summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-dsa2
-rw-r--r--Documentation/ABI/testing/sysfs-devices-system-cpu7
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt68
-rw-r--r--Documentation/admin-guide/pm/cpuidle.rst631
-rw-r--r--Documentation/admin-guide/pm/working-state.rst1
-rw-r--r--Documentation/admin-guide/security-bugs.rst21
-rw-r--r--Documentation/arm64/silicon-errata.txt1
-rw-r--r--Documentation/core-api/xarray.rst55
-rw-r--r--Documentation/cpuidle/core.txt23
-rw-r--r--Documentation/cpuidle/sysfs.txt98
-rw-r--r--Documentation/devicetree/bindings/clock/clock-bindings.txt16
-rw-r--r--Documentation/devicetree/bindings/input/input-reset.txt2
-rw-r--r--Documentation/devicetree/bindings/media/rockchip-vpu.txt29
-rw-r--r--Documentation/devicetree/bindings/net/can/holt_hi311x.txt2
-rw-r--r--Documentation/devicetree/bindings/net/can/rcar_can.txt28
-rw-r--r--Documentation/devicetree/bindings/net/dsa/dsa.txt2
-rw-r--r--Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt31
-rw-r--r--Documentation/devicetree/bindings/spi/spi-uniphier.txt14
-rw-r--r--Documentation/input/event-codes.rst11
-rw-r--r--Documentation/media/uapi/mediactl/media-ioc-request-alloc.rst26
-rw-r--r--Documentation/media/uapi/mediactl/media-request-ioc-queue.rst26
-rw-r--r--Documentation/media/uapi/mediactl/media-request-ioc-reinit.rst26
-rw-r--r--Documentation/media/uapi/mediactl/request-api.rst26
-rw-r--r--Documentation/media/uapi/mediactl/request-func-close.rst26
-rw-r--r--Documentation/media/uapi/mediactl/request-func-ioctl.rst26
-rw-r--r--Documentation/media/uapi/mediactl/request-func-poll.rst26
-rw-r--r--Documentation/media/uapi/v4l/dev-meta.rst2
-rw-r--r--Documentation/media/uapi/v4l/extended-controls.rst10
-rw-r--r--Documentation/media/uapi/v4l/vidioc-g-fmt.rst5
-rw-r--r--Documentation/networking/rxrpc.txt17
-rw-r--r--Documentation/userspace-api/spec_ctrl.rst9
-rw-r--r--Documentation/x86/boot.txt32
32 files changed, 1042 insertions, 257 deletions
diff --git a/Documentation/ABI/testing/sysfs-class-net-dsa b/Documentation/ABI/testing/sysfs-class-net-dsa
index f240221e071e..985d84c585c6 100644
--- a/Documentation/ABI/testing/sysfs-class-net-dsa
+++ b/Documentation/ABI/testing/sysfs-class-net-dsa
@@ -1,4 +1,4 @@
-What: /sys/class/net/<iface>/tagging
+What: /sys/class/net/<iface>/dsa/tagging
Date: August 2018
KernelVersion: 4.20
Contact: netdev@vger.kernel.org
diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu
index 73318225a368..9605dbd4b5b5 100644
--- a/Documentation/ABI/testing/sysfs-devices-system-cpu
+++ b/Documentation/ABI/testing/sysfs-devices-system-cpu
@@ -145,6 +145,8 @@ What: /sys/devices/system/cpu/cpuX/cpuidle/stateN/name
/sys/devices/system/cpu/cpuX/cpuidle/stateN/power
/sys/devices/system/cpu/cpuX/cpuidle/stateN/time
/sys/devices/system/cpu/cpuX/cpuidle/stateN/usage
+ /sys/devices/system/cpu/cpuX/cpuidle/stateN/above
+ /sys/devices/system/cpu/cpuX/cpuidle/stateN/below
Date: September 2007
KernelVersion: v2.6.24
Contact: Linux power management list <linux-pm@vger.kernel.org>
@@ -166,6 +168,11 @@ Description:
usage: (RO) Number of times this state was entered (a count).
+ above: (RO) Number of times this state was entered, but the
+ observed CPU idle duration was too short for it (a count).
+
+ below: (RO) Number of times this state was entered, but the
+ observed CPU idle duration was too long for it (a count).
What: /sys/devices/system/cpu/cpuX/cpuidle/stateN/desc
Date: February 2008
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 81d1d5a74728..362a18cd68e1 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -674,6 +674,9 @@
cpuidle.off=1 [CPU_IDLE]
disable the cpuidle sub-system
+ cpuidle.governor=
+ [CPU_IDLE] Name of the cpuidle governor to use.
+
cpufreq.off=1 [CPU_FREQ]
disable the cpufreq sub-system
@@ -856,7 +859,8 @@
causing system reset or hang due to sending
INIT from AP to BSP.
- disable_counter_freezing [HW]
+ perf_v4_pmi= [X86,INTEL]
+ Format: <bool>
Disable Intel PMU counter freezing feature.
The feature only exists starting from
Arch Perfmon v4 (Skylake and newer).
@@ -3504,6 +3508,10 @@
before loading.
See Documentation/blockdev/ramdisk.txt.
+ psi= [KNL] Enable or disable pressure stall information
+ tracking.
+ Format: <bool>
+
psmouse.proto= [HW,MOUSE] Highest PS2 mouse protocol extension to
probe for; one of (bare|imps|exps|lifebook|any).
psmouse.rate= [HW,MOUSE] Set desired mouse report rate, in reports
@@ -4194,9 +4202,13 @@
spectre_v2= [X86] Control mitigation of Spectre variant 2
(indirect branch speculation) vulnerability.
+ The default operation protects the kernel from
+ user space attacks.
- on - unconditionally enable
- off - unconditionally disable
+ on - unconditionally enable, implies
+ spectre_v2_user=on
+ off - unconditionally disable, implies
+ spectre_v2_user=off
auto - kernel detects whether your CPU model is
vulnerable
@@ -4206,6 +4218,12 @@
CONFIG_RETPOLINE configuration option, and the
compiler with which the kernel was built.
+ Selecting 'on' will also enable the mitigation
+ against user space to user space task attacks.
+
+ Selecting 'off' will disable both the kernel and
+ the user space protections.
+
Specific mitigations can also be selected manually:
retpoline - replace indirect branches
@@ -4215,6 +4233,48 @@
Not specifying this option is equivalent to
spectre_v2=auto.
+ spectre_v2_user=
+ [X86] Control mitigation of Spectre variant 2
+ (indirect branch speculation) vulnerability between
+ user space tasks
+
+ on - Unconditionally enable mitigations. Is
+ enforced by spectre_v2=on
+
+ off - Unconditionally disable mitigations. Is
+ enforced by spectre_v2=off
+
+ prctl - Indirect branch speculation is enabled,
+ but mitigation can be enabled via prctl
+ per thread. The mitigation control state
+ is inherited on fork.
+
+ prctl,ibpb
+ - Like "prctl" above, but only STIBP is
+ controlled per thread. IBPB is issued
+ always when switching between different user
+ space processes.
+
+ seccomp
+ - Same as "prctl" above, but all seccomp
+ threads will enable the mitigation unless
+ they explicitly opt out.
+
+ seccomp,ibpb
+ - Like "seccomp" above, but only STIBP is
+ controlled per thread. IBPB is issued
+ always when switching between different
+ user space processes.
+
+ auto - Kernel selects the mitigation depending on
+ the available CPU features and vulnerability.
+
+ Default mitigation:
+ If CONFIG_SECCOMP=y then "seccomp", otherwise "prctl"
+
+ Not specifying this option is equivalent to
+ spectre_v2_user=auto.
+
spec_store_bypass_disable=
[HW] Control Speculative Store Bypass (SSB) Disable mitigation
(Speculative Store Bypass vulnerability)
@@ -4713,6 +4773,8 @@
prevent spurious wakeup);
n = USB_QUIRK_DELAY_CTRL_MSG (Device needs a
pause after every control message);
+ o = USB_QUIRK_HUB_SLOW_RESET (Hub needs extra
+ delay after resetting its port);
Example: quirks=0781:5580:bk,0a5c:5834:gij
usbhid.mousepoll=
diff --git a/Documentation/admin-guide/pm/cpuidle.rst b/Documentation/admin-guide/pm/cpuidle.rst
new file mode 100644
index 000000000000..106379e2619f
--- /dev/null
+++ b/Documentation/admin-guide/pm/cpuidle.rst
@@ -0,0 +1,631 @@
+.. |struct cpuidle_state| replace:: :c:type:`struct cpuidle_state <cpuidle_state>`
+.. |cpufreq| replace:: :doc:`CPU Performance Scaling <cpufreq>`
+
+========================
+CPU Idle Time Management
+========================
+
+::
+
+ Copyright (c) 2018 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+
+Concepts
+========
+
+Modern processors are generally able to enter states in which the execution of
+a program is suspended and instructions belonging to it are not fetched from
+memory or executed. Those states are the *idle* states of the processor.
+
+Since part of the processor hardware is not used in idle states, entering them
+generally allows power drawn by the processor to be reduced and, in consequence,
+it is an opportunity to save energy.
+
+CPU idle time management is an energy-efficiency feature concerned about using
+the idle states of processors for this purpose.
+
+Logical CPUs
+------------
+
+CPU idle time management operates on CPUs as seen by the *CPU scheduler* (that
+is the part of the kernel responsible for the distribution of computational
+work in the system). In its view, CPUs are *logical* units. That is, they need
+not be separate physical entities and may just be interfaces appearing to
+software as individual single-core processors. In other words, a CPU is an
+entity which appears to be fetching instructions that belong to one sequence
+(program) from memory and executing them, but it need not work this way
+physically. Generally, three different cases can be consider here.
+
+First, if the whole processor can only follow one sequence of instructions (one
+program) at a time, it is a CPU. In that case, if the hardware is asked to
+enter an idle state, that applies to the processor as a whole.
+
+Second, if the processor is multi-core, each core in it is able to follow at
+least one program at a time. The cores need not be entirely independent of each
+other (for example, they may share caches), but still most of the time they
+work physically in parallel with each other, so if each of them executes only
+one program, those programs run mostly independently of each other at the same
+time. The entire cores are CPUs in that case and if the hardware is asked to
+enter an idle state, that applies to the core that asked for it in the first
+place, but it also may apply to a larger unit (say a "package" or a "cluster")
+that the core belongs to (in fact, it may apply to an entire hierarchy of larger
+units containing the core). Namely, if all of the cores in the larger unit
+except for one have been put into idle states at the "core level" and the
+remaining core asks the processor to enter an idle state, that may trigger it
+to put the whole larger unit into an idle state which also will affect the
+other cores in that unit.
