,4+12},
	{4+16,5+16}, {5+16,6+16}, {6+16,7+16}, {7+16,4+16},
	{4+20,5+20}, {5+20,6+20}, {6+20,7+20}, {7+20,4+20},
	{4+24,5+24}, {5+24,6+24}, {6+24,7+24}, {7+24,4+24},
};

typedef struct {
	/* Variables used in rendering */
	dvector     cam[3]; /* camera flight path */
	int         chasetime;
	Chaseto		chaseto;
	Pixmap      buffer; /* Double Buffer */
	dvector		circle[2]; /* POV that circles around the scene */
	dvector     centre;		/* centre */
	int         beecount;	/* number of bees */
	XSegment   *csegs;	    /* bee lines */
	int        *cnsegs;
	XSegment   *old_segs;	/* old bee lines */
	int         nold_segs;
	int         taillen;

	/* Variables common to iterators */
	dvector  (*ODE) (Par par, double x, double y, double z);
	dvector  range; /* Initial conditions */
	double   yperiod; /* ODE's where Y is periodic. */

	/* Variables used in iterating main flow */
	Par         par;
	dvector    *p;   /* bee positions x[time][bee#] */
	int         count;
	double      lyap;
	double      size;
	dvector     mid; /* Effective bounding box */
	double      step;
	
	/* second set of variables, used for parallel search */
	Par         par2;
	dvector     p2[2];
	int         count2;
	double      lyap2;
	double      size2;
	dvector     mid2;
	double      step2;
	
} flowstruct;

static flowstruct *flows = (flowstruct *) NULL;

/*
 * Private functions
 */


/* ODE functions */

/* Generic 3D Cubic Polynomial.  Includes all the Quadratics (Lorentz,
   Rossler) and much more! */

/* I considered offering a seperate 'Quadratic' option, since Cubic is
   clearly overkill for the standard examples, but the performance
   difference is too small to measure.  The compute time is entirely
   dominated by the XDrawSegments calls anyway. [TDA] */
static dvector
Cubic(Par a, double x, double y, double z)
{
	dvector d;
	d.x = a[C].x + a[X].x*x + a[XX].x*x*x + a[XXX].x*x*x*x + a[XXY].x*x*x*y +
		a[XXZ].x*x*x*z + a[XY].x*x*y + a[XYY].x*x*y*y + a[XYZ].x*x*y*z +
		a[XZ].x*x*z + a[XZZ].x*x*z*z + a[Y].x*y + a[YY].x*y*y +
		a[YYY].x*y*y*y + a[YYZ].x*y*y*z + a[YZ].x*y*z + a[YZZ].x*y*z*z +
		a[Z].x*z + a[ZZ].x*z*z + a[ZZZ].x*z*z*z;

	d.y = a[C].y + a[X].y*x + a[XX].y*x*x + a[XXX].y*x*x*x + a[XXY].y*x*x*y +
		a[XXZ].y*x*x*z + a[XY].y*x*y + a[XYY].y*x*y*y + a[XYZ].y*x*y*z +
		a[XZ].y*x*z + a[XZZ].y*x*z*z + a[Y].y*y + a[YY].y*y*y +
		a[YYY].y*y*y*y + a[YYZ].y*y*y*z + a[YZ].y*y*z + a[YZZ].y*y*z*z +
		a[Z].y*z + a[ZZ].y*z*z + a[ZZZ].y*z*z*z;

	d.z = a[C].z + a[X].z*x + a[XX].z*x*x + a[XXX].z*x*x*x + a[XXY].z*x*x*y +
		a[XXZ].z*x*x*z + a[XY].z*x*y + a[XYY].z*x*y*y + a[XYZ].z*x*y*z +
		a[XZ].z*x*z + a[XZZ].z*x*z*z + a[Y].z*y + a[YY].z*y*y +
		a[YYY].z*y*y*y + a[YYZ].z*y*y*z + a[YZ].z*y*z + a[YZZ].z*y*z*z +
		a[Z].z*z + a[ZZ].z*z*z + a[ZZZ].z*z*z*z;

	return d;
}

/* 3D Cubic in (x,z) with periodic sinusoidal forcing term in x.  y is
   the independent periodic (time) axis.  This includes Birkhoff's
   Bagel and Duffing's Attractor */
static dvector
Periodic(Par a, double x, double y, double z)
{
	dvector d;

	d.x = a[C].x + a[X].x*x + a[XX].x*x*x + a[XXX].x*x*x*x +
		a[XXZ].x*x*x*z + a[XZ].x*x*z + a[XZZ].x*x*z*z + a[Z].x*z +
		a[ZZ].x*z*z + a[ZZZ].x*z*z*z + a[SINY].x*sin(y);

	d.y = a[C].y;

	d.z = a[C].z + a[X].z*x + a[XX].z*x*x + a[XXX].z*x*x*x +
		a[XXZ].z*x*x*z + a[XZ].z*x*z + a[XZZ].z*x*z*z + a[Z].z*z +
		a[ZZ].z*z*z + a[ZZZ].z*z*z*z;

