summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c')
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c1709
1 files changed, 1194 insertions, 515 deletions
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
index 40df20d1adf5..334fe3130285 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
@@ -6,6 +6,7 @@
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
*/
#include <linux/clk.h>
+#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sched/task_stack.h>
#include <linux/interrupt.h>
@@ -13,7 +14,10 @@
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/dma/mxs-dma.h>
#include "gpmi-nand.h"
+#include "gpmi-regs.h"
#include "bch-regs.h"
/* Resource names for the GPMI NAND driver. */
@@ -21,149 +25,208 @@
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
-/* add our owner bbt descriptor */
-static uint8_t scan_ff_pattern[] = { 0xff };
-static struct nand_bbt_descr gpmi_bbt_descr = {
- .options = 0,
- .offs = 0,
- .len = 1,
- .pattern = scan_ff_pattern
-};
+/* Converts time to clock cycles */
+#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
+#define MXS_SET_ADDR 0x4
+#define MXS_CLR_ADDR 0x8
/*
- * We may change the layout if we can get the ECC info from the datasheet,
- * else we will use all the (page + OOB).
+ * Clear the bit and poll it cleared. This is usually called with
+ * a reset address and mask being either SFTRST(bit 31) or CLKGATE
+ * (bit 30).
*/
-static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
+static int clear_poll_bit(void __iomem *addr, u32 mask)
{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- struct bch_geometry *geo = &this->bch_geometry;
+ int timeout = 0x400;
- if (section)
- return -ERANGE;
+ /* clear the bit */
+ writel(mask, addr + MXS_CLR_ADDR);
- oobregion->offset = 0;
- oobregion->length = geo->page_size - mtd->writesize;
+ /*
+ * SFTRST needs 3 GPMI clocks to settle, the reference manual
+ * recommends to wait 1us.
+ */
+ udelay(1);
- return 0;
+ /* poll the bit becoming clear */
+ while ((readl(addr) & mask) && --timeout)
+ /* nothing */;
+
+ return !timeout;
}
-static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
+#define MODULE_CLKGATE (1 << 30)
+#define MODULE_SFTRST (1 << 31)
+/*
+ * The current mxs_reset_block() will do two things:
+ * [1] enable the module.
+ * [2] reset the module.
+ *
+ * In most of the cases, it's ok.
+ * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
+ * If you try to soft reset the BCH block, it becomes unusable until
+ * the next hard reset. This case occurs in the NAND boot mode. When the board
+ * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
+ * So If the driver tries to reset the BCH again, the BCH will not work anymore.
+ * You will see a DMA timeout in this case. The bug has been fixed
+ * in the following chips, such as MX28.
+ *
+ * To avoid this bug, just add a new parameter `just_enable` for
+ * the mxs_reset_block(), and rewrite it here.
+ */
+static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- struct bch_geometry *geo = &this->bch_geometry;
+ int ret;
+ int timeout = 0x400;
+
+ /* clear and poll SFTRST */
+ ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+ if (unlikely(ret))
+ goto error;
+
+ /* clear CLKGATE */
+ writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
+
+ if (!just_enable) {
+ /* set SFTRST to reset the block */
+ writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
+ udelay(1);
+
+ /* poll CLKGATE becoming set */
+ while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
+ /* nothing */;
+ if (unlikely(!timeout))
+ goto error;
+ }
- if (section)
- return -ERANGE;
+ /* clear and poll SFTRST */
+ ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+ if (unlikely(ret))
