summaryrefslogblamecommitdiffstats
path: root/drivers/net/via-rhine.c
blob: fc7738ffbfffeb1ffd17c7724426169b65531372 (plain) (tree)
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897



























































































































































































                                                                                
                              































































































































































































































































































































                                                                                           
                                                  








































































































































































































































                                                                                
                                                    























































































































































































































































                                                                                        
                                                                          






















































































































































































































































































































































































































                                                                                                                  
                                                                           





































































                                                                                    
                                                                          
















                                                                               
                                                                          





























                                                                                                    
                                                                            









































                                                                                        
                                                                   












































































































































































































































































































































                                                                                        
                                                 
 

























































                                                                               
                             




















































                                                                                 
                                       




















                                                                              
/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
/*
	Written 1998-2001 by Donald Becker.

	Current Maintainer: Roger Luethi <rl@hellgate.ch>

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This file is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.

	This driver is designed for the VIA VT86C100A Rhine-I.
	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
	and management NIC 6105M).

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403


	This driver contains some changes from the original Donald Becker
	version. He may or may not be interested in bug reports on this
	code. You can find his versions at:
	http://www.scyld.com/network/via-rhine.html


	Linux kernel version history:

	LK1.1.0:
	- Jeff Garzik: softnet 'n stuff

	LK1.1.1:
	- Justin Guyett: softnet and locking fixes
	- Jeff Garzik: use PCI interface

	LK1.1.2:
	- Urban Widmark: minor cleanups, merges from Becker 1.03a/1.04 versions

	LK1.1.3:
	- Urban Widmark: use PCI DMA interface (with thanks to the eepro100.c
			 code) update "Theory of Operation" with
			 softnet/locking changes
	- Dave Miller: PCI DMA and endian fixups
	- Jeff Garzik: MOD_xxx race fixes, updated PCI resource allocation

	LK1.1.4:
	- Urban Widmark: fix gcc 2.95.2 problem and
	                 remove writel's to fixed address 0x7c

	LK1.1.5:
	- Urban Widmark: mdio locking, bounce buffer changes
	                 merges from Beckers 1.05 version
	                 added netif_running_on/off support

	LK1.1.6:
	- Urban Widmark: merges from Beckers 1.08b version (VT6102 + mdio)
	                 set netif_running_on/off on startup, del_timer_sync

	LK1.1.7:
	- Manfred Spraul: added reset into tx_timeout

	LK1.1.9:
	- Urban Widmark: merges from Beckers 1.10 version
	                 (media selection + eeprom reload)
	- David Vrabel:  merges from D-Link "1.11" version
	                 (disable WOL and PME on startup)

	LK1.1.10:
	- Manfred Spraul: use "singlecopy" for unaligned buffers
	                  don't allocate bounce buffers for !ReqTxAlign cards

	LK1.1.11:
	- David Woodhouse: Set dev->base_addr before the first time we call
			   wait_for_reset(). It's a lot happier that way.
			   Free np->tx_bufs only if we actually allocated it.

	LK1.1.12:
	- Martin Eriksson: Allow Memory-Mapped IO to be enabled.

	LK1.1.13 (jgarzik):
	- Add ethtool support
	- Replace some MII-related magic numbers with constants

	LK1.1.14 (Ivan G.):
	- fixes comments for Rhine-III
	- removes W_MAX_TIMEOUT (unused)
	- adds HasDavicomPhy for Rhine-I (basis: linuxfet driver; my card
	  is R-I and has Davicom chip, flag is referenced in kernel driver)
	- sends chip_id as a parameter to wait_for_reset since np is not
	  initialized on first call
	- changes mmio "else if (chip_id==VT6102)" to "else" so it will work
	  for Rhine-III's (documentation says same bit is correct)
	- transmit frame queue message is off by one - fixed
	- adds IntrNormalSummary to "Something Wicked" exclusion list
	  so normal interrupts will not trigger the message (src: Donald Becker)
	(Roger Luethi)
	- show confused chip where to continue after Tx error
	- location of collision counter is chip specific
	- allow selecting backoff algorithm (module parameter)

	LK1.1.15 (jgarzik):
	- Use new MII lib helper generic_mii_ioctl

	LK1.1.16 (Roger Luethi)
	- Etherleak fix
	- Handle Tx buffer underrun
	- Fix bugs in full duplex handling
	- New reset code uses "force reset" cmd on Rhine-II
	- Various clean ups

	LK1.1.17 (Roger Luethi)
	- Fix race in via_rhine_start_tx()
	- On errors, wait for Tx engine to turn off before scavenging
	- Handle Tx descriptor write-back race on Rhine-II
	- Force flushing for PCI posted writes
	- More reset code changes

	LK1.1.18 (Roger Luethi)
	- No filtering multicast in promisc mode (Edward Peng)
	- Fix for Rhine-I Tx timeouts

	LK1.1.19 (Roger Luethi)
	- Increase Tx threshold for unspecified errors

	LK1.2.0-2.6 (Roger Luethi)
	- Massive clean-up
	- Rewrite PHY, media handling (remove options, full_duplex, backoff)
	- Fix Tx engine race for good

*/

#define DRV_NAME	"via-rhine"
#define DRV_VERSION	"1.2.0-2.6"
#define DRV_RELDATE	"June-10-2004"


/* A few user-configurable values.
   These may be modified when a driver module is loaded. */

static int debug = 1;	/* 1 normal messages, 0 quiet .. 7 verbose. */
static int max_interrupt_work = 20;

/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
   Setting to > 1518 effectively disables this feature. */
static int rx_copybreak;

/*
 * In case you are looking for 'options[]' or 'full_duplex[]', they
 * are gone. Use ethtool(8) instead.
 */

/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
   The Rhine has a 64 element 8390-like hash table. */
static const int multicast_filter_limit = 32;


/* Operational parameters that are set at compile time. */

/* Keep the ring sizes a power of two for compile efficiency.
   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
   Making the Tx ring too large decreases the effectiveness of channel
   bonding and packet priority.
   There are no ill effects from too-large receive rings. */
#define TX_RING_SIZE	16
#define TX_QUEUE_LEN	10	/* Limit ring entries actually used. */
#define RX_RING_SIZE	16


/* Operational parameters that usually are not changed. */

/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT	(2*HZ)

#define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/bitops.h>
#include <asm/processor.h>	/* Processor type for cache alignment. */
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>

/* These identify the driver base version and may not be removed. */
static char version[] __devinitdata =
KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";

/* This driver was written to use PCI memory space. Some early versions
   of the Rhine may only work correctly with I/O space accesses. */
#ifdef CONFIG_VIA_RHINE_MMIO
#define USE_MMIO
#else
#endif

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
MODULE_LICENSE("GPL");

module_param(max_interrupt_work, int, 0);
module_param(debug, int, 0);
module_param(rx_copybreak, int, 0);
MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");

/*
		Theory of Operation

I. Board Compatibility

This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
controller.

