/*
* Intel SMP support routines.
*
* (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
* (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
*
* This code is released under the GNU General Public License version 2 or
* later.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <asm/mtrr.h>
#include <asm/tlbflush.h>
#include <mach_apic.h>
/*
* Some notes on x86 processor bugs affecting SMP operation:
*
* Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
* The Linux implications for SMP are handled as follows:
*
* Pentium III / [Xeon]
* None of the E1AP-E3AP errata are visible to the user.
*
* E1AP. see PII A1AP
* E2AP. see PII A2AP
* E3AP. see PII A3AP
*
* Pentium II / [Xeon]
* None of the A1AP-A3AP errata are visible to the user.
*
* A1AP. see PPro 1AP
* A2AP. see PPro 2AP
* A3AP. see PPro 7AP
*
* Pentium Pro
* None of 1AP-9AP errata are visible to the normal user,
* except occasional delivery of 'spurious interrupt' as trap #15.
* This is very rare and a non-problem.
*
* 1AP. Linux maps APIC as non-cacheable
* 2AP. worked around in hardware
* 3AP. fixed in C0 and above steppings microcode update.
* Linux does not use excessive STARTUP_IPIs.
* 4AP. worked around in hardware
* 5AP. symmetric IO mode (normal Linux operation) not affected.
* 'noapic' mode has vector 0xf filled out properly.
* 6AP. 'noapic' mode might be affected - fixed in later steppings
* 7AP. We do not assume writes to the LVT deassering IRQs
* 8AP. We do not enable low power mode (deep sleep) during MP bootup
* 9AP. We do not use mixed mode
*
* Pentium
* There is a marginal case where REP MOVS on 100MHz SMP
* machines with B stepping processors can fail. XXX should provide
* an L1cache=Writethrough or L1cache=off option.
*
* B stepping CPUs may hang. There are hardware work arounds
* for this. We warn about it in case your board doesn't have the work
* arounds. Basically thats so I can tell anyone with a B stepping
* CPU and SMP problems "tough".
*
* Specific items [From Pentium Processor Specification Update]
*
* 1AP. Linux doesn't use remote read
* 2AP. Linux doesn't trust APIC errors
* 3AP. We work around this
* 4AP. Linux never generated 3 interrupts of the same priority
* to cause a lost local interrupt.
* 5AP. Remote read is never used
* 6AP. not affected - worked around in hardware
* 7AP. not affected - worked around in hardware
* 8AP. worked around in hardware - we get explicit CS errors if not
* 9AP. only 'noapic' mode affected. Might generate spurious
* interrupts, we log only the first one and count the
* rest silently.
* 10AP. not affected - worked around in hardware
* 11AP. Linux reads the APIC between writes to avoid this, as per
* the documentation. Make sure you preserve this as it affects
* the C stepping chips too.
* 12AP. not affected - worked around in hardware
* 13AP. not affected - worked around in hardware
* 14AP. we always deassert INIT during bootup
* 15AP. not affected - worked around in hardware
* 16AP. not affected - worked around in hardware
* 17AP. not affected - worked around in hardware
* 18AP. not affected - worked around in hardware
* 19AP. not affected - worked around in BIOS
*
* If this sounds worrying believe me these bugs are either ___RARE___,
* or are signal timing bugs worked around in hardware and there's
* about nothing of note with C stepping upwards.
*/
DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
/*
* the following functions deal with sending IPIs between CPUs.
*
* We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
*/
static inline int __prepare_ICR (unsigned int shortcut, int vector)
{
unsigned int icr = shortcut | APIC_DEST_LOGICAL;
switch (vector) {
default:
icr |= APIC_DM_FIXED | vector;
break;
case NMI_VECTOR:
icr |= APIC_DM_NMI;
break;
}
return icr;
}
static inline int __prepare_ICR2 (unsigned int mask)
{
return SET_APIC_DEST_FIELD(mask);
}
void __send_IPI_shortcut(unsigned int shortcut, int vector)
{
/*
* Subtle. In the case of the 'never do double writes' workaround
* we have to lock out interrupts to be safe. As we don't care
* of the value read we use an atomic rmw access to avoid costly
* cli/sti. Otherwise we use an even cheaper single atomic write
* to the APIC.
*/
unsigned int cfg;
/*
* Wait for idle.
*/
apic_wait_icr_idle();
/*
* No need to touch the target chip field
*/
cfg = __prepare_ICR(shortcut, vector);
/*
* Send the IPI. The write to APIC_ICR fires this off.
