summaryrefslogblamecommitdiffstats
path: root/drivers/misc/carma/carma-fpga-program.c
blob: 7be89832db19f90ca2e1182fe91b77fa08efcea1 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517











                                                                          

                             






















































































































































































































































































































































































































































































































                                                                                
                                          































                                                                           
                                      


























































































































































































































































































                                                                                


                                     


























                                                                               


                                     

























































                                                                             
                                                         
























                                                                 
                                                    






















                                                                       
                                       







                                           






























































































































                                                                              
                                                















                                                           
                                                         



                                  
                                                    








                                                       
/*
 * CARMA Board DATA-FPGA Programmer
 *
 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or (at your
 * option) any later version.
 */

#include <linux/dma-mapping.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/completion.h>
#include <linux/miscdevice.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/leds.h>
#include <linux/slab.h>
#include <linux/kref.h>
#include <linux/fs.h>
#include <linux/io.h>

#include <media/videobuf-dma-sg.h>

/* MPC8349EMDS specific get_immrbase() */
#include <sysdev/fsl_soc.h>

static const char drv_name[] = "carma-fpga-program";

/*
 * Firmware images are always this exact size
 *
 * 12849552 bytes for a CARMA Digitizer Board (EP2S90 FPGAs)
 * 18662880 bytes for a CARMA Correlator Board (EP2S130 FPGAs)
 */
#define FW_SIZE_EP2S90		12849552
#define FW_SIZE_EP2S130		18662880

struct fpga_dev {
	struct miscdevice miscdev;

	/* Reference count */
	struct kref ref;

	/* Device Registers */
	struct device *dev;
	void __iomem *regs;
	void __iomem *immr;

	/* Freescale DMA Device */
	struct dma_chan *chan;

	/* Interrupts */
	int irq, status;
	struct completion completion;

	/* FPGA Bitfile */
	struct mutex lock;

	struct videobuf_dmabuf vb;
	bool vb_allocated;

	/* max size and written bytes */
	size_t fw_size;
	size_t bytes;
};

/*
 * FPGA Bitfile Helpers
 */

/**
 * fpga_drop_firmware_data() - drop the bitfile image from memory
 * @priv: the driver's private data structure
 *
 * LOCKING: must hold priv->lock
 */
static void fpga_drop_firmware_data(struct fpga_dev *priv)
{
	videobuf_dma_free(&priv->vb);
	priv->vb_allocated = false;
	priv->bytes = 0;
}

/*
 * Private Data Reference Count
 */

static void fpga_dev_remove(struct kref *ref)
{
	struct fpga_dev *priv = container_of(ref, struct fpga_dev, ref);

	/* free any firmware image that was not programmed */
	fpga_drop_firmware_data(priv);

	mutex_destroy(&priv->lock);
	kfree(priv);
}

/*
 * LED Trigger (could be a seperate module)
 */

/*
 * NOTE: this whole thing does have the problem that whenever the led's are
 * NOTE: first set to use the fpga trigger, they could be in the wrong state
 */

DEFINE_LED_TRIGGER(ledtrig_fpga);

static void ledtrig_fpga_programmed(bool enabled)
{
	if (enabled)
		led_trigger_event(ledtrig_fpga, LED_FULL);
	else
		led_trigger_event(ledtrig_fpga, LED_OFF);
}

/*
 * FPGA Register Helpers
 */

/* Register Definitions */
#define FPGA_CONFIG_CONTROL		0x40
#define FPGA_CONFIG_STATUS		0x44
#define FPGA_CONFIG_FIFO_SIZE		0x48
#define FPGA_CONFIG_FIFO_USED		0x4C
#define FPGA_CONFIG_TOTAL_BYTE_COUNT	0x50
#define FPGA_CONFIG_CUR_BYTE_COUNT	0x54

#define FPGA_FIFO_ADDRESS		0x3000

static int fpga_fifo_size(void __iomem *regs)
{
	return ioread32be(regs + FPGA_CONFIG_FIFO_SIZE);
}

#define CFG_STATUS_ERR_MASK	0xfffe

static int fpga_config_error(void __iomem *regs)
{
	return ioread32be(regs + FPGA_CONFIG_STATUS) & CFG_STATUS_ERR_MASK;
}

static int fpga_fifo_empty(void __iomem *regs)
{
	return ioread32be(regs + FPGA_CONFIG_FIFO_USED) == 0;
}

static void fpga_fifo_write(void __iomem *regs, u32 val)
{
	iowrite32be(val, regs + FPGA_FIFO_ADDRESS);
}

static void fpga_set_byte_count(void __iomem *regs, u32 count)
{
	iowrite32be(count, regs + FPGA_CONFIG_TOTAL_BYTE_COUNT);
}