+ goto error;
- /* The available oob size we have. */
- if (geo->page_size < mtd->writesize + mtd->oobsize) {
- oobregion->offset = geo->page_size - mtd->writesize;
- oobregion->length = mtd->oobsize - oobregion->offset;
- }
+ /* clear and poll CLKGATE */
+ ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
+ if (unlikely(ret))
+ goto error;
return 0;
+
+error:
+ pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
+ return -ETIMEDOUT;
}
-static const char * const gpmi_clks_for_mx2x[] = {
- "gpmi_io",
-};
+static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
+{
+ struct clk *clk;
+ int ret;
+ int i;
-static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
- .ecc = gpmi_ooblayout_ecc,
- .free = gpmi_ooblayout_free,
-};
+ for (i = 0; i < GPMI_CLK_MAX; i++) {
+ clk = this->resources.clock[i];
+ if (!clk)
+ break;
-static const struct gpmi_devdata gpmi_devdata_imx23 = {
- .type = IS_MX23,
- .bch_max_ecc_strength = 20,
- .max_chain_delay = 16000,
- .clks = gpmi_clks_for_mx2x,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
-};
+ if (v) {
+ ret = clk_prepare_enable(clk);
+ if (ret)
+ goto err_clk;
+ } else {
+ clk_disable_unprepare(clk);
+ }
+ }
+ return 0;
-static const struct gpmi_devdata gpmi_devdata_imx28 = {
- .type = IS_MX28,
- .bch_max_ecc_strength = 20,
- .max_chain_delay = 16000,
- .clks = gpmi_clks_for_mx2x,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
-};
+err_clk:
+ for (; i > 0; i--)
+ clk_disable_unprepare(this->resources.clock[i - 1]);
+ return ret;
+}
-static const char * const gpmi_clks_for_mx6[] = {
- "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
-};
+static int gpmi_init(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ int ret;
-static const struct gpmi_devdata gpmi_devdata_imx6q = {
- .type = IS_MX6Q,
- .bch_max_ecc_strength = 40,
- .max_chain_delay = 12000,
- .clks = gpmi_clks_for_mx6,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
-};
+ ret = gpmi_reset_block(r->gpmi_regs, false);
+ if (ret)
+ goto err_out;
-static const struct gpmi_devdata gpmi_devdata_imx6sx = {
- .type = IS_MX6SX,
- .bch_max_ecc_strength = 62,
- .max_chain_delay = 12000,
- .clks = gpmi_clks_for_mx6,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
-};
+ /*
+ * Reset BCH here, too. We got failures otherwise :(
+ * See later BCH reset for explanation of MX23 and MX28 handling
+ */
+ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
+ if (ret)
+ goto err_out;
-static const char * const gpmi_clks_for_mx7d[] = {
- "gpmi_io", "gpmi_bch_apb",
-};
+ /* Choose NAND mode. */
+ writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
-static const struct gpmi_devdata gpmi_devdata_imx7d = {
- .type = IS_MX7D,
- .bch_max_ecc_strength = 62,
- .max_chain_delay = 12000,
- .clks = gpmi_clks_for_mx7d,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
-};
+ /* Set the IRQ polarity. */
+ writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
+ r->gpmi_regs + HW_GPMI_CTRL1_SET);
-static irqreturn_t bch_irq(int irq, void *cookie)
-{
- struct gpmi_nand_data *this = cookie;
+ /* Disable Write-Protection. */
+ writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
- gpmi_clear_bch(this);
- complete(&this->bch_done);
- return IRQ_HANDLED;
+ /* Select BCH ECC. */
+ writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /*
+ * Decouple the chip select from dma channel. We use dma0 for all
+ * the chips.
+ */
+ writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ return 0;
+err_out:
+ return ret;
}
-/*
- * Calculate the ECC strength by hand:
- * E : The ECC strength.
- * G : the length of Galois Field.
- * N : The chunk count of per page.
- * O : the oobsize of the NAND chip.
- * M : the metasize of per page.
