summaryrefslogtreecommitdiffstats
path: root/hacks/glx/projectiveplane.c
blob: 2a1e56604c92cdaa1dad2b67222e7322d4ea85db (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
/* projectiveplane --- Shows a 4d embedding of the real projective plane
   that rotates in 4d or on which you can walk */

#if 0
static const char sccsid[] = "@(#)projectiveplane.c  1.1 14/01/01 xlockmore";
#endif

/* Copyright (c) 2005-2014 Carsten Steger <carsten@mirsanmir.org>. */

/*
 * Permission to use, copy, modify, and distribute this software and its
 * documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appear in all copies and that
 * both that copyright notice and this permission notice appear in
 * supporting documentation.
 *
 * This file is provided AS IS with no warranties of any kind.  The author
 * shall have no liability with respect to the infringement of copyrights,
 * trade secrets or any patents by this file or any part thereof.  In no
 * event will the author be liable for any lost revenue or profits or
 * other special, indirect and consequential damages.
 *
 * REVISION HISTORY:
 * C. Steger - 14/01/03: Initial version
 * C. Steger - 14/10/03: Moved the curlicue texture to curlicue.h
 */

/*
 * This program shows a 4d embedding of the real projective plane.
 * You can walk on the projective plane, see it turn in 4d, or walk on
 * it while it turns in 4d.  The fact that the surface is an embedding
 * of the real projective plane in 4d can be seen in the depth colors
 * mode: set all rotation speeds to 0 and the projection mode to 4d
 * orthographic projection.  In its default orientation, the embedding
 * of the real projective plane will then project to the Roman
 * surface, which has three lines of self-intersection.  However, at
 * the three lines of self-intersection the parts of the surface that
 * intersect have different colors, i.e., different 4d depths.
 *
 * The real projective plane is a non-orientable surface.  To make
 * this apparent, the two-sided color mode can be used.
 * Alternatively, orientation markers (curling arrows) can be drawn as
 * a texture map on the surface of the projective plane.  While
 * walking on the projective plane, you will notice that the
 * orientation of the curling arrows changes (which it must because
 * the projective plane is non-orientable).
 *
 * The real projective plane is a model for the projective geometry in
 * 2d space.  One point can be singled out as the origin.  A line can
 * be singled out as the line at infinity, i.e., a line that lies at
 * an infinite distance to the origin.  The line at infinity is
 * topologically a circle.  Points on the line at infinity are also
 * used to model directions in projective geometry.  The origin can be
 * visualized in different manners.  When using distance colors, the
 * origin is the point that is displayed as fully saturated red, which
 * is easier to see as the center of the reddish area on the
 * projective plane.  Alternatively, when using distance bands, the
 * origin is the center of the only band that projects to a disc.
 * When using direction bands, the origin is the point where all
 * direction bands collapse to a point.  Finally, when orientation
 * markers are being displayed, the origin the the point where all
 * orientation markers are compressed to a point.  The line at
 * infinity can also be visualized in different ways.  When using
 * distance colors, the line at infinity is the line that is displayed
 * as fully saturated magenta.  When two-sided colors are used, the
 * line at infinity lies at the points where the red and green "sides"
 * of the projective plane meet (of course, the real projective plane
 * only has one side, so this is a design choice of the
 * visualization).  Alternatively, when orientation markers are being
 * displayed, the line at infinity is the place where the orientation
 * markers change their orientation.
 *
 * Note that when the projective plane is displayed with bands, the
 * orientation markers are placed in the middle of the bands.  For
 * distance bands, the bands are chosen in such a way that the band at
 * the origin is only half as wide as the remaining bands, which
 * results in a disc being displayed at the origin that has the same
 * diameter as the remaining bands.  This choice, however, also
 * implies that the band at infinity is half as wide as the other
 * bands.  Since the projective plane is attached to itself (in a
 * complicated fashion) at the line at infinity, effectively the band
 * at infinity is again as wide as the remaining bands.  However,
 * since the orientation markers are displayed in the middle of the
 * bands, this means that only one half of the orientation markers
 * will be displayed twice at the line at infinity if distance bands
 * are used.  If direction bands are used or if the projective plane
 * is displayed as a solid surface, the orientation markers are
 * displayed fully at the respective sides of the line at infinity.
 *
 * The program projects the 4d projective plane to 3d using either a
 * perspective or an orthographic projection.  Which of the two
 * alternatives looks more appealing is up to you.  However, two
 * famous surfaces are obtained if orthographic 4d projection is used:
 * The Roman surface and the cross cap.  If the projective plane is
 * rotated in 4d, the result of the projection for certain rotations
 * is a Roman surface and for certain rotations it is a cross cap.
 * The easiest way to see this is to set all rotation speeds to 0 and
 * the rotation speed around the yz plane to a value different from 0.
 * However, for any 4d rotation speeds, the projections will generally
 * cycle between the Roman surface and the cross cap.  The difference
 * is where the origin and the line at infinity will lie with respect
 * to the self-intersections in the projections to 3d.
 *
 * The projected projective plane can then be projected to the screen
 * either perspectively or orthographically.  When using the walking
 * modes, perspective projection to the screen will be used.
 *
 * There are three display modes for the projective plane: mesh
 * (wireframe), solid, or transparent.  Furthermore, the appearance of
 * the projective plane can be as a solid object or as a set of
 * see-through bands.  The bands can be distance bands, i.e., bands
 * that lie at increasing distances from the origin, or direction
 * bands, i.e., bands that lie at increasing angles with respect to
 * the origin.
 *
 * When the projective plane is displayed with direction bands, you
 * will be able to see that each direction band (modulo the "pinching"
 * at the origin) is a Moebius strip, which also shows that the
 * projective plane is non-orientable.
 *
 * Finally, the colors with with the projective plane is drawn can be
 * set to two-sided, distance, direction, or depth.  In two-sided
 * mode, the projective plane is drawn with red on one "side" and
 * green on the "other side".  As described above, the projective
 * plane only has one side, so the color jumps from red to green along
 * the line at infinity.  This mode enables you to see that the
 * projective plane is non-orientable.  In distance mode, the
 * projective plane is displayed with fully saturated colors that
 * depend on the distance of the points on the projective plane to the
 * origin.  The origin is displayed in red, the line at infinity is
 * displayed in magenta.  If the projective plane is displayed as
 * distance bands, each band will be displayed with a different color.
 * In direction mode, the projective plane is displayed with fully
 * saturated colors that depend on the angle of the points on the
 * projective plane with respect to the origin.  Angles in opposite
 * directions to the origin (e.g., 15 and 205 degrees) are displayed
 * in the same color since they are projectively equivalent.  If the
 * projective plane is displayed as direction bands, each band will be
 * displayed with a different color.  Finally, in depth mode the
 * projective plane with colors chosen depending on the 4d "depth"
 * (i.e., the w coordinate) of the points on the projective plane at
 * its default orientation in 4d.  As discussed above, this mode
 * enables you to see that the projective plane does not intersect
 * itself in 4d.
 *
 * The rotation speed for each of the six planes around which the
 * projective plane rotates can be chosen.  For the walk-and-turn
 * more, only the rotation speeds around the true 4d planes are used
 * (the xy, xz, and yz planes).
 *
 * Furthermore, in the walking modes the walking direction in the 2d
 * base square of the projective plane and the walking speed can be
 * chosen.  The walking direction is measured as an angle in degrees
 * in the 2d square that forms the coordinate system of the surface of
 * the projective plane.  A value of 0 or 180 means that the walk is
 * along a circle at a randomly chosen distance from the origin
 * (parallel to a distance band).  A value of 90 or 270 means that the
 * walk is directly from the origin to the line at infinity and back
 * (analogous to a direction band).  Any other value results in a
 * curved path from the origin to the line at infinity and back.
 *
 * This program is somewhat inspired by Thomas Banchoff's book "Beyond
 * the Third Dimension: Geometry, Computer Graphics, and Higher
 * Dimensions", Scientific American Library, 1990.
 */