+
+Finally, each core in a multi-core processor may be able to follow more than one
+program in the same time frame (that is, each core may be able to fetch
+instructions from multiple locations in memory and execute them in the same time
+frame, but not necessarily entirely in parallel with each other). In that case
+the cores present themselves to software as "bundles" each consisting of
+multiple individual single-core "processors", referred to as *hardware threads*
+(or hyper-threads specifically on Intel hardware), that each can follow one
+sequence of instructions. Then, the hardware threads are CPUs from the CPU idle
+time management perspective and if the processor is asked to enter an idle state
+by one of them, the hardware thread (or CPU) that asked for it is stopped, but
+nothing more happens, unless all of the other hardware threads within the same
+core also have asked the processor to enter an idle state. In that situation,
+the core may be put into an idle state individually or a larger unit containing
+it may be put into an idle state as a whole (if the other cores within the
+larger unit are in idle states already).
+
+Idle CPUs
+---------
+
+Logical CPUs, simply referred to as "CPUs" in what follows, are regarded as
+*idle* by the Linux kernel when there are no tasks to run on them except for the
+special "idle" task.
+
+Tasks are the CPU scheduler's representation of work. Each task consists of a
+sequence of instructions to execute, or code, data to be manipulated while
+running that code, and some context information that needs to be loaded into the
+processor every time the task's code is run by a CPU. The CPU scheduler
+distributes work by assigning tasks to run to the CPUs present in the system.
+
+Tasks can be in various states. In particular, they are *runnable* if there are
+no specific conditions preventing their code from being run by a CPU as long as
+there is a CPU available for that (for example, they are not waiting for any
+events to occur or similar). When a task becomes runnable, the CPU scheduler
+assigns it to one of the available CPUs to run and if there are no more runnable
+tasks assigned to it, the CPU will load the given task's context and run its
+code (from the instruction following the last one executed so far, possibly by
+another CPU). [If there are multiple runnable tasks assigned to one CPU
+simultaneously, they will be subject to prioritization and time sharing in order
+to allow them to make some progress over time.]
+
+The special "idle" task becomes runnable if there are no other runnable tasks
+assigned to the given CPU and the CPU is then regarded as idle. In other words,
+in Linux idle CPUs run the code of the "idle" task called *the idle loop*. That
+code may cause the processor to be put into one of its idle states, if they are
+supported, in order to save energy, but if the processor does not support any
+idle states, or there is not enough time to spend in an idle state before the
+next wakeup event, or there are strict latency constraints preventing any of the
+available idle states from being used, the CPU will simply execute more or less
+useless instructions in a loop until it is assigned a new task to run.
+
+
+.. _idle-loop:
+
+The Idle Loop
+=============
+
+The idle loop code takes two major steps in every iteration of it. First, it
+calls into a code module referred to as the *governor* that belongs to the CPU
+idle time management subsystem called ``CPUIdle`` to select an idle state for
+the CPU to ask the hardware to enter. Second, it invokes another code module
+from the ``CPUIdle`` subsystem, called the *driver*, to actually ask the
+processor hardware to enter the idle state selected by the governor.
+
+The role of the governor is to find an idle state most suitable for the
+conditions at hand. For this purpose, idle states that the hardware can be
+asked to enter by logical CPUs are represented in an abstract way independent of
+the platform or the processor architecture and organized in a one-dimensional
+(linear) array. That array has to be prepared and supplied by the ``CPUIdle``
+driver matching the platform the kernel is running on at the initialization
+time. This allows ``CPUIdle`` governors to be independent of the underlying
+hardware and to work with any platforms that the Linux kernel can run on.
+
+Each idle state present in that array is characterized by two parameters to be
+taken into account by the governor, the *target residency* and the (worst-case)
+*exit latency*. The target residency is the minimum time the hardware must
+spend in the given state, including the time needed to enter it (which may be
+substantial), in order to save more energy than it would save by entering one of
+the shallower idle states instead. [The "depth" of an idle state roughly
+corresponds to the power drawn by the processor in that state.] The exit
+latency, in turn, is the maximum time it will take a CPU asking the processor
+hardware to enter an idle state to start executing the first instruction after a
+wakeup from that state. Note that in general the exit latency also must cover
+the time needed to enter the given state in case the wakeup occurs when the
+hardware is entering it and it must be entered completely to be exited in an
+ordered manner.
+
+There are two types of information that can influence the governor's decisions.
+First of all, the governor knows the time until the closest timer event. That
+time is known exactly, because the kernel programs timers and it knows exactly
+when they will trigger, and it is the maximum time the hardware that the given
+CPU depends on can spend in an idle state, including the time necessary to enter
+and exit it. However, the CPU may be woken up by a non-timer event at any time
+(in particular, before the closest timer triggers) and it generally is not known
+when that may happen. The governor can only see how much time the CPU actually
+was idle after it has been woken up (that time will be referred to as the *idle
+duration* from now on) and it can use that information somehow along with the
+time until the closest timer to estimate the idle duration in future. How the
+governor uses that information depends on what algorithm is implemented by it
+and that is the primary reason for having more than one governor in the
+``CPUIdle`` subsystem.
+
+There are two ``CPUIdle`` governors available, ``menu`` and ``ladder``. Which
+of them is used depends on the configuration of the kernel and in particular on
+whether or not the scheduler tick can be `stopped by the idle
+loop <idle-cpus-and-tick_>`_. It is possible to change the governor at run time
+if the ``cpuidle_sysfs_switch`` command line parameter has been passed to the
+kernel, but that is not safe in general, so it should not be done on production
+systems (that may change in the future, though). The name of the ``CPUIdle``
+governor currently used by the kernel can be read from the
+:file:`current_governor_ro` (or :file:`current_governor` if
+``cpuidle_sysfs_switch`` is present in the kernel command line) file under
+:file:`/sys/devices/system/cpu/cpuidle/` in ``sysfs``.
+
+Which ``CPUIdle`` driver is used, on the other hand, usually depends on the
+platform the kernel is running on, but there are platforms with more than one
+matching driver. For example, there are two drivers that can work with the
+majority of Intel platforms, ``intel_idle`` and ``acpi_idle``, one with
+hardcoded idle states information and the other able to read that information
+from the system's ACPI tables, respectively. Still, even in those cases, the
+driver chosen at the system initialization time cannot be replaced later, so the
+decision on which one of them to use has to be made early (on Intel platforms
+the ``acpi_idle`` driver will be used if ``intel_idle`` is disabled for some
+reason or if it does not recognize the processor). The name of the ``CPUIdle``
+driver currently used by the kernel can be read from the :file:`current_driver`
+file under :file:`/sys/devices/system/cpu/cpuidle/` in ``sysfs``.
+
+
+.. _idle-cpus-and-tick:
+
+Idle CPUs and The Scheduler Tick
+================================
+
+The scheduler tick is a timer that triggers periodically in order to implement
+the time sharing strategy of the CPU scheduler. Of course, if there are
+multiple runnable tasks assigned to one CPU at the same time, the only way to
+allow them to make reasonable progress in a given time frame is to make them
+share the available CPU time. Namely, in rough approximation, each task is
+given a slice of the CPU time to run its code, subject to the scheduling class,
+prioritization and so on and when that time slice is used up, the CPU should be
+switched over to running (the code of) another task. The currently running task
+may not want to give the CPU away voluntarily, however, and the scheduler tick
+is there to make the switch happen regardless. That is not the only role of the
+tick, but it is the primary reason for using it.
+
+The scheduler tick is problematic from the CPU idle time management perspective,
+because it triggers periodically and relatively often (depending on the kernel
+configuration, the length of the tick period is between 1 ms and 10 ms).
+Thus, if the tick is allowed to trigger on idle CPUs, it will not make sense
+for them to ask the hardware to enter idle states with target residencies above
+the tick period length. Moreover, in that case the idle duration of any CPU
+will never exceed the tick period length and the energy used for entering and
+exiting idle states due to the tick wakeups on idle CPUs will be wasted.
+
+Fortunately, it is not really necessary to allow the tick to trigger on idle
+CPUs, because (by definition) they have no tasks to run except for the special
+"idle" one. In other words, from the CPU scheduler perspective, the only user
+of the CPU time on them is the idle loop. Since the time of an idle CPU need
+not be shared between multiple runnable tasks, the primary reason for using the
+tick goes away if the given CPU is idle. Consequently, it is possible to stop
+the scheduler tick entirely on idle CPUs in principle, even though that may not
+always be worth the effort.
+
+Whether or not it makes sense to stop the scheduler tick in the idle loop
+depends on what is expected by the governor. First, if there is another
+(non-tick) timer due to trigger within the tick range, stopping the tick clearly
+would be a waste of time, even though the timer hardware may not need to be
+reprogrammed in that case. Second, if the governor is expecting a non-timer
+wakeup within the tick range, stopping the tick is not necessary and it may even
+be harmful. Namely, in that case the governor will select an idle state with
+the target residency within the time until the expected wakeup, so that state is
+going to be relatively shallow. The governor really cannot select a deep idle
+state then, as that would contradict its own expectation of a wakeup in short
+order. Now, if the wakeup really occurs shortly, stopping the tick would be a
+waste of time and in this case the timer hardware would need to be reprogrammed,
+which is expensive. On the other hand, if the tick is stopped and the wakeup
+does not occur any time soon, the hardware may spend indefinite amount of time
+in the shallow idle state selected by the governor, which will be a waste of
+energy. Hence, if the governor is expecting a wakeup of any kind within the
+tick range, it is better to allow the tick trigger. Otherwise, however, the
+governor will select a relatively deep idle state, so the tick should be stopped
+so that it does not wake up the CPU too early.
+
+In any case, the governor knows what it is expecting and the decision on whether
+or not to stop the scheduler tick belongs to it. Still, if the tick has been
+stopped already (in one of the previous iterations of the loop), it is better
+to leave it as is and the governor needs to take that into account.
+
+The kernel can be configured to disable stopping the scheduler tick in the idle
+loop altogether. That can be done through the build-time configuration of it
+(by unsetting the ``CONFIG_NO_HZ_IDLE`` configuration option) or by passing
+``nohz=off`` to it in the command line. In both cases, as the stopping of the
+scheduler tick is disabled, the governor's decisions regarding it are simply
+ignored by the idle loop code and the tick is never stopped.