- *
- * The formula is :
- * E * G * N
- * ------------ <= (O - M)
- * 8
- *
- * So, we get E by:
- * (O - M) * 8
- * E <= -------------
- * G * N
- */
-static inline int get_ecc_strength(struct gpmi_nand_data *this)
+/* This function is very useful. It is called only when the bug occur. */
+static void gpmi_dump_info(struct gpmi_nand_data *this)
{
+ struct resources *r = &this->resources;
struct bch_geometry *geo = &this->bch_geometry;
- struct mtd_info *mtd = nand_to_mtd(&this->nand);
- int ecc_strength;
+ u32 reg;
+ int i;
- ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
- / (geo->gf_len * geo->ecc_chunk_count);
+ dev_err(this->dev, "Show GPMI registers :\n");
+ for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
+ reg = readl(r->gpmi_regs + i * 0x10);
+ dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+ }
- /* We need the minor even number. */
- return round_down(ecc_strength, 2);
+ /* start to print out the BCH info */
+ dev_err(this->dev, "Show BCH registers :\n");
+ for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
+ reg = readl(r->bch_regs + i * 0x10);
+ dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+ }
+ dev_err(this->dev, "BCH Geometry :\n"
+ "GF length : %u\n"
+ "ECC Strength : %u\n"
+ "Page Size in Bytes : %u\n"
+ "Metadata Size in Bytes : %u\n"
+ "ECC Chunk Size in Bytes: %u\n"
+ "ECC Chunk Count : %u\n"
+ "Payload Size in Bytes : %u\n"
+ "Auxiliary Size in Bytes: %u\n"
+ "Auxiliary Status Offset: %u\n"
+ "Block Mark Byte Offset : %u\n"
+ "Block Mark Bit Offset : %u\n",
+ geo->gf_len,
+ geo->ecc_strength,
+ geo->page_size,
+ geo->metadata_size,
+ geo->ecc_chunk_size,
+ geo->ecc_chunk_count,
+ geo->payload_size,
+ geo->auxiliary_size,
+ geo->auxiliary_status_offset,
+ geo->block_mark_byte_offset,
+ geo->block_mark_bit_offset);
}
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
@@ -296,6 +359,37 @@ static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
return 0;
}
+/*
+ * Calculate the ECC strength by hand:
+ * E : The ECC strength.
+ * G : the length of Galois Field.
+ * N : The chunk count of per page.
+ * O : the oobsize of the NAND chip.
+ * M : the metasize of per page.
+ *
+ * The formula is :
+ * E * G * N
+ * ------------ <= (O - M)
+ * 8
+ *
+ * So, we get E by:
+ * (O - M) * 8
+ * E <= -------------
+ * G * N
+ */
+static inline int get_ecc_strength(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ struct mtd_info *mtd = nand_to_mtd(&this->nand);
+ int ecc_strength;
+
+ ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
+ / (geo->gf_len * geo->ecc_chunk_count);
+
+ /* We need the minor even number. */
+ return round_down(ecc_strength, 2);
+}
+
static int legacy_set_geometry(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
@@ -408,7 +502,7 @@ static int legacy_set_geometry(struct gpmi_nand_data *this)
return 0;
}
-int common_nfc_set_geometry(struct gpmi_nand_data *this)
+static int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
@@ -430,18 +524,288 @@ int common_nfc_set_geometry(struct gpmi_nand_data *this)
return 0;
}
-struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
+/* Configures the geometry for BCH. */
+static int bch_set_geometry(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ int ret;
+
+ ret = common_nfc_set_geometry(this);
+ if (ret)
+ return ret;
+
+ ret = pm_runtime_get_sync(this->dev);
+ if (ret < 0)
+ return ret;
+
+ /*
+ * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
+ * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
+ * and MX28.
+ */
+ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
+ if (ret)
+ goto err_out;
+
+ /* Set *all* chip selects to use layout 0. */
+ writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
+
+ ret = 0;
+err_out:
+ pm_runtime_mark_last_busy(this->dev);
+ pm_runtime_put_autosuspend(this->dev);
+
+ return ret;
+}
+
+/*
+ * <1> Firstly, we should know what's the GPMI-clock means.
+ * The GPMI-clock is the internal clock in the gpmi nand controller.
+ * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
+ * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
+ *
+ * <2> Secondly, we should know what's the frequency on the nand chip pins.
+ * The frequency on the nand chip pins is derived from the GPMI-clock.
+ * We can get it from the following equation:
+ *
+ * F = G / (DS + DH)
+ *
+ * F : the frequency on the nand chip pins.
+ * G : the GPMI clock, such as 100MHz.
+ * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
+ * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
+ *
+ * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
+ * the nand EDO(extended Data Out) timing could be applied.
+ * The GPMI implements a feedback read strobe to sample the read data.
+ * The feedback read strobe can be delayed to support the nand EDO timing
+ * where the read strobe may deasserts before the read data is valid, and
+ * read data is valid for some time after read strobe.