	return d;
}

/* Numerical integration of the ODE using 2nd order Runge Kutta.
   Returns length^2 of the update, so that we can detect if the step
   size needs reducing. */
static double
Iterate(dvector *p, dvector(*ODE)(Par par, double x, double y, double z),
		Par par, double step)
{ 
	dvector     k1, k2, k3;
			
	k1 = ODE(par, p->x, p->y, p->z);
	k1.x *= step;
	k1.y *= step;
	k1.z *= step;
	k2 = ODE(par, p->x + k1.x, p->y + k1.y, p->z + k1.z);
	k2.x *= step;
	k2.y *= step;
	k2.z *= step;
	k3.x = (k1.x + k2.x) / 2.0;
	k3.y = (k1.y + k2.y) / 2.0;
	k3.z = (k1.z + k2.z) / 2.0;

	p->x += k3.x;
	p->y += k3.y;
	p->z += k3.z;

	return k3.x*k3.x + k3.y*k3.y + k3.z*k3.z;
}

/* Memory functions */

#define deallocate(p,t) if (p!=NULL) {free(p); p=(t*)NULL; }
#define allocate(p,t,s) if ((p=(t*)malloc(sizeof(t)*s))==NULL)\
{free_flow(mi);return;}

ENTRYPOINT void
free_flow(ModeInfo * mi)
{
	flowstruct *sp = &flows[MI_SCREEN(mi)];
	deallocate(sp->csegs, XSegment);
	deallocate(sp->cnsegs, int);
	deallocate(sp->old_segs, XSegment);
	deallocate(sp->p, dvector);
}

/* Generate Gaussian random number: mean 0, "amplitude" A (actually
   A is 3*standard deviation). */

/* Note this generates a pair of gaussian variables, so it saves one
   to give out next time it's called */
static double
Gauss_Rand(double A)
{
	static double d;
	static Bool ready = 0;
	if(ready) {
		ready = 0;
		return A/3 * d;
	} else {
		double x, y, w;		
		do {
			x = 2.0 * (double)LRAND() / MAXRAND - 1.0;
			y = 2.0 * (double)LRAND() / MAXRAND - 1.0;
			w = x*x + y*y;
		} while(w >= 1.0);

		w = sqrt((-2 * log(w))/w);
		ready = 1;		
		d =          x * w;
		return A/3 * y * w;
	}
}

/* Attempt to discover new atractors by sending a pair of bees on a
   fast trip through the new flow and computing their Lyapunov
   exponent.  Returns False if the bees fly away.

   If the bees stay bounded, the new bounds and the Lyapunov exponent
   are stored in sp and the function returns True.

   Repeat invocations continue the flow and improve the accuracy of
   the bounds and the Lyapunov exponent.  Set sp->count2 to zero to
   start a new test.

   Acts on alternate variable set, so that it can be run in parallel
   with the main flow */

static Bool
discover(ModeInfo * mi)
{
	flowstruct *sp;
	double l = 0;
	dvector dl;
	dvector max, min;
	double dl2, df, rs, lsum = 0, s, maxv2 = 0, v2;

	int N, i, nl = 0;

	if (flows == NULL)
		return 0;
	sp = &flows[MI_SCREEN(mi)];

	if(sp->count2 == 0) {
		/* initial conditions */
		sp->p2[0].x = Gauss_Rand(sp->range.x);
		sp->p2[0].y = (sp->yperiod > 0)?
			balance_rand(sp->range.y) : Gauss_Rand(sp->range.y);
		sp->p2[0].z = Gauss_Rand(sp->range.z);
		
		/* 1000 steps to find an attractor */
		/* Most cases explode out here */
		for(N=0; N < 1000; N++){
			Iterate(sp->p2, sp->ODE, sp->par2, sp->step2);
			if(sp->yperiod > 0 && sp->p2[0].y > sp->yperiod)
				sp->p2[0].y -= sp->yperiod;
			if(fabs(sp->p2[0].x) > LOST_IN_SPACE ||
			   fabs(sp->p2[0].y) > LOST_IN_SPACE ||
			   fabs(sp->p2[0].z) > LOST_IN_SPACE) {
				return 0;
			}
			sp->count2++;
		}
		/* Small perturbation */
		sp->p2[1].x = sp->p2[0].x + 0.000001;
		sp->p2[1].y = sp->p2[0].y;
		sp->p2[1].z = sp->p2[0].z;
	}

	/* Reset bounding box */
	max.x = min.x = sp->p2[0].x;
	max.y = min.y = sp->p2[0].y;
	max.z = min.z = sp->p2[0].z;

	/* Compute Lyapunov Exponent */

	/* (Technically, we're only estimating the largest Lyapunov
	   Exponent, but that's all we need to know to determine if we
	   have a strange attractor.) [TDA] */