II. Board-specific settings

Boards with this chip are functional only in a bus-master PCI slot.

Many operational settings are loaded from the EEPROM to the Config word at
offset 0x78. For most of these settings, this driver assumes that they are
correct.
If this driver is compiled to use PCI memory space operations the EEPROM
must be configured to enable memory ops.

III. Driver operation

IIIa. Ring buffers

This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.

IIIb/c. Transmit/Receive Structure

This driver attempts to use a zero-copy receive and transmit scheme.

Alas, all data buffers are required to start on a 32 bit boundary, so
the driver must often copy transmit packets into bounce buffers.

The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack. Buffers consumed this way are replaced by newly allocated
skbuffs in the last phase of rhine_rx().

The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames. New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets. When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine. Copying also preloads the cache, which is
most useful with small frames.

Since the VIA chips are only able to transfer data to buffers on 32 bit
boundaries, the IP header at offset 14 in an ethernet frame isn't
longword aligned for further processing. Copying these unaligned buffers
has the beneficial effect of 16-byte aligning the IP header.

IIId. Synchronization

The driver runs as two independent, single-threaded flows of control. One
is the send-packet routine, which enforces single-threaded use by the
dev->priv->lock spinlock. The other thread is the interrupt handler, which
is single threaded by the hardware and interrupt handling software.

The send packet thread has partial control over the Tx ring. It locks the
dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
is not available it stops the transmit queue by calling netif_stop_queue.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring. After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. If at least half of the entries in
the Rx ring are available the transmit queue is woken up if it was stopped.

IV. Notes

IVb. References

Preliminary VT86C100A manual from http://www.via.com.tw/
http://www.scyld.com/expert/100mbps.html
http://www.scyld.com/expert/NWay.html
ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF


IVc. Errata

The VT86C100A manual is not reliable information.
The 3043 chip does not handle unaligned transmit or receive buffers, resulting
in significant performance degradation for bounce buffer copies on transmit
and unaligned IP headers on receive.
The chip does not pad to minimum transmit length.

*/


/* This table drives the PCI probe routines. It's mostly boilerplate in all
   of the drivers, and will likely be provided by some future kernel.
   Note the matching code -- the first table entry matchs all 56** cards but
   second only the 1234 card.
*/

enum rhine_revs {
	VT86C100A	= 0x00,
	VTunknown0	= 0x20,
	VT6102		= 0x40,
	VT8231		= 0x50,	/* Integrated MAC */
	VT8233		= 0x60,	/* Integrated MAC */
	VT8235		= 0x74,	/* Integrated MAC */
	VT8237		= 0x78,	/* Integrated MAC */
	VTunknown1	= 0x7C,
	VT6105		= 0x80,
	VT6105_B0	= 0x83,
	VT6105L		= 0x8A,
	VT6107		= 0x8C,
	VTunknown2	= 0x8E,
	VT6105M		= 0x90,	/* Management adapter */
};

enum rhine_quirks {
	rqWOL		= 0x0001,	/* Wake-On-LAN support */
	rqForceReset	= 0x0002,
	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
	rqRhineI	= 0x0100,	/* See comment below */
};
/*
 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
 * MMIO as well as for the collision counter and the Tx FIFO underflow
 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
 */

/* Beware of PCI posted writes */
#define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)

static struct pci_device_id rhine_pci_tbl[] =
{
	{0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT86C100A */
	{0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6102 */
	{0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* 6105{,L,LOM} */
	{0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6105M */
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);


/* Offsets to the device registers. */
enum register_offsets {
	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
	ChipCmd1=0x09,
	IntrStatus=0x0C, IntrEnable=0x0E,
	MulticastFilter0=0x10, MulticastFilter1=0x14,
	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
	StickyHW=0x83, IntrStatus2=0x84,
	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
	WOLcrClr1=0xA6, WOLcgClr=0xA7,
	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
};

/* Bits in ConfigD */
enum backoff_bits {
	BackOptional=0x01, BackModify=0x02,
	BackCaptureEffect=0x04, BackRandom=0x08
};

#ifdef USE_MMIO
/* Registers we check that mmio and reg are the same. */
static const int mmio_verify_registers[] = {
	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
	0
};
#endif

/* Bits in the interrupt status/mask registers. */
enum intr_status_bits {
	IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
	IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
	IntrPCIErr=0x0040,
	IntrStatsMax=0x0080, IntrRxEarly=0x0100,
	IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
	IntrTxAborted=0x2000, IntrLinkChange=0x4000,
	IntrRxWakeUp=0x8000,
	IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
	IntrTxDescRace=0x080000,	/* mapped from IntrStatus2 */
	IntrTxErrSummary=0x082218,
};

/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
enum wol_bits {
	WOLucast	= 0x10,
	WOLmagic	= 0x20,
	WOLbmcast	= 0x30,
	WOLlnkon	= 0x40,
	WOLlnkoff	= 0x80,
};

/* The Rx and Tx buffer descriptors. */
struct rx_desc {
	s32 rx_status;
	u32 desc_length; /* Chain flag, Buffer/frame length */
	u32 addr;
	u32 next_desc;
};
struct tx_desc {
	s32 tx_status;
	u32 desc_length; /* Chain flag, Tx Config, Frame length */
	u32 addr;
	u32 next_desc;
};

/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
#define TXDESC		0x00e08000

enum rx_status_bits {
	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
};

/* Bits in *_desc.*_status */
enum desc_status_bits {
	DescOwn=0x80000000
};

/* Bits in ChipCmd. */
enum chip_cmd_bits {
	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
};

struct rhine_private {
	/* Descriptor rings */
	struct rx_desc *rx_ring;
	struct tx_desc *tx_ring;
	dma_addr_t rx_ring_dma;
	dma_addr_t tx_ring_dma;

	/* The addresses of receive-in-place skbuffs. */
	struct sk_buff *rx_skbuff[RX_RING_SIZE];
	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];

	/* The saved address of a sent-in-place packet/buffer, for later free(). */
	struct sk_buff *tx_skbuff[TX_RING_SIZE];
	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];

	/* Tx bounce buffers */
	unsigned char *tx_buf[TX_RING_SIZE];
	unsigned char *tx_bufs;
	dma_addr_t tx_bufs_dma;

	struct pci_dev *pdev;
	long pioaddr;
	struct net_device_stats stats;
	spinlock_t lock;

