summaryrefslogblamecommitdiffstats
path: root/drivers/iio/adc/xilinx-xadc-core.c
blob: ce93bd8e3f68b82fec81b31f8f1885b908ef0b45 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488







































































































































































































































































































































































































































































































                                                                                   
                                                
















































































































































































































































































































































































                                                                               
                                            











































































































































                                                                               
                                                                  










                                                                 
                                                                  




















































































































                                                                               
                                                                       









































































                                                                               

                                                            
                                                          
                 

                                                                        

                                                                
                                                     
                 


















































































































                                                                               







                                                      
/*
 * Xilinx XADC driver
 *
 * Copyright 2013-2014 Analog Devices Inc.
 *  Author: Lars-Peter Clauen <lars@metafoo.de>
 *
 * Licensed under the GPL-2.
 *
 * Documentation for the parts can be found at:
 *  - XADC hardmacro: Xilinx UG480
 *  - ZYNQ XADC interface: Xilinx UG585
 *  - AXI XADC interface: Xilinx PG019
 */

#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/sysfs.h>

#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>

#include "xilinx-xadc.h"

static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;

/* ZYNQ register definitions */
#define XADC_ZYNQ_REG_CFG	0x00
#define XADC_ZYNQ_REG_INTSTS	0x04
#define XADC_ZYNQ_REG_INTMSK	0x08
#define XADC_ZYNQ_REG_STATUS	0x0c
#define XADC_ZYNQ_REG_CFIFO	0x10
#define XADC_ZYNQ_REG_DFIFO	0x14
#define XADC_ZYNQ_REG_CTL		0x18

#define XADC_ZYNQ_CFG_ENABLE		BIT(31)
#define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
#define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
#define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
#define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
#define XADC_ZYNQ_CFG_WEDGE		BIT(13)
#define XADC_ZYNQ_CFG_REDGE		BIT(12)
#define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
#define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
#define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
#define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
#define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
#define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
#define XADC_ZYNQ_CFG_IGAP(x)		(x)

#define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
#define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
#define XADC_ZYNQ_INT_ALARM_MASK	0xff
#define XADC_ZYNQ_INT_ALARM_OFFSET	0

#define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
#define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
#define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
#define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
#define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
#define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
#define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
#define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
#define XADC_ZYNQ_STATUS_OT		BIT(7)
#define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)

#define XADC_ZYNQ_CTL_RESET		BIT(4)

#define XADC_ZYNQ_CMD_NOP		0x00
#define XADC_ZYNQ_CMD_READ		0x01
#define XADC_ZYNQ_CMD_WRITE		0x02

#define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))

/* AXI register definitions */
#define XADC_AXI_REG_RESET		0x00
#define XADC_AXI_REG_STATUS		0x04
#define XADC_AXI_REG_ALARM_STATUS	0x08
#define XADC_AXI_REG_CONVST		0x0c
#define XADC_AXI_REG_XADC_RESET		0x10
#define XADC_AXI_REG_GIER		0x5c
#define XADC_AXI_REG_IPISR		0x60
#define XADC_AXI_REG_IPIER		0x68
#define XADC_AXI_ADC_REG_OFFSET		0x200

#define XADC_AXI_RESET_MAGIC		0xa
#define XADC_AXI_GIER_ENABLE		BIT(31)

#define XADC_AXI_INT_EOS		BIT(4)
#define XADC_AXI_INT_ALARM_MASK		0x3c0f

#define XADC_FLAGS_BUFFERED BIT(0)

static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
	uint32_t val)
{
	writel(val, xadc->base + reg);
}

static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
	uint32_t *val)
{
	*val = readl(xadc->base + reg);
}

/*
 * The ZYNQ interface uses two asynchronous FIFOs for communication with the
 * XADC. Reads and writes to the XADC register are performed by submitting a
 * request to the command FIFO (CFIFO), once the request has been completed the
 * result can be read from the data FIFO (DFIFO). The method currently used in
 * this driver is to submit the request for a read/write operation, then go to
 * sleep and wait for an interrupt that signals that a response is available in
 * the data FIFO.
 */

static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
	unsigned int n)
{
	unsigned int i;

	for (i = 0; i < n; i++)
		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
}

static void xadc_zynq_drain_fifo(struct xadc *xadc)
{
	uint32_t status, tmp;

	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);