	/* Fly two bees close together */
	for(N=0; N < 5000; N++){
		for(i=0; i< 2; i++) {			
			v2 = Iterate(sp->p2+i, sp->ODE, sp->par2, sp->step2);
			if(sp->yperiod > 0 && sp->p2[i].y > sp->yperiod)
				sp->p2[i].y -= sp->yperiod;
			
			if(fabs(sp->p2[i].x) > LOST_IN_SPACE ||
			   fabs(sp->p2[i].y) > LOST_IN_SPACE ||
			   fabs(sp->p2[i].z) > LOST_IN_SPACE) {
				return 0;
			}
			if(v2 > maxv2) maxv2 = v2; /* Track max v^2 */
		}

		/* find bounding box */
		if ( sp->p2[0].x < min.x )      min.x = sp->p2[0].x;
		else if ( sp->p2[0].x > max.x ) max.x = sp->p2[0].x;
		if ( sp->p2[0].y < min.y )      min.y = sp->p2[0].y;
		else if ( sp->p2[0].y > max.y ) max.y = sp->p2[0].y;
		if ( sp->p2[0].z < min.z )      min.z = sp->p2[0].z;
		else if ( sp->p2[0].z > max.z ) max.z = sp->p2[0].z;

		/* Measure how much we have to pull the two bees to prevent
		   them diverging. */
		dl.x = sp->p2[1].x - sp->p2[0].x;
		dl.y = sp->p2[1].y - sp->p2[0].y;
		dl.z = sp->p2[1].z - sp->p2[0].z;
		
		dl2 = dl.x*dl.x + dl.y*dl.y + dl.z*dl.z;
		if(dl2 > 0) {
			df = 1e12 * dl2;
			rs = 1/sqrt(df);
			sp->p2[1].x = sp->p2[0].x + rs * dl.x;
			sp->p2[1].y = sp->p2[0].y + rs * dl.y;
			sp->p2[1].z = sp->p2[0].z + rs * dl.z;
			lsum = lsum + log(df);
			nl = nl + 1;
			l = M_LOG2E / 2 * lsum / nl / sp->step2;
		}
		sp->count2++;
	}
	/* Anything that didn't explode has a finite attractor */
	/* If Lyapunov is negative then it probably hit a fixed point or a
     * limit cycle.  Positive Lyapunov indicates a strange attractor. */

	sp->lyap2 = l;

	sp->size2 = max.x - min.x;
	s = max.y - min.y;
	if(s > sp->size2) sp->size2 = s;
	s = max.z - min.z;
	if(s > sp->size2) sp->size2 = s;

	sp->mid2.x = (max.x + min.x) / 2;
	sp->mid2.y = (max.y + min.y) / 2;
	sp->mid2.z = (max.z + min.z) / 2;

	if(sqrt(maxv2) > sp->size2 * 0.2) {
		/* Flowing too fast, reduce step size.  This
		   helps to eliminate high-speed limit cycles,
		   which can show +ve Lyapunov due to integration
		   inaccuracy. */		
		sp->step2 /= 2;		
	}
	return 1;
}

/* Sets up initial conditions for a flow without all the extra baggage
   that goes with init_flow */
static void
restart_flow(ModeInfo * mi)
{
	flowstruct *sp;
	int         b;

	if (flows == NULL)
		return;
	sp = &flows[MI_SCREEN(mi)];
	sp->count = 0;

	/* Re-Initialize point positions, velocities, etc. */
	for (b = 0; b < sp->beecount; b++) {
		X(0, b) = Gauss_Rand(sp->range.x);
		Y(0, b) = (sp->yperiod > 0)?
			balance_rand(sp->range.y) : Gauss_Rand(sp->range.y);
		Z(0, b) = Gauss_Rand(sp->range.z);
	}
}

/* Returns true if line was behind a clip plane, or it clips the line */
/* nx,ny,nz is the normal to the plane.   d is the distance from the origin */
/* s and e are the end points of the line to be clipped */
static int
clip(double nx, double ny, double nz, double d, dvector *s, dvector *e)
{
	int front1, front2;
	dvector w, p;
	double t;

	front1 = (nx*s->x + ny*s->y + nz*s->z >= -d);
	front2 = (nx*e->x + ny*e->y + nz*e->z >= -d);
	if (!front1 && !front2) return 1;
	if (front1 && front2) return 0;	
	w.x = e->x - s->x;
	w.y = e->y - s->y;
	w.z = e->z - s->z;
	
	/* Find t in line equation */
	t = ( -d - nx*s->x - ny*s->y - nz*s->z) / ( nx*w.x + ny*w.y + nz*w.z);
	
	p.x = s->x + w.x * t;
	p.y = s->y + w.y * t;
	p.z = s->z + w.z * t;
	
	/* Move clipped point to the intersection */
	if (front2) {
		*s = p;
	} else {
		*e = p;
	}
	return 0;
}

/* 
 * Public functions
 */

ENTRYPOINT void
init_flow (ModeInfo * mi)
{
	flowstruct *sp;
	char       *name;
	