	/* Frequently used values: keep some adjacent for cache effect. */
	u32 quirks;
	struct rx_desc *rx_head_desc;
	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
	unsigned int cur_tx, dirty_tx;
	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
	u8 wolopts;

	u8 tx_thresh, rx_thresh;

	struct mii_if_info mii_if;
	void __iomem *base;
};

static int  mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
static int  rhine_open(struct net_device *dev);
static void rhine_tx_timeout(struct net_device *dev);
static int  rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
static void rhine_tx(struct net_device *dev);
static void rhine_rx(struct net_device *dev);
static void rhine_error(struct net_device *dev, int intr_status);
static void rhine_set_rx_mode(struct net_device *dev);
static struct net_device_stats *rhine_get_stats(struct net_device *dev);
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static struct ethtool_ops netdev_ethtool_ops;
static int  rhine_close(struct net_device *dev);
static void rhine_shutdown (struct pci_dev *pdev);

#define RHINE_WAIT_FOR(condition) do {					\
	int i=1024;							\
	while (!(condition) && --i)					\
		;							\
	if (debug > 1 && i < 512)					\
		printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n",	\
				DRV_NAME, 1024-i, __func__, __LINE__);	\
} while(0)

static inline u32 get_intr_status(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u32 intr_status;

	intr_status = ioread16(ioaddr + IntrStatus);
	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
	if (rp->quirks & rqStatusWBRace)
		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
	return intr_status;
}

/*
 * Get power related registers into sane state.
 * Notify user about past WOL event.
 */
static void rhine_power_init(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u16 wolstat;

	if (rp->quirks & rqWOL) {
		/* Make sure chip is in power state D0 */
		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);

		/* Disable "force PME-enable" */
		iowrite8(0x80, ioaddr + WOLcgClr);

		/* Clear power-event config bits (WOL) */
		iowrite8(0xFF, ioaddr + WOLcrClr);
		/* More recent cards can manage two additional patterns */
		if (rp->quirks & rq6patterns)
			iowrite8(0x03, ioaddr + WOLcrClr1);

		/* Save power-event status bits */
		wolstat = ioread8(ioaddr + PwrcsrSet);
		if (rp->quirks & rq6patterns)
			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;

		/* Clear power-event status bits */
		iowrite8(0xFF, ioaddr + PwrcsrClr);
		if (rp->quirks & rq6patterns)
			iowrite8(0x03, ioaddr + PwrcsrClr1);

		if (wolstat) {
			char *reason;
			switch (wolstat) {
			case WOLmagic:
				reason = "Magic packet";
				break;
			case WOLlnkon:
				reason = "Link went up";
				break;
			case WOLlnkoff:
				reason = "Link went down";
				break;
			case WOLucast:
				reason = "Unicast packet";
				break;
			case WOLbmcast:
				reason = "Multicast/broadcast packet";
				break;
			default:
				reason = "Unknown";
			}
			printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
			       DRV_NAME, reason);
		}
	}
}

static void rhine_chip_reset(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
	IOSYNC;

	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
		printk(KERN_INFO "%s: Reset not complete yet. "
			"Trying harder.\n", DRV_NAME);

		/* Force reset */
		if (rp->quirks & rqForceReset)
			iowrite8(0x40, ioaddr + MiscCmd);

		/* Reset can take somewhat longer (rare) */
		RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
	}

	if (debug > 1)
		printk(KERN_INFO "%s: Reset %s.\n", dev->name,
			(ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
			"failed" : "succeeded");
}

#ifdef USE_MMIO
static void enable_mmio(long pioaddr, u32 quirks)
{
	int n;
	if (quirks & rqRhineI) {
		/* More recent docs say that this bit is reserved ... */
		n = inb(pioaddr + ConfigA) | 0x20;
		outb(n, pioaddr + ConfigA);
	} else {
		n = inb(pioaddr + ConfigD) | 0x80;
		outb(n, pioaddr + ConfigD);
	}
}
#endif

/*
 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
 * (plus 0x6C for Rhine-I/II)
 */
static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	outb(0x20, pioaddr + MACRegEEcsr);
	RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));

#ifdef USE_MMIO
	/*
	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
	 * MMIO. If reloading EEPROM was done first this could be avoided, but
	 * it is not known if that still works with the "win98-reboot" problem.
	 */
	enable_mmio(pioaddr, rp->quirks);
#endif

	/* Turn off EEPROM-controlled wake-up (magic packet) */
	if (rp->quirks & rqWOL)
		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);

}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void rhine_poll(struct net_device *dev)
{
	disable_irq(dev->irq);
	rhine_interrupt(dev->irq, (void *)dev, NULL);
	enable_irq(dev->irq);
}
#endif

static void rhine_hw_init(struct net_device *dev, long pioaddr)
{
	struct rhine_private *rp = netdev_priv(dev);

	/* Reset the chip to erase previous misconfiguration. */
	rhine_chip_reset(dev);

	/* Rhine-I needs extra time to recuperate before EEPROM reload */
	if (rp->quirks & rqRhineI)
		msleep(5);

	/* Reload EEPROM controlled bytes cleared by soft reset */
	rhine_reload_eeprom(pioaddr, dev);
}

static int __devinit rhine_init_one(struct pci_dev *pdev,
				    const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct rhine_private *rp;
	int i, rc;
	u8 pci_rev;
	u32 quirks;
	long pioaddr;
	long memaddr;
	void __iomem *ioaddr;
	int io_size, phy_id;
	const char *name;
#ifdef USE_MMIO
	int bar = 1;
#else
	int bar = 0;
#endif

/* when built into the kernel, we only print version if device is found */
#ifndef MODULE
	static int printed_version;
	if (!printed_version++)
		printk(version);
#endif

	pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);

	io_size = 256;
	phy_id = 0;
	quirks = 0;
	name = "Rhine";
	if (pci_rev < VTunknown0) {
		quirks = rqRhineI;
		io_size = 128;
	}
	else if (pci_rev >= VT6102) {
		quirks = rqWOL | rqForceReset;
		if (pci_rev < VT6105) {
			name = "Rhine II";
			quirks |= rqStatusWBRace;	/* Rhine-II exclusive */
		}
		else {
			phy_id = 1;	/* Integrated PHY, phy_id fixed to 1 */
			if (pci_rev >= VT6105_B0)
				quirks |= rq6patterns;
			if (pci_rev < VT6105M)
				name = "Rhine III";
			else
				name = "Rhine III (Management Adapter)";
		}
	}

	rc = pci_enable_device(pdev);
	if (rc)
		goto err_out;

	/* this should always be supported */
	rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
	if (rc) {
		printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
		       "the card!?\n");
		goto err_out;
	}