+ *
+ * The following figure illustrates some aspects of a NAND Flash read:
+ *
+ * |<---tREA---->|
+ * | |
+ * | | |
+ * |<--tRP-->| |
+ * | | |
+ * __ ___|__________________________________
+ * RDN \________/ |
+ * |
+ * /---------\
+ * Read Data --------------< >---------
+ * \---------/
+ * | |
+ * |<-D->|
+ * FeedbackRDN ________ ____________
+ * \___________/
+ *
+ * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
+ *
+ *
+ * <4> Now, we begin to describe how to compute the right RDN_DELAY.
+ *
+ * 4.1) From the aspect of the nand chip pins:
+ * Delay = (tREA + C - tRP) {1}
+ *
+ * tREA : the maximum read access time.
+ * C : a constant to adjust the delay. default is 4000ps.
+ * tRP : the read pulse width, which is exactly:
+ * tRP = (GPMI-clock-period) * DATA_SETUP
+ *
+ * 4.2) From the aspect of the GPMI nand controller:
+ * Delay = RDN_DELAY * 0.125 * RP {2}
+ *
+ * RP : the DLL reference period.
+ * if (GPMI-clock-period > DLL_THRETHOLD)
+ * RP = GPMI-clock-period / 2;
+ * else
+ * RP = GPMI-clock-period;
+ *
+ * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
+ * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
+ * is 16000ps, but in mx6q, we use 12000ps.
+ *
+ * 4.3) since {1} equals {2}, we get:
+ *
+ * (tREA + 4000 - tRP) * 8
+ * RDN_DELAY = ----------------------- {3}
+ * RP
+ */
+static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
+ const struct nand_sdr_timings *sdr)
+{
+ struct gpmi_nfc_hardware_timing *hw = &this->hw;
+ unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
+ unsigned int period_ps, reference_period_ps;
+ unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
+ unsigned int tRP_ps;
+ bool use_half_period;
+ int sample_delay_ps, sample_delay_factor;
+ u16 busy_timeout_cycles;
+ u8 wrn_dly_sel;
+
+ if (sdr->tRC_min >= 30000) {
+ /* ONFI non-EDO modes [0-3] */
+ hw->clk_rate = 22000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
+ } else if (sdr->tRC_min >= 25000) {
+ /* ONFI EDO mode 4 */
+ hw->clk_rate = 80000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+ } else {
+ /* ONFI EDO mode 5 */
+ hw->clk_rate = 100000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+ }
+
+ /* SDR core timings are given in picoseconds */
+ period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
+
+ addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
+ data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
+ data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
+ busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
+
+ hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
+ BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
+ BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
+ hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
+
+ /*
+ * Derive NFC ideal delay from {3}:
+ *
+ * (tREA + 4000 - tRP) * 8
+ * RDN_DELAY = -----------------------
+ * RP
+ */
+ if (period_ps > dll_threshold_ps) {
+ use_half_period = true;
+ reference_period_ps = period_ps / 2;
+ } else {
+ use_half_period = false;
+ reference_period_ps = period_ps;
+ }
+
+ tRP_ps = data_setup_cycles * period_ps;
+ sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
+ if (sample_delay_ps > 0)
+ sample_delay_factor = sample_delay_ps / reference_period_ps;
+ else
+ sample_delay_factor = 0;
+
+ hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
+ if (sample_delay_factor)
+ hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
+ BM_GPMI_CTRL1_DLL_ENABLE |
+ (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
+}
+
+static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
+{
+ struct gpmi_nfc_hardware_timing *hw = &this->hw;
+ struct resources *r = &this->resources;
+ void __iomem *gpmi_regs = r->gpmi_regs;
+ unsigned int dll_wait_time_us;
+
+ clk_set_rate(r->clock[0], hw->clk_rate);
+
+ writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
+ writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
+
+ /*
+ * Clear several CTRL1 fields, DLL must be disabled when setting
+ * RDN_DELAY or HALF_PERIOD.