+
+The systems that run kernels configured to allow the scheduler tick to be
+stopped on idle CPUs are referred to as *tickless* systems and they are
+generally regarded as more energy-efficient than the systems running kernels in
+which the tick cannot be stopped. If the given system is tickless, it will use
+the ``menu`` governor by default and if it is not tickless, the default
+``CPUIdle`` governor on it will be ``ladder``.
+
+
+The ``menu`` Governor
+=====================
+
+The ``menu`` governor is the default ``CPUIdle`` governor for tickless systems.
+It is quite complex, but the basic principle of its design is straightforward.
+Namely, when invoked to select an idle state for a CPU (i.e. an idle state that
+the CPU will ask the processor hardware to enter), it attempts to predict the
+idle duration and uses the predicted value for idle state selection.
+
+It first obtains the time until the closest timer event with the assumption
+that the scheduler tick will be stopped. That time, referred to as the *sleep
+length* in what follows, is the upper bound on the time before the next CPU
+wakeup. It is used to determine the sleep length range, which in turn is needed
+to get the sleep length correction factor.
+
+The ``menu`` governor maintains two arrays of sleep length correction factors.
+One of them is used when tasks previously running on the given CPU are waiting
+for some I/O operations to complete and the other one is used when that is not
+the case. Each array contains several correction factor values that correspond
+to different sleep length ranges organized so that each range represented in the
+array is approximately 10 times wider than the previous one.
+
+The correction factor for the given sleep length range (determined before
+selecting the idle state for the CPU) is updated after the CPU has been woken
+up and the closer the sleep length is to the observed idle duration, the closer
+to 1 the correction factor becomes (it must fall between 0 and 1 inclusive).
+The sleep length is multiplied by the correction factor for the range that it
+falls into to obtain the first approximation of the predicted idle duration.
+
+Next, the governor uses a simple pattern recognition algorithm to refine its
+idle duration prediction. Namely, it saves the last 8 observed idle duration
+values and, when predicting the idle duration next time, it computes the average
+and variance of them. If the variance is small (smaller than 400 square
+milliseconds) or it is small relative to the average (the average is greater
+that 6 times the standard deviation), the average is regarded as the "typical
+interval" value. Otherwise, the longest of the saved observed idle duration
+values is discarded and the computation is repeated for the remaining ones.
+Again, if the variance of them is small (in the above sense), the average is
+taken as the "typical interval" value and so on, until either the "typical
+interval" is determined or too many data points are disregarded, in which case
+the "typical interval" is assumed to equal "infinity" (the maximum unsigned
+integer value). The "typical interval" computed this way is compared with the
+sleep length multiplied by the correction factor and the minimum of the two is
+taken as the predicted idle duration.
+
+Then, the governor computes an extra latency limit to help "interactive"
+workloads. It uses the observation that if the exit latency of the selected
+idle state is comparable with the predicted idle duration, the total time spent
+in that state probably will be very short and the amount of energy to save by
+entering it will be relatively small, so likely it is better to avoid the
+overhead related to entering that state and exiting it. Thus selecting a
+shallower state is likely to be a better option then. The first approximation
+of the extra latency limit is the predicted idle duration itself which
+additionally is divided by a value depending on the number of tasks that
+previously ran on the given CPU and now they are waiting for I/O operations to
+complete. The result of that division is compared with the latency limit coming
+from the power management quality of service, or `PM QoS <cpu-pm-qos_>`_,
+framework and the minimum of the two is taken as the limit for the idle states'
+exit latency.
+
+Now, the governor is ready to walk the list of idle states and choose one of
+them. For this purpose, it compares the target residency of each state with
+the predicted idle duration and the exit latency of it with the computed latency
+limit. It selects the state with the target residency closest to the predicted
+idle duration, but still below it, and exit latency that does not exceed the
+limit.
+
+In the final step the governor may still need to refine the idle state selection
+if it has not decided to `stop the scheduler tick <idle-cpus-and-tick_>`_. That
+happens if the idle duration predicted by it is less than the tick period and
+the tick has not been stopped already (in a previous iteration of the idle
+loop). Then, the sleep length used in the previous computations may not reflect
+the real time until the closest timer event and if it really is greater than
+that time, the governor may need to select a shallower state with a suitable
+target residency.
+
+
+.. _idle-states-representation:
+
+Representation of Idle States
+=============================
+
+For the CPU idle time management purposes all of the physical idle states
+supported by the processor have to be represented as a one-dimensional array of
+|struct cpuidle_state| objects each allowing an individual (logical) CPU to ask
+the processor hardware to enter an idle state of certain properties. If there
+is a hierarchy of units in the processor, one |struct cpuidle_state| object can
+cover a combination of idle states supported by the units at different levels of
+the hierarchy. In that case, the `target residency and exit latency parameters
+of it <idle-loop_>`_, must reflect the properties of the idle state at the
+deepest level (i.e. the idle state of the unit containing all of the other
+units).
+
+For example, take a processor with two cores in a larger unit referred to as
+a "module" and suppose that asking the hardware to enter a specific idle state
+(say "X") at the "core" level by one core will trigger the module to try to
+enter a specific idle state of its own (say "MX") if the other core is in idle
+state "X" already. In other words, asking for idle state "X" at the "core"
+level gives the hardware a license to go as deep as to idle state "MX" at the
+"module" level, but there is no guarantee that this is going to happen (the core
+asking for idle state "X" may just end up in that state by itself instead).
+Then, the target residency of the |struct cpuidle_state| object representing
+idle state "X" must reflect the minimum time to spend in idle state "MX" of
+the module (including the time needed to enter it), because that is the minimum
+time the CPU needs to be idle to save any energy in case the hardware enters
+that state. Analogously, the exit latency parameter of that object must cover
+the exit time of idle state "MX" of the module (and usually its entry time too),
+because that is the maximum delay between a wakeup signal and the time the CPU
+will start to execute the first new instruction (assuming that both cores in the
+module will always be ready to execute instructions as soon as the module
+becomes operational as a whole).
+
+There are processors without direct coordination between different levels of the
+hierarchy of units inside them, however. In those cases asking for an idle
+state at the "core" level does not automatically affect the "module" level, for
+example, in any way and the ``CPUIdle`` driver is responsible for the entire
+handling of the hierarchy. Then, the definition of the idle state objects is
+entirely up to the driver, but still the physical properties of the idle state
+that the processor hardware finally goes into must always follow the parameters
+used by the governor for idle state selection (for instance, the actual exit
+latency of that idle state must not exceed the exit latency parameter of the
+idle state object selected by the governor).
+
+In addition to the target residency and exit latency idle state parameters
+discussed above, the objects representing idle states each contain a few other
+parameters describing the idle state and a pointer to the function to run in
+order to ask the hardware to enter that state. Also, for each
+|struct cpuidle_state| object, there is a corresponding
+:c:type:`struct cpuidle_state_usage <cpuidle_state_usage>` one containing usage
+statistics of the given idle state. That information is exposed by the kernel
+via ``sysfs``.
+
+For each CPU in the system, there is a :file:`/sys/devices/system/cpu<N>/cpuidle/`
+directory in ``sysfs``, where the number ``<N>`` is assigned to the given
+CPU at the initialization time. That directory contains a set of subdirectories
+called :file:`state0`, :file:`state1` and so on, up to the number of idle state
+objects defined for the given CPU minus one. Each of these directories
+corresponds to one idle state object and the larger the number in its name, the
+deeper the (effective) idle state represented by it. Each of them contains
+a number of files (attributes) representing the properties of the idle state
+object corresponding to it, as follows:
+
+``above``
+ Total number of times this idle state had been asked for, but the
+ observed idle duration was certainly too short to match its target
+ residency.
+
+``below``
+ Total number of times this idle state had been asked for, but cerainly
+ a deeper idle state would have been a better match for the observed idle
+ duration.
+
+``desc``
+ Description of the idle state.
+
+``disable``
+ Whether or not this idle state is disabled.
+
+``latency``
+ Exit latency of the idle state in microseconds.
+
+``name``
+ Name of the idle state.
+
+``power``
+ Power drawn by hardware in this idle state in milliwatts (if specified,
+ 0 otherwise).
+
+``residency``
+ Target residency of the idle state in microseconds.
+
+``time``
+ Total time spent in this idle state by the given CPU (as measured by the
+ kernel) in microseconds.
+
+``usage``
+ Total number of times the hardware has been asked by the given CPU to
+ enter this idle state.
+
+The :file:`desc` and :file:`name` files both contain strings. The difference
+between them is that the name is expected to be more concise, while the
+description may be longer and it may contain white space or special characters.
+The other files listed above contain integer numbers.
+
+The :file:`disable` attribute is the only writeable one. If it contains 1, the
+given idle state is disabled for this particular CPU, which means that the
+governor will never select it for this particular CPU and the ``CPUIdle``
+driver will never ask the hardware to enter it for that CPU as a result.
+However, disabling an idle state for one CPU does not prevent it from being
+asked for by the other CPUs, so it must be disabled for all of them in order to
+never be asked for by any of them. [Note that, due to the way the ``ladder``
+governor is implemented, disabling an idle state prevents that governor from
+selecting any idle states deeper than the disabled one too.]
+
+If the :file:`disable` attribute contains 0, the given idle state is enabled for
+this particular CPU, but it still may be disabled for some or all of the other
+CPUs in the system at the same time. Writing 1 to it causes the idle state to
+be disabled for this particular CPU and writing 0 to it allows the governor to
+take it into consideration for the given CPU and the driver to ask for it,
+unless that state was disabled globally in the driver (in which case it cannot
+be used at all).
+
+The :file:`power` attribute is not defined very well, especially for idle state
+objects representing combinations of idle states at different levels of the
+hierarchy of units in the processor, and it generally is hard to obtain idle
+state power numbers for complex hardware, so :file:`power` often contains 0 (not
+available) and if it contains a nonzero number, that number may not be very
+accurate and it should not be relied on for anything meaningful.
+
+The number in the :file:`time` file generally may be greater than the total time
+really spent by the given CPU in the given idle state, because it is measured by
+the kernel and it may not cover the cases in which the hardware refused to enter
+this idle state and entered a shallower one instead of it (or even it did not
+enter any idle state at all). The kernel can only measure the time span between
+asking the hardware to enter an idle state and the subsequent wakeup of the CPU
+and it cannot say what really happened in the meantime at the hardware level.
+Moreover, if the idle state object in question represents a combination of idle
+states at different levels of the hierarchy of units in the processor,
+the kernel can never say how deep the hardware went down the hierarchy in any
+particular case. For these reasons, the only reliable way to find out how
+much time has been spent by the hardware in different idle states supported by
+it is to use idle state residency counters in the hardware, if available.