#define CFG_CTL_ENABLE	(1 << 0)
#define CFG_CTL_RESET	(1 << 1)
#define CFG_CTL_DMA	(1 << 2)

static void fpga_programmer_enable(struct fpga_dev *priv, bool dma)
{
	u32 val;

	val = (dma) ? (CFG_CTL_ENABLE | CFG_CTL_DMA) : CFG_CTL_ENABLE;
	iowrite32be(val, priv->regs + FPGA_CONFIG_CONTROL);
}

static void fpga_programmer_disable(struct fpga_dev *priv)
{
	iowrite32be(0x0, priv->regs + FPGA_CONFIG_CONTROL);
}

static void fpga_dump_registers(struct fpga_dev *priv)
{
	u32 control, status, size, used, total, curr;

	/* good status: do nothing */
	if (priv->status == 0)
		return;

	/* Dump all status registers */
	control = ioread32be(priv->regs + FPGA_CONFIG_CONTROL);
	status = ioread32be(priv->regs + FPGA_CONFIG_STATUS);
	size = ioread32be(priv->regs + FPGA_CONFIG_FIFO_SIZE);
	used = ioread32be(priv->regs + FPGA_CONFIG_FIFO_USED);
	total = ioread32be(priv->regs + FPGA_CONFIG_TOTAL_BYTE_COUNT);
	curr = ioread32be(priv->regs + FPGA_CONFIG_CUR_BYTE_COUNT);

	dev_err(priv->dev, "Configuration failed, dumping status registers\n");
	dev_err(priv->dev, "Control:    0x%.8x\n", control);
	dev_err(priv->dev, "Status:     0x%.8x\n", status);
	dev_err(priv->dev, "FIFO Size:  0x%.8x\n", size);
	dev_err(priv->dev, "FIFO Used:  0x%.8x\n", used);
	dev_err(priv->dev, "FIFO Total: 0x%.8x\n", total);
	dev_err(priv->dev, "FIFO Curr:  0x%.8x\n", curr);
}

/*
 * FPGA Power Supply Code
 */

#define CTL_PWR_CONTROL		0x2006
#define CTL_PWR_STATUS		0x200A
#define CTL_PWR_FAIL		0x200B

#define PWR_CONTROL_ENABLE	0x01

#define PWR_STATUS_ERROR_MASK	0x10
#define PWR_STATUS_GOOD		0x0f

/*
 * Determine if the FPGA power is good for all supplies
 */
static bool fpga_power_good(struct fpga_dev *priv)
{
	u8 val;

	val = ioread8(priv->regs + CTL_PWR_STATUS);
	if (val & PWR_STATUS_ERROR_MASK)
		return false;

	return val == PWR_STATUS_GOOD;
}

/*
 * Disable the FPGA power supplies
 */
static void fpga_disable_power_supplies(struct fpga_dev *priv)
{
	unsigned long start;
	u8 val;

	iowrite8(0x0, priv->regs + CTL_PWR_CONTROL);

	/*
	 * Wait 500ms for the power rails to discharge
	 *
	 * Without this delay, the CTL-CPLD state machine can get into a
	 * state where it is waiting for the power-goods to assert, but they
	 * never do. This only happens when enabling and disabling the
	 * power sequencer very rapidly.
	 *
	 * The loop below will also wait for the power goods to de-assert,
	 * but testing has shown that they are always disabled by the time
	 * the sleep completes. However, omitting the sleep and only waiting
	 * for the power-goods to de-assert was not sufficient to ensure
	 * that the power sequencer would not wedge itself.
	 */
	msleep(500);

	start = jiffies;
	while (time_before(jiffies, start + HZ)) {
		val = ioread8(priv->regs + CTL_PWR_STATUS);
		if (!(val & PWR_STATUS_GOOD))
			break;

		usleep_range(5000, 10000);
	}

	val = ioread8(priv->regs + CTL_PWR_STATUS);
	if (val & PWR_STATUS_GOOD) {
		dev_err(priv->dev, "power disable failed: "
				   "power goods: status 0x%.2x\n", val);
	}

	if (val & PWR_STATUS_ERROR_MASK) {
		dev_err(priv->dev, "power disable failed: "
				   "alarm bit set: status 0x%.2x\n", val);
	}
}