#include "curlicue.h"

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

#define DISP_WIREFRAME             0
#define DISP_SURFACE               1
#define DISP_TRANSPARENT           2
#define NUM_DISPLAY_MODES          3

#define APPEARANCE_SOLID           0
#define APPEARANCE_DISTANCE_BANDS  1
#define APPEARANCE_DIRECTION_BANDS 2
#define NUM_APPEARANCES            3

#define COLORS_TWOSIDED            0
#define COLORS_DISTANCE            1
#define COLORS_DIRECTION           2
#define COLORS_DEPTH               3
#define NUM_COLORS                 4

#define VIEW_WALK                  0
#define VIEW_TURN                  1
#define VIEW_WALKTURN              2
#define NUM_VIEW_MODES             3

#define DISP_3D_PERSPECTIVE        0
#define DISP_3D_ORTHOGRAPHIC       1
#define NUM_DISP_3D_MODES          2

#define DISP_4D_PERSPECTIVE        0
#define DISP_4D_ORTHOGRAPHIC       1
#define NUM_DISP_4D_MODES          2

#define DEF_DISPLAY_MODE           "random"
#define DEF_APPEARANCE             "random"
#define DEF_COLORS                 "random"
#define DEF_VIEW_MODE              "random"
#define DEF_MARKS                  "False"
#define DEF_PROJECTION_3D          "random"
#define DEF_PROJECTION_4D          "random"
#define DEF_SPEEDWX                "1.1"
#define DEF_SPEEDWY                "1.3"
#define DEF_SPEEDWZ                "1.5"
#define DEF_SPEEDXY                "1.7"
#define DEF_SPEEDXZ                "1.9"
#define DEF_SPEEDYZ                "2.1"
#define DEF_WALK_DIRECTION         "83.0"
#define DEF_WALK_SPEED             "20.0"

#ifdef STANDALONE
# define DEFAULTS           "*delay:      10000 \n" \
                            "*showFPS:    False \n" \

# define free_projectiveplane 0
# define release_projectiveplane 0
# include "xlockmore.h"         /* from the xscreensaver distribution */
#else  /* !STANDALONE */
# include "xlock.h"             /* from the xlockmore distribution */
#endif /* !STANDALONE */

#ifdef USE_GL

#ifndef HAVE_JWXYZ
# include <X11/keysym.h>
#endif

#include "gltrackball.h"

#include <float.h>


#ifdef USE_MODULES
ModStruct projectiveplane_description =
{"projectiveplane", "init_projectiveplane", "draw_projectiveplane",
 NULL, "draw_projectiveplane", "change_projectiveplane",
 NULL, &projectiveplane_opts, 25000, 1, 1, 1, 1.0, 4, "",
 "Rotate a 4d embedding of the real projective plane in 4d or walk on it",
 0, NULL};

#endif


static char *mode;
static char *appear;
static char *color_mode;
static char *view_mode;
static Bool marks;
static char *proj_3d;
static char *proj_4d;
static float speed_wx;
static float speed_wy;
static float speed_wz;
static float speed_xy;
static float speed_xz;
static float speed_yz;
static float walk_direction;
static float walk_speed;


static XrmOptionDescRec opts[] =
{
  {"-mode",              ".displayMode",   XrmoptionSepArg, 0 },
  {"-wireframe",         ".displayMode",   XrmoptionNoArg,  "wireframe" },
  {"-surface",           ".displayMode",   XrmoptionNoArg,  "surface" },
  {"-transparent",       ".displayMode",   XrmoptionNoArg,  "transparent" },
  {"-appearance",        ".appearance",    XrmoptionSepArg, 0 },
  {"-solid",             ".appearance",    XrmoptionNoArg,  "solid" },
  {"-distance-bands",    ".appearance",    XrmoptionNoArg,  "distance-bands" },
  {"-direction-bands",   ".appearance",    XrmoptionNoArg,  "direction-bands" },
  {"-colors",            ".colors",        XrmoptionSepArg, 0 },
  {"-twosided-colors",   ".colors",        XrmoptionNoArg,  "two-sided" },
  {"-distance-colors",   ".colors",        XrmoptionNoArg,  "distance" },
  {"-direction-colors",  ".colors",        XrmoptionNoArg,  "direction" },
  {"-depth-colors",      ".colors",        XrmoptionNoArg,  "depth" },
  {"-view-mode",         ".viewMode",      XrmoptionSepArg, 0 },
  {"-walk",              ".viewMode",      XrmoptionNoArg,  "walk" },
  {"-turn",              ".viewMode",      XrmoptionNoArg,  "turn" },
  {"-walk-turn",         ".viewMode",      XrmoptionNoArg,  "walk-turn" },
  {"-orientation-marks", ".marks",         XrmoptionNoArg, "on"},
  {"+orientation-marks", ".marks",         XrmoptionNoArg, "off"},
  {"-projection-3d",     ".projection3d",  XrmoptionSepArg, 0 },
  {"-perspective-3d",    ".projection3d",  XrmoptionNoArg,  "perspective" },
  {"-orthographic-3d",   ".projection3d",  XrmoptionNoArg,  "orthographic" },
  {"-projection-4d",     ".projection4d",  XrmoptionSepArg, 0 },
  {"-perspective-4d",    ".projection4d",  XrmoptionNoArg,  "perspective" },
  {"-orthographic-4d",   ".projection4d",  XrmoptionNoArg,  "orthographic" },
  {"-speed-wx",          ".speedwx",       XrmoptionSepArg, 0 },
  {"-speed-wy",          ".speedwy",       XrmoptionSepArg, 0 },
  {"-speed-wz",          ".speedwz",       XrmoptionSepArg, 0 },
  {"-speed-xy",          ".speedxy",       XrmoptionSepArg, 0 },
  {"-speed-xz",          ".speedxz",       XrmoptionSepArg, 0 },
  {"-speed-yz",          ".speedyz",       XrmoptionSepArg, 0 },
  {"-walk-direction",    ".walkDirection", XrmoptionSepArg, 0 },
  {"-walk-speed",        ".walkSpeed",     XrmoptionSepArg, 0 }
};