+
+
+.. _cpu-pm-qos:
+
+Power Management Quality of Service for CPUs
+============================================
+
+The power management quality of service (PM QoS) framework in the Linux kernel
+allows kernel code and user space processes to set constraints on various
+energy-efficiency features of the kernel to prevent performance from dropping
+below a required level. The PM QoS constraints can be set globally, in
+predefined categories referred to as PM QoS classes, or against individual
+devices.
+
+CPU idle time management can be affected by PM QoS in two ways, through the
+global constraint in the ``PM_QOS_CPU_DMA_LATENCY`` class and through the
+resume latency constraints for individual CPUs. Kernel code (e.g. device
+drivers) can set both of them with the help of special internal interfaces
+provided by the PM QoS framework. User space can modify the former by opening
+the :file:`cpu_dma_latency` special device file under :file:`/dev/` and writing
+a binary value (interpreted as a signed 32-bit integer) to it. In turn, the
+resume latency constraint for a CPU can be modified by user space by writing a
+string (representing a signed 32-bit integer) to the
+:file:`power/pm_qos_resume_latency_us` file under
+:file:`/sys/devices/system/cpu/cpu<N>/` in ``sysfs``, where the CPU number
+``<N>`` is allocated at the system initialization time. Negative values
+will be rejected in both cases and, also in both cases, the written integer
+number will be interpreted as a requested PM QoS constraint in microseconds.
+
+The requested value is not automatically applied as a new constraint, however,
+as it may be less restrictive (greater in this particular case) than another
+constraint previously requested by someone else. For this reason, the PM QoS
+framework maintains a list of requests that have been made so far in each
+global class and for each device, aggregates them and applies the effective
+(minimum in this particular case) value as the new constraint.
+
+In fact, opening the :file:`cpu_dma_latency` special device file causes a new
+PM QoS request to be created and added to the priority list of requests in the
+``PM_QOS_CPU_DMA_LATENCY`` class and the file descriptor coming from the
+"open" operation represents that request. If that file descriptor is then
+used for writing, the number written to it will be associated with the PM QoS
+request represented by it as a new requested constraint value. Next, the
+priority list mechanism will be used to determine the new effective value of
+the entire list of requests and that effective value will be set as a new
+constraint. Thus setting a new requested constraint value will only change the
+real constraint if the effective "list" value is affected by it. In particular,
+for the ``PM_QOS_CPU_DMA_LATENCY`` class it only affects the real constraint if
+it is the minimum of the requested constraints in the list. The process holding
+a file descriptor obtained by opening the :file:`cpu_dma_latency` special device
+file controls the PM QoS request associated with that file descriptor, but it
+controls this particular PM QoS request only.
+
+Closing the :file:`cpu_dma_latency` special device file or, more precisely, the
+file descriptor obtained while opening it, causes the PM QoS request associated
+with that file descriptor to be removed from the ``PM_QOS_CPU_DMA_LATENCY``
+class priority list and destroyed. If that happens, the priority list mechanism
+will be used, again, to determine the new effective value for the whole list
+and that value will become the new real constraint.
+
+In turn, for each CPU there is only one resume latency PM QoS request
+associated with the :file:`power/pm_qos_resume_latency_us` file under
+:file:`/sys/devices/system/cpu/cpu<N>/` in ``sysfs`` and writing to it causes
+this single PM QoS request to be updated regardless of which user space
+process does that. In other words, this PM QoS request is shared by the entire
+user space, so access to the file associated with it needs to be arbitrated
+to avoid confusion. [Arguably, the only legitimate use of this mechanism in
+practice is to pin a process to the CPU in question and let it use the
+``sysfs`` interface to control the resume latency constraint for it.] It
+still only is a request, however. It is a member of a priority list used to
+determine the effective value to be set as the resume latency constraint for the
+CPU in question every time the list of requests is updated this way or another
+(there may be other requests coming from kernel code in that list).
+
+CPU idle time governors are expected to regard the minimum of the global
+effective ``PM_QOS_CPU_DMA_LATENCY`` class constraint and the effective
+resume latency constraint for the given CPU as the upper limit for the exit
+latency of the idle states they can select for that CPU. They should never
+select any idle states with exit latency beyond that limit.
+
+
+Idle States Control Via Kernel Command Line
+===========================================
+
+In addition to the ``sysfs`` interface allowing individual idle states to be
+`disabled for individual CPUs <idle-states-representation_>`_, there are kernel
+command line parameters affecting CPU idle time management.
+
+The ``cpuidle.off=1`` kernel command line option can be used to disable the
+CPU idle time management entirely. It does not prevent the idle loop from
+running on idle CPUs, but it prevents the CPU idle time governors and drivers
+from being invoked. If it is added to the kernel command line, the idle loop
+will ask the hardware to enter idle states on idle CPUs via the CPU architecture
+support code that is expected to provide a default mechanism for this purpose.
+That default mechanism usually is the least common denominator for all of the
+processors implementing the architecture (i.e. CPU instruction set) in question,
+however, so it is rather crude and not very energy-efficient. For this reason,
+it is not recommended for production use.
+
+The ``cpuidle.governor=`` kernel command line switch allows the ``CPUIdle``
+governor to use to be specified. It has to be appended with a string matching
+the name of an available governor (e.g. ``cpuidle.governor=menu``) and that
+governor will be used instead of the default one. It is possible to force
+the ``menu`` governor to be used on the systems that use the ``ladder`` governor
+by default this way, for example.
+
+The other kernel command line parameters controlling CPU idle time management
+described below are only relevant for the *x86* architecture and some of
+them affect Intel processors only.
+
+The *x86* architecture support code recognizes three kernel command line
+options related to CPU idle time management: ``idle=poll``, ``idle=halt``,
+and ``idle=nomwait``. The first two of them disable the ``acpi_idle`` and
+``intel_idle`` drivers altogether, which effectively causes the entire
+``CPUIdle`` subsystem to be disabled and makes the idle loop invoke the
+architecture support code to deal with idle CPUs. How it does that depends on
+which of the two parameters is added to the kernel command line. In the
+``idle=halt`` case, the architecture support code will use the ``HLT``
+instruction of the CPUs (which, as a rule, suspends the execution of the program
+and causes the hardware to attempt to enter the shallowest available idle state)
+for this purpose, and if ``idle=poll`` is used, idle CPUs will execute a
+more or less ``lightweight'' sequence of instructions in a tight loop. [Note
+that using ``idle=poll`` is somewhat drastic in many cases, as preventing idle
+CPUs from saving almost any energy at all may not be the only effect of it.
+For example, on Intel hardware it effectively prevents CPUs from using
+P-states (see |cpufreq|) that require any number of CPUs in a package to be
+idle, so it very well may hurt single-thread computations performance as well as
+energy-efficiency. Thus using it for performance reasons may not be a good idea
+at all.]
+
+The ``idle=nomwait`` option disables the ``intel_idle`` driver and causes
+``acpi_idle`` to be used (as long as all of the information needed by it is
+there in the system's ACPI tables), but it is not allowed to use the
+``MWAIT`` instruction of the CPUs to ask the hardware to enter idle states.
+
+In addition to the architecture-level kernel command line options affecting CPU
+idle time management, there are parameters affecting individual ``CPUIdle``
+drivers that can be passed to them via the kernel command line. Specifically,
+the ``intel_idle.max_cstate=<n>`` and ``processor.max_cstate=<n>`` parameters,
+where ``<n>`` is an idle state index also used in the name of the given
+state's directory in ``sysfs`` (see
+`Representation of Idle States <idle-states-representation_>`_), causes the
+``intel_idle`` and ``acpi_idle`` drivers, respectively, to discard all of the
+idle states deeper than idle state ``<n>``. In that case, they will never ask
+for any of those idle states or expose them to the governor. [The behavior of
+the two drivers is different for ``<n>`` equal to ``0``. Adding
+``intel_idle.max_cstate=0`` to the kernel command line disables the
+``intel_idle`` driver and allows ``acpi_idle`` to be used, whereas
+``processor.max_cstate=0`` is equivalent to ``processor.max_cstate=1``.
+Also, the ``acpi_idle`` driver is part of the ``processor`` kernel module that
+can be loaded separately and ``max_cstate=<n>`` can be passed to it as a module
+parameter when it is loaded.]
diff --git a/Documentation/admin-guide/pm/working-state.rst b/Documentation/admin-guide/pm/working-state.rst
index fa01bf083dfe..b6cef9b5e961 100644
--- a/Documentation/admin-guide/pm/working-state.rst
+++ b/Documentation/admin-guide/pm/working-state.rst
@@ -5,5 +5,6 @@ Working-State Power Management
.. toctree::
:maxdepth: 2
+ cpuidle
cpufreq
intel_pstate
diff --git a/Documentation/admin-guide/security-bugs.rst b/Documentation/admin-guide/security-bugs.rst
index 164bf71149fd..30187d49dc2c 100644
--- a/Documentation/admin-guide/security-bugs.rst
+++ b/Documentation/admin-guide/security-bugs.rst
@@ -32,16 +32,17 @@ Disclosure and embargoed information
The security list is not a disclosure channel. For that, see Coordination
below.
-Once a robust fix has been developed, our preference is to release the
-fix in a timely fashion, treating it no differently than any of the other
-thousands of changes and fixes the Linux kernel project releases every
-month.
-
-However, at the request of the reporter, we will postpone releasing the
-fix for up to 5 business days after the date of the report or after the
-embargo has lifted; whichever comes first. The only exception to that
-rule is if the bug is publicly known, in which case the preference is to
-release the fix as soon as it's available.
+Once a robust fix has been developed, the release process starts. Fixes
+for publicly known bugs are released immediately.
+
+Although our preference is to release fixes for publicly undisclosed bugs
+as soon as they become available, this may be postponed at the request of
+the reporter or an affected party for up to 7 calendar days from the start
+of the release process, with an exceptional extension to 14 calendar days
+if it is agreed that the criticality of the bug requires more time. The
+only valid reason for deferring the publication of a fix is to accommodate
+the logistics of QA and large scale rollouts which require release
+coordination.
Whilst embargoed information may be shared with trusted individuals in
order to develop a fix, such information will not be published alongside
diff --git a/Documentation/arm64/silicon-errata.txt b/Documentation/arm64/silicon-errata.txt
index 76ccded8b74c..8f9577621144 100644
--- a/Documentation/arm64/silicon-errata.txt
+++ b/Documentation/arm64/silicon-errata.txt
@@ -57,6 +57,7 @@ stable kernels.