/**
 * fpga_enable_power_supplies() - enable the DATA-FPGA power supplies
 * @priv: the driver's private data structure
 *
 * Enable the DATA-FPGA power supplies, waiting up to 1 second for
 * them to enable successfully.
 *
 * Returns 0 on success, -ERRNO otherwise
 */
static int fpga_enable_power_supplies(struct fpga_dev *priv)
{
	unsigned long start = jiffies;

	if (fpga_power_good(priv)) {
		dev_dbg(priv->dev, "power was already good\n");
		return 0;
	}

	iowrite8(PWR_CONTROL_ENABLE, priv->regs + CTL_PWR_CONTROL);
	while (time_before(jiffies, start + HZ)) {
		if (fpga_power_good(priv))
			return 0;

		usleep_range(5000, 10000);
	}

	return fpga_power_good(priv) ? 0 : -ETIMEDOUT;
}

/*
 * Determine if the FPGA power supplies are all enabled
 */
static bool fpga_power_enabled(struct fpga_dev *priv)
{
	u8 val;

	val = ioread8(priv->regs + CTL_PWR_CONTROL);
	if (val & PWR_CONTROL_ENABLE)
		return true;

	return false;
}

/*
 * Determine if the FPGA's are programmed and running correctly
 */
static bool fpga_running(struct fpga_dev *priv)
{
	if (!fpga_power_good(priv))
		return false;

	/* Check the config done bit */
	return ioread32be(priv->regs + FPGA_CONFIG_STATUS) & (1 << 18);
}

/*
 * FPGA Programming Code
 */

/**
 * fpga_program_block() - put a block of data into the programmer's FIFO
 * @priv: the driver's private data structure
 * @buf: the data to program
 * @count: the length of data to program (must be a multiple of 4 bytes)
 *
 * Returns 0 on success, -ERRNO otherwise
 */
static int fpga_program_block(struct fpga_dev *priv, void *buf, size_t count)
{
	u32 *data = buf;
	int size = fpga_fifo_size(priv->regs);
	int i, len;
	unsigned long timeout;

	/* enforce correct data length for the FIFO */
	BUG_ON(count % 4 != 0);

	while (count > 0) {

		/* Get the size of the block to write (maximum is FIFO_SIZE) */
		len = min_t(size_t, count, size);
		timeout = jiffies + HZ / 4;

		/* Write the block */
		for (i = 0; i < len / 4; i++)
			fpga_fifo_write(priv->regs, data[i]);

		/* Update the amounts left */
		count -= len;
		data += len / 4;

		/* Wait for the fifo to empty */
		while (true) {

			if (fpga_fifo_empty(priv->regs)) {
				break;
			} else {
				dev_dbg(priv->dev, "Fifo not empty\n");
				cpu_relax();
			}

			if (fpga_config_error(priv->regs)) {
				dev_err(priv->dev, "Error detected\n");
				return -EIO;
			}

			if (time_after(jiffies, timeout)) {
				dev_err(priv->dev, "Fifo drain timeout\n");
				return -ETIMEDOUT;
			}

			usleep_range(5000, 10000);
		}
	}

	return 0;
}

/**
 * fpga_program_cpu() - program the DATA-FPGA's using the CPU
 * @priv: the driver's private data structure
 *
 * This is useful when the DMA programming method fails. It is possible to
 * wedge the Freescale DMA controller such that the DMA programming method
 * always fails. This method has always succeeded.
 *
 * Returns 0 on success, -ERRNO otherwise
 */
static noinline int fpga_program_cpu(struct fpga_dev *priv)
{
	int ret;

	/* Disable the programmer */
	fpga_programmer_disable(priv);

	/* Set the total byte count */
	fpga_set_byte_count(priv->regs, priv->bytes);
	dev_dbg(priv->dev, "total byte count %u bytes\n", priv->bytes);

	/* Enable the controller for programming */
	fpga_programmer_enable(priv, false);
	dev_dbg(priv->dev, "enabled the controller\n");

	/* Write each chunk of the FPGA bitfile to FPGA programmer */
	ret = fpga_program_block(priv, priv->vb.vaddr, priv->bytes);
	if (ret)
		goto out_disable_controller;