	/* sanity check */
	if ((pci_resource_len(pdev, 0) < io_size) ||
	    (pci_resource_len(pdev, 1) < io_size)) {
		rc = -EIO;
		printk(KERN_ERR "Insufficient PCI resources, aborting\n");
		goto err_out;
	}

	pioaddr = pci_resource_start(pdev, 0);
	memaddr = pci_resource_start(pdev, 1);

	pci_set_master(pdev);

	dev = alloc_etherdev(sizeof(struct rhine_private));
	if (!dev) {
		rc = -ENOMEM;
		printk(KERN_ERR "alloc_etherdev failed\n");
		goto err_out;
	}
	SET_MODULE_OWNER(dev);
	SET_NETDEV_DEV(dev, &pdev->dev);

	rp = netdev_priv(dev);
	rp->quirks = quirks;
	rp->pioaddr = pioaddr;
	rp->pdev = pdev;

	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc)
		goto err_out_free_netdev;

	ioaddr = pci_iomap(pdev, bar, io_size);
	if (!ioaddr) {
		rc = -EIO;
		printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
		       "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
		goto err_out_free_res;
	}

#ifdef USE_MMIO
	enable_mmio(pioaddr, quirks);

	/* Check that selected MMIO registers match the PIO ones */
	i = 0;
	while (mmio_verify_registers[i]) {
		int reg = mmio_verify_registers[i++];
		unsigned char a = inb(pioaddr+reg);
		unsigned char b = readb(ioaddr+reg);
		if (a != b) {
			rc = -EIO;
			printk(KERN_ERR "MMIO do not match PIO [%02x] "
			       "(%02x != %02x)\n", reg, a, b);
			goto err_out_unmap;
		}
	}
#endif /* USE_MMIO */

	dev->base_addr = (unsigned long)ioaddr;
	rp->base = ioaddr;

	/* Get chip registers into a sane state */
	rhine_power_init(dev);
	rhine_hw_init(dev, pioaddr);

	for (i = 0; i < 6; i++)
		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);

	if (!is_valid_ether_addr(dev->dev_addr)) {
		rc = -EIO;
		printk(KERN_ERR "Invalid MAC address\n");
		goto err_out_unmap;
	}

	/* For Rhine-I/II, phy_id is loaded from EEPROM */
	if (!phy_id)
		phy_id = ioread8(ioaddr + 0x6C);

	dev->irq = pdev->irq;

	spin_lock_init(&rp->lock);
	rp->mii_if.dev = dev;
	rp->mii_if.mdio_read = mdio_read;
	rp->mii_if.mdio_write = mdio_write;
	rp->mii_if.phy_id_mask = 0x1f;
	rp->mii_if.reg_num_mask = 0x1f;

	/* The chip-specific entries in the device structure. */
	dev->open = rhine_open;
	dev->hard_start_xmit = rhine_start_tx;
	dev->stop = rhine_close;
	dev->get_stats = rhine_get_stats;
	dev->set_multicast_list = rhine_set_rx_mode;
	dev->do_ioctl = netdev_ioctl;
	dev->ethtool_ops = &netdev_ethtool_ops;
	dev->tx_timeout = rhine_tx_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
#ifdef CONFIG_NET_POLL_CONTROLLER
	dev->poll_controller = rhine_poll;
#endif
	if (rp->quirks & rqRhineI)
		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;

	/* dev->name not defined before register_netdev()! */
	rc = register_netdev(dev);
	if (rc)
		goto err_out_unmap;

	printk(KERN_INFO "%s: VIA %s at 0x%lx, ",
	       dev->name, name,
#ifdef USE_MMIO
		memaddr
#else
		(long)ioaddr
#endif
		 );

	for (i = 0; i < 5; i++)
		printk("%2.2x:", dev->dev_addr[i]);
	printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], pdev->irq);

	pci_set_drvdata(pdev, dev);

	{
		u16 mii_cmd;
		int mii_status = mdio_read(dev, phy_id, 1);
		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
		if (mii_status != 0xffff && mii_status != 0x0000) {
			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
			printk(KERN_INFO "%s: MII PHY found at address "
			       "%d, status 0x%4.4x advertising %4.4x "
			       "Link %4.4x.\n", dev->name, phy_id,
			       mii_status, rp->mii_if.advertising,
			       mdio_read(dev, phy_id, 5));

			/* set IFF_RUNNING */
			if (mii_status & BMSR_LSTATUS)
				netif_carrier_on(dev);
			else
				netif_carrier_off(dev);

		}
	}
	rp->mii_if.phy_id = phy_id;

	return 0;

err_out_unmap:
	pci_iounmap(pdev, ioaddr);
err_out_free_res:
	pci_release_regions(pdev);
err_out_free_netdev:
	free_netdev(dev);
err_out:
	return rc;
}

static int alloc_ring(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void *ring;
	dma_addr_t ring_dma;

	ring = pci_alloc_consistent(rp->pdev,
				    RX_RING_SIZE * sizeof(struct rx_desc) +
				    TX_RING_SIZE * sizeof(struct tx_desc),
				    &ring_dma);
	if (!ring) {
		printk(KERN_ERR "Could not allocate DMA memory.\n");
		return -ENOMEM;
	}
	if (rp->quirks & rqRhineI) {
		rp->tx_bufs = pci_alloc_consistent(rp->pdev,
						   PKT_BUF_SZ * TX_RING_SIZE,
						   &rp->tx_bufs_dma);
		if (rp->tx_bufs == NULL) {
			pci_free_consistent(rp->pdev,
				    RX_RING_SIZE * sizeof(struct rx_desc) +
				    TX_RING_SIZE * sizeof(struct tx_desc),
				    ring, ring_dma);
			return -ENOMEM;
		}
	}

	rp->rx_ring = ring;
	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
	rp->rx_ring_dma = ring_dma;
	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);

	return 0;
}

static void free_ring(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	pci_free_consistent(rp->pdev,
			    RX_RING_SIZE * sizeof(struct rx_desc) +
			    TX_RING_SIZE * sizeof(struct tx_desc),
			    rp->rx_ring, rp->rx_ring_dma);
	rp->tx_ring = NULL;

	if (rp->tx_bufs)
		pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
				    rp->tx_bufs, rp->tx_bufs_dma);

	rp->tx_bufs = NULL;

}

static void alloc_rbufs(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	dma_addr_t next;
	int i;

	rp->dirty_rx = rp->cur_rx = 0;

	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
	rp->rx_head_desc = &rp->rx_ring[0];
	next = rp->rx_ring_dma;

	/* Init the ring entries */
	for (i = 0; i < RX_RING_SIZE; i++) {
		rp->rx_ring[i].rx_status = 0;
		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
		next += sizeof(struct rx_desc);
		rp->rx_ring[i].next_desc = cpu_to_le32(next);
		rp->rx_skbuff[i] = NULL;
	}
	/* Mark the last entry as wrapping the ring. */
	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);