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
| ARM | Cortex-A55 | #1024718 | ARM64_ERRATUM_1024718 |
| ARM | Cortex-A76 | #1188873 | ARM64_ERRATUM_1188873 |
+| ARM | Cortex-A76 | #1286807 | ARM64_ERRATUM_1286807 |
| ARM | MMU-500 | #841119,#826419 | N/A |
| | | | |
| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |
diff --git a/Documentation/core-api/xarray.rst b/Documentation/core-api/xarray.rst
index a4e705108f42..6a6d67acaf69 100644
--- a/Documentation/core-api/xarray.rst
+++ b/Documentation/core-api/xarray.rst
@@ -74,7 +74,8 @@ using :c:func:`xa_load`. xa_store will overwrite any entry with the
new entry and return the previous entry stored at that index. You can
use :c:func:`xa_erase` instead of calling :c:func:`xa_store` with a
``NULL`` entry. There is no difference between an entry that has never
-been stored to and one that has most recently had ``NULL`` stored to it.
+been stored to, one that has been erased and one that has most recently
+had ``NULL`` stored to it.
You can conditionally replace an entry at an index by using
:c:func:`xa_cmpxchg`. Like :c:func:`cmpxchg`, it will only succeed if
@@ -105,23 +106,44 @@ may result in the entry being marked at some, but not all of the other
indices. Storing into one index may result in the entry retrieved by
some, but not all of the other indices changing.
+Sometimes you need to ensure that a subsequent call to :c:func:`xa_store`
+will not need to allocate memory. The :c:func:`xa_reserve` function
+will store a reserved entry at the indicated index. Users of the normal
+API will see this entry as containing ``NULL``. If you do not need to
+use the reserved entry, you can call :c:func:`xa_release` to remove the
+unused entry. If another user has stored to the entry in the meantime,
+:c:func:`xa_release` will do nothing; if instead you want the entry to
+become ``NULL``, you should use :c:func:`xa_erase`.
+
+If all entries in the array are ``NULL``, the :c:func:`xa_empty` function
+will return ``true``.
+
Finally, you can remove all entries from an XArray by calling
:c:func:`xa_destroy`. If the XArray entries are pointers, you may wish
to free the entries first. You can do this by iterating over all present
entries in the XArray using the :c:func:`xa_for_each` iterator.
-ID assignment
--------------
+Allocating XArrays
+------------------
+
+If you use :c:func:`DEFINE_XARRAY_ALLOC` to define the XArray, or
+initialise it by passing ``XA_FLAGS_ALLOC`` to :c:func:`xa_init_flags`,
+the XArray changes to track whether entries are in use or not.
You can call :c:func:`xa_alloc` to store the entry at any unused index
in the XArray. If you need to modify the array from interrupt context,
you can use :c:func:`xa_alloc_bh` or :c:func:`xa_alloc_irq` to disable
-interrupts while allocating the ID. Unlike :c:func:`xa_store`, allocating
-a ``NULL`` pointer does not delete an entry. Instead it reserves an
-entry like :c:func:`xa_reserve` and you can release it using either
-:c:func:`xa_erase` or :c:func:`xa_release`. To use ID assignment, the
-XArray must be defined with :c:func:`DEFINE_XARRAY_ALLOC`, or initialised
-by passing ``XA_FLAGS_ALLOC`` to :c:func:`xa_init_flags`,
+interrupts while allocating the ID.
+
+Using :c:func:`xa_store`, :c:func:`xa_cmpxchg` or :c:func:`xa_insert`
+will mark the entry as being allocated. Unlike a normal XArray, storing
+``NULL`` will mark the entry as being in use, like :c:func:`xa_reserve`.
+To free an entry, use :c:func:`xa_erase` (or :c:func:`xa_release` if
+you only want to free the entry if it's ``NULL``).
+
+You cannot use ``XA_MARK_0`` with an allocating XArray as this mark
+is used to track whether an entry is free or not. The other marks are
+available for your use.
Memory allocation
-----------------
@@ -158,15 +180,22 @@ Takes RCU read lock:
Takes xa_lock internally:
* :c:func:`xa_store`
+ * :c:func:`xa_store_bh`
+ * :c:func:`xa_store_irq`
* :c:func:`xa_insert`
* :c:func:`xa_erase`
* :c:func:`xa_erase_bh`
* :c:func:`xa_erase_irq`
* :c:func:`xa_cmpxchg`
+ * :c:func:`xa_cmpxchg_bh`
+ * :c:func:`xa_cmpxchg_irq`
* :c:func:`xa_store_range`
* :c:func:`xa_alloc`
* :c:func:`xa_alloc_bh`
* :c:func:`xa_alloc_irq`
+ * :c:func:`xa_reserve`
+ * :c:func:`xa_reserve_bh`
+ * :c:func:`xa_reserve_irq`
* :c:func:`xa_destroy`
* :c:func:`xa_set_mark`
* :c:func:`xa_clear_mark`
@@ -177,6 +206,7 @@ Assumes xa_lock held on entry:
* :c:func:`__xa_erase`
* :c:func:`__xa_cmpxchg`
* :c:func:`__xa_alloc`
+ * :c:func:`__xa_reserve`
* :c:func:`__xa_set_mark`
* :c:func:`__xa_clear_mark`
@@ -234,7 +264,9 @@ Sharing the XArray with interrupt context is also possible, either
using :c:func:`xa_lock_irqsave` in both the interrupt handler and process
context, or :c:func:`xa_lock_irq` in process context and :c:func:`xa_lock`
in the interrupt handler. Some of the more common patterns have helper
-functions such as :c:func:`xa_erase_bh` and :c:func:`xa_erase_irq`.
+functions such as :c:func:`xa_store_bh`, :c:func:`xa_store_irq`,
+:c:func:`xa_erase_bh`, :c:func:`xa_erase_irq`, :c:func:`xa_cmpxchg_bh`
+and :c:func:`xa_cmpxchg_irq`.
Sometimes you need to protect access to the XArray with a mutex because
that lock sits above another mutex in the locking hierarchy. That does
@@ -322,7 +354,8 @@ to :c:func:`xas_retry`, and retry the operation if it returns ``true``.
- :c:func:`xa_is_zero`
- Zero entries appear as ``NULL`` through the Normal API, but occupy
an entry in the XArray which can be used to reserve the index for
- future use.
+ future use. This is used by allocating XArrays for allocated entries
+ which are ``NULL``.
Other internal entries may be added in the future. As far as possible, they
will be handled by :c:func:`xas_retry`.
diff --git a/Documentation/cpuidle/core.txt b/Documentation/cpuidle/core.txt
deleted file mode 100644
index 63ecc5dc9d8a..000000000000
--- a/Documentation/cpuidle/core.txt
+++ /dev/null
@@ -1,23 +0,0 @@
-
- Supporting multiple CPU idle levels in kernel
-
- cpuidle
-
-General Information:
-
-Various CPUs today support multiple idle levels that are differentiated
-by varying exit latencies and power consumption during idle.
-cpuidle is a generic in-kernel infrastructure that separates
-idle policy (governor) from idle mechanism (driver) and provides a
-standardized infrastructure to support independent development of
-governors and drivers.
-
-cpuidle resides under drivers/cpuidle.
-
-Boot options:
-"cpuidle_sysfs_switch"
-enables current_governor interface in /sys/devices/system/cpu/cpuidle/,
-which can be used to switch governors at run time. This boot option
-is meant for developer testing only. In normal usage, kernel picks the
-best governor based on governor ratings.
-SEE ALSO: sysfs.txt in this directory.
diff --git a/Documentation/cpuidle/sysfs.txt b/Documentation/cpuidle/sysfs.txt
deleted file mode 100644
index d1587f434e7b..000000000000
--- a/Documentation/cpuidle/sysfs.txt
+++ /dev/null
@@ -1,98 +0,0 @@
-
-
- Supporting multiple CPU idle levels in kernel
-
- cpuidle sysfs
-
-System global cpuidle related information and tunables are under
-/sys/devices/system/cpu/cpuidle
-
-The current interfaces in this directory has self-explanatory names:
-* current_driver
-* current_governor_ro
-
-With cpuidle_sysfs_switch boot option (meant for developer testing)
-following objects are visible instead.
-* current_driver
-* available_governors
-* current_governor
-In this case users can switch the governor at run time by writing
-to current_governor.
-
-
-Per logical CPU specific cpuidle information are under
-/sys/devices/system/cpu/cpuX/cpuidle
-for each online cpu X
-
---------------------------------------------------------------------------------
-# ls -lR /sys/devices/system/cpu/cpu0/cpuidle/
-/sys/devices/system/cpu/cpu0/cpuidle/:
-total 0
-drwxr-xr-x 2 root root 0 Feb 8 10:42 state0
-drwxr-xr-x 2 root root 0 Feb 8 10:42 state1
-drwxr-xr-x 2 root root 0 Feb 8 10:42 state2
-drwxr-xr-x 2 root root 0 Feb 8 10:42 state3
-
-/sys/devices/system/cpu/cpu0/cpuidle/state0:
-total 0
--r--r--r-- 1 root root 4096 Feb 8 10:42 desc
--rw-r--r-- 1 root root 4096 Feb 8 10:42 disable
--r--r--r-- 1 root root 4096 Feb 8 10:42 latency
--r--r--r-- 1 root root 4096 Feb 8 10:42 name
--r--r--r-- 1 root root 4096 Feb 8 10:42 power
--r--r--r-- 1 root root 4096 Feb 8 10:42 residency
--r--r--r-- 1 root root 4096 Feb 8 10:42 time
--r--r--r-- 1 root root 4096 Feb 8 10:42 usage
-
-/sys/devices/system/cpu/cpu0/cpuidle/state1:
-total 0
--r--r--r-- 1 root root 4096 Feb 8 10:42 desc
--rw-r--r-- 1 root root 4096 Feb 8 10:42 disable
--r--r--r-- 1 root root 4096 Feb 8 10:42 latency
--r--r--r-- 1 root root 4096 Feb 8 10:42 name
--r--r--r-- 1 root root 4096 Feb 8 10:42 power
--r--r--r-- 1 root root 4096 Feb 8 10:42 residency
--r--r--r-- 1 root root 4096 Feb 8 10:42 time
--r--r--r-- 1 root root 4096 Feb 8 10:42 usage
-
-/sys/devices/system/cpu/cpu0/cpuidle/state2:
-total 0
--r--r--r-- 1 root root 4096 Feb 8 10:42 desc
--rw-r--r-- 1 root root 4096 Feb 8 10:42 disable
--r--r--r-- 1 root root 4096 Feb 8 10:42 latency
--r--r--r-- 1 root root 4096 Feb 8 10:42 name
--r--r--r-- 1 root root 4096 Feb 8 10:42 power
--r--r--r-- 1 root root 4096 Feb 8 10:42 residency
--r--r--r-- 1 root root 4096 Feb 8 10:42 time
--r--r--r-- 1 root root 4096 Feb 8 10:42 usage
-
-/sys/devices/system/cpu/cpu0/cpuidle/state3:
-total 0
--r--r--r-- 1 root root 4096 Feb 8 10:42 desc
--rw-r--r-- 1 root root 4096 Feb 8 10:42 disable
--r--r--r-- 1 root root 4096 Feb 8 10:42 latency
--r--r--r-- 1 root root 4096 Feb 8 10:42 name
--r--r--r-- 1 root root 4096 Feb 8 10:42 power
--r--r--r-- 1 root root 4096 Feb 8 10:42 residency
--r--r--r-- 1 root root 4096 Feb 8 10:42 time
--r--r--r-- 1 root root 4096 Feb 8 10:42 usage
---------------------------------------------------------------------------------
-
-
-* desc : Small description about the idle state (string)
-* disable : Option to disable this idle state (bool) -> see note below
-* latency : Latency to exit out of this idle state (in microseconds)
-* residency : Time after which a state becomes more effecient than any
- shallower state (in microseconds)
-* name : Name of the idle state (string)
-* power : Power consumed while in this idle state (in milliwatts)
-* time : Total time spent in this idle state (in microseconds)
-* usage : Number of times this state was entered (count)
-
-Note:
-The behavior and the effect of the disable variable depends on the
-implementation of a particular governor. In the ladder governor, for
-example, it is not coherent, i.e. if one is disabling a light state,
-then all deeper states are disabled as well, but the disable variable
-does not reflect it. Likewise, if one enables a deep state but a lighter
-state still is disabled, then this has no effect.