	/* Wait for the interrupt handler to signal that programming finished */
	ret = wait_for_completion_timeout(&priv->completion, 2 * HZ);
	if (!ret) {
		dev_err(priv->dev, "Timed out waiting for completion\n");
		ret = -ETIMEDOUT;
		goto out_disable_controller;
	}

	/* Retrieve the status from the interrupt handler */
	ret = priv->status;

out_disable_controller:
	fpga_programmer_disable(priv);
	return ret;
}

#define FIFO_DMA_ADDRESS	0xf0003000
#define FIFO_MAX_LEN		4096

/**
 * fpga_program_dma() - program the DATA-FPGA's using the DMA engine
 * @priv: the driver's private data structure
 *
 * Program the DATA-FPGA's using the Freescale DMA engine. This requires that
 * the engine is programmed such that the hardware DMA request lines can
 * control the entire DMA transaction. The system controller FPGA then
 * completely offloads the programming from the CPU.
 *
 * Returns 0 on success, -ERRNO otherwise
 */
static noinline int fpga_program_dma(struct fpga_dev *priv)
{
	struct videobuf_dmabuf *vb = &priv->vb;
	struct dma_chan *chan = priv->chan;
	struct dma_async_tx_descriptor *tx;
	size_t num_pages, len, avail = 0;
	struct dma_slave_config config;
	struct scatterlist *sg;
	struct sg_table table;
	dma_cookie_t cookie;
	int ret, i;

	/* Disable the programmer */
	fpga_programmer_disable(priv);

	/* Allocate a scatterlist for the DMA destination */
	num_pages = DIV_ROUND_UP(priv->bytes, FIFO_MAX_LEN);
	ret = sg_alloc_table(&table, num_pages, GFP_KERNEL);
	if (ret) {
		dev_err(priv->dev, "Unable to allocate dst scatterlist\n");
		ret = -ENOMEM;
		goto out_return;
	}

	/*
	 * This is an ugly hack
	 *
	 * We fill in a scatterlist as if it were mapped for DMA. This is
	 * necessary because there exists no better structure for this
	 * inside the kernel code.
	 *
	 * As an added bonus, we can use the DMAEngine API for all of this,
	 * rather than inventing another extremely similar API.
	 */
	avail = priv->bytes;
	for_each_sg(table.sgl, sg, num_pages, i) {
		len = min_t(size_t, avail, FIFO_MAX_LEN);
		sg_dma_address(sg) = FIFO_DMA_ADDRESS;
		sg_dma_len(sg) = len;

		avail -= len;
	}

	/* Map the buffer for DMA */
	ret = videobuf_dma_map(priv->dev, &priv->vb);
	if (ret) {
		dev_err(priv->dev, "Unable to map buffer for DMA\n");
		goto out_free_table;
	}

	/*
	 * Configure the DMA channel to transfer FIFO_SIZE / 2 bytes per
	 * transaction, and then put it under external control
	 */
	memset(&config, 0, sizeof(config));
	config.direction = DMA_MEM_TO_DEV;
	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	config.dst_maxburst = fpga_fifo_size(priv->regs) / 2 / 4;
	ret = chan->device->device_control(chan, DMA_SLAVE_CONFIG,
					   (unsigned long)&config);
	if (ret) {
		dev_err(priv->dev, "DMA slave configuration failed\n");
		goto out_dma_unmap;
	}

	ret = chan->device->device_control(chan, FSLDMA_EXTERNAL_START, 1);
	if (ret) {
		dev_err(priv->dev, "DMA external control setup failed\n");
		goto out_dma_unmap;
	}

	/* setup and submit the DMA transaction */
	tx = chan->device->device_prep_dma_sg(chan,
					      table.sgl, num_pages,
					      vb->sglist, vb->sglen, 0);
	if (!tx) {
		dev_err(priv->dev, "Unable to prep DMA transaction\n");
		ret = -ENOMEM;
		goto out_dma_unmap;
	}

	cookie = tx->tx_submit(tx);
	if (dma_submit_error(cookie)) {
		dev_err(priv->dev, "Unable to submit DMA transaction\n");
		ret = -ENOMEM;
		goto out_dma_unmap;
	}

	dma_async_issue_pending(chan);

	/* Set the total byte count */
	fpga_set_byte_count(priv->regs, priv->bytes);
	dev_dbg(priv->dev, "total byte count %u bytes\n", priv->bytes);