static argtype vars[] =
{
  { &mode,           "displayMode",   "DisplayMode",   DEF_DISPLAY_MODE,   t_String },
  { &appear,         "appearance",    "Appearance",    DEF_APPEARANCE,     t_String },
  { &color_mode,     "colors",        "Colors",        DEF_COLORS,         t_String },
  { &view_mode,      "viewMode",      "ViewMode",      DEF_VIEW_MODE,      t_String },
  { &marks,          "marks",         "Marks",         DEF_MARKS,          t_Bool },
  { &proj_3d,        "projection3d",  "Projection3d",  DEF_PROJECTION_3D,  t_String },
  { &proj_4d,        "projection4d",  "Projection4d",  DEF_PROJECTION_4D,  t_String },
  { &speed_wx,       "speedwx",       "Speedwx",       DEF_SPEEDWX,        t_Float},
  { &speed_wy,       "speedwy",       "Speedwy",       DEF_SPEEDWY,        t_Float},
  { &speed_wz,       "speedwz",       "Speedwz",       DEF_SPEEDWZ,        t_Float},
  { &speed_xy,       "speedxy",       "Speedxy",       DEF_SPEEDXY,        t_Float},
  { &speed_xz,       "speedxz",       "Speedxz",       DEF_SPEEDXZ,        t_Float},
  { &speed_yz,       "speedyz",       "Speedyz",       DEF_SPEEDYZ,        t_Float},
  { &walk_direction, "walkDirection", "WalkDirection", DEF_WALK_DIRECTION, t_Float},
  { &walk_speed,     "walkSpeed",     "WalkSpeed",     DEF_WALK_SPEED,     t_Float}
};

ENTRYPOINT ModeSpecOpt projectiveplane_opts =
{sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, NULL};


/* Offset by which we walk above the projective plane */
#define DELTAY  0.01

/* Number of subdivisions of the projective plane */
#define NUMU 128
#define NUMV 128

/* Number of subdivisions per band */
#define NUMB 8


typedef struct {
  GLint      WindH, WindW;
  GLXContext *glx_context;
  /* Options */
  int display_mode;
  int appearance;
  int colors;
  int view;
  Bool marks;
  int projection_3d;
  int projection_4d;
  /* 4D rotation angles */
  float alpha, beta, delta, zeta, eta, theta;
  /* Movement parameters */
  float umove, vmove, dumove, dvmove;
  int side, dir;
  /* The viewing offset in 4d */
  float offset4d[4];
  /* The viewing offset in 3d */
  float offset3d[4];
  /* The 4d coordinates of the projective plane and their derivatives */
  float x[(NUMU+1)*(NUMV+1)][4];
  float xu[(NUMU+1)*(NUMV+1)][4];
  float xv[(NUMU+1)*(NUMV+1)][4];
  float pp[(NUMU+1)*(NUMV+1)][3];
  float pn[(NUMU+1)*(NUMV+1)][3];
  /* The precomputed colors of the projective plane */
  float col[(NUMU+1)*(NUMV+1)][4];
  /* The precomputed texture coordinates of the projective plane */
  float tex[(NUMU+1)*(NUMV+1)][2];
  /* The "curlicue" texture */
  GLuint tex_name;
  /* Aspect ratio of the current window */
  float aspect;
  /* Trackball states */
  trackball_state *trackballs[2];
  int current_trackball;
  Bool button_pressed;
  /* A random factor to modify the rotation speeds */
  float speed_scale;
} projectiveplanestruct;

static projectiveplanestruct *projectiveplane = (projectiveplanestruct *) NULL;


/* Add a rotation around the wx-plane to the matrix m. */
static void rotatewx(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][1];
    v = m[i][2];
    m[i][1] = c*u+s*v;
    m[i][2] = -s*u+c*v;
  }
}


/* Add a rotation around the wy-plane to the matrix m. */
static void rotatewy(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][0];
    v = m[i][2];
    m[i][0] = c*u-s*v;
    m[i][2] = s*u+c*v;
  }
}


/* Add a rotation around the wz-plane to the matrix m. */
static void rotatewz(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][0];
    v = m[i][1];
    m[i][0] = c*u+s*v;
    m[i][1] = -s*u+c*v;
  }
}


/* Add a rotation around the xy-plane to the matrix m. */
static void rotatexy(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][2];
    v = m[i][3];
    m[i][2] = c*u+s*v;
    m[i][3] = -s*u+c*v;
  }
}


/* Add a rotation around the xz-plane to the matrix m. */
static void rotatexz(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][1];
    v = m[i][3];
    m[i][1] = c*u-s*v;
    m[i][3] = s*u+c*v;
  }
}


/* Add a rotation around the yz-plane to the matrix m. */
static void rotateyz(float m[4][4], float phi)
{
  float c, s, u, v;
  int i;

  phi *= M_PI/180.0;
  c = cos(phi);
  s = sin(phi);
  for (i=0; i<4; i++)
  {
    u = m[i][0];
    v = m[i][3];
    m[i][0] = c*u-s*v;
    m[i][3] = s*u+c*v;
  }
}


/* Compute the rotation matrix m from the rotation angles. */
static void rotateall(float al, float be, float de, float ze, float et,
                      float th, float m[4][4])
{
  int i, j;

  for (i=0; i<4; i++)
    for (j=0; j<4; j++)
      m[i][j] = (i==j);
  rotatewx(m,al);
  rotatewy(m,be);
  rotatewz(m,de);
  rotatexy(m,ze);
  rotatexz(m,et);
  rotateyz(m,th);
}


/* Compute the rotation matrix m from the 4d rotation angles. */
static void rotateall4d(float ze, float et, float th, float m[4][4])
{
  int i, j;

  for (i=0; i<4; i++)
    for (j=0; j<4; j++)
      m[i][j] = (i==j);
  rotatexy(m,ze);
  rotatexz(m,et);
  rotateyz(m,th);
}


/* Multiply two rotation matrices: o=m*n. */
static void mult_rotmat(float m[4][4], float n[4][4], float o[4][4])
{
  int i, j, k;

  for (i=0; i<4; i++)
  {
    for (j=0; j<4; j++)
    {
      o[i][j] = 0.0;
      for (k=0; k<4; k++)
        o[i][j] += m[i][k]*n[k][j];
    }
  }
}