	MI_INIT (mi, flows);
	sp = &flows[MI_SCREEN(mi)];

	sp->count2 = 0;

	sp->taillen = MI_SIZE(mi);
	if (sp->taillen < -MINTRAIL) {
		/* Change by sqrt so it seems more variable */
		sp->taillen = NRAND((int)sqrt((double) (-sp->taillen - MINTRAIL + 1)));
		sp->taillen = sp->taillen * sp->taillen + MINTRAIL;
	} else if (sp->taillen < MINTRAIL) {
		sp->taillen = MINTRAIL;
	}

	if(!rotatep && !ridep) rotatep = True; /* We need at least one viewpoint */

	/* Start camera at Orbit or Bee */
	if(rotatep) {
		sp->chaseto = ORBIT;
	} else {
		sp->chaseto = BEE;
	}
	sp->chasetime = 1; /* Go directly to target */

	sp->lyap = 0;
	sp->yperiod = 0;
	sp->step2 = INITIALSTEP;

	/* Zero parameter set */
	memset(sp->par2, 0, N_PARS * sizeof(dvector));

	/* Set up standard examples */
	switch (NRAND((periodicp) ? 5 : 3)) {
	case 0:
		/*
		  x' = a(y - x)
		  y' = x(b - z) - y
		  z' = xy - cz
		 */
		name = "Lorentz";
		sp->par2[Y].x = 10 + balance_rand(5*0); /* a */
		sp->par2[X].x = - sp->par2[Y].x;        /* -a */
		sp->par2[X].y = 28 + balance_rand(5*0); /* b */
		sp->par2[XZ].y = -1;
		sp->par2[Y].y = -1;
		sp->par2[XY].z = 1;
		sp->par2[Z].z = - 2 + balance_rand(1*0); /* -c */		
		break;
	case 1:
		/*
		  x' = -(y + az)
		  y' = x + by
		  z' = c + z(x - 5.7)
		 */
		name = "Rossler";
		sp->par2[Y].x = -1;
		sp->par2[Z].x = -2 + balance_rand(1); /* a */
		sp->par2[X].y = 1;
		sp->par2[Y].y = 0.2 + balance_rand(0.1); /* b */
		sp->par2[C].z = 0.2 + balance_rand(0.1); /* c */
		sp->par2[XZ].z = 1;
		sp->par2[Z].z = -5.7;
		break;
	case 2: 
		/*
		  x' = -(y + az)
		  y' = x + by - cz^2
		  z' = 0.2 + z(x - 5.7)
		 */
		name = "RosslerCone";
		sp->par2[Y].x = -1;
		sp->par2[Z].x = -2; /* a */
		sp->par2[X].y = 1;
		sp->par2[Y].y = 0.2; /* b */
		sp->par2[ZZ].y = -0.331 + balance_rand(0.01); /* c */
		sp->par2[C].z = 0.2;
		sp->par2[XZ].z = 1;
		sp->par2[Z].z = -5.7;
		break;
	case 3:
		/*
		  x' = -z + b sin(y)
		  y' = c
		  z' = 0.7x + az(0.1 - x^2) 
		 */
		name = "Birkhoff";
		sp->par2[Z].x = -1;
		sp->par2[SINY].x = 0.35 + balance_rand(0.25); /* b */
		sp->par2[C].y = 1.57; /* c */
		sp->par2[X].z = 0.7;
		sp->par2[Z].z = 1 + balance_rand(0.5); /* a/10 */
		sp->par2[XXZ].z = -10 * sp->par2[Z].z; /* -a */
		sp->yperiod = 2 * M_PI;
		break;
	default:
		/*
		  x' = -ax - z/2 - z^3/8 + b sin(y)
		  y' = c
		  z' = 2x
		 */
		name = "Duffing";
		sp->par2[X].x = -0.2 + balance_rand(0.1); /* a */
		sp->par2[Z].x = -0.5;
		sp->par2[ZZZ].x = -0.125;
		sp->par2[SINY].x = 27.0 + balance_rand(3.0); /* b */
		sp->par2[C].y = 1.33; /* c */
		sp->par2[X].z = 2;
		sp->yperiod = 2 * M_PI;
		break;

	}

	sp->range.x = 5;
	sp->range.z = 5;

	if(sp->yperiod > 0) {
		sp->ODE = Periodic;
		/* periodic flows show either uniform distribution or a
           snapshot on the 'time' axis */
		sp->range.y = NRAND(2)? sp->yperiod : 0;
	} else {
		sp->range.y = 5;
		sp->ODE = Cubic;
	}

	/* Run discoverer to set up bounding box, etc.  Lyapunov will
	   probably be innaccurate, since we're only running it once, but
	   we're using known strange attractors so it should be ok. */
	discover(mi);
	if(MI_IS_VERBOSE(mi))
		fprintf(stdout,
				"flow: Lyapunov exponent: %g, step: %g, size: %g (%s)\n",
				sp->lyap2, sp->step2, sp->size2, name);
	/* Install new params */
	sp->lyap = sp->lyap2;
	sp->size = sp->size2;
	sp->mid = sp->mid2;
	sp->step = sp->step2;
	memcpy(sp->par, sp->par2, sizeof(sp->par2));

	sp->count2 = 0; /* Reset search */

	sp->beecount = MI_COUNT(mi);
	if (!sp->beecount) {
		sp->beecount = 1; /* The camera requires 1 or more */
	} else if (sp->beecount < 0) {	/* random variations */
		sp->beecount = NRAND(-sp->beecount) + 1; /* Minimum 1 */
	}