	/* Enable the controller for DMA programming */
	fpga_programmer_enable(priv, true);
	dev_dbg(priv->dev, "enabled the controller\n");

	/* Wait for the interrupt handler to signal that programming finished */
	ret = wait_for_completion_timeout(&priv->completion, 2 * HZ);
	if (!ret) {
		dev_err(priv->dev, "Timed out waiting for completion\n");
		ret = -ETIMEDOUT;
		goto out_disable_controller;
	}

	/* Retrieve the status from the interrupt handler */
	ret = priv->status;

out_disable_controller:
	fpga_programmer_disable(priv);
out_dma_unmap:
	videobuf_dma_unmap(priv->dev, vb);
out_free_table:
	sg_free_table(&table);
out_return:
	return ret;
}

/*
 * Interrupt Handling
 */

static irqreturn_t fpga_irq(int irq, void *dev_id)
{
	struct fpga_dev *priv = dev_id;

	/* Save the status */
	priv->status = fpga_config_error(priv->regs) ? -EIO : 0;
	dev_dbg(priv->dev, "INTERRUPT status %d\n", priv->status);
	fpga_dump_registers(priv);

	/* Disabling the programmer clears the interrupt */
	fpga_programmer_disable(priv);

	/* Notify any waiters */
	complete(&priv->completion);

	return IRQ_HANDLED;
}

/*
 * SYSFS Helpers
 */

/**
 * fpga_do_stop() - deconfigure (reset) the DATA-FPGA's
 * @priv: the driver's private data structure
 *
 * LOCKING: must hold priv->lock
 */
static int fpga_do_stop(struct fpga_dev *priv)
{
	u32 val;

	/* Set the led to unprogrammed */
	ledtrig_fpga_programmed(false);

	/* Pulse the config line to reset the FPGA's */
	val = CFG_CTL_ENABLE | CFG_CTL_RESET;
	iowrite32be(val, priv->regs + FPGA_CONFIG_CONTROL);
	iowrite32be(0x0, priv->regs + FPGA_CONFIG_CONTROL);

	return 0;
}

static noinline int fpga_do_program(struct fpga_dev *priv)
{
	int ret;

	if (priv->bytes != priv->fw_size) {
		dev_err(priv->dev, "Incorrect bitfile size: got %zu bytes, "
				   "should be %zu bytes\n",
				   priv->bytes, priv->fw_size);
		return -EINVAL;
	}

	if (!fpga_power_enabled(priv)) {
		dev_err(priv->dev, "Power not enabled\n");
		return -EINVAL;
	}

	if (!fpga_power_good(priv)) {
		dev_err(priv->dev, "Power not good\n");
		return -EINVAL;
	}

	/* Set the LED to unprogrammed */
	ledtrig_fpga_programmed(false);

	/* Try to program the FPGA's using DMA */
	ret = fpga_program_dma(priv);

	/* If DMA failed or doesn't exist, try with CPU */
	if (ret) {
		dev_warn(priv->dev, "Falling back to CPU programming\n");
		ret = fpga_program_cpu(priv);
	}

	if (ret) {
		dev_err(priv->dev, "Unable to program FPGA's\n");
		return ret;
	}

	/* Drop the firmware bitfile from memory */
	fpga_drop_firmware_data(priv);

	dev_dbg(priv->dev, "FPGA programming successful\n");
	ledtrig_fpga_programmed(true);

	return 0;
}

/*
 * File Operations
 */

static int fpga_open(struct inode *inode, struct file *filp)
{
	/*
	 * The miscdevice layer puts our struct miscdevice into the
	 * filp->private_data field. We use this to find our private
	 * data and then overwrite it with our own private structure.
	 */
	struct fpga_dev *priv = container_of(filp->private_data,
					     struct fpga_dev, miscdev);
	unsigned int nr_pages;
	int ret;

	/* We only allow one process at a time */
	ret = mutex_lock_interruptible(&priv->lock);
	if (ret)
		return ret;

	filp->private_data = priv;
	kref_get(&priv->ref);

	/* Truncation: drop any existing data */
	if (filp->f_flags & O_TRUNC)
		priv->bytes = 0;

	/* Check if we have already allocated a buffer */
	if (priv->vb_allocated)
		return 0;