/* Compute a 4D rotation matrix from two unit quaternions. */
static void quats_to_rotmat(float p[4], float q[4], float m[4][4])
{
  double al, be, de, ze, et, th;
  double r00, r01, r02, r12, r22;

  r00 = 1.0-2.0*(p[1]*p[1]+p[2]*p[2]);
  r01 = 2.0*(p[0]*p[1]+p[2]*p[3]);
  r02 = 2.0*(p[2]*p[0]-p[1]*p[3]);
  r12 = 2.0*(p[1]*p[2]+p[0]*p[3]);
  r22 = 1.0-2.0*(p[1]*p[1]+p[0]*p[0]);

  al = atan2(-r12,r22)*180.0/M_PI;
  be = atan2(r02,sqrt(r00*r00+r01*r01))*180.0/M_PI;
  de = atan2(-r01,r00)*180.0/M_PI;

  r00 = 1.0-2.0*(q[1]*q[1]+q[2]*q[2]);
  r01 = 2.0*(q[0]*q[1]+q[2]*q[3]);
  r02 = 2.0*(q[2]*q[0]-q[1]*q[3]);
  r12 = 2.0*(q[1]*q[2]+q[0]*q[3]);
  r22 = 1.0-2.0*(q[1]*q[1]+q[0]*q[0]);

  et = atan2(-r12,r22)*180.0/M_PI;
  th = atan2(r02,sqrt(r00*r00+r01*r01))*180.0/M_PI;
  ze = atan2(-r01,r00)*180.0/M_PI;

  rotateall(al,be,de,ze,et,-th,m);
}


/* Compute a fully saturated and bright color based on an angle. */
static void color(projectiveplanestruct *pp, double angle, float col[4])
{
  int s;
  double t;

  if (pp->colors == COLORS_TWOSIDED)
    return;

  if (angle >= 0.0)
    angle = fmod(angle,2.0*M_PI);
  else
    angle = fmod(angle,-2.0*M_PI);
  s = floor(angle/(M_PI/3));
  t = angle/(M_PI/3)-s;
  if (s >= 6)
    s = 0;
  switch (s)
  {
    case 0:
      col[0] = 1.0;
      col[1] = t;
      col[2] = 0.0;
      break;
    case 1:
      col[0] = 1.0-t;
      col[1] = 1.0;
      col[2] = 0.0;
      break;
    case 2:
      col[0] = 0.0;
      col[1] = 1.0;
      col[2] = t;
      break;
    case 3:
      col[0] = 0.0;
      col[1] = 1.0-t;
      col[2] = 1.0;
      break;
    case 4:
      col[0] = t;
      col[1] = 0.0;
      col[2] = 1.0;
      break;
    case 5:
      col[0] = 1.0;
      col[1] = 0.0;
      col[2] = 1.0-t;
      break;
  }
  if (pp->display_mode == DISP_TRANSPARENT)
    col[3] = 0.7;
  else
    col[3] = 1.0;
}


/* Set up the projective plane coordinates, colors, and texture. */
static void setup_projective_plane(ModeInfo *mi, double umin, double umax,
                                   double vmin, double vmax)
{
  int i, j, k;
  double u, v, ur, vr;
  double cu, su, cv2, sv2, cv4, sv4, c2u, s2u;
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  ur = umax-umin;
  vr = vmax-vmin;
  for (i=0; i<=NUMV; i++)
  {
    for (j=0; j<=NUMU; j++)
    {
      k = i*(NUMU+1)+j;
      if (pp->appearance != APPEARANCE_DIRECTION_BANDS)
        u = -ur*j/NUMU+umin;
      else
        u = ur*j/NUMU+umin;
      v = vr*i/NUMV+vmin;
      cu = cos(u);
      su = sin(u);
      c2u = cos(2.0*u);
      s2u = sin(2.0*u);
      sv2 = sin(0.5*v);
      cv4 = cos(0.25*v);
      sv4 = sin(0.25*v);
      if (pp->colors == COLORS_DEPTH)
        color(pp,((su*su*sv4*sv4-cv4*cv4)+1.0)*M_PI*2.0/3.0,pp->col[k]);
      else if (pp->colors == COLORS_DIRECTION)
        color(pp,2.0*M_PI+fmod(2.0*u,2.0*M_PI),pp->col[k]);
      else /* pp->colors == COLORS_DISTANCE */
        color(pp,v*(5.0/6.0),pp->col[k]);
      pp->tex[k][0] = -32*u/(2.0*M_PI);
      if (pp->appearance != APPEARANCE_DISTANCE_BANDS)
        pp->tex[k][1] = 32*v/(2.0*M_PI);
      else
        pp->tex[k][1] = 32*v/(2.0*M_PI)-0.5;
      pp->x[k][0] = 0.5*s2u*sv4*sv4;
      pp->x[k][1] = 0.5*su*sv2;
      pp->x[k][2] = 0.5*cu*sv2;
      pp->x[k][3] = 0.5*(su*su*sv4*sv4-cv4*cv4);
      /* Avoid degenerate tangential plane basis vectors. */
      if (v < FLT_EPSILON)
        v = FLT_EPSILON;
      cv2 = cos(0.5*v);
      sv2 = sin(0.5*v);
      sv4 = sin(0.25*v);
      pp->xu[k][0] = c2u*sv4*sv4;
      pp->xu[k][1] = 0.5*cu*sv2;
      pp->xu[k][2] = -0.5*su*sv2;
      pp->xu[k][3] = 0.5*s2u*sv4*sv4;
      pp->xv[k][0] = 0.125*s2u*sv2;
      pp->xv[k][1] = 0.25*su*cv2;
      pp->xv[k][2] = 0.25*cu*cv2;
      pp->xv[k][3] = 0.125*(su*su+1.0)*sv2;
    }
  }
}


/* Draw a 4d embedding of the projective plane projected into 3D. */
static int projective_plane(ModeInfo *mi, double umin, double umax,
                            double vmin, double vmax)
{
  int polys = 0;
  static const GLfloat mat_diff_red[]         = { 1.0, 0.0, 0.0, 1.0 };
  static const GLfloat mat_diff_green[]       = { 0.0, 1.0, 0.0, 1.0 };
  static const GLfloat mat_diff_trans_red[]   = { 1.0, 0.0, 0.0, 0.7 };
  static const GLfloat mat_diff_trans_green[] = { 0.0, 1.0, 0.0, 0.7 };
  float p[3], pu[3], pv[3], pm[3], n[3], b[3], mat[4][4];
  int i, j, k, l, m, o;
  double u, v;
  double xx[4], xxu[4], xxv[4], y[4], yu[4], yv[4];
  double q, r, s, t;
  double cu, su, cv2, sv2, cv4, sv4, c2u, s2u;
  float q1[4], q2[4], r1[4][4], r2[4][4];
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  if (pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
  {
    /* Compute the rotation that rotates the projective plane in 4D without
       the trackball rotations. */
    rotateall4d(pp->zeta,pp->eta,pp->theta,mat);