	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
	}
}

static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
	unsigned int val)
{
	xadc->zynq_intmask &= ~mask;
	xadc->zynq_intmask |= val;

	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
		xadc->zynq_intmask | xadc->zynq_masked_alarm);
}

static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
	uint16_t val)
{
	uint32_t cmd[1];
	uint32_t tmp;
	int ret;

	spin_lock_irq(&xadc->lock);
	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
			XADC_ZYNQ_INT_DFIFO_GTH);

	reinit_completion(&xadc->completion);

	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);

	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
	spin_unlock_irq(&xadc->lock);

	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
	if (ret == 0)
		ret = -EIO;
	else
		ret = 0;

	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);

	return ret;
}

static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
	uint16_t *val)
{
	uint32_t cmd[2];
	uint32_t resp, tmp;
	int ret;

	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);

	spin_lock_irq(&xadc->lock);
	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
			XADC_ZYNQ_INT_DFIFO_GTH);
	xadc_zynq_drain_fifo(xadc);
	reinit_completion(&xadc->completion);

	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);

	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
	spin_unlock_irq(&xadc->lock);
	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
	if (ret == 0)
		ret = -EIO;
	if (ret < 0)
		return ret;

	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);

	*val = resp & 0xffff;

	return 0;
}

static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
{
	return ((alarm & 0x80) >> 4) |
		((alarm & 0x78) << 1) |
		(alarm & 0x07);
}

/*
 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
 * threshold condition go way from within the interrupt handler, this means as
 * soon as a threshold condition is present we would enter the interrupt handler
 * again and again. To work around this we mask all active thresholds interrupts
 * in the interrupt handler and start a timer. In this timer we poll the
 * interrupt status and only if the interrupt is inactive we unmask it again.
 */
static void xadc_zynq_unmask_worker(struct work_struct *work)
{
	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
	unsigned int misc_sts, unmask;

	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);

	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;

	spin_lock_irq(&xadc->lock);

	/* Clear those bits which are not active anymore */
	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
	xadc->zynq_masked_alarm &= misc_sts;

	/* Also clear those which are masked out anyway */
	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;

	/* Clear the interrupts before we unmask them */
	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);

	xadc_zynq_update_intmsk(xadc, 0, 0);

	spin_unlock_irq(&xadc->lock);

	/* if still pending some alarm re-trigger the timer */
	if (xadc->zynq_masked_alarm) {
		schedule_delayed_work(&xadc->zynq_unmask_work,
				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
	}
}

static irqreturn_t xadc_zynq_threaded_interrupt_handler(int irq, void *devid)
{
	struct iio_dev *indio_dev = devid;
	struct xadc *xadc = iio_priv(indio_dev);
	unsigned int alarm;

	spin_lock_irq(&xadc->lock);
	alarm = xadc->zynq_alarm;
	xadc->zynq_alarm = 0;
	spin_unlock_irq(&xadc->lock);

	xadc_handle_events(indio_dev, xadc_zynq_transform_alarm(alarm));

	/* unmask the required interrupts in timer. */
	schedule_delayed_work(&xadc->zynq_unmask_work,
			msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));

	return IRQ_HANDLED;
}

static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
{
	struct iio_dev *indio_dev = devid;
	struct xadc *xadc = iio_priv(indio_dev);
	irqreturn_t ret = IRQ_HANDLED;
	uint32_t status;

	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);

	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);

	if (!status)
		return IRQ_NONE;

	spin_lock(&xadc->lock);

	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);

	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
			XADC_ZYNQ_INT_DFIFO_GTH);
		complete(&xadc->completion);
	}

	status &= XADC_ZYNQ_INT_ALARM_MASK;
	if (status) {
		xadc->zynq_alarm |= status;
		xadc->zynq_masked_alarm |= status;
		/*
		 * mask the current event interrupt,
		 * unmask it when the interrupt is no more active.
		 */
		xadc_zynq_update_intmsk(xadc, 0, 0);
		ret = IRQ_WAKE_THREAD;
	}
	spin_unlock(&xadc->lock);

	return ret;
}

#define XADC_ZYNQ_TCK_RATE_MAX 50000000
#define XADC_ZYNQ_IGAP_DEFAULT 20

static int xadc_zynq_setup(struct platform_device *pdev,
	struct iio_dev *indio_dev, int irq)
{
	struct xadc *xadc = iio_priv(indio_dev);
	unsigned long pcap_rate;
	unsigned int tck_div;
	unsigned int div;
	unsigned int igap;
	unsigned int tck_rate;