# ifdef HAVE_JWXYZ	/* Don't second-guess Quartz's double-buffering */
  dbufp = False;
# endif

	if(dbufp) { /* Set up double buffer */
		if (sp->buffer != None)
			XFreePixmap(MI_DISPLAY(mi), sp->buffer);
		sp->buffer = XCreatePixmap(MI_DISPLAY(mi), MI_WINDOW(mi),
								 MI_WIDTH(mi), MI_HEIGHT(mi), MI_DEPTH(mi));
	} else {
		sp->buffer = MI_WINDOW(mi);
	}
	/* no "NoExpose" events from XCopyArea wanted */
	XSetGraphicsExposures(MI_DISPLAY(mi), MI_GC(mi), False);

	/* Make sure we're using 'thin' lines */
	XSetLineAttributes(MI_DISPLAY(mi), MI_GC(mi), 0, LineSolid, CapNotLast,
					   JoinMiter);

	/* Clear the background (may be slow depending on user prefs). */
	MI_CLEARWINDOW(mi);

	/* Allocate memory. */
	if (sp->csegs == NULL) {
		allocate(sp->csegs, XSegment,
				 (sp->beecount + BOX_L) * MI_NPIXELS(mi) * sp->taillen);
		allocate(sp->cnsegs, int, MI_NPIXELS(mi));
		allocate(sp->old_segs, XSegment, (sp->beecount + BOX_L) * sp->taillen);
		allocate(sp->p, dvector, sp->beecount * sp->taillen);
	}

	/* Initialize point positions, velocities, etc. */
	restart_flow(mi);

	/* Set up camera tail */
	X(1, 0) = sp->cam[1].x = 0;
	Y(1, 0) = sp->cam[1].y = 0;
	Z(1, 0) = sp->cam[1].z = 0;
}

ENTRYPOINT void
draw_flow (ModeInfo * mi)
{
	int         b, i;
	int         col, begin, end;
	double      M[3][3]; /* transformation matrix */
	flowstruct *sp = NULL;
	int         swarm = 0;
	int         segindex;

	if (flows == NULL)
		return;
	sp = &flows[MI_SCREEN(mi)];
	if (sp->csegs == NULL)
		return;

#ifdef HAVE_JWXYZ	/* Don't second-guess Quartz's double-buffering */
    XClearWindow (MI_DISPLAY(mi), MI_WINDOW(mi));
#endif

	/* multiplier for indexing segment arrays.  Used in IX macro, etc. */
	segindex = (sp->beecount + BOX_L) * sp->taillen;

	if(searchp){
		if(sp->count2 == 0) { /* start new search */
			sp->step2 = INITIALSTEP;
			 /* Pick random parameters.  Actual range is irrelevant
				since parameter scale determines flow speed but not
				structure. */
			for(i=0; i< N_PARS; i++) {
				sp->par2[i].x = Gauss_Rand(1.0);
				sp->par2[i].y = Gauss_Rand(1.0);
				sp->par2[i].z = Gauss_Rand(1.0);
			}
		}
		if(!discover(mi)) { /* Flow exploded, reset. */
			sp->count2 = 0;
		} else {
			if(sp->lyap2 < 0) {
				sp->count2 = 0; /* Attractor found, but it's not strange */
			}else if(sp->count2 > 1000000) { /* This one will do */
				sp->count2 = 0; /* Reset search */
				if(MI_IS_VERBOSE(mi))
					fprintf(stdout,
							"flow: Lyapunov exponent: %g, step: %g, size: %g (unnamed)\n",
							sp->lyap2, sp->step2, sp->size2);
				/* Install new params */
				sp->lyap = sp->lyap2;
				sp->size = sp->size2;
				sp->mid = sp->mid2;
				sp->step = sp->step2;
				memcpy(sp->par, sp->par2, sizeof(sp->par2));

				/* If we're allowed to zoom out, do so now, so that we
				   get a look at the new attractor. */
				if(sp->chaseto == BEE && rotatep) {
					sp->chaseto = ORBIT;
					sp->chasetime = 100;
				}
				/* Reset initial conditions, so we don't get
				   misleading artifacts in the particle density. */
				restart_flow(mi);
			}
		}
	}
	
	/* Reset segment buffers */
	for (col = 0; col < MI_NPIXELS(mi); col++)
		sp->cnsegs[col] = 0;

	MI_IS_DRAWN(mi) = True;

	/* Calculate circling POV [Chalky]*/
	sp->circle[1] = sp->circle[0];
	sp->circle[0].x = sp->size * 2 * sin(sp->count / 100.0) *
		(-0.6 + 0.4 *cos(sp->count / 500.0)) + sp->mid.x;
	sp->circle[0].y = sp->size * 2 * cos(sp->count / 100.0) *
		(0.6 + 0.4 *cos(sp->count / 500.0)) + sp->mid.y;
	sp->circle[0].z = sp->size * 2 * sin(sp->count / 421.0) + sp->mid.z;