+ */
+ writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
+ writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
+ dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
+ if (!dll_wait_time_us)
+ dll_wait_time_us = 1;
+
+ /* Wait for the DLL to settle. */
+ udelay(dll_wait_time_us);
+}
+
+static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *sdr;
+
+ /* Retrieve required NAND timings */
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ /* Only MX6 GPMI controller can reach EDO timings */
+ if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
+ return -ENOTSUPP;
+
+ /* Stop here if this call was just a check */
+ if (chipnr < 0)
+ return 0;
+
+ /* Do the actual derivation of the controller timings */
+ gpmi_nfc_compute_timings(this, sdr);
+
+ this->hw.must_apply_timings = true;
+
+ return 0;
+}
+
+/* Clears a BCH interrupt. */
+static void gpmi_clear_bch(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
+}
+
+static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
/* We use the DMA channel 0 to access all the nand chips. */
return this->dma_chans[0];
}
+/* This will be called after the DMA operation is finished. */
+static void dma_irq_callback(void *param)
+{
+ struct gpmi_nand_data *this = param;
+ struct completion *dma_c = &this->dma_done;
+
+ complete(dma_c);
+}
+
+static irqreturn_t bch_irq(int irq, void *cookie)
+{
+ struct gpmi_nand_data *this = cookie;
+
+ gpmi_clear_bch(this);
+ complete(&this->bch_done);
+ return IRQ_HANDLED;
+}
+
+static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
+{
+ /*
+ * raw_len is the length to read/write including bch data which
+ * we are passed in exec_op. Calculate the data length from it.
+ */
+ if (this->bch)
+ return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
+ else
+ return raw_len;
+}
+
/* Can we use the upper's buffer directly for DMA? */
-bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len,
- enum dma_data_direction dr)
+static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
+ int raw_len, struct scatterlist *sgl,
+ enum dma_data_direction dr)
{
- struct scatterlist *sgl = &this->data_sgl;
int ret;
+ int len = gpmi_raw_len_to_len(this, raw_len);
/* first try to map the upper buffer directly */
if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
@@ -457,7 +821,7 @@ map_fail:
/* We have to use our own DMA buffer. */
sg_init_one(sgl, this->data_buffer_dma, len);
- if (dr == DMA_TO_DEVICE)
+ if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
memcpy(this->data_buffer_dma, buf, len);
dma_map_sg(this->dev, sgl, 1, dr);
@@ -465,67 +829,263 @@ map_fail:
return false;
}
-/* This will be called after the DMA operation is finished. */
-static void dma_irq_callback(void *param)
+/**
+ * gpmi_copy_bits - copy bits from one memory region to another
+ * @dst: destination buffer
+ * @dst_bit_off: bit offset we're starting to write at
+ * @src: source buffer
+ * @src_bit_off: bit offset we're starting to read from
+ * @nbits: number of bits to copy
+ *
+ * This functions copies bits from one memory region to another, and is used by
+ * the GPMI driver to copy ECC sections which are not guaranteed to be byte
+ * aligned.
+ *
+ * src and dst should not overlap.
+ *
+ */
+static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src,
+ size_t src_bit_off, size_t nbits)
{
- struct gpmi_nand_data *this = param;
- struct completion *dma_c = &this->dma_done;
+ size_t i;
+ size_t nbytes;
+ u32 src_buffer = 0;
+ size_t bits_in_src_buffer = 0;
- complete(dma_c);
-}
+ if (!nbits)
+ return;
-int start_dma_without_bch_irq(struct gpmi_nand_data *this,
- struct dma_async_tx_descriptor *desc)
-{
- struct completion *dma_c = &this->dma_done;
- unsigned long timeout;
+ /*
+ * Move src and dst pointers to the closest byte pointer and store bit
+ * offsets within a byte.
+ */
+ src += src_bit_off / 8;
+ src_bit_off %= 8;
- init_completion(dma_c);
+ dst += dst_bit_off / 8;
+ dst_bit_off %= 8;
- desc->callback = dma_irq_callback;
- desc->callback_param = this;
- dmaengine_submit(desc);
- dma_async_issue_pending(get_dma_chan(this));
+ /*
+ * Initialize the src_buffer value with bits available in the first
+ * byte of data so that we end up with a byte aligned src pointer.