	/* TODO: Figure out how to make igap and tck_rate configurable */
	igap = XADC_ZYNQ_IGAP_DEFAULT;
	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;

	xadc->zynq_intmask = ~0;

	pcap_rate = clk_get_rate(xadc->clk);

	if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
		tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
	if (tck_rate > pcap_rate / 2) {
		div = 2;
	} else {
		div = pcap_rate / tck_rate;
		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
			div++;
	}

	if (div <= 3)
		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
	else if (div <= 7)
		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
	else if (div <= 15)
		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
	else
		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;

	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
			tck_div | XADC_ZYNQ_CFG_IGAP(igap));

	return 0;
}

static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
{
	unsigned int div;
	uint32_t val;

	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);

	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
		div = 4;
		break;
	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
		div = 8;
		break;
	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
		div = 16;
		break;
	default:
		div = 2;
		break;
	}

	return clk_get_rate(xadc->clk) / div;
}

static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
{
	unsigned long flags;
	uint32_t status;

	/* Move OT to bit 7 */
	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);

	spin_lock_irqsave(&xadc->lock, flags);

	/* Clear previous interrupts if any. */
	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);

	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
		~alarm & XADC_ZYNQ_INT_ALARM_MASK);

	spin_unlock_irqrestore(&xadc->lock, flags);
}

static const struct xadc_ops xadc_zynq_ops = {
	.read = xadc_zynq_read_adc_reg,
	.write = xadc_zynq_write_adc_reg,
	.setup = xadc_zynq_setup,
	.get_dclk_rate = xadc_zynq_get_dclk_rate,
	.interrupt_handler = xadc_zynq_interrupt_handler,
	.threaded_interrupt_handler = xadc_zynq_threaded_interrupt_handler,
	.update_alarm = xadc_zynq_update_alarm,
};

static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
	uint16_t *val)
{
	uint32_t val32;

	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
	*val = val32 & 0xffff;

	return 0;
}

static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
	uint16_t val)
{
	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);

	return 0;
}

static int xadc_axi_setup(struct platform_device *pdev,
	struct iio_dev *indio_dev, int irq)
{
	struct xadc *xadc = iio_priv(indio_dev);

	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);

	return 0;
}

static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
{
	struct iio_dev *indio_dev = devid;
	struct xadc *xadc = iio_priv(indio_dev);
	uint32_t status, mask;
	unsigned int events;

	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
	status &= mask;

	if (!status)
		return IRQ_NONE;

	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
		iio_trigger_poll(xadc->trigger);

	if (status & XADC_AXI_INT_ALARM_MASK) {
		/*
		 * The order of the bits in the AXI-XADC status register does
		 * not match the order of the bits in the XADC alarm enable
		 * register. xadc_handle_events() expects the events to be in
		 * the same order as the XADC alarm enable register.
		 */
		events = (status & 0x000e) >> 1;
		events |= (status & 0x0001) << 3;
		events |= (status & 0x3c00) >> 6;
		xadc_handle_events(indio_dev, events);
	}

	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);

	return IRQ_HANDLED;
}

static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
{
	uint32_t val;
	unsigned long flags;

	/*
	 * The order of the bits in the AXI-XADC status register does not match
	 * the order of the bits in the XADC alarm enable register. We get
	 * passed the alarm mask in the same order as in the XADC alarm enable
	 * register.
	 */
	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
			((alarm & 0xf0) << 6);

	spin_lock_irqsave(&xadc->lock, flags);
	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
	val &= ~XADC_AXI_INT_ALARM_MASK;
	val |= alarm;
	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
	spin_unlock_irqrestore(&xadc->lock, flags);
}

static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
{
	return clk_get_rate(xadc->clk);
}

static const struct xadc_ops xadc_axi_ops = {
	.read = xadc_axi_read_adc_reg,
	.write = xadc_axi_write_adc_reg,
	.setup = xadc_axi_setup,
	.get_dclk_rate = xadc_axi_get_dclk,
	.update_alarm = xadc_axi_update_alarm,
	.interrupt_handler = xadc_axi_interrupt_handler,
	.flags = XADC_FLAGS_BUFFERED,
};

static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
	uint16_t mask, uint16_t val)
{
	uint16_t tmp;
	int ret;

	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
	if (ret)
		return ret;