    u = pp->umove;
    v = pp->vmove;
    cu = cos(u);
    su = sin(u);
    c2u = cos(2.0*u);
    s2u = sin(2.0*u);
    sv2 = sin(0.5*v);
    cv4 = cos(0.25*v);
    sv4 = sin(0.25*v);
    xx[0] = 0.5*s2u*sv4*sv4;
    xx[1] = 0.5*su*sv2;
    xx[2] = 0.5*cu*sv2;
    xx[3] = 0.5*(su*su*sv4*sv4-cv4*cv4);
    /* Avoid degenerate tangential plane basis vectors. */
    if (v < FLT_EPSILON)
      v = FLT_EPSILON;
    cv2 = cos(0.5*v);
    sv2 = sin(0.5*v);
    sv4 = sin(0.25*v);
    xxu[0] = c2u*sv4*sv4;
    xxu[1] = 0.5*cu*sv2;
    xxu[2] = -0.5*su*sv2;
    xxu[3] = 0.5*s2u*sv4*sv4;
    xxv[0] = 0.125*s2u*sv2;
    xxv[1] = 0.25*su*cv2;
    xxv[2] = 0.25*cu*cv2;
    xxv[3] = 0.125*(su*su+1.0)*sv2;
    for (l=0; l<4; l++)
    {
      y[l] = (mat[l][0]*xx[0]+mat[l][1]*xx[1]+
              mat[l][2]*xx[2]+mat[l][3]*xx[3]);
      yu[l] = (mat[l][0]*xxu[0]+mat[l][1]*xxu[1]+
               mat[l][2]*xxu[2]+mat[l][3]*xxu[3]);
      yv[l] = (mat[l][0]*xxv[0]+mat[l][1]*xxv[1]+
               mat[l][2]*xxv[2]+mat[l][3]*xxv[3]);
    }
    if (pp->projection_4d == DISP_4D_ORTHOGRAPHIC)
    {
      for (l=0; l<3; l++)
      {
        p[l] = y[l]+pp->offset4d[l];
        pu[l] = yu[l];
        pv[l] = yv[l];
      }
    }
    else
    {
      s = y[3]+pp->offset4d[3];
      q = 1.0/s;
      t = q*q;
      for (l=0; l<3; l++)
      {
        r = y[l]+pp->offset4d[l];
        p[l] = r*q;
        pu[l] = (yu[l]*s-r*yu[3])*t;
        pv[l] = (yv[l]*s-r*yv[3])*t;
      }
    }
    n[0] = pu[1]*pv[2]-pu[2]*pv[1];
    n[1] = pu[2]*pv[0]-pu[0]*pv[2];
    n[2] = pu[0]*pv[1]-pu[1]*pv[0];
    t = 1.0/(pp->side*4.0*sqrt(n[0]*n[0]+n[1]*n[1]+n[2]*n[2]));
    n[0] *= t;
    n[1] *= t;
    n[2] *= t;
    pm[0] = pu[0]*pp->dumove+pv[0]*pp->dvmove;
    pm[1] = pu[1]*pp->dumove+pv[1]*pp->dvmove;
    pm[2] = pu[2]*pp->dumove+pv[2]*pp->dvmove;
    t = 1.0/(4.0*sqrt(pm[0]*pm[0]+pm[1]*pm[1]+pm[2]*pm[2]));
    pm[0] *= t;
    pm[1] *= t;
    pm[2] *= t;
    b[0] = n[1]*pm[2]-n[2]*pm[1];
    b[1] = n[2]*pm[0]-n[0]*pm[2];
    b[2] = n[0]*pm[1]-n[1]*pm[0];
    t = 1.0/(4.0*sqrt(b[0]*b[0]+b[1]*b[1]+b[2]*b[2]));
    b[0] *= t;
    b[1] *= t;
    b[2] *= t;

    /* Compute alpha, beta, delta from the three basis vectors.
           |  -b[0]  -b[1]  -b[2] |
       m = |   n[0]   n[1]   n[2] |
           | -pm[0] -pm[1] -pm[2] |
    */
    pp->alpha = atan2(-n[2],-pm[2])*180/M_PI;
    pp->beta = atan2(-b[2],sqrt(b[0]*b[0]+b[1]*b[1]))*180/M_PI;
    pp->delta = atan2(b[1],-b[0])*180/M_PI;

    /* Compute the rotation that rotates the projective plane in 4D. */
    rotateall(pp->alpha,pp->beta,pp->delta,pp->zeta,pp->eta,pp->theta,mat);

    u = pp->umove;
    v = pp->vmove;
    cu = cos(u);
    su = sin(u);
    s2u = sin(2.0*u);
    sv2 = sin(0.5*v);
    cv4 = cos(0.25*v);
    sv4 = sin(0.25*v);
    xx[0] = 0.5*s2u*sv4*sv4;
    xx[1] = 0.5*su*sv2;
    xx[2] = 0.5*cu*sv2;
    xx[3] = 0.5*(su*su*sv4*sv4-cv4*cv4);
    for (l=0; l<4; l++)
    {
      r = 0.0;
      for (m=0; m<4; m++)
        r += mat[l][m]*xx[m];
      y[l] = r;
    }
    if (pp->projection_4d == DISP_4D_ORTHOGRAPHIC)
    {
      for (l=0; l<3; l++)
        p[l] = y[l]+pp->offset4d[l];
    }
    else
    {
      s = y[3]+pp->offset4d[3];
      for (l=0; l<3; l++)
        p[l] = (y[l]+pp->offset4d[l])/s;
    }

    pp->offset3d[0] = -p[0];
    pp->offset3d[1] = -p[1]-DELTAY;
    pp->offset3d[2] = -p[2];
  }
  else
  {
    /* Compute the rotation that rotates the projective plane in 4D,
       including the trackball rotations. */
    rotateall(pp->alpha,pp->beta,pp->delta,pp->zeta,pp->eta,pp->theta,r1);

    gltrackball_get_quaternion(pp->trackballs[0],q1);
    gltrackball_get_quaternion(pp->trackballs[1],q2);
    quats_to_rotmat(q1,q2,r2);

    mult_rotmat(r2,r1,mat);
  }

  /* Project the points from 4D to 3D. */
  for (i=0; i<=NUMV; i++)
  {
    for (j=0; j<=NUMU; j++)
    {
      o = i*(NUMU+1)+j;
      for (l=0; l<4; l++)
      {
        y[l] = (mat[l][0]*pp->x[o][0]+mat[l][1]*pp->x[o][1]+
                mat[l][2]*pp->x[o][2]+mat[l][3]*pp->x[o][3]);
        yu[l] = (mat[l][0]*pp->xu[o][0]+mat[l][1]*pp->xu[o][1]+
                 mat[l][2]*pp->xu[o][2]+mat[l][3]*pp->xu[o][3]);
        yv[l] = (mat[l][0]*pp->xv[o][0]+mat[l][1]*pp->xv[o][1]+
                 mat[l][2]*pp->xv[o][2]+mat[l][3]*pp->xv[o][3]);
      }
      if (pp->projection_4d == DISP_4D_ORTHOGRAPHIC)
      {
        for (l=0; l<3; l++)
        {
          pp->pp[o][l] = (y[l]+pp->offset4d[l])+pp->offset3d[l];
          pu[l] = yu[l];
          pv[l] = yv[l];
        }
      }
      else
      {
        s = y[3]+pp->offset4d[3];
        q = 1.0/s;
        t = q*q;
        for (l=0; l<3; l++)
        {
          r = y[l]+pp->offset4d[l];
          pp->pp[o][l] = r*q+pp->offset3d[l];
          pu[l] = (yu[l]*s-r*yu[3])*t;
          pv[l] = (yv[l]*s-r*yv[3])*t;
        }
      }
      pp->pn[o][0] = pu[1]*pv[2]-pu[2]*pv[1];
      pp->pn[o][1] = pu[2]*pv[0]-pu[0]*pv[2];
      pp->pn[o][2] = pu[0]*pv[1]-pu[1]*pv[0];
      t = 1.0/sqrt(pp->pn[o][0]*pp->pn[o][0]+pp->pn[o][1]*pp->pn[o][1]+
                   pp->pn[o][2]*pp->pn[o][2]);
      pp->pn[o][0] *= t;
      pp->pn[o][1] *= t;
      pp->pn[o][2] *= t;
    }
  }