+ */
+ if (src_bit_off) {
+ src_buffer = src[0] >> src_bit_off;
+ if (nbits >= (8 - src_bit_off)) {
+ bits_in_src_buffer += 8 - src_bit_off;
+ } else {
+ src_buffer &= GENMASK(nbits - 1, 0);
+ bits_in_src_buffer += nbits;
+ }
+ nbits -= bits_in_src_buffer;
+ src++;
+ }
- /* Wait for the interrupt from the DMA block. */
- timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
- if (!timeout) {
- dev_err(this->dev, "DMA timeout, last DMA\n");
- gpmi_dump_info(this);
- return -ETIMEDOUT;
+ /* Calculate the number of bytes that can be copied from src to dst. */
+ nbytes = nbits / 8;
+
+ /* Try to align dst to a byte boundary. */
+ if (dst_bit_off) {
+ if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
+ src_buffer |= src[0] << bits_in_src_buffer;
+ bits_in_src_buffer += 8;
+ src++;
+ nbytes--;
+ }
+
+ if (bits_in_src_buffer >= (8 - dst_bit_off)) {
+ dst[0] &= GENMASK(dst_bit_off - 1, 0);
+ dst[0] |= src_buffer << dst_bit_off;
+ src_buffer >>= (8 - dst_bit_off);
+ bits_in_src_buffer -= (8 - dst_bit_off);
+ dst_bit_off = 0;
+ dst++;
+ if (bits_in_src_buffer > 7) {
+ bits_in_src_buffer -= 8;
+ dst[0] = src_buffer;
+ dst++;
+ src_buffer >>= 8;
+ }
+ }
+ }
+
+ if (!bits_in_src_buffer && !dst_bit_off) {
+ /*
+ * Both src and dst pointers are byte aligned, thus we can
+ * just use the optimized memcpy function.
+ */
+ if (nbytes)
+ memcpy(dst, src, nbytes);
+ } else {
+ /*
+ * src buffer is not byte aligned, hence we have to copy each
+ * src byte to the src_buffer variable before extracting a byte
+ * to store in dst.
+ */
+ for (i = 0; i < nbytes; i++) {
+ src_buffer |= src[i] << bits_in_src_buffer;
+ dst[i] = src_buffer;
+ src_buffer >>= 8;
+ }
+ }
+ /* Update dst and src pointers */
+ dst += nbytes;
+ src += nbytes;
+
+ /*
+ * nbits is the number of remaining bits. It should not exceed 8 as
+ * we've already copied as much bytes as possible.
+ */
+ nbits %= 8;
+
+ /*
+ * If there's no more bits to copy to the destination and src buffer
+ * was already byte aligned, then we're done.
+ */
+ if (!nbits && !bits_in_src_buffer)
+ return;
+
+ /* Copy the remaining bits to src_buffer */
+ if (nbits)
+ src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
+ bits_in_src_buffer;
+ bits_in_src_buffer += nbits;
+
+ /*
+ * In case there were not enough bits to get a byte aligned dst buffer
+ * prepare the src_buffer variable to match the dst organization (shift
+ * src_buffer by dst_bit_off and retrieve the least significant bits
+ * from dst).
+ */
+ if (dst_bit_off)
+ src_buffer = (src_buffer << dst_bit_off) |
+ (*dst & GENMASK(dst_bit_off - 1, 0));
+ bits_in_src_buffer += dst_bit_off;
+
+ /*
+ * Keep most significant bits from dst if we end up with an unaligned
+ * number of bits.
+ */
+ nbytes = bits_in_src_buffer / 8;
+ if (bits_in_src_buffer % 8) {
+ src_buffer |= (dst[nbytes] &
+ GENMASK(7, bits_in_src_buffer % 8)) <<
+ (nbytes * 8);
+ nbytes++;
+ }
+
+ /* Copy the remaining bytes to dst */
+ for (i = 0; i < nbytes; i++) {
+ dst[i] = src_buffer;
+ src_buffer >>= 8;
}
- return 0;
}
+/* add our owner bbt descriptor */
+static uint8_t scan_ff_pattern[] = { 0xff };
+static struct nand_bbt_descr gpmi_bbt_descr = {
+ .options = 0,
+ .offs = 0,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
/*
- * This function is used in BCH reading or BCH writing pages.
- * It will wait for the BCH interrupt as long as ONE second.
- * Actually, we must wait for two interrupts :
- * [1] firstly the DMA interrupt and
- * [2] secondly the BCH interrupt.
+ * We may change the layout if we can get the ECC info from the datasheet,
+ * else we will use all the (page + OOB).