	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
}

static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
	uint16_t mask, uint16_t val)
{
	int ret;

	mutex_lock(&xadc->mutex);
	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
	mutex_unlock(&xadc->mutex);

	return ret;
}

static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
{
	return xadc->ops->get_dclk_rate(xadc);
}

static int xadc_update_scan_mode(struct iio_dev *indio_dev,
	const unsigned long *mask)
{
	struct xadc *xadc = iio_priv(indio_dev);
	unsigned int n;

	n = bitmap_weight(mask, indio_dev->masklength);

	kfree(xadc->data);
	xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
	if (!xadc->data)
		return -ENOMEM;

	return 0;
}

static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
{
	switch (scan_index) {
	case 5:
		return XADC_REG_VCCPINT;
	case 6:
		return XADC_REG_VCCPAUX;
	case 7:
		return XADC_REG_VCCO_DDR;
	case 8:
		return XADC_REG_TEMP;
	case 9:
		return XADC_REG_VCCINT;
	case 10:
		return XADC_REG_VCCAUX;
	case 11:
		return XADC_REG_VPVN;
	case 12:
		return XADC_REG_VREFP;
	case 13:
		return XADC_REG_VREFN;
	case 14:
		return XADC_REG_VCCBRAM;
	default:
		return XADC_REG_VAUX(scan_index - 16);
	}
}

static irqreturn_t xadc_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct xadc *xadc = iio_priv(indio_dev);
	unsigned int chan;
	int i, j;

	if (!xadc->data)
		goto out;

	j = 0;
	for_each_set_bit(i, indio_dev->active_scan_mask,
		indio_dev->masklength) {
		chan = xadc_scan_index_to_channel(i);
		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
		j++;
	}

	iio_push_to_buffers(indio_dev, xadc->data);

out:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
{
	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
	unsigned long flags;
	unsigned int convst;
	unsigned int val;
	int ret = 0;

	mutex_lock(&xadc->mutex);

	if (state) {
		/* Only one of the two triggers can be active at the a time. */
		if (xadc->trigger != NULL) {
			ret = -EBUSY;
			goto err_out;
		} else {
			xadc->trigger = trigger;
			if (trigger == xadc->convst_trigger)
				convst = XADC_CONF0_EC;
			else
				convst = 0;
		}
		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
					convst);
		if (ret)
			goto err_out;
	} else {
		xadc->trigger = NULL;
	}

	spin_lock_irqsave(&xadc->lock, flags);
	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
	if (state)
		val |= XADC_AXI_INT_EOS;
	else
		val &= ~XADC_AXI_INT_EOS;
	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
	spin_unlock_irqrestore(&xadc->lock, flags);

err_out:
	mutex_unlock(&xadc->mutex);

	return ret;
}

static const struct iio_trigger_ops xadc_trigger_ops = {
	.owner = THIS_MODULE,
	.set_trigger_state = &xadc_trigger_set_state,
};

static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
	const char *name)
{
	struct iio_trigger *trig;
	int ret;

	trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
				indio_dev->id, name);
	if (trig == NULL)
		return ERR_PTR(-ENOMEM);

	trig->dev.parent = indio_dev->dev.parent;
	trig->ops = &xadc_trigger_ops;
	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));

	ret = iio_trigger_register(trig);
	if (ret)
		goto error_free_trig;

	return trig;

error_free_trig:
	iio_trigger_free(trig);
	return ERR_PTR(ret);
}

static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
{
	uint16_t val;

	switch (seq_mode) {
	case XADC_CONF1_SEQ_SIMULTANEOUS:
	case XADC_CONF1_SEQ_INDEPENDENT:
		val = XADC_CONF2_PD_ADC_B;
		break;
	default:
		val = 0;
		break;
	}

	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
		val);
}

static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
{
	unsigned int aux_scan_mode = scan_mode >> 16;

	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
		return XADC_CONF1_SEQ_SIMULTANEOUS;

	if ((aux_scan_mode & 0xff00) == 0 ||
		(aux_scan_mode & 0x00ff) == 0)
		return XADC_CONF1_SEQ_CONTINUOUS;

	return XADC_CONF1_SEQ_SIMULTANEOUS;
}

static int xadc_postdisable(struct iio_dev *indio_dev)
{
	struct xadc *xadc = iio_priv(indio_dev);
	unsigned long scan_mask;
	int ret;
	int i;

	scan_mask = 1; /* Run calibration as part of the sequence */
	for (i = 0; i < indio_dev->num_channels; i++)
		scan_mask |= BIT(indio_dev->channels[i].scan_index);