	/* Allocate a buffer to hold enough data for the bitfile */
	nr_pages = DIV_ROUND_UP(priv->fw_size, PAGE_SIZE);
	ret = videobuf_dma_init_kernel(&priv->vb, DMA_TO_DEVICE, nr_pages);
	if (ret) {
		dev_err(priv->dev, "unable to allocate data buffer\n");
		mutex_unlock(&priv->lock);
		kref_put(&priv->ref, fpga_dev_remove);
		return ret;
	}

	priv->vb_allocated = true;
	return 0;
}

static int fpga_release(struct inode *inode, struct file *filp)
{
	struct fpga_dev *priv = filp->private_data;

	mutex_unlock(&priv->lock);
	kref_put(&priv->ref, fpga_dev_remove);
	return 0;
}

static ssize_t fpga_write(struct file *filp, const char __user *buf,
			  size_t count, loff_t *f_pos)
{
	struct fpga_dev *priv = filp->private_data;

	/* FPGA bitfiles have an exact size: disallow anything else */
	if (priv->bytes >= priv->fw_size)
		return -ENOSPC;

	count = min_t(size_t, priv->fw_size - priv->bytes, count);
	if (copy_from_user(priv->vb.vaddr + priv->bytes, buf, count))
		return -EFAULT;

	priv->bytes += count;
	return count;
}

static ssize_t fpga_read(struct file *filp, char __user *buf, size_t count,
			 loff_t *f_pos)
{
	struct fpga_dev *priv = filp->private_data;

	count = min_t(size_t, priv->bytes - *f_pos, count);
	if (copy_to_user(buf, priv->vb.vaddr + *f_pos, count))
		return -EFAULT;

	*f_pos += count;
	return count;
}

static loff_t fpga_llseek(struct file *filp, loff_t offset, int origin)
{
	struct fpga_dev *priv = filp->private_data;
	loff_t newpos;

	/* only read-only opens are allowed to seek */
	if ((filp->f_flags & O_ACCMODE) != O_RDONLY)
		return -EINVAL;

	switch (origin) {
	case SEEK_SET: /* seek relative to the beginning of the file */
		newpos = offset;
		break;
	case SEEK_CUR: /* seek relative to current position in the file */
		newpos = filp->f_pos + offset;
		break;
	case SEEK_END: /* seek relative to the end of the file */
		newpos = priv->fw_size - offset;
		break;
	default:
		return -EINVAL;
	}

	/* check for sanity */
	if (newpos > priv->fw_size)
		return -EINVAL;

	filp->f_pos = newpos;
	return newpos;
}

static const struct file_operations fpga_fops = {
	.open		= fpga_open,
	.release	= fpga_release,
	.write		= fpga_write,
	.read		= fpga_read,
	.llseek		= fpga_llseek,
};

/*
 * Device Attributes
 */

static ssize_t pfail_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	struct fpga_dev *priv = dev_get_drvdata(dev);
	u8 val;

	val = ioread8(priv->regs + CTL_PWR_FAIL);
	return snprintf(buf, PAGE_SIZE, "0x%.2x\n", val);
}

static ssize_t pgood_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	struct fpga_dev *priv = dev_get_drvdata(dev);
	return snprintf(buf, PAGE_SIZE, "%d\n", fpga_power_good(priv));
}

static ssize_t penable_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct fpga_dev *priv = dev_get_drvdata(dev);
	return snprintf(buf, PAGE_SIZE, "%d\n", fpga_power_enabled(priv));
}

static ssize_t penable_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct fpga_dev *priv = dev_get_drvdata(dev);
	unsigned long val;
	int ret;

	ret = kstrtoul(buf, 0, &val);
	if (ret)
		return ret;

	if (val) {
		ret = fpga_enable_power_supplies(priv);
		if (ret)
			return ret;
	} else {
		fpga_do_stop(priv);
		fpga_disable_power_supplies(priv);
	}

	return count;
}

static ssize_t program_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct fpga_dev *priv = dev_get_drvdata(dev);
	return snprintf(buf, PAGE_SIZE, "%d\n", fpga_running(priv));
}

static ssize_t program_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct fpga_dev *priv = dev_get_drvdata(dev);
	unsigned long val;
	int ret;

	ret = kstrtoul(buf, 0, &val);
	if (ret)
		return ret;

	/* We can't have an image writer and be programming simultaneously */
	if (mutex_lock_interruptible(&priv->lock))
		return -ERESTARTSYS;