*/
apic_write_around(APIC_ICR, cfg);
}
void fastcall send_IPI_self(int vector)
{
__send_IPI_shortcut(APIC_DEST_SELF, vector);
}
/*
* This is used to send an IPI with no shorthand notation (the destination is
* specified in bits 56 to 63 of the ICR).
*/
static inline void __send_IPI_dest_field(unsigned long mask, int vector)
{
unsigned long cfg;
/*
* Wait for idle.
*/
if (unlikely(vector == NMI_VECTOR))
safe_apic_wait_icr_idle();
else
apic_wait_icr_idle();
/*
* prepare target chip field
*/
cfg = __prepare_ICR2(mask);
apic_write_around(APIC_ICR2, cfg);
/*
* program the ICR
*/
cfg = __prepare_ICR(0, vector);
/*
* Send the IPI. The write to APIC_ICR fires this off.
*/
apic_write_around(APIC_ICR, cfg);
}
/*
* This is only used on smaller machines.
*/
void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
{
unsigned long mask = cpus_addr(cpumask)[0];
unsigned long flags;
local_irq_save(flags);
WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
__send_IPI_dest_field(mask, vector);
local_irq_restore(flags);
}
void send_IPI_mask_sequence(cpumask_t mask, int vector)
{
unsigned long flags;
unsigned int query_cpu;
/*
* Hack. The clustered APIC addressing mode doesn't allow us to send
* to an arbitrary mask, so I do a unicasts to each CPU instead. This
* should be modified to do 1 message per cluster ID - mbligh
*/
local_irq_save(flags);
for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
if (cpu_isset(query_cpu, mask)) {
__send_IPI_dest_field(cpu_to_logical_apicid(query_cpu),
vector);
}
}
local_irq_restore(flags);
}
#include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
/*
* Smarter SMP flushing macros.
* c/o Linus Torvalds.
*
* These mean you can really definitely utterly forget about
* writing to user space from interrupts. (Its not allowed anyway).
*
* Optimizations Manfred Spraul <manfred@colorfullife.com>
*/
static cpumask_t flush_cpumask;
static struct mm_struct * flush_mm;
static unsigned long flush_va;
static DEFINE_SPINLOCK(tlbstate_lock);
/*
* We cannot call mmdrop() because we are in interrupt context,
* instead update mm->cpu_vm_mask.
*
* We need to reload %cr3 since the page tables may be going
* away from under us..
*/
static inline void leave_mm (unsigned long cpu)
{
if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
BUG();
cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
load_cr3(swapper_pg_dir);
}
/*
*
* The flush IPI assumes that a thread switch happens in this order:
* [cpu0: the cpu that switches]
* 1) switch_mm() either 1a) or 1b)
* 1a) thread switch to a different mm
* 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
* Stop ipi delivery for the old mm. This is not synchronized with
* the other cpus, but smp_invalidate_interrupt ignore flush ipis
* for the wrong mm, and in the worst case we perform a superflous
* tlb flush.
* 1a2) set cpu_tlbstate to TLBSTATE_OK
* Now the smp_invalidate_interrupt won't call leave_mm if cpu0
* was in lazy tlb mode.
* 1a3) update cpu_tlbstate[].active_mm
* Now cpu0 accepts tlb flushes for the new mm.
* 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
* Now the other cpus will send tlb flush ipis.
* 1a4) change cr3.
* 1b) thread switch without mm change
* cpu_tlbstate[].active_mm is correct, cpu0 already handles
* flush ipis.
* 1b1) set cpu_tlbstate to TLBSTATE_OK
* 1b2) test_and_set the cpu bit in cpu_vm_mask.
* Atomically set the bit [other cpus will start sending flush ipis],
* and test the bit.
* 1b3) if the bit was 0: leave_mm was called, flush the tlb.
* 2) switch %%esp, ie current
*
* The interrupt must handle 2 special cases:
* - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
* - the cpu performs speculative tlb reads, i.e. even if the cpu only
* runs in kernel space, the cpu could load tlb entries for user space
* pages.
*
* The good news is that cpu_tlbstate is local to each cpu, no
* write/read ordering problems.
*/
/*
* TLB flush IPI:
*
* 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
* 2) Leave the mm if we are in the lazy tlb mode.