*/
-int start_dma_with_bch_irq(struct gpmi_nand_data *this,
- struct dma_async_tx_descriptor *desc)
+static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
{
- struct completion *bch_c = &this->bch_done;
- unsigned long timeout;
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ struct bch_geometry *geo = &this->bch_geometry;
- /* Prepare to receive an interrupt from the BCH block. */
- init_completion(bch_c);
+ if (section)
+ return -ERANGE;
- /* start the DMA */
- start_dma_without_bch_irq(this, desc);
+ oobregion->offset = 0;
+ oobregion->length = geo->page_size - mtd->writesize;
- /* Wait for the interrupt from the BCH block. */
- timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
- if (!timeout) {
- dev_err(this->dev, "BCH timeout\n");
- gpmi_dump_info(this);
- return -ETIMEDOUT;
+ return 0;
+}
+
+static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ struct bch_geometry *geo = &this->bch_geometry;
+
+ if (section)
+ return -ERANGE;
+
+ /* The available oob size we have. */
+ if (geo->page_size < mtd->writesize + mtd->oobsize) {
+ oobregion->offset = geo->page_size - mtd->writesize;
+ oobregion->length = mtd->oobsize - oobregion->offset;
}
+
return 0;
}
+static const char * const gpmi_clks_for_mx2x[] = {
+ "gpmi_io",
+};
+
+static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
+ .ecc = gpmi_ooblayout_ecc,
+ .free = gpmi_ooblayout_free,
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx23 = {
+ .type = IS_MX23,
+ .bch_max_ecc_strength = 20,
+ .max_chain_delay = 16000,
+ .clks = gpmi_clks_for_mx2x,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx28 = {
+ .type = IS_MX28,
+ .bch_max_ecc_strength = 20,
+ .max_chain_delay = 16000,
+ .clks = gpmi_clks_for_mx2x,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
+};
+
+static const char * const gpmi_clks_for_mx6[] = {
+ "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6q = {
+ .type = IS_MX6Q,
+ .bch_max_ecc_strength = 40,
+ .max_chain_delay = 12000,
+ .clks = gpmi_clks_for_mx6,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6sx = {
+ .type = IS_MX6SX,
+ .bch_max_ecc_strength = 62,
+ .max_chain_delay = 12000,
+ .clks = gpmi_clks_for_mx6,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
+};
+
+static const char * const gpmi_clks_for_mx7d[] = {
+ "gpmi_io", "gpmi_bch_apb",
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx7d = {
+ .type = IS_MX7D,
+ .bch_max_ecc_strength = 62,
+ .max_chain_delay = 12000,
+ .clks = gpmi_clks_for_mx7d,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
+};
+
static int acquire_register_block(struct gpmi_nand_data *this,
const char *res_name)
{
@@ -667,68 +1227,20 @@ static void release_resources(struct gpmi_nand_data *this)
release_dma_channels(this);
}
-static int send_page_prepare(struct gpmi_nand_data *this,
- const void *source, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- const void **use_virt, dma_addr_t *use_phys)
-{
- struct device *dev = this->dev;
-
- if (virt_addr_valid(source)) {
- dma_addr_t source_phys;
-
- source_phys = dma_map_single(dev, (void *)source, length,
- DMA_TO_DEVICE);
- if (dma_mapping_error(dev, source_phys)) {
- if (alt_size < length) {
- dev_err(dev, "Alternate buffer is too small\n");
- return -ENOMEM;
- }
- goto map_failed;
- }
- *use_virt = source;
- *use_phys = source_phys;
- return 0;
- }
-map_failed:
- /*
- * Copy the content of the source buffer into the alternate
- * buffer and set up the return values accordingly.
- */
- memcpy(alt_virt, source, length);
-
- *use_virt = alt_virt;
- *use_phys = alt_phys;
- return 0;
-}
-
-static void send_page_end(struct gpmi_nand_data *this,
- const void *source, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- const void *used_virt, dma_addr_t used_phys)
-{
- struct device *dev = this->dev;
- if (used_virt == source)
- dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
-}
-
static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
+ struct bch_geometry *geo = &this->bch_geometry;
- if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
- dma_free_coherent(dev, this->page_buffer_size,
- this->page_buffer_virt,
- this->page_buffer_phys);
- kfree(this->cmd_buffer);
+ if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
+ dma_free_coherent(dev, geo->auxiliary_size,
+ this->auxiliary_virt,
+ this->auxiliary_phys);
kfree(this->data_buffer_dma);
kfree(this->raw_buffer);
- this->cmd_buffer = NULL;
this->data_buffer_dma = NULL;
this->raw_buffer = NULL;
- this->page_buffer_virt = NULL;
- this->page_buffer_size = 0;
}
/* Allocate the DMA buffers */
@@ -738,11 +1250,6 @@ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
struct device *dev = this->dev;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
- /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
- this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
- if (this->cmd_buffer == NULL)
- goto error_alloc;
-
/*
* [2] Allocate a read/write data buffer.