	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = dev_alloc_skb(rp->rx_buf_sz);
		rp->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
		skb->dev = dev;                 /* Mark as being used by this device. */

		rp->rx_skbuff_dma[i] =
			pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
				       PCI_DMA_FROMDEVICE);

		rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
	}
	rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
}

static void free_rbufs(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int i;

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		rp->rx_ring[i].rx_status = 0;
		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
		if (rp->rx_skbuff[i]) {
			pci_unmap_single(rp->pdev,
					 rp->rx_skbuff_dma[i],
					 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
			dev_kfree_skb(rp->rx_skbuff[i]);
		}
		rp->rx_skbuff[i] = NULL;
	}
}

static void alloc_tbufs(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	dma_addr_t next;
	int i;

	rp->dirty_tx = rp->cur_tx = 0;
	next = rp->tx_ring_dma;
	for (i = 0; i < TX_RING_SIZE; i++) {
		rp->tx_skbuff[i] = NULL;
		rp->tx_ring[i].tx_status = 0;
		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
		next += sizeof(struct tx_desc);
		rp->tx_ring[i].next_desc = cpu_to_le32(next);
		rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
	}
	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);

}

static void free_tbufs(struct net_device* dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int i;

	for (i = 0; i < TX_RING_SIZE; i++) {
		rp->tx_ring[i].tx_status = 0;
		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
		if (rp->tx_skbuff[i]) {
			if (rp->tx_skbuff_dma[i]) {
				pci_unmap_single(rp->pdev,
						 rp->tx_skbuff_dma[i],
						 rp->tx_skbuff[i]->len,
						 PCI_DMA_TODEVICE);
			}
			dev_kfree_skb(rp->tx_skbuff[i]);
		}
		rp->tx_skbuff[i] = NULL;
		rp->tx_buf[i] = NULL;
	}
}

static void rhine_check_media(struct net_device *dev, unsigned int init_media)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	mii_check_media(&rp->mii_if, debug, init_media);

	if (rp->mii_if.full_duplex)
	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
		   ioaddr + ChipCmd1);
	else
	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
		   ioaddr + ChipCmd1);
}

static void init_registers(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int i;

	for (i = 0; i < 6; i++)
		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);

	/* Initialize other registers. */
	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
	/* Configure initial FIFO thresholds. */
	iowrite8(0x20, ioaddr + TxConfig);
	rp->tx_thresh = 0x20;
	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */

	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);

	rhine_set_rx_mode(dev);

	/* Enable interrupts by setting the interrupt mask. */
	iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
	       IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
	       IntrTxDone | IntrTxError | IntrTxUnderrun |
	       IntrPCIErr | IntrStatsMax | IntrLinkChange,
	       ioaddr + IntrEnable);

	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
	       ioaddr + ChipCmd);
	rhine_check_media(dev, 1);
}

/* Enable MII link status auto-polling (required for IntrLinkChange) */
static void rhine_enable_linkmon(void __iomem *ioaddr)
{
	iowrite8(0, ioaddr + MIICmd);
	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
	iowrite8(0x80, ioaddr + MIICmd);

	RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));

	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
}

/* Disable MII link status auto-polling (required for MDIO access) */
static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
{
	iowrite8(0, ioaddr + MIICmd);

	if (quirks & rqRhineI) {
		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR

		/* Can be called from ISR. Evil. */
		mdelay(1);

		/* 0x80 must be set immediately before turning it off */
		iowrite8(0x80, ioaddr + MIICmd);

		RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);

		/* Heh. Now clear 0x80 again. */
		iowrite8(0, ioaddr + MIICmd);
	}
	else
		RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
}

/* Read and write over the MII Management Data I/O (MDIO) interface. */

static int mdio_read(struct net_device *dev, int phy_id, int regnum)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int result;

	rhine_disable_linkmon(ioaddr, rp->quirks);

	/* rhine_disable_linkmon already cleared MIICmd */
	iowrite8(phy_id, ioaddr + MIIPhyAddr);
	iowrite8(regnum, ioaddr + MIIRegAddr);
	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
	RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
	result = ioread16(ioaddr + MIIData);

	rhine_enable_linkmon(ioaddr);
	return result;
}

static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	rhine_disable_linkmon(ioaddr, rp->quirks);

	/* rhine_disable_linkmon already cleared MIICmd */
	iowrite8(phy_id, ioaddr + MIIPhyAddr);
	iowrite8(regnum, ioaddr + MIIRegAddr);
	iowrite16(value, ioaddr + MIIData);
	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
	RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));

	rhine_enable_linkmon(ioaddr);
}

static int rhine_open(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int rc;

	rc = request_irq(rp->pdev->irq, &rhine_interrupt, SA_SHIRQ, dev->name,
			dev);
	if (rc)
		return rc;

	if (debug > 1)
		printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
		       dev->name, rp->pdev->irq);

	rc = alloc_ring(dev);
	if (rc) {
		free_irq(rp->pdev->irq, dev);
		return rc;
	}
	alloc_rbufs(dev);
	alloc_tbufs(dev);
	rhine_chip_reset(dev);
	init_registers(dev);
	if (debug > 2)
		printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
		       "MII status: %4.4x.\n",
		       dev->name, ioread16(ioaddr + ChipCmd),
		       mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));

	netif_start_queue(dev);

	return 0;
}

static void rhine_tx_timeout(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
	       "%4.4x, resetting...\n",
	       dev->name, ioread16(ioaddr + IntrStatus),
	       mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));

	/* protect against concurrent rx interrupts */
	disable_irq(rp->pdev->irq);

	spin_lock(&rp->lock);

	/* clear all descriptors */
	free_tbufs(dev);
	free_rbufs(dev);
	alloc_tbufs(dev);
	alloc_rbufs(dev);

	/* Reinitialize the hardware. */
	rhine_chip_reset(dev);
	init_registers(dev);

	spin_unlock(&rp->lock);
	enable_irq(rp->pdev->irq);

	dev->trans_start = jiffies;
	rp->stats.tx_errors++;
	netif_wake_queue(dev);
}

static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	unsigned entry;

	/* Caution: the write order is important here, set the field
	   with the "ownership" bits last. */