  if (pp->colors == COLORS_TWOSIDED)
  {
    glColor3fv(mat_diff_red);
    if (pp->display_mode == DISP_TRANSPARENT)
    {
      glMaterialfv(GL_FRONT,GL_AMBIENT_AND_DIFFUSE,mat_diff_trans_red);
      glMaterialfv(GL_BACK,GL_AMBIENT_AND_DIFFUSE,mat_diff_trans_green);
    }
    else
    {
      glMaterialfv(GL_FRONT,GL_AMBIENT_AND_DIFFUSE,mat_diff_red);
      glMaterialfv(GL_BACK,GL_AMBIENT_AND_DIFFUSE,mat_diff_green);
    }
  }
  glBindTexture(GL_TEXTURE_2D,pp->tex_name);

  if (pp->appearance != APPEARANCE_DIRECTION_BANDS)
  {
    for (i=0; i<NUMV; i++)
    {
      if (pp->appearance == APPEARANCE_DISTANCE_BANDS &&
          ((i & (NUMB-1)) >= NUMB/4) && ((i & (NUMB-1)) < 3*NUMB/4))
        continue;
      if (pp->display_mode == DISP_WIREFRAME)
        glBegin(GL_QUAD_STRIP);
      else
        glBegin(GL_TRIANGLE_STRIP);
      for (j=0; j<=NUMU; j++)
      {
        for (k=0; k<=1; k++)
        {
          l = (i+k);
          m = j;
          o = l*(NUMU+1)+m;
          glNormal3fv(pp->pn[o]);
          glTexCoord2fv(pp->tex[o]);
          if (pp->colors != COLORS_TWOSIDED)
          {
            glColor3fv(pp->col[o]);
            glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,pp->col[o]);
          }
          glVertex3fv(pp->pp[o]);
          polys++;
        }
      }
      glEnd();
    }
  }
  else /* pp->appearance == APPEARANCE_DIRECTION_BANDS */
  {
    for (j=0; j<NUMU; j++)
    {
      if ((j & (NUMB-1)) >= NUMB/2)
        continue;
      if (pp->display_mode == DISP_WIREFRAME)
        glBegin(GL_QUAD_STRIP);
      else
        glBegin(GL_TRIANGLE_STRIP);
      for (i=0; i<=NUMV; i++)
      {
        for (k=0; k<=1; k++)
        {
          l = i;
          m = (j+k);
          o = l*(NUMU+1)+m;
          glNormal3fv(pp->pn[o]);
          glTexCoord2fv(pp->tex[o]);
          if (pp->colors != COLORS_TWOSIDED)
          {
            glColor3fv(pp->col[o]);
            glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE,pp->col[o]);
          }
          glVertex3fv(pp->pp[o]);
          polys++;
        }
      }
      glEnd();
    }
  }

  polys /= 2;
  return polys;
}


/* Generate a texture image that shows the orientation reversal. */
static void gen_texture(ModeInfo *mi)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  glGenTextures(1,&pp->tex_name);
  glBindTexture(GL_TEXTURE_2D,pp->tex_name);
  glPixelStorei(GL_UNPACK_ALIGNMENT,1);
  glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_REPEAT);
  glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_REPEAT);
  glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
  glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
  glTexEnvf(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_MODULATE);
  glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,TEX_DIMENSION,TEX_DIMENSION,0,
               GL_LUMINANCE,GL_UNSIGNED_BYTE,texture);
}


static void init(ModeInfo *mi)
{
  static const GLfloat light_ambient[]  = { 0.0, 0.0, 0.0, 1.0 };
  static const GLfloat light_diffuse[]  = { 1.0, 1.0, 1.0, 1.0 };
  static const GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };
  static const GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
  static const GLfloat mat_specular[]   = { 1.0, 1.0, 1.0, 1.0 };
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  if (walk_speed == 0.0)
    walk_speed = 20.0;

  if (pp->view == VIEW_TURN)
  {
    pp->alpha = frand(360.0);
    pp->beta = frand(360.0);
    pp->delta = frand(360.0);
    pp->zeta = 0.0;
    pp->eta = 0.0;
    pp->theta = 0.0;
  }
  else
  {
    pp->alpha = 0.0;
    pp->beta = 0.0;
    pp->delta = 0.0;
    pp->zeta = 120.0;
    pp->eta = 180.0;
    pp->theta = 90.0;
  }
  pp->umove = frand(2.0*M_PI);
  pp->vmove = frand(2.0*M_PI);
  pp->dumove = 0.0;
  pp->dvmove = 0.0;
  pp->side = 1;
  if (sin(walk_direction*M_PI/180.0) >= 0.0)
    pp->dir = 1;
  else
    pp->dir = -1;

  pp->offset4d[0] = 0.0;
  pp->offset4d[1] = 0.0;
  pp->offset4d[2] = 0.0;
  pp->offset4d[3] = 1.2;
  pp->offset3d[0] = 0.0;
  pp->offset3d[1] = 0.0;
  pp->offset3d[2] = -1.2;
  pp->offset3d[3] = 0.0;

  gen_texture(mi);
  setup_projective_plane(mi,0.0,2.0*M_PI,0.0,2.0*M_PI);

  if (pp->marks)
    glEnable(GL_TEXTURE_2D);
  else
    glDisable(GL_TEXTURE_2D);

  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  if (pp->projection_3d == DISP_3D_PERSPECTIVE ||
      pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
  {
    if (pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
      gluPerspective(60.0,1.0,0.01,10.0);
    else
      gluPerspective(60.0,1.0,0.1,10.0);
  }
  else
  {
    glOrtho(-0.6,0.6,-0.6,0.6,0.1,10.0);
  }
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();