	/* Enable all channels and calibration */
	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
	if (ret)
		return ret;

	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
	if (ret)
		return ret;

	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
		XADC_CONF1_SEQ_CONTINUOUS);
	if (ret)
		return ret;

	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
}

static int xadc_preenable(struct iio_dev *indio_dev)
{
	struct xadc *xadc = iio_priv(indio_dev);
	unsigned long scan_mask;
	int seq_mode;
	int ret;

	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
		XADC_CONF1_SEQ_DEFAULT);
	if (ret)
		goto err;

	scan_mask = *indio_dev->active_scan_mask;
	seq_mode = xadc_get_seq_mode(xadc, scan_mask);

	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
	if (ret)
		goto err;

	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
	if (ret)
		goto err;

	ret = xadc_power_adc_b(xadc, seq_mode);
	if (ret)
		goto err;

	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
		seq_mode);
	if (ret)
		goto err;

	return 0;
err:
	xadc_postdisable(indio_dev);
	return ret;
}

static struct iio_buffer_setup_ops xadc_buffer_ops = {
	.preenable = &xadc_preenable,
	.postenable = &iio_triggered_buffer_postenable,
	.predisable = &iio_triggered_buffer_predisable,
	.postdisable = &xadc_postdisable,
};

static int xadc_read_raw(struct iio_dev *indio_dev,
	struct iio_chan_spec const *chan, int *val, int *val2, long info)
{
	struct xadc *xadc = iio_priv(indio_dev);
	unsigned int div;
	uint16_t val16;
	int ret;

	switch (info) {
	case IIO_CHAN_INFO_RAW:
		if (iio_buffer_enabled(indio_dev))
			return -EBUSY;
		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
		if (ret < 0)
			return ret;

		val16 >>= 4;
		if (chan->scan_type.sign == 'u')
			*val = val16;
		else
			*val = sign_extend32(val16, 11);

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		switch (chan->type) {
		case IIO_VOLTAGE:
			/* V = (val * 3.0) / 4096 */
			switch (chan->address) {
			case XADC_REG_VCCINT:
			case XADC_REG_VCCAUX:
			case XADC_REG_VREFP:
			case XADC_REG_VCCBRAM:
			case XADC_REG_VCCPINT:
			case XADC_REG_VCCPAUX:
			case XADC_REG_VCCO_DDR:
				*val = 3000;
				break;
			default:
				*val = 1000;
				break;
			}
			*val2 = 12;
			return IIO_VAL_FRACTIONAL_LOG2;
		case IIO_TEMP:
			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
			*val = 503975;
			*val2 = 12;
			return IIO_VAL_FRACTIONAL_LOG2;
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_OFFSET:
		/* Only the temperature channel has an offset */
		*val = -((273150 << 12) / 503975);
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SAMP_FREQ:
		ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
		if (ret)
			return ret;

		div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
		if (div < 2)
			div = 2;

		*val = xadc_get_dclk_rate(xadc) / div / 26;

		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}
}

static int xadc_write_raw(struct iio_dev *indio_dev,
	struct iio_chan_spec const *chan, int val, int val2, long info)
{
	struct xadc *xadc = iio_priv(indio_dev);
	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
	unsigned int div;

	if (info != IIO_CHAN_INFO_SAMP_FREQ)
		return -EINVAL;

	if (val <= 0)
		return -EINVAL;

	/* Max. 150 kSPS */
	if (val > 150000)
		val = 150000;

	val *= 26;

	/* Min 1MHz */
	if (val < 1000000)
		val = 1000000;

	/*
	 * We want to round down, but only if we do not exceed the 150 kSPS
	 * limit.
	 */
	div = clk_rate / val;
	if (clk_rate / div / 26 > 150000)
		div++;
	if (div < 2)
		div = 2;
	else if (div > 0xff)
		div = 0xff;

	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
		div << XADC_CONF2_DIV_OFFSET);
}

static const struct iio_event_spec xadc_temp_events[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_RISING,
		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
				BIT(IIO_EV_INFO_VALUE) |
				BIT(IIO_EV_INFO_HYSTERESIS),
	},
};

/* Separate values for upper and lower thresholds, but only a shared enabled */
static const struct iio_event_spec xadc_voltage_events[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_RISING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE),
	}, {
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_FALLING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE),
	}, {
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_EITHER,
		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
	},
};