	/* Program or Reset the FPGA's */
	ret = val ? fpga_do_program(priv) : fpga_do_stop(priv);
	if (ret)
		goto out_unlock;

	/* Success */
	ret = count;

out_unlock:
	mutex_unlock(&priv->lock);
	return ret;
}

static DEVICE_ATTR(power_fail, S_IRUGO, pfail_show, NULL);
static DEVICE_ATTR(power_good, S_IRUGO, pgood_show, NULL);
static DEVICE_ATTR(power_enable, S_IRUGO | S_IWUSR,
		   penable_show, penable_store);

static DEVICE_ATTR(program, S_IRUGO | S_IWUSR,
		   program_show, program_store);

static struct attribute *fpga_attributes[] = {
	&dev_attr_power_fail.attr,
	&dev_attr_power_good.attr,
	&dev_attr_power_enable.attr,
	&dev_attr_program.attr,
	NULL,
};

static const struct attribute_group fpga_attr_group = {
	.attrs = fpga_attributes,
};

/*
 * OpenFirmware Device Subsystem
 */

#define SYS_REG_VERSION		0x00
#define SYS_REG_GEOGRAPHIC	0x10

static bool dma_filter(struct dma_chan *chan, void *data)
{
	/*
	 * DMA Channel #0 is the only acceptable device
	 *
	 * This probably won't survive an unload/load cycle of the Freescale
	 * DMAEngine driver, but that won't be a problem
	 */
	return chan->chan_id == 0 && chan->device->dev_id == 0;
}

static int fpga_of_remove(struct platform_device *op)
{
	struct fpga_dev *priv = platform_get_drvdata(op);
	struct device *this_device = priv->miscdev.this_device;

	sysfs_remove_group(&this_device->kobj, &fpga_attr_group);
	misc_deregister(&priv->miscdev);

	free_irq(priv->irq, priv);
	irq_dispose_mapping(priv->irq);

	/* make sure the power supplies are off */
	fpga_disable_power_supplies(priv);

	/* unmap registers */
	iounmap(priv->immr);
	iounmap(priv->regs);

	dma_release_channel(priv->chan);

	/* drop our reference to the private data structure */
	kref_put(&priv->ref, fpga_dev_remove);
	return 0;
}

/* CTL-CPLD Version Register */
#define CTL_CPLD_VERSION	0x2000

static int fpga_of_probe(struct platform_device *op)
{
	struct device_node *of_node = op->dev.of_node;
	struct device *this_device;
	struct fpga_dev *priv;
	dma_cap_mask_t mask;
	u32 ver;
	int ret;

	/* Allocate private data */
	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv) {
		dev_err(&op->dev, "Unable to allocate private data\n");
		ret = -ENOMEM;
		goto out_return;
	}

	/* Setup the miscdevice */
	priv->miscdev.minor = MISC_DYNAMIC_MINOR;
	priv->miscdev.name = drv_name;
	priv->miscdev.fops = &fpga_fops;

	kref_init(&priv->ref);

	platform_set_drvdata(op, priv);
	priv->dev = &op->dev;
	mutex_init(&priv->lock);
	init_completion(&priv->completion);
	videobuf_dma_init(&priv->vb);

	dev_set_drvdata(priv->dev, priv);
	dma_cap_zero(mask);
	dma_cap_set(DMA_MEMCPY, mask);
	dma_cap_set(DMA_SLAVE, mask);
	dma_cap_set(DMA_SG, mask);

	/* Get control of DMA channel #0 */
	priv->chan = dma_request_channel(mask, dma_filter, NULL);
	if (!priv->chan) {
		dev_err(&op->dev, "Unable to acquire DMA channel #0\n");
		ret = -ENODEV;
		goto out_free_priv;
	}

	/* Remap the registers for use */
	priv->regs = of_iomap(of_node, 0);
	if (!priv->regs) {
		dev_err(&op->dev, "Unable to ioremap registers\n");
		ret = -ENOMEM;
		goto out_dma_release_channel;
	}

	/* Remap the IMMR for use */
	priv->immr = ioremap(get_immrbase(), 0x100000);
	if (!priv->immr) {
		dev_err(&op->dev, "Unable to ioremap IMMR\n");
		ret = -ENOMEM;
		goto out_unmap_regs;
	}