# ifdef HAVE_JWZGLES /* #### glPolygonMode other than GL_FILL unimplemented */
  if (pp->display_mode == DISP_WIREFRAME)
    pp->display_mode = DISP_SURFACE;
# endif

  if (pp->display_mode == DISP_SURFACE)
  {
    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LESS);
    glShadeModel(GL_SMOOTH);
    glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
    glLightModeli(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE);
    glEnable(GL_LIGHTING);
    glEnable(GL_LIGHT0);
    glLightfv(GL_LIGHT0,GL_AMBIENT,light_ambient);
    glLightfv(GL_LIGHT0,GL_DIFFUSE,light_diffuse);
    glLightfv(GL_LIGHT0,GL_SPECULAR,light_specular);
    glLightfv(GL_LIGHT0,GL_POSITION,light_position);
    glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR,mat_specular);
    glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,50.0);
    glDepthMask(GL_TRUE);
    glDisable(GL_BLEND);
  }
  else if (pp->display_mode == DISP_TRANSPARENT)
  {
    glDisable(GL_DEPTH_TEST);
    glShadeModel(GL_SMOOTH);
    glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
    glLightModeli(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE);
    glEnable(GL_LIGHTING);
    glEnable(GL_LIGHT0);
    glLightfv(GL_LIGHT0,GL_AMBIENT,light_ambient);
    glLightfv(GL_LIGHT0,GL_DIFFUSE,light_diffuse);
    glLightfv(GL_LIGHT0,GL_SPECULAR,light_specular);
    glLightfv(GL_LIGHT0,GL_POSITION,light_position);
    glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR,mat_specular);
    glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,50.0);
    glDepthMask(GL_FALSE);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA,GL_ONE);
  }
  else  /* pp->display_mode == DISP_WIREFRAME */
  {
    glDisable(GL_DEPTH_TEST);
    glShadeModel(GL_FLAT);
    glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
    glDisable(GL_LIGHTING);
    glDisable(GL_LIGHT0);
    glDisable(GL_BLEND);
  }
}


/* Redisplay the Klein bottle. */
static void display_projectiveplane(ModeInfo *mi)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  if (!pp->button_pressed)
  {
    if (pp->view == VIEW_TURN)
    {
      pp->alpha += speed_wx * pp->speed_scale;
      if (pp->alpha >= 360.0)
        pp->alpha -= 360.0;
      pp->beta += speed_wy * pp->speed_scale;
      if (pp->beta >= 360.0)
        pp->beta -= 360.0;
      pp->delta += speed_wz * pp->speed_scale;
      if (pp->delta >= 360.0)
        pp->delta -= 360.0;
      pp->zeta += speed_xy * pp->speed_scale;
      if (pp->zeta >= 360.0)
        pp->zeta -= 360.0;
      pp->eta += speed_xz * pp->speed_scale;
      if (pp->eta >= 360.0)
        pp->eta -= 360.0;
      pp->theta += speed_yz * pp->speed_scale;
      if (pp->theta >= 360.0)
        pp->theta -= 360.0;
    }
    if (pp->view == VIEW_WALKTURN)
    {
      pp->zeta += speed_xy * pp->speed_scale;
      if (pp->zeta >= 360.0)
        pp->zeta -= 360.0;
      pp->eta += speed_xz * pp->speed_scale;
      if (pp->eta >= 360.0)
        pp->eta -= 360.0;
      pp->theta += speed_yz * pp->speed_scale;
      if (pp->theta >= 360.0)
        pp->theta -= 360.0;
    }
    if (pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
    {
      pp->dvmove = (pp->dir*sin(walk_direction*M_PI/180.0)*
                    walk_speed*M_PI/4096.0);
      pp->vmove += pp->dvmove;
      if (pp->vmove > 2.0*M_PI)
      {
        pp->vmove = 4.0*M_PI-pp->vmove;
        pp->umove = pp->umove-M_PI;
        if (pp->umove < 0.0)
          pp->umove += 2.0*M_PI;
        pp->side = -pp->side;
        pp->dir = -pp->dir;
        pp->dvmove = -pp->dvmove;
      }
      if (pp->vmove < 0.0)
      {
        pp->vmove = -pp->vmove;
        pp->umove = pp->umove-M_PI;
        if (pp->umove < 0.0)
          pp->umove += 2.0*M_PI;
        pp->dir = -pp->dir;
        pp->dvmove = -pp->dvmove;
      }
      pp->dumove = cos(walk_direction*M_PI/180.0)*walk_speed*M_PI/4096.0;
      pp->umove += pp->dumove;
      if (pp->umove >= 2.0*M_PI)
        pp->umove -= 2.0*M_PI;
      if (pp->umove < 0.0)
        pp->umove += 2.0*M_PI;
    }
  }

  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  if (pp->projection_3d == DISP_3D_PERSPECTIVE ||
      pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
  {
    if (pp->view == VIEW_WALK || pp->view == VIEW_WALKTURN)
      gluPerspective(60.0,pp->aspect,0.01,10.0);
    else
      gluPerspective(60.0,pp->aspect,0.1,10.0);
  }
  else
  {
    if (pp->aspect >= 1.0)
      glOrtho(-0.6*pp->aspect,0.6*pp->aspect,-0.6,0.6,0.1,10.0);
    else
      glOrtho(-0.6,0.6,-0.6/pp->aspect,0.6/pp->aspect,0.1,10.0);
  }
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();

  mi->polygon_count = projective_plane(mi,0.0,2.0*M_PI,0.0,2.0*M_PI);
}


ENTRYPOINT void reshape_projectiveplane(ModeInfo *mi, int width, int height)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  pp->WindW = (GLint)width;
  pp->WindH = (GLint)height;
  glViewport(0,0,width,height);
  pp->aspect = (GLfloat)width/(GLfloat)height;
}


ENTRYPOINT Bool projectiveplane_handle_event(ModeInfo *mi, XEvent *event)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];
  KeySym  sym = 0;
  char c = 0;

  if (event->xany.type == KeyPress || event->xany.type == KeyRelease)
    XLookupString (&event->xkey, &c, 1, &sym, 0);

  if (event->xany.type == ButtonPress &&
      event->xbutton.button == Button1)
  {
    pp->button_pressed = True;
    gltrackball_start(pp->trackballs[pp->current_trackball],
                      event->xbutton.x, event->xbutton.y,
                      MI_WIDTH(mi), MI_HEIGHT(mi));
    return True;
  }
  else if (event->xany.type == ButtonRelease &&
           event->xbutton.button == Button1)
  {
    pp->button_pressed = False;
    return True;
  }
  else if (event->xany.type == KeyPress)
  {
    if (sym == XK_Shift_L || sym == XK_Shift_R)
    {
      pp->current_trackball = 1;
      if (pp->button_pressed)
        gltrackball_start(pp->trackballs[pp->current_trackball],
                          event->xbutton.x, event->xbutton.y,
                          MI_WIDTH(mi), MI_HEIGHT(mi));
      return True;
    }
  }
  else if (event->xany.type == KeyRelease)
  {
    if (sym == XK_Shift_L || sym == XK_Shift_R)
    {
      pp->current_trackball = 0;
      if (pp->button_pressed)
        gltrackball_start(pp->trackballs[pp->current_trackball],
                          event->xbutton.x, event->xbutton.y,
                          MI_WIDTH(mi), MI_HEIGHT(mi));
      return True;
    }
  }
  else if (event->xany.type == MotionNotify && pp->button_pressed)
  {
    gltrackball_track(pp->trackballs[pp->current_trackball],
                      event->xmotion.x, event->xmotion.y,
                      MI_WIDTH(mi), MI_HEIGHT(mi));
    return True;
  }

  return False;
}


/*
 *-----------------------------------------------------------------------------
 *-----------------------------------------------------------------------------
 *    Xlock hooks.
 *-----------------------------------------------------------------------------
 *-----------------------------------------------------------------------------
 */