#define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
	.type = IIO_TEMP, \
	.indexed = 1, \
	.channel = (_chan), \
	.address = (_addr), \
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
		BIT(IIO_CHAN_INFO_SCALE) | \
		BIT(IIO_CHAN_INFO_OFFSET), \
	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
	.event_spec = xadc_temp_events, \
	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
	.scan_index = (_scan_index), \
	.scan_type = { \
		.sign = 'u', \
		.realbits = 12, \
		.storagebits = 16, \
		.shift = 4, \
		.endianness = IIO_CPU, \
	}, \
}

#define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
	.type = IIO_VOLTAGE, \
	.indexed = 1, \
	.channel = (_chan), \
	.address = (_addr), \
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
		BIT(IIO_CHAN_INFO_SCALE), \
	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
	.scan_index = (_scan_index), \
	.scan_type = { \
		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
		.realbits = 12, \
		.storagebits = 16, \
		.shift = 4, \
		.endianness = IIO_CPU, \
	}, \
	.extend_name = _ext, \
}

static const struct iio_chan_spec xadc_channels[] = {
	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
};

static const struct iio_info xadc_info = {
	.read_raw = &xadc_read_raw,
	.write_raw = &xadc_write_raw,
	.read_event_config = &xadc_read_event_config,
	.write_event_config = &xadc_write_event_config,
	.read_event_value = &xadc_read_event_value,
	.write_event_value = &xadc_write_event_value,
	.update_scan_mode = &xadc_update_scan_mode,
	.driver_module = THIS_MODULE,
};

static const struct of_device_id xadc_of_match_table[] = {
	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
	{ },
};
MODULE_DEVICE_TABLE(of, xadc_of_match_table);

static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
	unsigned int *conf)
{
	struct xadc *xadc = iio_priv(indio_dev);
	struct iio_chan_spec *channels, *chan;
	struct device_node *chan_node, *child;
	unsigned int num_channels;
	const char *external_mux;
	u32 ext_mux_chan;
	int reg;
	int ret;

	*conf = 0;

	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
	else if (strcasecmp(external_mux, "single") == 0)
		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
	else if (strcasecmp(external_mux, "dual") == 0)
		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
	else
		return -EINVAL;

	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
					&ext_mux_chan);
		if (ret < 0)
			return ret;

		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
			if (ext_mux_chan == 0)
				ext_mux_chan = XADC_REG_VPVN;
			else if (ext_mux_chan <= 16)
				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
			else
				return -EINVAL;
		} else {
			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
			else
				return -EINVAL;
		}

		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
	}

	channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
	if (!channels)
		return -ENOMEM;

	num_channels = 9;
	chan = &channels[9];

	chan_node = of_get_child_by_name(np, "xlnx,channels");
	if (chan_node) {
		for_each_child_of_node(chan_node, child) {
			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
				of_node_put(child);
				break;
			}

			ret = of_property_read_u32(child, "reg", &reg);
			if (ret || reg > 16)
				continue;

			if (of_property_read_bool(child, "xlnx,bipolar"))
				chan->scan_type.sign = 's';

			if (reg == 0) {
				chan->scan_index = 11;
				chan->address = XADC_REG_VPVN;
			} else {
				chan->scan_index = 15 + reg;
				chan->address = XADC_REG_VAUX(reg - 1);
			}
			num_channels++;
			chan++;
		}
	}
	of_node_put(chan_node);

	indio_dev->num_channels = num_channels;
	indio_dev->channels = krealloc(channels, sizeof(*channels) *
					num_channels, GFP_KERNEL);
	/* If we can't resize the channels array, just use the original */
	if (!indio_dev->channels)
		indio_dev->channels = channels;

	return 0;
}

static int xadc_probe(struct platform_device *pdev)
{
	const struct of_device_id *id;
	struct iio_dev *indio_dev;
	unsigned int bipolar_mask;
	struct resource *mem;
	unsigned int conf0;
	struct xadc *xadc;
	int ret;
	int irq;
	int i;

	if (!pdev->dev.of_node)
		return -ENODEV;

	id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
	if (!id)
		return -EINVAL;

	irq = platform_get_irq(pdev, 0);
	if (irq <= 0)
		return -ENXIO;