	/* Calculate the next Tx descriptor entry. */
	entry = rp->cur_tx % TX_RING_SIZE;

	if (skb->len < ETH_ZLEN) {
		skb = skb_padto(skb, ETH_ZLEN);
		if (skb == NULL)
			return 0;
	}

	rp->tx_skbuff[entry] = skb;

	if ((rp->quirks & rqRhineI) &&
	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_HW)) {
		/* Must use alignment buffer. */
		if (skb->len > PKT_BUF_SZ) {
			/* packet too long, drop it */
			dev_kfree_skb(skb);
			rp->tx_skbuff[entry] = NULL;
			rp->stats.tx_dropped++;
			return 0;
		}
		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
		rp->tx_skbuff_dma[entry] = 0;
		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
						      (rp->tx_buf[entry] -
						       rp->tx_bufs));
	} else {
		rp->tx_skbuff_dma[entry] =
			pci_map_single(rp->pdev, skb->data, skb->len,
				       PCI_DMA_TODEVICE);
		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
	}

	rp->tx_ring[entry].desc_length =
		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));

	/* lock eth irq */
	spin_lock_irq(&rp->lock);
	wmb();
	rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
	wmb();

	rp->cur_tx++;

	/* Non-x86 Todo: explicitly flush cache lines here. */

	/* Wake the potentially-idle transmit channel */
	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
	       ioaddr + ChipCmd1);
	IOSYNC;

	if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
		netif_stop_queue(dev);

	dev->trans_start = jiffies;

	spin_unlock_irq(&rp->lock);

	if (debug > 4) {
		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
		       dev->name, rp->cur_tx-1, entry);
	}
	return 0;
}

/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *rgs)
{
	struct net_device *dev = dev_instance;
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u32 intr_status;
	int boguscnt = max_interrupt_work;
	int handled = 0;

	while ((intr_status = get_intr_status(dev))) {
		handled = 1;

		/* Acknowledge all of the current interrupt sources ASAP. */
		if (intr_status & IntrTxDescRace)
			iowrite8(0x08, ioaddr + IntrStatus2);
		iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
		IOSYNC;

		if (debug > 4)
			printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
			       dev->name, intr_status);

		if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
		    IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf))
			rhine_rx(dev);

		if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
			if (intr_status & IntrTxErrSummary) {
				/* Avoid scavenging before Tx engine turned off */
				RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
				if (debug > 2 &&
				    ioread8(ioaddr+ChipCmd) & CmdTxOn)
					printk(KERN_WARNING "%s: "
					       "rhine_interrupt() Tx engine"
					       "still on.\n", dev->name);
			}
			rhine_tx(dev);
		}

		/* Abnormal error summary/uncommon events handlers. */
		if (intr_status & (IntrPCIErr | IntrLinkChange |
				   IntrStatsMax | IntrTxError | IntrTxAborted |
				   IntrTxUnderrun | IntrTxDescRace))
			rhine_error(dev, intr_status);

		if (--boguscnt < 0) {
			printk(KERN_WARNING "%s: Too much work at interrupt, "
			       "status=%#8.8x.\n",
			       dev->name, intr_status);
			break;
		}
	}

	if (debug > 3)
		printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
		       dev->name, ioread16(ioaddr + IntrStatus));
	return IRQ_RETVAL(handled);
}

/* This routine is logically part of the interrupt handler, but isolated
   for clarity. */
static void rhine_tx(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;

	spin_lock(&rp->lock);

	/* find and cleanup dirty tx descriptors */
	while (rp->dirty_tx != rp->cur_tx) {
		txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
		if (debug > 6)
			printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
			       entry, txstatus);
		if (txstatus & DescOwn)
			break;
		if (txstatus & 0x8000) {
			if (debug > 1)
				printk(KERN_DEBUG "%s: Transmit error, "
				       "Tx status %8.8x.\n",
				       dev->name, txstatus);
			rp->stats.tx_errors++;
			if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
			if (txstatus & 0x0200) rp->stats.tx_window_errors++;
			if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
			if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
				rp->stats.tx_fifo_errors++;
				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
				break; /* Keep the skb - we try again */
			}
			/* Transmitter restarted in 'abnormal' handler. */
		} else {
			if (rp->quirks & rqRhineI)
				rp->stats.collisions += (txstatus >> 3) & 0x0F;
			else
				rp->stats.collisions += txstatus & 0x0F;
			if (debug > 6)
				printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
				       (txstatus >> 3) & 0xF,
				       txstatus & 0xF);
			rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
			rp->stats.tx_packets++;
		}
		/* Free the original skb. */
		if (rp->tx_skbuff_dma[entry]) {
			pci_unmap_single(rp->pdev,
					 rp->tx_skbuff_dma[entry],
					 rp->tx_skbuff[entry]->len,
					 PCI_DMA_TODEVICE);
		}
		dev_kfree_skb_irq(rp->tx_skbuff[entry]);
		rp->tx_skbuff[entry] = NULL;
		entry = (++rp->dirty_tx) % TX_RING_SIZE;
	}
	if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
		netif_wake_queue(dev);

	spin_unlock(&rp->lock);
}

/* This routine is logically part of the interrupt handler, but isolated
   for clarity and better register allocation. */
static void rhine_rx(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	int entry = rp->cur_rx % RX_RING_SIZE;
	int boguscnt = rp->dirty_rx + RX_RING_SIZE - rp->cur_rx;

	if (debug > 4) {
		printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
		       dev->name, entry,
		       le32_to_cpu(rp->rx_head_desc->rx_status));
	}

	/* If EOP is set on the next entry, it's a new packet. Send it up. */
	while (!(rp->rx_head_desc->rx_status & cpu_to_le32(DescOwn))) {
		struct rx_desc *desc = rp->rx_head_desc;
		u32 desc_status = le32_to_cpu(desc->rx_status);
		int data_size = desc_status >> 16;

		if (debug > 4)
			printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
			       desc_status);
		if (--boguscnt < 0)
			break;
		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
			if ((desc_status & RxWholePkt) != RxWholePkt) {
				printk(KERN_WARNING "%s: Oversized Ethernet "
				       "frame spanned multiple buffers, entry "
				       "%#x length %d status %8.8x!\n",
				       dev->name, entry, data_size,
				       desc_status);
				printk(KERN_WARNING "%s: Oversized Ethernet "
				       "frame %p vs %p.\n", dev->name,
				       rp->rx_head_desc, &rp->rx_ring[entry]);
				rp->stats.rx_length_errors++;
			} else if (desc_status & RxErr) {
				/* There was a error. */
				if (debug > 2)
					printk(KERN_DEBUG "rhine_rx() Rx "
					       "error was %8.8x.\n",
					       desc_status);
				rp->stats.rx_errors++;
				if (desc_status & 0x0030) rp->stats.rx_length_errors++;
				if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
				if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
				if (desc_status & 0x0002) {
					/* this can also be updated outside the interrupt handler */
					spin_lock(&rp->lock);
					rp->stats.rx_crc_errors++;
					spin_unlock(&rp->lock);
				}
			}
		} else {
			struct sk_buff *skb;
			/* Length should omit the CRC */
			int pkt_len = data_size - 4;