diff --git a/Documentation/devicetree/bindings/clock/clock-bindings.txt b/Documentation/devicetree/bindings/clock/clock-bindings.txt
index 2ec489eebe72..b646bbcf7f92 100644
--- a/Documentation/devicetree/bindings/clock/clock-bindings.txt
+++ b/Documentation/devicetree/bindings/clock/clock-bindings.txt
@@ -168,3 +168,19 @@ a shared clock is forbidden.
Configuration of common clocks, which affect multiple consumer devices can
be similarly specified in the clock provider node.
+
+==Protected clocks==
+
+Some platforms or firmwares may not fully expose all the clocks to the OS, such
+as in situations where those clks are used by drivers running in ARM secure
+execution levels. Such a configuration can be specified in device tree with the
+protected-clocks property in the form of a clock specifier list. This property should
+only be specified in the node that is providing the clocks being protected:
+
+ clock-controller@a000f000 {
+ compatible = "vendor,clk95;
+ reg = <0xa000f000 0x1000>
+ #clocks-cells = <1>;
+ ...
+ protected-clocks = <UART3_CLK>, <SPI5_CLK>;
+ };
diff --git a/Documentation/devicetree/bindings/input/input-reset.txt b/Documentation/devicetree/bindings/input/input-reset.txt
index 2bb2626fdb78..1ca6cc5ebf8e 100644
--- a/Documentation/devicetree/bindings/input/input-reset.txt
+++ b/Documentation/devicetree/bindings/input/input-reset.txt
@@ -12,7 +12,7 @@ The /chosen node should contain a 'linux,sysrq-reset-seq' child node to define
a set of keys.
Required property:
-sysrq-reset-seq: array of Linux keycodes, one keycode per cell.
+keyset: array of Linux keycodes, one keycode per cell.
Optional property:
timeout-ms: duration keys must be pressed together in milliseconds before
diff --git a/Documentation/devicetree/bindings/media/rockchip-vpu.txt b/Documentation/devicetree/bindings/media/rockchip-vpu.txt
deleted file mode 100644
index 35dc464ad7c8..000000000000
--- a/Documentation/devicetree/bindings/media/rockchip-vpu.txt
+++ /dev/null
@@ -1,29 +0,0 @@
-device-tree bindings for rockchip VPU codec
-
-Rockchip (Video Processing Unit) present in various Rockchip platforms,
-such as RK3288 and RK3399.
-
-Required properties:
-- compatible: value should be one of the following
- "rockchip,rk3288-vpu";
- "rockchip,rk3399-vpu";
-- interrupts: encoding and decoding interrupt specifiers
-- interrupt-names: should be "vepu" and "vdpu"
-- clocks: phandle to VPU aclk, hclk clocks
-- clock-names: should be "aclk" and "hclk"
-- power-domains: phandle to power domain node
-- iommus: phandle to a iommu node
-
-Example:
-SoC-specific DT entry:
- vpu: video-codec@ff9a0000 {
- compatible = "rockchip,rk3288-vpu";
- reg = <0x0 0xff9a0000 0x0 0x800>;
- interrupts = <GIC_SPI 9 IRQ_TYPE_LEVEL_HIGH>,
- <GIC_SPI 10 IRQ_TYPE_LEVEL_HIGH>;
- interrupt-names = "vepu", "vdpu";
- clocks = <&cru ACLK_VCODEC>, <&cru HCLK_VCODEC>;
- clock-names = "aclk", "hclk";
- power-domains = <&power RK3288_PD_VIDEO>;
- iommus = <&vpu_mmu>;
- };
diff --git a/Documentation/devicetree/bindings/net/can/holt_hi311x.txt b/Documentation/devicetree/bindings/net/can/holt_hi311x.txt
index 903a78da65be..3a9926f99937 100644
--- a/Documentation/devicetree/bindings/net/can/holt_hi311x.txt
+++ b/Documentation/devicetree/bindings/net/can/holt_hi311x.txt
@@ -17,7 +17,7 @@ Example:
reg = <1>;
clocks = <&clk32m>;
interrupt-parent = <&gpio4>;
- interrupts = <13 IRQ_TYPE_EDGE_RISING>;
+ interrupts = <13 IRQ_TYPE_LEVEL_HIGH>;
vdd-supply = <&reg5v0>;
xceiver-supply = <&reg5v0>;
};
diff --git a/Documentation/devicetree/bindings/net/can/rcar_can.txt b/Documentation/devicetree/bindings/net/can/rcar_can.txt
index cc4372842bf3..9936b9ee67c3 100644
--- a/Documentation/devicetree/bindings/net/can/rcar_can.txt
+++ b/Documentation/devicetree/bindings/net/can/rcar_can.txt
@@ -5,6 +5,7 @@ Required properties:
- compatible: "renesas,can-r8a7743" if CAN controller is a part of R8A7743 SoC.
"renesas,can-r8a7744" if CAN controller is a part of R8A7744 SoC.
"renesas,can-r8a7745" if CAN controller is a part of R8A7745 SoC.
+ "renesas,can-r8a774a1" if CAN controller is a part of R8A774A1 SoC.
"renesas,can-r8a7778" if CAN controller is a part of R8A7778 SoC.
"renesas,can-r8a7779" if CAN controller is a part of R8A7779 SoC.
"renesas,can-r8a7790" if CAN controller is a part of R8A7790 SoC.
@@ -14,26 +15,32 @@ Required properties:
"renesas,can-r8a7794" if CAN controller is a part of R8A7794 SoC.
"renesas,can-r8a7795" if CAN controller is a part of R8A7795 SoC.
"renesas,can-r8a7796" if CAN controller is a part of R8A7796 SoC.
+ "renesas,can-r8a77965" if CAN controller is a part of R8A77965 SoC.
"renesas,rcar-gen1-can" for a generic R-Car Gen1 compatible device.
"renesas,rcar-gen2-can" for a generic R-Car Gen2 or RZ/G1
compatible device.
- "renesas,rcar-gen3-can" for a generic R-Car Gen3 compatible device.
+ "renesas,rcar-gen3-can" for a generic R-Car Gen3 or RZ/G2
+ compatible device.
When compatible with the generic version, nodes must list the
SoC-specific version corresponding to the platform first
followed by the generic version.
- reg: physical base address and size of the R-Car CAN register map.
- interrupts: interrupt specifier for the sole interrupt.
-- clocks: phandles and clock specifiers for 3 CAN clock inputs.
-- clock-names: 3 clock input name strings: "clkp1", "clkp2", "can_clk".
+- clocks: phandles and clock specifiers for 2 CAN clock inputs for RZ/G2
+ devices.
+ phandles and clock specifiers for 3 CAN clock inputs for every other
+ SoC.
+- clock-names: 2 clock input name strings for RZ/G2: "clkp1", "can_clk".
+ 3 clock input name strings for every other SoC: "clkp1", "clkp2",
+ "can_clk".
- pinctrl-0: pin control group to be used for this controller.
- pinctrl-names: must be "default".
-Required properties for "renesas,can-r8a7795" and "renesas,can-r8a7796"
-compatible:
-In R8A7795 and R8A7796 SoCs, "clkp2" can be CANFD clock. This is a div6 clock
-and can be used by both CAN and CAN FD controller at the same time. It needs to
-be scaled to maximum frequency if any of these controllers use it. This is done
+Required properties for R8A7795, R8A7796 and R8A77965:
+For the denoted SoCs, "clkp2" can be CANFD clock. This is a div6 clock and can
+be used by both CAN and CAN FD controller at the same time. It needs to be
+scaled to maximum frequency if any of these controllers use it. This is done
using the below properties:
- assigned-clocks: phandle of clkp2(CANFD) clock.
@@ -42,8 +49,9 @@ using the below properties:
Optional properties:
- renesas,can-clock-select: R-Car CAN Clock Source Select. Valid values are:
<0x0> (default) : Peripheral clock (clkp1)
- <0x1> : Peripheral clock (clkp2)
- <0x3> : Externally input clock
+ <0x1> : Peripheral clock (clkp2) (not supported by
+ RZ/G2 devices)
+ <0x3> : External input clock
Example
-------
diff --git a/Documentation/devicetree/bindings/net/dsa/dsa.txt b/Documentation/devicetree/bindings/net/dsa/dsa.txt
index 3ceeb8de1196..35694c0c376b 100644
--- a/Documentation/devicetree/bindings/net/dsa/dsa.txt
+++ b/Documentation/devicetree/bindings/net/dsa/dsa.txt
@@ -7,7 +7,7 @@ limitations.