*/
fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
{
unsigned long cpu;
cpu = get_cpu();
if (!cpu_isset(cpu, flush_cpumask))
goto out;
/*
* This was a BUG() but until someone can quote me the
* line from the intel manual that guarantees an IPI to
* multiple CPUs is retried _only_ on the erroring CPUs
* its staying as a return
*
* BUG();
*/
if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
if (flush_va == TLB_FLUSH_ALL)
local_flush_tlb();
else
__flush_tlb_one(flush_va);
} else
leave_mm(cpu);
}
ack_APIC_irq();
smp_mb__before_clear_bit();
cpu_clear(cpu, flush_cpumask);
smp_mb__after_clear_bit();
out:
put_cpu_no_resched();
}
void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
unsigned long va)
{
cpumask_t cpumask = *cpumaskp;
/*
* A couple of (to be removed) sanity checks:
*
* - current CPU must not be in mask
* - mask must exist :)
*/
BUG_ON(cpus_empty(cpumask));
BUG_ON(cpu_isset(smp_processor_id(), cpumask));
BUG_ON(!mm);
#ifdef CONFIG_HOTPLUG_CPU
/* If a CPU which we ran on has gone down, OK. */
cpus_and(cpumask, cpumask, cpu_online_map);
if (unlikely(cpus_empty(cpumask)))
return;
#endif
/*
* i'm not happy about this global shared spinlock in the
* MM hot path, but we'll see how contended it is.
* AK: x86-64 has a faster method that could be ported.
*/
spin_lock(&tlbstate_lock);
flush_mm = mm;
flush_va = va;
cpus_or(flush_cpumask, cpumask, flush_cpumask);
/*
* We have to send the IPI only to
* CPUs affected.
*/
send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
while (!cpus_empty(flush_cpumask))
/* nothing. lockup detection does not belong here */
cpu_relax();
flush_mm = NULL;
flush_va = 0;
spin_unlock(&tlbstate_lock);
}
void flush_tlb_current_task(void)
{
struct mm_struct *mm = current->mm;
cpumask_t cpu_mask;
preempt_disable();
cpu_mask = mm->cpu_vm_mask;
cpu_clear(smp_processor_id(), cpu_mask);
local_flush_tlb();
if (!cpus_empty(cpu_mask))
flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
preempt_enable();
}
void flush_tlb_mm (struct mm_struct * mm)
{
cpumask_t cpu_mask;
preempt_disable();
cpu_mask = mm->cpu_vm_mask;
cpu_clear(smp_processor_id(), cpu_mask);
if (current->active_mm == mm) {
if (current->mm)
local_flush_tlb();
else
leave_mm(smp_processor_id());
}
if (!cpus_empty(cpu_mask))
flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
check_pgt_cache();
preempt_enable();
}
void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
{
struct mm_struct *mm = vma->vm_mm;
cpumask_t cpu_mask;
preempt_disable();
cpu_mask = mm->cpu_vm_mask;
cpu_clear(smp_processor_id(), cpu_mask);
if (current->active_mm == mm) {
if(current->mm)
__flush_tlb_one(va);
else
leave_mm(smp_processor_id());
}
if (!cpus_empty(cpu_mask))
flush_tlb_others(cpu_mask, mm, va);
preempt_enable();
}
EXPORT_SYMBOL(flush_tlb_page);
static void do_flush_tlb_all(void* info)
{
unsigned long cpu = smp_processor_id();
__flush_tlb_all();
if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
leave_mm(cpu);
}
void flush_tlb_all(void)
{
on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
}
/*
* this function sends a 'reschedule' IPI to another CPU.
* it goes straight through and wastes no time serializing
* anything. Worst case is that we lose a reschedule ...
*/
static void native_smp_send_reschedule(int cpu)
{
WARN_ON(cpu_is_offline(cpu));
send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
}
/*
* Structure and data for smp_call_function(). This is designed to minimise
* static memory requirements. It also looks cleaner.
*/
static DEFINE_SPINLOCK(call_lock);
struct call_data_struct {
void (*func) (void *info);
void *info;
atomic_t started;
atomic_t finished;
int wait;
};
void lock_ipi_call_lock(void)
{
spin_lock_irq(&call_lock);
}
void unlock_ipi_call_lock(void)
{
spin_unlock_irq(&call_lock);
}
static struct call_data_struct *call_data;
static void __smp_call_function(void (*func) (void *info), void *info,
int nonatomic, int wait)
{
struct call_data_struct data;
int cpus = num_online_cpus() - 1;
if (!cpus)
return;
data.func = func;
data.info = info;
atomic_set(&data.started, 0);
data.wait = wait;
if (wait)
atomic_set(&data.finished, 0);
call_data = &data;
mb();
/* Send a message to all other CPUs and wait for them to respond */
send_IPI_allbutself(CALL_FUNCTION_VECTOR);
/* Wait for response */
while (atomic_read(&data.started) != cpus)
cpu_relax();
if (wait)
while (atomic_read(&data.finished) != cpus)
cpu_relax();
}
/**
* smp_call_function_mask(): Run a function on a set of other CPUs.