			/* Check if the packet is long enough to accept without
			   copying to a minimally-sized skbuff. */
			if (pkt_len < rx_copybreak &&
				(skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
				skb->dev = dev;
				skb_reserve(skb, 2);	/* 16 byte align the IP header */
				pci_dma_sync_single_for_cpu(rp->pdev,
							    rp->rx_skbuff_dma[entry],
							    rp->rx_buf_sz,
							    PCI_DMA_FROMDEVICE);

				eth_copy_and_sum(skb,
						 rp->rx_skbuff[entry]->data,
						 pkt_len, 0);
				skb_put(skb, pkt_len);
				pci_dma_sync_single_for_device(rp->pdev,
							       rp->rx_skbuff_dma[entry],
							       rp->rx_buf_sz,
							       PCI_DMA_FROMDEVICE);
			} else {
				skb = rp->rx_skbuff[entry];
				if (skb == NULL) {
					printk(KERN_ERR "%s: Inconsistent Rx "
					       "descriptor chain.\n",
					       dev->name);
					break;
				}
				rp->rx_skbuff[entry] = NULL;
				skb_put(skb, pkt_len);
				pci_unmap_single(rp->pdev,
						 rp->rx_skbuff_dma[entry],
						 rp->rx_buf_sz,
						 PCI_DMA_FROMDEVICE);
			}
			skb->protocol = eth_type_trans(skb, dev);
			netif_rx(skb);
			dev->last_rx = jiffies;
			rp->stats.rx_bytes += pkt_len;
			rp->stats.rx_packets++;
		}
		entry = (++rp->cur_rx) % RX_RING_SIZE;
		rp->rx_head_desc = &rp->rx_ring[entry];
	}

	/* Refill the Rx ring buffers. */
	for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
		struct sk_buff *skb;
		entry = rp->dirty_rx % RX_RING_SIZE;
		if (rp->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb(rp->rx_buf_sz);
			rp->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;	/* Better luck next round. */
			skb->dev = dev;	/* Mark as being used by this device. */
			rp->rx_skbuff_dma[entry] =
				pci_map_single(rp->pdev, skb->data,
					       rp->rx_buf_sz,
					       PCI_DMA_FROMDEVICE);
			rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
		}
		rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
	}
}

/*
 * Clears the "tally counters" for CRC errors and missed frames(?).
 * It has been reported that some chips need a write of 0 to clear
 * these, for others the counters are set to 1 when written to and
 * instead cleared when read. So we clear them both ways ...
 */
static inline void clear_tally_counters(void __iomem *ioaddr)
{
	iowrite32(0, ioaddr + RxMissed);
	ioread16(ioaddr + RxCRCErrs);
	ioread16(ioaddr + RxMissed);
}

static void rhine_restart_tx(struct net_device *dev) {
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	int entry = rp->dirty_tx % TX_RING_SIZE;
	u32 intr_status;

	/*
	 * If new errors occured, we need to sort them out before doing Tx.
	 * In that case the ISR will be back here RSN anyway.
	 */
	intr_status = get_intr_status(dev);

	if ((intr_status & IntrTxErrSummary) == 0) {

		/* We know better than the chip where it should continue. */
		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
		       ioaddr + TxRingPtr);

		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
		       ioaddr + ChipCmd);
		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
		       ioaddr + ChipCmd1);
		IOSYNC;
	}
	else {
		/* This should never happen */
		if (debug > 1)
			printk(KERN_WARNING "%s: rhine_restart_tx() "
			       "Another error occured %8.8x.\n",
			       dev->name, intr_status);
	}

}

static void rhine_error(struct net_device *dev, int intr_status)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	spin_lock(&rp->lock);

	if (intr_status & IntrLinkChange)
		rhine_check_media(dev, 0);
	if (intr_status & IntrStatsMax) {
		rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
		rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
		clear_tally_counters(ioaddr);
	}
	if (intr_status & IntrTxAborted) {
		if (debug > 1)
			printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
			       dev->name, intr_status);
	}
	if (intr_status & IntrTxUnderrun) {
		if (rp->tx_thresh < 0xE0)
			iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
		if (debug > 1)
			printk(KERN_INFO "%s: Transmitter underrun, Tx "
			       "threshold now %2.2x.\n",
			       dev->name, rp->tx_thresh);
	}
	if (intr_status & IntrTxDescRace) {
		if (debug > 2)
			printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
			       dev->name);
	}
	if ((intr_status & IntrTxError) &&
	    (intr_status & (IntrTxAborted |
	     IntrTxUnderrun | IntrTxDescRace)) == 0) {
		if (rp->tx_thresh < 0xE0) {
			iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
		}
		if (debug > 1)
			printk(KERN_INFO "%s: Unspecified error. Tx "
			       "threshold now %2.2x.\n",
			       dev->name, rp->tx_thresh);
	}
	if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
			   IntrTxError))
		rhine_restart_tx(dev);

	if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
			    IntrTxError | IntrTxAborted | IntrNormalSummary |
			    IntrTxDescRace)) {
		if (debug > 1)
			printk(KERN_ERR "%s: Something Wicked happened! "
			       "%8.8x.\n", dev->name, intr_status);
	}

	spin_unlock(&rp->lock);
}

static struct net_device_stats *rhine_get_stats(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	unsigned long flags;

	spin_lock_irqsave(&rp->lock, flags);
	rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
	rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
	clear_tally_counters(ioaddr);
	spin_unlock_irqrestore(&rp->lock, flags);

	return &rp->stats;
}

static void rhine_set_rx_mode(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;
	u32 mc_filter[2];	/* Multicast hash filter */
	u8 rx_mode;		/* Note: 0x02=accept runt, 0x01=accept errs */

	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
		/* Unconditionally log net taps. */
		printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
		       dev->name);
		rx_mode = 0x1C;
		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
	} else if ((dev->mc_count > multicast_filter_limit)
		   || (dev->flags & IFF_ALLMULTI)) {
		/* Too many to match, or accept all multicasts. */
		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
		rx_mode = 0x0C;
	} else {
		struct dev_mc_list *mclist;
		int i;
		memset(mc_filter, 0, sizeof(mc_filter));
		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
		     i++, mclist = mclist->next) {
			int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;

			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
		}
		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
		rx_mode = 0x0C;
	}
	iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
}

static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct rhine_private *rp = netdev_priv(dev);