Current Binding
---------------
-Switches are true Linux devices and can be probes by any means. Once
+Switches are true Linux devices and can be probed by any means. Once
probed, they register to the DSA framework, passing a node
pointer. This node is expected to fulfil the following binding, and
may contain additional properties as required by the device it is
diff --git a/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt b/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt
index adf20b2bdf71..fbc198d5dd39 100644
--- a/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt
+++ b/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt
@@ -40,24 +40,36 @@ Required properties:
"ref" for 19.2 MHz ref clk,
"com_aux" for phy common block aux clock,
"ref_aux" for phy reference aux clock,
+
+ For "qcom,ipq8074-qmp-pcie-phy": no clocks are listed.
For "qcom,msm8996-qmp-pcie-phy" must contain:
"aux", "cfg_ahb", "ref".
For "qcom,msm8996-qmp-usb3-phy" must contain:
"aux", "cfg_ahb", "ref".
- For "qcom,qmp-v3-usb3-phy" must contain:
+ For "qcom,sdm845-qmp-usb3-phy" must contain:
+ "aux", "cfg_ahb", "ref", "com_aux".
+ For "qcom,sdm845-qmp-usb3-uni-phy" must contain:
"aux", "cfg_ahb", "ref", "com_aux".
+ For "qcom,sdm845-qmp-ufs-phy" must contain:
+ "ref", "ref_aux".
- resets: a list of phandles and reset controller specifier pairs,
one for each entry in reset-names.
- reset-names: "phy" for reset of phy block,
"common" for phy common block reset,
- "cfg" for phy's ahb cfg block reset (Optional).
+ "cfg" for phy's ahb cfg block reset.
+
+ For "qcom,ipq8074-qmp-pcie-phy" must contain:
+ "phy", "common".
For "qcom,msm8996-qmp-pcie-phy" must contain:
- "phy", "common", "cfg".
+ "phy", "common", "cfg".
For "qcom,msm8996-qmp-usb3-phy" must contain
- "phy", "common".
- For "qcom,ipq8074-qmp-pcie-phy" must contain:
- "phy", "common".
+ "phy", "common".
+ For "qcom,sdm845-qmp-usb3-phy" must contain:
+ "phy", "common".
+ For "qcom,sdm845-qmp-usb3-uni-phy" must contain:
+ "phy", "common".
+ For "qcom,sdm845-qmp-ufs-phy": no resets are listed.
- vdda-phy-supply: Phandle to a regulator supply to PHY core block.
- vdda-pll-supply: Phandle to 1.8V regulator supply to PHY refclk pll block.
@@ -79,9 +91,10 @@ Required properties for child node:
- #phy-cells: must be 0
+Required properties child node of pcie and usb3 qmp phys:
- clocks: a list of phandles and clock-specifier pairs,
one for each entry in clock-names.
- - clock-names: Must contain following for pcie and usb qmp phys:
+ - clock-names: Must contain following:
"pipe<lane-number>" for pipe clock specific to each lane.
- clock-output-names: Name of the PHY clock that will be the parent for
the above pipe clock.
@@ -91,9 +104,11 @@ Required properties for child node:
(or)
"pcie20_phy1_pipe_clk"
+Required properties for child node of PHYs with lane reset, AKA:
+ "qcom,msm8996-qmp-pcie-phy"
- resets: a list of phandles and reset controller specifier pairs,
one for each entry in reset-names.
- - reset-names: Must contain following for pcie qmp phys:
+ - reset-names: Must contain following:
"lane<lane-number>" for reset specific to each lane.
Example:
diff --git a/Documentation/devicetree/bindings/spi/spi-uniphier.txt b/Documentation/devicetree/bindings/spi/spi-uniphier.txt
index 504a4ecfc7b1..b04e66a52de5 100644
--- a/Documentation/devicetree/bindings/spi/spi-uniphier.txt
+++ b/Documentation/devicetree/bindings/spi/spi-uniphier.txt
@@ -5,18 +5,20 @@ UniPhier SoCs have SCSSI which supports SPI single channel.
Required properties:
- compatible: should be "socionext,uniphier-scssi"
- reg: address and length of the spi master registers
- - #address-cells: must be <1>, see spi-bus.txt
- - #size-cells: must be <0>, see spi-bus.txt
- - clocks: A phandle to the clock for the device.
- - resets: A phandle to the reset control for the device.
+ - interrupts: a single interrupt specifier
+ - pinctrl-names: should be "default"
+ - pinctrl-0: pin control state for the default mode
+ - clocks: a phandle to the clock for the device
+ - resets: a phandle to the reset control for the device
Example:
spi0: spi@54006000 {
compatible = "socionext,uniphier-scssi";
reg = <0x54006000 0x100>;
- #address-cells = <1>;
- #size-cells = <0>;
+ interrupts = <0 39 4>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_spi0>;
clocks = <&peri_clk 11>;
resets = <&peri_rst 11>;
};
diff --git a/Documentation/input/event-codes.rst b/Documentation/input/event-codes.rst
index cef220c176a4..a8c0873beb95 100644
--- a/Documentation/input/event-codes.rst
+++ b/Documentation/input/event-codes.rst
@@ -190,16 +190,7 @@ A few EV_REL codes have special meanings:
* REL_WHEEL, REL_HWHEEL:
- These codes are used for vertical and horizontal scroll wheels,
- respectively. The value is the number of "notches" moved on the wheel, the
- physical size of which varies by device. For high-resolution wheels (which
- report multiple events for each notch of movement, or do not have notches)
- this may be an approximation based on the high-resolution scroll events.
-
-* REL_WHEEL_HI_RES:
-
- - If a vertical scroll wheel supports high-resolution scrolling, this code
- will be emitted in addition to REL_WHEEL. The value is the (approximate)
- distance travelled by the user's finger, in microns.
+ respectively.
EV_ABS
------
diff --git a/Documentation/media/uapi/mediactl/media-ioc-request-alloc.rst b/Documentation/media/uapi/mediactl/media-ioc-request-alloc.rst
index 0f8b31874002..de131f00c249 100644
--- a/Documentation/media/uapi/mediactl/media-ioc-request-alloc.rst
+++ b/Documentation/media/uapi/mediactl/media-ioc-request-alloc.rst
@@ -1,4 +1,28 @@
-.. SPDX-License-Identifier: GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
+.. This file is dual-licensed: you can use it either under the terms
+.. of the GPL or the GFDL 1.1+ license, at your option. Note that this
+.. dual licensing only applies to this file, and not this project as a
+.. whole.
+..
+.. a) This file is free software; you can redistribute it and/or
+.. modify it under the terms of the GNU General Public License as
+.. published by the Free Software Foundation; either version 2 of
+.. the License, or (at your option) any later version.
+..
+.. This file is distributed in the hope that it will be useful,
+.. but WITHOUT ANY WARRANTY; without even the implied warranty of
+.. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+.. GNU General Public License for more details.
+..
+.. Or, alternatively,
+..
+.. b) Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
.. _media_ioc_request_alloc:
diff --git a/Documentation/media/uapi/mediactl/media-request-ioc-queue.rst b/Documentation/media/uapi/mediactl/media-request-ioc-queue.rst
index 6dd2d7fea714..5d2604345e19 100644
--- a/Documentation/media/uapi/mediactl/media-request-ioc-queue.rst
+++ b/Documentation/media/uapi/mediactl/media-request-ioc-queue.rst
@@ -1,4 +1,28 @@
-.. SPDX-License-Identifier: GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
+.. This file is dual-licensed: you can use it either under the terms
+.. of the GPL or the GFDL 1.1+ license, at your option. Note that this
+.. dual licensing only applies to this file, and not this project as a
+.. whole.
+..
+.. a) This file is free software; you can redistribute it and/or
+.. modify it under the terms of the GNU General Public License as
+.. published by the Free Software Foundation; either version 2 of
+.. the License, or (at your option) any later version.
+..
+.. This file is distributed in the hope that it will be useful,
+.. but WITHOUT ANY WARRANTY; without even the implied warranty of
+.. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+.. GNU General Public License for more details.
+..
+.. Or, alternatively,
+..
+.. b) Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
.. _media_request_ioc_queue:
diff --git a/Documentation/media/uapi/mediactl/media-request-ioc-reinit.rst b/Documentation/media/uapi/mediactl/media-request-ioc-reinit.rst
index febe888494c8..ec61960c81ce 100644
--- a/Documentation/media/uapi/mediactl/media-request-ioc-reinit.rst
+++ b/Documentation/media/uapi/mediactl/media-request-ioc-reinit.rst
@@ -1,4 +1,28 @@
-.. SPDX-License-Identifier: GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
+.. This file is dual-licensed: you can use it either under the terms
+.. of the GPL or the GFDL 1.1+ license, at your option. Note that this
+.. dual licensing only applies to this file, and not this project as a
+.. whole.
+..
+.. a) This file is free software; you can redistribute it and/or
+.. modify it under the terms of the GNU General Public License as
+.. published by the Free Software Foundation; either version 2 of
+.. the License, or (at your option) any later version.
+..
+.. This file is distributed in the hope that it will be useful,
+.. but WITHOUT ANY WARRANTY; without even the implied warranty of
+.. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+.. GNU General Public License for more details.
+..
+.. Or, alternatively,
+..
+.. b) Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
.. _media_request_ioc_reinit:
diff --git a/Documentation/media/uapi/mediactl/request-api.rst b/Documentation/media/uapi/mediactl/request-api.rst
index 5f4a23029c48..945113dcb218 100644
--- a/Documentation/media/uapi/mediactl/request-api.rst
+++ b/Documentation/media/uapi/mediactl/request-api.rst
@@ -1,4 +1,28 @@
-.. SPDX-License-Identifier: GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
+.. This file is dual-licensed: you can use it either under the terms
+.. of the GPL or the GFDL 1.1+ license, at your option. Note that this
+.. dual licensing only applies to this file, and not this project as a
+.. whole.
+..
+.. a) This file is free software; you can redistribute it and/or
+.. modify it under the terms of the GNU General Public License as
+.. published by the Free Software Foundation; either version 2 of
+.. the License, or (at your option) any later version.
+..
+.. This file is distributed in the hope that it will be useful,
+.. but WITHOUT ANY WARRANTY; without even the implied warranty of
+.. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+.. GNU General Public License for more details.
+..
+.. Or, alternatively,
+..
+.. b) Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
.. _media-request-api:
diff --git a/Documentation/media/uapi/mediactl/request-func-close.rst b/Documentation/media/uapi/mediactl/request-func-close.rst
index 098d7f2b9548..dcf3f35bcf17 100644
--- a/Documentation/media/uapi/mediactl/request-func-close.rst
+++ b/Documentation/media/uapi/mediactl/request-func-close.rst
@@ -1,4 +1,28 @@
-.. SPDX-License-Identifier: GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
+.. This file is dual-licensed: you can use it either under the terms
+.. of the GPL or the GFDL 1.1+ license, at your option. Note that this
+.. dual licensing only applies to this file, and not this project as a
+.. whole.