	/*
	 * Check that external DMA is configured
	 *
	 * U-Boot does this for us, but we should check it and bail out if
	 * there is a problem. Failing to have this register setup correctly
	 * will cause the DMA controller to transfer a single cacheline
	 * worth of data, then wedge itself.
	 */
	if ((ioread32be(priv->immr + 0x114) & 0xE00) != 0xE00) {
		dev_err(&op->dev, "External DMA control not configured\n");
		ret = -ENODEV;
		goto out_unmap_immr;
	}

	/*
	 * Check the CTL-CPLD version
	 *
	 * This driver uses the CTL-CPLD DATA-FPGA power sequencer, and we
	 * don't want to run on any version of the CTL-CPLD that does not use
	 * a compatible register layout.
	 *
	 * v2: changed register layout, added power sequencer
	 * v3: added glitch filter on the i2c overcurrent/overtemp outputs
	 */
	ver = ioread8(priv->regs + CTL_CPLD_VERSION);
	if (ver != 0x02 && ver != 0x03) {
		dev_err(&op->dev, "CTL-CPLD is not version 0x02 or 0x03!\n");
		ret = -ENODEV;
		goto out_unmap_immr;
	}

	/* Set the exact size that the firmware image should be */
	ver = ioread32be(priv->regs + SYS_REG_VERSION);
	priv->fw_size = (ver & (1 << 18)) ? FW_SIZE_EP2S130 : FW_SIZE_EP2S90;

	/* Find the correct IRQ number */
	priv->irq = irq_of_parse_and_map(of_node, 0);
	if (priv->irq == NO_IRQ) {
		dev_err(&op->dev, "Unable to find IRQ line\n");
		ret = -ENODEV;
		goto out_unmap_immr;
	}

	/* Request the IRQ */
	ret = request_irq(priv->irq, fpga_irq, IRQF_SHARED, drv_name, priv);
	if (ret) {
		dev_err(&op->dev, "Unable to request IRQ %d\n", priv->irq);
		ret = -ENODEV;
		goto out_irq_dispose_mapping;
	}

	/* Reset and stop the FPGA's, just in case */
	fpga_do_stop(priv);

	/* Register the miscdevice */
	ret = misc_register(&priv->miscdev);
	if (ret) {
		dev_err(&op->dev, "Unable to register miscdevice\n");
		goto out_free_irq;
	}

	/* Create the sysfs files */
	this_device = priv->miscdev.this_device;
	dev_set_drvdata(this_device, priv);
	ret = sysfs_create_group(&this_device->kobj, &fpga_attr_group);
	if (ret) {
		dev_err(&op->dev, "Unable to create sysfs files\n");
		goto out_misc_deregister;
	}

	dev_info(priv->dev, "CARMA FPGA Programmer: %s rev%s with %s FPGAs\n",
			(ver & (1 << 17)) ? "Correlator" : "Digitizer",
			(ver & (1 << 16)) ? "B" : "A",
			(ver & (1 << 18)) ? "EP2S130" : "EP2S90");

	return 0;

out_misc_deregister:
	misc_deregister(&priv->miscdev);
out_free_irq:
	free_irq(priv->irq, priv);
out_irq_dispose_mapping:
	irq_dispose_mapping(priv->irq);
out_unmap_immr:
	iounmap(priv->immr);
out_unmap_regs:
	iounmap(priv->regs);
out_dma_release_channel:
	dma_release_channel(priv->chan);
out_free_priv:
	kref_put(&priv->ref, fpga_dev_remove);
out_return:
	return ret;
}

static struct of_device_id fpga_of_match[] = {
	{ .compatible = "carma,fpga-programmer", },
	{},
};

static struct platform_driver fpga_of_driver = {
	.probe		= fpga_of_probe,
	.remove		= fpga_of_remove,
	.driver		= {
		.name		= drv_name,
		.of_match_table	= fpga_of_match,
		.owner		= THIS_MODULE,
	},
};

/*
 * Module Init / Exit
 */

static int __init fpga_init(void)
{
	led_trigger_register_simple("fpga", &ledtrig_fpga);
	return platform_driver_register(&fpga_of_driver);
}

static void __exit fpga_exit(void)
{
	platform_driver_unregister(&fpga_of_driver);
	led_trigger_unregister_simple(ledtrig_fpga);
}

MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
MODULE_DESCRIPTION("CARMA Board DATA-FPGA Programmer");
MODULE_LICENSE("GPL");

module_init(fpga_init);
module_exit(fpga_exit);