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->bus_info, pci_name(rp->pdev));
}

static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct rhine_private *rp = netdev_priv(dev);
	int rc;

	spin_lock_irq(&rp->lock);
	rc = mii_ethtool_gset(&rp->mii_if, cmd);
	spin_unlock_irq(&rp->lock);

	return rc;
}

static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct rhine_private *rp = netdev_priv(dev);
	int rc;

	spin_lock_irq(&rp->lock);
	rc = mii_ethtool_sset(&rp->mii_if, cmd);
	spin_unlock_irq(&rp->lock);

	return rc;
}

static int netdev_nway_reset(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	return mii_nway_restart(&rp->mii_if);
}

static u32 netdev_get_link(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);

	return mii_link_ok(&rp->mii_if);
}

static u32 netdev_get_msglevel(struct net_device *dev)
{
	return debug;
}

static void netdev_set_msglevel(struct net_device *dev, u32 value)
{
	debug = value;
}

static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct rhine_private *rp = netdev_priv(dev);

	if (!(rp->quirks & rqWOL))
		return;

	spin_lock_irq(&rp->lock);
	wol->supported = WAKE_PHY | WAKE_MAGIC |
			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
	wol->wolopts = rp->wolopts;
	spin_unlock_irq(&rp->lock);
}

static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct rhine_private *rp = netdev_priv(dev);
	u32 support = WAKE_PHY | WAKE_MAGIC |
		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */

	if (!(rp->quirks & rqWOL))
		return -EINVAL;

	if (wol->wolopts & ~support)
		return -EINVAL;

	spin_lock_irq(&rp->lock);
	rp->wolopts = wol->wolopts;
	spin_unlock_irq(&rp->lock);

	return 0;
}

static struct ethtool_ops netdev_ethtool_ops = {
	.get_drvinfo		= netdev_get_drvinfo,
	.get_settings		= netdev_get_settings,
	.set_settings		= netdev_set_settings,
	.nway_reset		= netdev_nway_reset,
	.get_link		= netdev_get_link,
	.get_msglevel		= netdev_get_msglevel,
	.set_msglevel		= netdev_set_msglevel,
	.get_wol		= rhine_get_wol,
	.set_wol		= rhine_set_wol,
	.get_sg			= ethtool_op_get_sg,
	.get_tx_csum		= ethtool_op_get_tx_csum,
};

static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct rhine_private *rp = netdev_priv(dev);
	int rc;

	if (!netif_running(dev))
		return -EINVAL;

	spin_lock_irq(&rp->lock);
	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
	spin_unlock_irq(&rp->lock);

	return rc;
}

static int rhine_close(struct net_device *dev)
{
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	spin_lock_irq(&rp->lock);

	netif_stop_queue(dev);

	if (debug > 1)
		printk(KERN_DEBUG "%s: Shutting down ethercard, "
		       "status was %4.4x.\n",
		       dev->name, ioread16(ioaddr + ChipCmd));

	/* Switch to loopback mode to avoid hardware races. */
	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);

	/* Disable interrupts by clearing the interrupt mask. */
	iowrite16(0x0000, ioaddr + IntrEnable);

	/* Stop the chip's Tx and Rx processes. */
	iowrite16(CmdStop, ioaddr + ChipCmd);

	spin_unlock_irq(&rp->lock);

	free_irq(rp->pdev->irq, dev);
	free_rbufs(dev);
	free_tbufs(dev);
	free_ring(dev);

	return 0;
}


static void __devexit rhine_remove_one(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);

	unregister_netdev(dev);

	pci_iounmap(pdev, rp->base);
	pci_release_regions(pdev);

	free_netdev(dev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
}

static void rhine_shutdown (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);
	void __iomem *ioaddr = rp->base;

	if (!(rp->quirks & rqWOL))
		return; /* Nothing to do for non-WOL adapters */

	rhine_power_init(dev);

	/* Make sure we use pattern 0, 1 and not 4, 5 */
	if (rp->quirks & rq6patterns)
		iowrite8(0x04, ioaddr + 0xA7);

	if (rp->wolopts & WAKE_MAGIC) {
		iowrite8(WOLmagic, ioaddr + WOLcrSet);
		/*
		 * Turn EEPROM-controlled wake-up back on -- some hardware may
		 * not cooperate otherwise.
		 */
		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
	}

	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
		iowrite8(WOLbmcast, ioaddr + WOLcgSet);

	if (rp->wolopts & WAKE_PHY)
		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);

	if (rp->wolopts & WAKE_UCAST)
		iowrite8(WOLucast, ioaddr + WOLcrSet);

	if (rp->wolopts) {
		/* Enable legacy WOL (for old motherboards) */
		iowrite8(0x01, ioaddr + PwcfgSet);
		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
	}

	/* Hit power state D3 (sleep) */
	iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);

	/* TODO: Check use of pci_enable_wake() */

}

#ifdef CONFIG_PM
static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);
	unsigned long flags;

	if (!netif_running(dev))
		return 0;

	netif_device_detach(dev);
	pci_save_state(pdev);

	spin_lock_irqsave(&rp->lock, flags);
	rhine_shutdown(pdev);
	spin_unlock_irqrestore(&rp->lock, flags);

	free_irq(dev->irq, dev);
	return 0;
}

static int rhine_resume(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct rhine_private *rp = netdev_priv(dev);
	unsigned long flags;
	int ret;

	if (!netif_running(dev))
		return 0;

        if (request_irq(dev->irq, rhine_interrupt, SA_SHIRQ, dev->name, dev))
		printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);

	ret = pci_set_power_state(pdev, PCI_D0);
	if (debug > 1)
		printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
			dev->name, ret ? "failed" : "succeeded", ret);

	pci_restore_state(pdev);

	spin_lock_irqsave(&rp->lock, flags);
#ifdef USE_MMIO
	enable_mmio(rp->pioaddr, rp->quirks);
#endif
	rhine_power_init(dev);
	free_tbufs(dev);
	free_rbufs(dev);
	alloc_tbufs(dev);
	alloc_rbufs(dev);
	init_registers(dev);
	spin_unlock_irqrestore(&rp->lock, flags);

	netif_device_attach(dev);

	return 0;
}
#endif /* CONFIG_PM */

static struct pci_driver rhine_driver = {
	.name		= DRV_NAME,
	.id_table	= rhine_pci_tbl,
	.probe		= rhine_init_one,
	.remove		= __devexit_p(rhine_remove_one),
#ifdef CONFIG_PM
	.suspend	= rhine_suspend,
	.resume		= rhine_resume,
#endif /* CONFIG_PM */
	.shutdown =	rhine_shutdown,
};


static int __init rhine_init(void)
{
/* when a module, this is printed whether or not devices are found in probe */
#ifdef MODULE
	printk(version);
#endif
	return pci_module_init(&rhine_driver);
}


static void __exit rhine_cleanup(void)
{
	pci_unregister_driver(&rhine_driver);
}


module_init(rhine_init);
module_exit(rhine_cleanup);