* @mask: The set of cpus to run on. Must not include the current cpu.
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @wait: If true, wait (atomically) until function has completed on other CPUs.
*
* Returns 0 on success, else a negative status code.
*
* If @wait is true, then returns once @func has returned; otherwise
* it returns just before the target cpu calls @func.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler.
*/
static int
native_smp_call_function_mask(cpumask_t mask,
void (*func)(void *), void *info,
int wait)
{
struct call_data_struct data;
cpumask_t allbutself;
int cpus;
/* Can deadlock when called with interrupts disabled */
WARN_ON(irqs_disabled());
/* Holding any lock stops cpus from going down. */
spin_lock(&call_lock);
allbutself = cpu_online_map;
cpu_clear(smp_processor_id(), allbutself);
cpus_and(mask, mask, allbutself);
cpus = cpus_weight(mask);
if (!cpus) {
spin_unlock(&call_lock);
return 0;
}
data.func = func;
data.info = info;
atomic_set(&data.started, 0);
data.wait = wait;
if (wait)
atomic_set(&data.finished, 0);
call_data = &data;
mb();
/* Send a message to other CPUs */
if (cpus_equal(mask, allbutself))
send_IPI_allbutself(CALL_FUNCTION_VECTOR);
else
send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
/* Wait for response */
while (atomic_read(&data.started) != cpus)
cpu_relax();
if (wait)
while (atomic_read(&data.finished) != cpus)
cpu_relax();
spin_unlock(&call_lock);
return 0;
}
static void stop_this_cpu (void * dummy)
{
local_irq_disable();
/*
* Remove this CPU:
*/
cpu_clear(smp_processor_id(), cpu_online_map);
disable_local_APIC();
if (cpu_data[smp_processor_id()].hlt_works_ok)
for(;;) halt();
for (;;);
}
/*
* this function calls the 'stop' function on all other CPUs in the system.
*/
static void native_smp_send_stop(void)
{
/* Don't deadlock on the call lock in panic */
int nolock = !spin_trylock(&call_lock);
unsigned long flags;
local_irq_save(flags);
__smp_call_function(stop_this_cpu, NULL, 0, 0);
if (!nolock)
spin_unlock(&call_lock);
disable_local_APIC();
local_irq_restore(flags);
}
/*
* Reschedule call back. Nothing to do,
* all the work is done automatically when
* we return from the interrupt.
*/
fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
{
ack_APIC_irq();
}
fastcall void smp_call_function_interrupt(struct pt_regs *regs)
{
void (*func) (void *info) = call_data->func;
void *info = call_data->info;
int wait = call_data->wait;
ack_APIC_irq();
/*
* Notify initiating CPU that I've grabbed the data and am
* about to execute the function
*/
mb();
atomic_inc(&call_data->started);
/*
* At this point the info structure may be out of scope unless wait==1
*/
irq_enter();
(*func)(info);
irq_exit();
if (wait) {
mb();
atomic_inc(&call_data->finished);
}
}
static int convert_apicid_to_cpu(int apic_id)
{
int i;
for (i = 0; i < NR_CPUS; i++) {
if (x86_cpu_to_apicid[i] == apic_id)
return i;
}
return -1;
}
int safe_smp_processor_id(void)
{
int apicid, cpuid;
if (!boot_cpu_has(X86_FEATURE_APIC))
return 0;
apicid = hard_smp_processor_id();
if (apicid == BAD_APICID)
return 0;
cpuid = convert_apicid_to_cpu(apicid);
return cpuid >= 0 ? cpuid : 0;
}
struct smp_ops smp_ops = {
.smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
.smp_prepare_cpus = native_smp_prepare_cpus,
.cpu_up = native_cpu_up,
.smp_cpus_done = native_smp_cpus_done,
.smp_send_stop = native_smp_send_stop,
.smp_send_reschedule = native_smp_send_reschedule,
.smp_call_function_mask = native_smp_call_function_mask,
};