	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
	if (!indio_dev)
		return -ENOMEM;

	xadc = iio_priv(indio_dev);
	xadc->ops = id->data;
	init_completion(&xadc->completion);
	mutex_init(&xadc->mutex);
	spin_lock_init(&xadc->lock);
	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	xadc->base = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(xadc->base))
		return PTR_ERR(xadc->base);

	indio_dev->dev.parent = &pdev->dev;
	indio_dev->dev.of_node = pdev->dev.of_node;
	indio_dev->name = "xadc";
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &xadc_info;

	ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
	if (ret)
		goto err_device_free;

	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
		ret = iio_triggered_buffer_setup(indio_dev,
			&iio_pollfunc_store_time, &xadc_trigger_handler,
			&xadc_buffer_ops);
		if (ret)
			goto err_device_free;

		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
		if (IS_ERR(xadc->convst_trigger)) {
			ret = PTR_ERR(xadc->convst_trigger);
			goto err_triggered_buffer_cleanup;
		}
		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
			"samplerate");
		if (IS_ERR(xadc->samplerate_trigger)) {
			ret = PTR_ERR(xadc->samplerate_trigger);
			goto err_free_convst_trigger;
		}
	}

	xadc->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(xadc->clk)) {
		ret = PTR_ERR(xadc->clk);
		goto err_free_samplerate_trigger;
	}
	clk_prepare_enable(xadc->clk);

	ret = xadc->ops->setup(pdev, indio_dev, irq);
	if (ret)
		goto err_free_samplerate_trigger;

	ret = request_threaded_irq(irq, xadc->ops->interrupt_handler,
				xadc->ops->threaded_interrupt_handler,
				0, dev_name(&pdev->dev), indio_dev);
	if (ret)
		goto err_clk_disable_unprepare;

	for (i = 0; i < 16; i++)
		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
			&xadc->threshold[i]);

	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
	if (ret)
		goto err_free_irq;

	bipolar_mask = 0;
	for (i = 0; i < indio_dev->num_channels; i++) {
		if (indio_dev->channels[i].scan_type.sign == 's')
			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
	}

	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
	if (ret)
		goto err_free_irq;
	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
		bipolar_mask >> 16);
	if (ret)
		goto err_free_irq;

	/* Disable all alarms */
	xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
		XADC_CONF1_ALARM_MASK);

	/* Set thresholds to min/max */
	for (i = 0; i < 16; i++) {
		/*
		 * Set max voltage threshold and both temperature thresholds to
		 * 0xffff, min voltage threshold to 0.
		 */
		if (i % 8 < 4 || i == 7)
			xadc->threshold[i] = 0xffff;
		else
			xadc->threshold[i] = 0;
		xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
			xadc->threshold[i]);
	}

	/* Go to non-buffered mode */
	xadc_postdisable(indio_dev);

	ret = iio_device_register(indio_dev);
	if (ret)
		goto err_free_irq;

	platform_set_drvdata(pdev, indio_dev);

	return 0;

err_free_irq:
	free_irq(irq, indio_dev);
err_free_samplerate_trigger:
	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
		iio_trigger_free(xadc->samplerate_trigger);
err_free_convst_trigger:
	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
		iio_trigger_free(xadc->convst_trigger);
err_triggered_buffer_cleanup:
	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
		iio_triggered_buffer_cleanup(indio_dev);
err_clk_disable_unprepare:
	clk_disable_unprepare(xadc->clk);
err_device_free:
	kfree(indio_dev->channels);

	return ret;
}

static int xadc_remove(struct platform_device *pdev)
{
	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
	struct xadc *xadc = iio_priv(indio_dev);
	int irq = platform_get_irq(pdev, 0);

	iio_device_unregister(indio_dev);
	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
		iio_trigger_free(xadc->samplerate_trigger);
		iio_trigger_free(xadc->convst_trigger);
		iio_triggered_buffer_cleanup(indio_dev);
	}
	free_irq(irq, indio_dev);
	clk_disable_unprepare(xadc->clk);
	cancel_delayed_work(&xadc->zynq_unmask_work);
	kfree(xadc->data);
	kfree(indio_dev->channels);

	return 0;
}

static struct platform_driver xadc_driver = {
	.probe = xadc_probe,
	.remove = xadc_remove,
	.driver = {
		.name = "xadc",
		.of_match_table = xadc_of_match_table,
	},
};
module_platform_driver(xadc_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Xilinx XADC IIO driver");