	/* Timed chase instead of Chalkie's Bistable oscillator [TDA] */
	if(rotatep && ridep) {
		if(sp->chaseto == BEE && NRAND(1000) == 0){
			sp->chaseto = ORBIT;
			sp->chasetime = 100;
		}else if(NRAND(4000) == 0){
			sp->chaseto = BEE;
			sp->chasetime = 100;
		}
	}

	/* Set up orientation matrix */
	{
		double x[3], p[3], x2=0, xp=0;
		int j;
		
		/* Chasetime is here to guarantee the camera makes it all the
		   way to the target in a finite number of steps. */
		if(sp->chasetime > 1)
			sp->chasetime--;
		
		if(sp->chaseto == BEE){
			/* Camera Head targets bee 0 */
			sp->cam[0].x += (X(0, 0) - sp->cam[0].x)/sp->chasetime;
			sp->cam[0].y += (Y(0, 0) - sp->cam[0].y)/sp->chasetime;
			sp->cam[0].z += (Z(0, 0) - sp->cam[0].z)/sp->chasetime;
			
			/* Camera Tail targets previous position of bee 0 */
			sp->cam[1].x += (X(1, 0) - sp->cam[1].x)/sp->chasetime;
			sp->cam[1].y += (Y(1, 0) - sp->cam[1].y)/sp->chasetime;
			sp->cam[1].z += (Z(1, 0) - sp->cam[1].z)/sp->chasetime;
			
			/* Camera Wing targets bee 1 */
			sp->cam[2].x += (X(0, 1) - sp->cam[2].x)/sp->chasetime;
			sp->cam[2].y += (Y(0, 1) - sp->cam[2].y)/sp->chasetime;
			sp->cam[2].z += (Z(0, 1) - sp->cam[2].z)/sp->chasetime;
		} else {
			/* Camera Head targets Orbiter */
			sp->cam[0].x += (sp->circle[0].x - sp->cam[0].x)/sp->chasetime;
			sp->cam[0].y += (sp->circle[0].y - sp->cam[0].y)/sp->chasetime;
			sp->cam[0].z += (sp->circle[0].z - sp->cam[0].z)/sp->chasetime;
			
			/* Camera Tail targets diametrically opposite the middle
			   of the bounding box from the Orbiter */
			sp->cam[1].x += 
				(2*sp->circle[0].x - sp->mid.x - sp->cam[1].x)/sp->chasetime;
			sp->cam[1].y +=
				(2*sp->circle[0].y - sp->mid.y - sp->cam[1].y)/sp->chasetime;
			sp->cam[1].z +=
				(2*sp->circle[0].z - sp->mid.z - sp->cam[1].z)/sp->chasetime;
			/* Camera Wing targets previous position of Orbiter */
			sp->cam[2].x += (sp->circle[1].x - sp->cam[2].x)/sp->chasetime;
			sp->cam[2].y += (sp->circle[1].y - sp->cam[2].y)/sp->chasetime;
			sp->cam[2].z += (sp->circle[1].z - sp->cam[2].z)/sp->chasetime;
		}
		
		/* Viewpoint from Tail of camera */
		sp->centre.x=sp->cam[1].x;
		sp->centre.y=sp->cam[1].y;
		sp->centre.z=sp->cam[1].z;
		
		/* forward vector */
		x[0] = sp->cam[0].x - sp->cam[1].x;
		x[1] = sp->cam[0].y - sp->cam[1].y;
		x[2] = sp->cam[0].z - sp->cam[1].z;
		
		/* side */
		p[0] = sp->cam[2].x - sp->cam[1].x;
		p[1] = sp->cam[2].y - sp->cam[1].y;
		p[2] = sp->cam[2].z - sp->cam[1].z;


		/* So long as X and P don't collide, these can be used to form
		   three mutually othogonal axes: X, (X x P) x X and X x P.
		   After being normalised to unit length, these form the
		   Orientation Matrix. */
		
		for(i=0; i<3; i++){
			x2+= x[i]*x[i];    /* X . X */
			xp+= x[i]*p[i];    /* X . P */
			M[0][i] = x[i];    /* X */
		}
		
		for(i=0; i<3; i++)               /* (X x P) x X */
			M[1][i] = x2*p[i] - xp*x[i]; /* == (X . X) P - (X . P) X */
		
		M[2][0] =  x[1]*p[2] - x[2]*p[1]; /* X x P */
		M[2][1] = -x[0]*p[2] + x[2]*p[0];
		M[2][2] =  x[0]*p[1] - x[1]*p[0];
		
		/* normalise axes */
		for(j=0; j<3; j++){
			double A=0;
			for(i=0; i<3; i++) A+=M[j][i]*M[j][i]; /* sum squares */
			A=sqrt(A);
			if(A>0)
				for(i=0; i<3; i++) M[j][i]/=A;
		}

		if(sp->chaseto == BEE) {
			X(0, 1)=X(0, 0)+M[1][0]*sp->step; /* adjust neighbour */
			Y(0, 1)=Y(0, 0)+M[1][1]*sp->step;
			Z(0, 1)=Z(0, 0)+M[1][2]*sp->step;
		}
	}