/*
 *-----------------------------------------------------------------------------
 *    Initialize projectiveplane.  Called each time the window changes.
 *-----------------------------------------------------------------------------
 */

ENTRYPOINT void init_projectiveplane(ModeInfo *mi)
{
  projectiveplanestruct *pp;

  MI_INIT(mi, projectiveplane);
  pp = &projectiveplane[MI_SCREEN(mi)];

  
  pp->trackballs[0] = gltrackball_init(True);
  pp->trackballs[1] = gltrackball_init(True);
  pp->current_trackball = 0;
  pp->button_pressed = False;

  /* Set the display mode. */
  if (!strcasecmp(mode,"random"))
  {
    pp->display_mode = random() % NUM_DISPLAY_MODES;
  }
  else if (!strcasecmp(mode,"wireframe"))
  {
    pp->display_mode = DISP_WIREFRAME;
  }
  else if (!strcasecmp(mode,"surface"))
  {
    pp->display_mode = DISP_SURFACE;
  }
  else if (!strcasecmp(mode,"transparent"))
  {
    pp->display_mode = DISP_TRANSPARENT;
  }
  else
  {
    pp->display_mode = random() % NUM_DISPLAY_MODES;
  }

  /* Orientation marks don't make sense in wireframe mode. */
  pp->marks = marks;
  if (pp->display_mode == DISP_WIREFRAME)
    pp->marks = False;

  /* Set the appearance. */
  if (!strcasecmp(appear,"random"))
  {
    pp->appearance = random() % NUM_APPEARANCES;
  }
  else if (!strcasecmp(appear,"solid"))
  {
    pp->appearance = APPEARANCE_SOLID;
  }
  else if (!strcasecmp(appear,"distance-bands"))
  {
    pp->appearance = APPEARANCE_DISTANCE_BANDS;
  }
  else if (!strcasecmp(appear,"direction-bands"))
  {
    pp->appearance = APPEARANCE_DIRECTION_BANDS;
  }
  else
  {
    pp->appearance = random() % NUM_APPEARANCES;
  }

  /* Set the color mode. */
  if (!strcasecmp(color_mode,"random"))
  {
    pp->colors = random() % NUM_COLORS;
  }
  else if (!strcasecmp(color_mode,"two-sided"))
  {
    pp->colors = COLORS_TWOSIDED;
  }
  else if (!strcasecmp(color_mode,"distance"))
  {
    pp->colors = COLORS_DISTANCE;
  }
  else if (!strcasecmp(color_mode,"direction"))
  {
    pp->colors = COLORS_DIRECTION;
  }
  else if (!strcasecmp(color_mode,"depth"))
  {
    pp->colors = COLORS_DEPTH;
  }
  else
  {
    pp->colors = random() % NUM_COLORS;
  }

  /* Set the view mode. */
  if (!strcasecmp(view_mode,"random"))
  {
    pp->view = random() % NUM_VIEW_MODES;
  }
  else if (!strcasecmp(view_mode,"walk"))
  {
    pp->view = VIEW_WALK;
  }
  else if (!strcasecmp(view_mode,"turn"))
  {
    pp->view = VIEW_TURN;
  }
  else if (!strcasecmp(view_mode,"walk-turn"))
  {
    pp->view = VIEW_WALKTURN;
  }
  else
  {
    pp->view = random() % NUM_VIEW_MODES;
  }

  /* Set the 3d projection mode. */
  if (!strcasecmp(proj_3d,"random"))
  {
    /* Orthographic projection only makes sense in turn mode. */
    if (pp->view == VIEW_TURN)
      pp->projection_3d = random() % NUM_DISP_3D_MODES;
    else
      pp->projection_3d = DISP_3D_PERSPECTIVE;
  }
  else if (!strcasecmp(proj_3d,"perspective"))
  {
    pp->projection_3d = DISP_3D_PERSPECTIVE;
  }
  else if (!strcasecmp(proj_3d,"orthographic"))
  {
    pp->projection_3d = DISP_3D_ORTHOGRAPHIC;
  }
  else
  {
    /* Orthographic projection only makes sense in turn mode. */
    if (pp->view == VIEW_TURN)
      pp->projection_3d = random() % NUM_DISP_3D_MODES;
    else
      pp->projection_3d = DISP_3D_PERSPECTIVE;
  }

  /* Set the 4d projection mode. */
  if (!strcasecmp(proj_4d,"random"))
  {
    pp->projection_4d = random() % NUM_DISP_4D_MODES;
  }
  else if (!strcasecmp(proj_4d,"perspective"))
  {
    pp->projection_4d = DISP_4D_PERSPECTIVE;
  }
  else if (!strcasecmp(proj_4d,"orthographic"))
  {
    pp->projection_4d = DISP_4D_ORTHOGRAPHIC;
  }
  else
  {
    pp->projection_4d = random() % NUM_DISP_4D_MODES;
  }

  /* Modify the speeds to a useful range in walk-and-turn mode. */
  if (pp->view == VIEW_WALKTURN)
  {
    speed_wx *= 0.2;
    speed_wy *= 0.2;
    speed_wz *= 0.2;
    speed_xy *= 0.2;
    speed_xz *= 0.2;
    speed_yz *= 0.2;
  }

  /* make multiple screens rotate at slightly different rates. */
  pp->speed_scale = 0.9 + frand(0.3);

  if ((pp->glx_context = init_GL(mi)) != NULL)
  {
    reshape_projectiveplane(mi,MI_WIDTH(mi),MI_HEIGHT(mi));
    glDrawBuffer(GL_BACK);
    init(mi);
  }
  else
  {
    MI_CLEARWINDOW(mi);
  }
}

/*
 *-----------------------------------------------------------------------------
 *    Called by the mainline code periodically to update the display.
 *-----------------------------------------------------------------------------
 */
ENTRYPOINT void draw_projectiveplane(ModeInfo *mi)
{
  Display          *display = MI_DISPLAY(mi);
  Window           window = MI_WINDOW(mi);
  projectiveplanestruct *pp;

  if (projectiveplane == NULL)
    return;
  pp = &projectiveplane[MI_SCREEN(mi)];

  MI_IS_DRAWN(mi) = True;
  if (!pp->glx_context)
    return;

  glXMakeCurrent(display,window,*(pp->glx_context));

  glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
  glLoadIdentity();

  display_projectiveplane(mi);

  if (MI_IS_FPS(mi))
    do_fps (mi);

  glFlush();

  glXSwapBuffers(display,window);
}


#ifndef STANDALONE
ENTRYPOINT void change_projectiveplane(ModeInfo *mi)
{
  projectiveplanestruct *pp = &projectiveplane[MI_SCREEN(mi)];

  if (!pp->glx_context)
    return;

  glXMakeCurrent(MI_DISPLAY(mi),MI_WINDOW(mi),*(pp->glx_context));
  init(mi);
}
#endif /* !STANDALONE */

XSCREENSAVER_MODULE ("ProjectivePlane", projectiveplane)

#endif /* USE_GL */