+..
+.. a) This file is free software; you can redistribute it and/or
+.. modify it under the terms of the GNU General Public License as
+.. published by the Free Software Foundation; either version 2 of
+.. the License, or (at your option) any later version.
+..
+.. This file is distributed in the hope that it will be useful,
+.. but WITHOUT ANY WARRANTY; without even the implied warranty of
+.. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+.. GNU General Public License for more details.
+..
+.. Or, alternatively,
+..
+.. b) Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
.. _request-func-close:
diff --git a/Documentation/media/uapi/mediactl/request-func-ioctl.rst b/Documentation/media/uapi/mediactl/request-func-ioctl.rst
index ff7b072a6999..11a22f887843 100644
--- a/Documentation/media/uapi/mediactl/request-func-ioctl.rst
+++ b/Documentation/media/uapi/mediactl/request-func-ioctl.rst
@@ -1,4 +1,28 @@
-.. SPDX-License-Identifier: GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
+.. This file is dual-licensed: you can use it either under the terms
+.. of the GPL or the GFDL 1.1+ license, at your option. Note that this
+.. dual licensing only applies to this file, and not this project as a
+.. whole.
+..
+.. a) This file is free software; you can redistribute it and/or
+.. modify it under the terms of the GNU General Public License as
+.. published by the Free Software Foundation; either version 2 of
+.. the License, or (at your option) any later version.
+..
+.. This file is distributed in the hope that it will be useful,
+.. but WITHOUT ANY WARRANTY; without even the implied warranty of
+.. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+.. GNU General Public License for more details.
+..
+.. Or, alternatively,
+..
+.. b) Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
.. _request-func-ioctl:
diff --git a/Documentation/media/uapi/mediactl/request-func-poll.rst b/Documentation/media/uapi/mediactl/request-func-poll.rst
index 85191254f381..2609fd54d519 100644
--- a/Documentation/media/uapi/mediactl/request-func-poll.rst
+++ b/Documentation/media/uapi/mediactl/request-func-poll.rst
@@ -1,4 +1,28 @@
-.. SPDX-License-Identifier: GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
+.. This file is dual-licensed: you can use it either under the terms
+.. of the GPL or the GFDL 1.1+ license, at your option. Note that this
+.. dual licensing only applies to this file, and not this project as a
+.. whole.
+..
+.. a) This file is free software; you can redistribute it and/or
+.. modify it under the terms of the GNU General Public License as
+.. published by the Free Software Foundation; either version 2 of
+.. the License, or (at your option) any later version.
+..
+.. This file is distributed in the hope that it will be useful,
+.. but WITHOUT ANY WARRANTY; without even the implied warranty of
+.. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+.. GNU General Public License for more details.
+..
+.. Or, alternatively,
+..
+.. b) Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GPL-2.0 OR GFDL-1.1-or-later WITH no-invariant-sections
.. _request-func-poll:
diff --git a/Documentation/media/uapi/v4l/dev-meta.rst b/Documentation/media/uapi/v4l/dev-meta.rst
index f7ac8d0d3af1..b65dc078abeb 100644
--- a/Documentation/media/uapi/v4l/dev-meta.rst
+++ b/Documentation/media/uapi/v4l/dev-meta.rst
@@ -40,7 +40,7 @@ To use the :ref:`format` ioctls applications set the ``type`` field of the
the desired operation. Both drivers and applications must set the remainder of
the :c:type:`v4l2_format` structure to 0.
-.. _v4l2-meta-format:
+.. c:type:: v4l2_meta_format
.. tabularcolumns:: |p{1.4cm}|p{2.2cm}|p{13.9cm}|
diff --git a/Documentation/media/uapi/v4l/extended-controls.rst b/Documentation/media/uapi/v4l/extended-controls.rst
index 65a1d873196b..027358b91082 100644
--- a/Documentation/media/uapi/v4l/extended-controls.rst
+++ b/Documentation/media/uapi/v4l/extended-controls.rst
@@ -1505,6 +1505,11 @@ enum v4l2_mpeg_video_h264_hierarchical_coding_type -
configuring a stateless hardware decoding pipeline for MPEG-2.
The bitstream parameters are defined according to :ref:`mpeg2part2`.
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
.. c:type:: v4l2_ctrl_mpeg2_slice_params
.. cssclass:: longtable
@@ -1625,6 +1630,11 @@ enum v4l2_mpeg_video_h264_hierarchical_coding_type -
Specifies quantization matrices (as extracted from the bitstream) for the
associated MPEG-2 slice data.
+ .. note::
+
+ This compound control is not yet part of the public kernel API and
+ it is expected to change.
+
.. c:type:: v4l2_ctrl_mpeg2_quantization
.. cssclass:: longtable
diff --git a/Documentation/media/uapi/v4l/vidioc-g-fmt.rst b/Documentation/media/uapi/v4l/vidioc-g-fmt.rst
index 3ead350e099f..9ea494a8faca 100644
--- a/Documentation/media/uapi/v4l/vidioc-g-fmt.rst
+++ b/Documentation/media/uapi/v4l/vidioc-g-fmt.rst
@@ -133,6 +133,11 @@ The format as returned by :ref:`VIDIOC_TRY_FMT <VIDIOC_G_FMT>` must be identical
- Definition of a data format, see :ref:`pixfmt`, used by SDR
capture and output devices.
* -
+ - struct :c:type:`v4l2_meta_format`
+ - ``meta``
+ - Definition of a metadata format, see :ref:`meta-formats`, used by
+ metadata capture devices.
+ * -
- __u8
- ``raw_data``\ [200]
- Place holder for future extensions.
diff --git a/Documentation/networking/rxrpc.txt b/Documentation/networking/rxrpc.txt
index 605e00cdd6be..89f1302d593a 100644
--- a/Documentation/networking/rxrpc.txt
+++ b/Documentation/networking/rxrpc.txt
@@ -1056,18 +1056,23 @@ The kernel interface functions are as follows:
u32 rxrpc_kernel_check_life(struct socket *sock,
struct rxrpc_call *call);
+ void rxrpc_kernel_probe_life(struct socket *sock,
+ struct rxrpc_call *call);
- This returns a number that is updated when ACKs are received from the peer
- (notably including PING RESPONSE ACKs which we can elicit by sending PING
- ACKs to see if the call still exists on the server). The caller should
- compare the numbers of two calls to see if the call is still alive after
- waiting for a suitable interval.
+ The first function returns a number that is updated when ACKs are received
+ from the peer (notably including PING RESPONSE ACKs which we can elicit by
+ sending PING ACKs to see if the call still exists on the server). The
+ caller should compare the numbers of two calls to see if the call is still
+ alive after waiting for a suitable interval.
This allows the caller to work out if the server is still contactable and
if the call is still alive on the server whilst waiting for the server to
process a client operation.
- This function may transmit a PING ACK.
+ The second function causes a ping ACK to be transmitted to try to provoke
+ the peer into responding, which would then cause the value returned by the
+ first function to change. Note that this must be called in TASK_RUNNING
+ state.
(*) Get reply timestamp.
diff --git a/Documentation/userspace-api/spec_ctrl.rst b/Documentation/userspace-api/spec_ctrl.rst
index 32f3d55c54b7..c4dbe6f7cdae 100644
--- a/Documentation/userspace-api/spec_ctrl.rst
+++ b/Documentation/userspace-api/spec_ctrl.rst
@@ -92,3 +92,12 @@ Speculation misfeature controls
* prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, PR_SPEC_ENABLE, 0, 0);
* prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, PR_SPEC_DISABLE, 0, 0);
* prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_STORE_BYPASS, PR_SPEC_FORCE_DISABLE, 0, 0);
+
+- PR_SPEC_INDIR_BRANCH: Indirect Branch Speculation in User Processes
+ (Mitigate Spectre V2 style attacks against user processes)
+
+ Invocations:
+ * prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0);
+ * prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0);
+ * prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0);
+ * prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0);
diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt
index 7727db8f94bc..5e9b826b5f62 100644
--- a/Documentation/x86/boot.txt
+++ b/Documentation/x86/boot.txt
@@ -61,18 +61,6 @@ Protocol 2.12: (Kernel 3.8) Added the xloadflags field and extension fields
to struct boot_params for loading bzImage and ramdisk
above 4G in 64bit.
-Protocol 2.13: (Kernel 3.14) Support 32- and 64-bit flags being set in
- xloadflags to support booting a 64-bit kernel from 32-bit
- EFI
-
-Protocol 2.14: (Kernel 4.20) Added acpi_rsdp_addr holding the physical
- address of the ACPI RSDP table.
- The bootloader updates version with:
- 0x8000 | min(kernel-version, bootloader-version)
- kernel-version being the protocol version supported by
- the kernel and bootloader-version the protocol version
- supported by the bootloader.
-
**** MEMORY LAYOUT
The traditional memory map for the kernel loader, used for Image or
@@ -209,7 +197,6 @@ Offset Proto Name Meaning
0258/8 2.10+ pref_address Preferred loading address
0260/4 2.10+ init_size Linear memory required during initialization
0264/4 2.11+ handover_offset Offset of handover entry point
-0268/8 2.14+ acpi_rsdp_addr Physical address of RSDP table
(1) For backwards compatibility, if the setup_sects field contains 0, the
real value is 4.
@@ -322,7 +309,7 @@ Protocol: 2.00+
Contains the magic number "HdrS" (0x53726448).
Field name: version
-Type: modify
+Type: read
Offset/size: 0x206/2
Protocol: 2.00+
@@ -330,12 +317,6 @@ Protocol: 2.00+
e.g. 0x0204 for version 2.04, and 0x0a11 for a hypothetical version
10.17.
- Up to protocol version 2.13 this information is only read by the
- bootloader. From protocol version 2.14 onwards the bootloader will
- write the used protocol version or-ed with 0x8000 to the field. The
- used protocol version will be the minimum of the supported protocol
- versions of the bootloader and the kernel.
-
Field name: realmode_swtch
Type: modify (optional)
Offset/size: 0x208/4
@@ -763,17 +744,6 @@ Offset/size: 0x264/4
See EFI HANDOVER PROTOCOL below for more details.
-Field name: acpi_rsdp_addr
-Type: write
-Offset/size: 0x268/8
-Protocol: 2.14+
-
- This field can be set by the boot loader to tell the kernel the
- physical address of the ACPI RSDP table.
-
- A value of 0 indicates the kernel should fall back to the standard
- methods to locate the RSDP.
-
**** THE IMAGE CHECKSUM