	/* <=- Bounding Box -=> */
	if(boxp) {
		for (b = 0; b < BOX_L; b++) {

			/* Chalky's clipping code, Only used for the box */
			/* clipping trails is slow and of little benefit. [TDA] */
			int p1 = lines[b][0];
			int p2 = lines[b][1];
			dvector A1, A2;
			double x1=box[p1][0]* sp->size/2 + sp->mid.x - sp->centre.x;
			double y1=box[p1][1]* sp->size/2 + sp->mid.y - sp->centre.y;
			double z1=box[p1][2]* sp->size/2 + sp->mid.z - sp->centre.z;
			double x2=box[p2][0]* sp->size/2 + sp->mid.x - sp->centre.x;
			double y2=box[p2][1]* sp->size/2 + sp->mid.y - sp->centre.y;
			double z2=box[p2][2]* sp->size/2 + sp->mid.z - sp->centre.z;
			
			A1.x=M[0][0]*x1 + M[0][1]*y1 + M[0][2]*z1;
			A1.y=M[1][0]*x1 + M[1][1]*y1 + M[1][2]*z1;
			A1.z=M[2][0]*x1 + M[2][1]*y1 + M[2][2]*z1 + EYEHEIGHT * sp->size;
			A2.x=M[0][0]*x2 + M[0][1]*y2 + M[0][2]*z2;
			A2.y=M[1][0]*x2 + M[1][1]*y2 + M[1][2]*z2;
			A2.z=M[2][0]*x2 + M[2][1]*y2 + M[2][2]*z2 + EYEHEIGHT * sp->size;

			/* Clip in 3D before projecting down to 2D.  A 2D clip
			   after projection wouldn't be able to handle lines that
			   cross x=0 */
			if (clip(1, 0, 0,-1, &A1, &A2) || /* Screen */
				clip(1, 2, 0, 0, &A1, &A2) || /* Left */
				clip(1,-2, 0, 0, &A1, &A2) || /* Right */
				clip(1,0, 2.0*MI_WIDTH(mi)/MI_HEIGHT(mi), 0, &A1, &A2)||/*UP*/
				clip(1,0,-2.0*MI_WIDTH(mi)/MI_HEIGHT(mi), 0, &A1, &A2))/*Down*/
				continue;

			/* Colour according to bee */
			col = b % (MI_NPIXELS(mi) - 1);
			
			sp->csegs[IX(col)].x1 = MI_WIDTH(mi)/2 + MI_WIDTH(mi) * A1.y/A1.x;
			sp->csegs[IX(col)].y1 = MI_HEIGHT(mi)/2 + MI_WIDTH(mi) * A1.z/A1.x;
			sp->csegs[IX(col)].x2 = MI_WIDTH(mi)/2 + MI_WIDTH(mi) * A2.y/A2.x;
			sp->csegs[IX(col)].y2 = MI_HEIGHT(mi)/2 + MI_WIDTH(mi) * A2.z/A2.x;
			sp->cnsegs[col]++;
		}
	}		

	/* <=- Bees -=> */
	for (b = 0; b < sp->beecount; b++) {
		if(fabs(X(0, b)) > LOST_IN_SPACE ||
		   fabs(Y(0, b)) > LOST_IN_SPACE ||
		   fabs(Z(0, b)) > LOST_IN_SPACE){
			if(sp->chaseto == BEE && b == 0){
				/* Lost camera bee.  Need to replace it since
				   rerunning init_flow could lose us a hard-won new
				   attractor.  Try moving it very close to a random
				   other bee.  This way we have a good chance of being
				   close to the attractor and not forming a false
				   artifact.  If we've lost many bees this may need to
				   be repeated. */
				/* Don't worry about camera wingbee.  It stays close
				   to the main camera bee no matter what happens. */
				int newb = 1 + NRAND(sp->beecount - 1);
				X(0, 0) = X(0, newb) + 0.001;
				Y(0, 0) = Y(0, newb);
				Z(0, 0) = Z(0, newb);
				if(MI_IS_VERBOSE(mi))
					fprintf(stdout,
							"flow: resetting lost camera near bee %d\n",
							newb);
			}
			continue;
		}

		/* Age the tail.  It's critical this be fast since
		   beecount*taillen can be large. */
		memmove(B(1, b), B(0, b), (sp->taillen - 1) * sizeof(dvector));

		Iterate(B(0,b), sp->ODE, sp->par, sp->step);

		/* Don't show wingbee since he's not quite in the flow. */
		if(sp->chaseto == BEE && b == 1) continue;

		/* Colour according to bee */
		col = b % (MI_NPIXELS(mi) - 1);
		
		/* Fill the segment lists. */
		
		begin = 0; /* begin new trail */
		end = MIN(sp->taillen, sp->count); /* short trails at first */
		for(i=0; i < end; i++){
			double x = X(i,b)-sp->centre.x;
			double y = Y(i,b)*(sp->yperiod < 0? (sp->size/sp->yperiod) :1)
				-sp->centre.y;
			double z = Z(i,b)-sp->centre.z;
			double XM=M[0][0]*x + M[0][1]*y + M[0][2]*z;
			double YM=M[1][0]*x + M[1][1]*y + M[1][2]*z;
			double ZM=M[2][0]*x + M[2][1]*y + M[2][2]*z + EYEHEIGHT * sp->size;
			short absx, absy;
						
			swarm++; /* count the remaining bees */
			if(sp->yperiod > 0 && Y(i,b) > sp->yperiod){
				int j;
				Y(i,b) -= sp->yperiod;
				/* hide tail to prevent streaks in Y.  Streaks in X,Z
				   are ok, they help to outline the Poincare'
				   slice. */
				for(j = i; j < end; j++) Y(j,b) = Y(i,b);
				/*begin = i + 1;*/
				break;
			}
			
			if(XM <= 0){ /* off screen - new trail */
				begin = i + 1;
				continue;
			}
			absx = MI_WIDTH(mi)/2 + MI_WIDTH(mi) * YM/XM;
			absy = MI_HEIGHT(mi)/2 + MI_WIDTH(mi) * ZM/XM;
			/* Performance bottleneck */
			if(absx <= 0 || absx >= MI_WIDTH(mi) ||
			   absy <= 0 || absy >= MI_HEIGHT(mi)) {
				/* off screen - new trail */
				begin = i + 1;
				continue;
			}
			if(i > begin) {  /* complete previous segment */
				sp->csegs[IX(col)].x2 = absx;
				sp->csegs[IX(col)].y2 = absy;
				sp->cnsegs[col]++;
			}
			
			if(i < end -1){  /* start new segment */
				sp->csegs[IX(col)].x1 = absx;
				sp->csegs[IX(col)].y1 = absy;
			}
		}
	}

	 /* Erase */
	XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_BLACK_PIXEL(mi));
	if (dbufp) { /* In Double Buffer case, prepare off-screen copy */
		/* For slow systems, this can be the single biggest bottleneck
		   in the program.  These systems may be better of not using
		   the double buffer. */ 
		XFillRectangle(MI_DISPLAY(mi), sp->buffer, MI_GC(mi), 0, 0,
					   MI_WIDTH(mi), MI_HEIGHT(mi));
	} else { /* Otherwise, erase previous segment list directly */
		XDrawSegments(MI_DISPLAY(mi), sp->buffer, MI_GC(mi),
					  sp->old_segs, sp->nold_segs);
	}

	/* Render */
	if (MI_NPIXELS(mi) > 2){ /* colour */
		int mn  = 0;
		for (col = 0; col < MI_NPIXELS(mi) - 1; col++)
			if (sp->cnsegs[col] > 0) {
				if(sp->cnsegs[col] > mn) mn = sp->cnsegs[col];
				XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_PIXEL(mi, col+1));
				/* This is usually the biggest bottleneck on most
				   systems.  The maths load is insignificant compared
				   to this.  */
				XDrawSegments(MI_DISPLAY(mi), sp->buffer, MI_GC(mi),
							  sp->csegs + col * segindex, sp->cnsegs[col]);
			}
	} else { /* mono handled seperately since xlockmore uses '1' for
				mono white! */
		XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_WHITE_PIXEL(mi));
		XDrawSegments(MI_DISPLAY(mi), sp->buffer, MI_GC(mi),
					  sp->csegs, sp->cnsegs[0]);
	}
	if (dbufp) { /* In Double Buffer case, this updates the screen */
		XCopyArea(MI_DISPLAY(mi), sp->buffer, MI_WINDOW(mi), MI_GC(mi), 0, 0,
				  MI_WIDTH(mi), MI_HEIGHT(mi), 0, 0);
	} else { /* Otherwise, screen is already updated.  Copy segments
				to erase-list to be erased directly next time. */
		int c = 0;
		for (col = 0; col < MI_NPIXELS(mi) - 1; col++) {
			memcpy(sp->old_segs + c, sp->csegs + col * segindex,
				   sp->cnsegs[col] * sizeof(XSegment));
			c += sp->cnsegs[col];
		}
		sp->nold_segs = c;
	}

	if(sp->count > 1 && swarm == 0) { /* all gone */
		if(MI_IS_VERBOSE(mi))
			fprintf(stdout, "flow: all gone at %d\n", sp->count);
		init_flow(mi);
	}

	if(sp->count++ > MI_CYCLES(mi)){ /* Time's up.  If we haven't
										found anything new by now we
										should pick a new standard
										flow */
		init_flow(mi);
	}
}

#ifndef STANDALONE
ENTRYPOINT void
refresh_flow (ModeInfo * mi)
{
	if(!dbufp) MI_CLEARWINDOW(mi);
}
#endif

XSCREENSAVER_MODULE ("Flow", flow)

#endif /* MODE_flow */