* The gpmi_alloc_dma_buffer can be called twice.
@@ -756,29 +1263,15 @@ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
if (this->data_buffer_dma == NULL)
goto error_alloc;
- /*
- * [3] Allocate the page buffer.
- *
- * Both the payload buffer and the auxiliary buffer must appear on
- * 32-bit boundaries. We presume the size of the payload buffer is a
- * power of two and is much larger than four, which guarantees the
- * auxiliary buffer will appear on a 32-bit boundary.
- */
- this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
- this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
- &this->page_buffer_phys, GFP_DMA);
- if (!this->page_buffer_virt)
+ this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
+ &this->auxiliary_phys, GFP_DMA);
+ if (!this->auxiliary_virt)
goto error_alloc;
- this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+ this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
if (!this->raw_buffer)
goto error_alloc;
- /* Slice up the page buffer. */
- this->payload_virt = this->page_buffer_virt;
- this->payload_phys = this->page_buffer_phys;
- this->auxiliary_virt = this->payload_virt + geo->payload_size;
- this->auxiliary_phys = this->payload_phys + geo->payload_size;
return 0;
error_alloc:
@@ -786,106 +1279,6 @@ error_alloc:
return -ENOMEM;
}
-static void gpmi_cmd_ctrl(struct nand_chip *chip, int data, unsigned int ctrl)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- int ret;
-
- /*
- * Every operation begins with a command byte and a series of zero or
- * more address bytes. These are distinguished by either the Address
- * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
- * asserted. When MTD is ready to execute the command, it will deassert
- * both latch enables.
- *
- * Rather than run a separate DMA operation for every single byte, we
- * queue them up and run a single DMA operation for the entire series
- * of command and data bytes. NAND_CMD_NONE means the END of the queue.
- */
- if ((ctrl & (NAND_ALE | NAND_CLE))) {
- if (data != NAND_CMD_NONE)
- this->cmd_buffer[this->command_length++] = data;
- return;
- }
-
- if (!this->command_length)
- return;
-
- ret = gpmi_send_command(this);
- if (ret)
- dev_err(this->dev, "Chip: %u, Error %d\n",
- this->current_chip, ret);
-
- this->command_length = 0;
-}
-
-static int gpmi_dev_ready(struct nand_chip *chip)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
-
- return gpmi_is_ready(this, this->current_chip);
-}
-
-static void gpmi_select_chip(struct nand_chip *chip, int chipnr)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- int ret;
-
- /*
- * For power consumption matters, disable/enable the clock each time a
- * die is selected/unselected.
- */
- if (this->current_chip < 0 && chipnr >= 0) {
- ret = gpmi_enable_clk(this);
- if (ret)
- dev_err(this->dev, "Failed to enable the clock\n");
- } else if (this->current_chip >= 0 && chipnr < 0) {
- ret = gpmi_disable_clk(this);
- if (ret)
- dev_err(this->dev, "Failed to disable the clock\n");
- }
-
- /*
- * This driver currently supports only one NAND chip. Plus, dies share
- * the same configuration. So once timings have been applied on the
- * controller side, they will not change anymore. When the time will
- * come, the check on must_apply_timings will have to be dropped.
- */
- if (chipnr >= 0 && this->hw.must_apply_timings) {
- this->hw.must_apply_timings = false;
- gpmi_nfc_apply_timings(this);
- }
-
- this->current_chip = chipnr;
-}
-
-static void gpmi_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
-
- dev_dbg(this->dev, "len is %d\n", len);
-
- gpmi_read_data(this, buf, len);
-}
-
-static void gpmi_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
-
- dev_dbg(this->dev, "len is %d\n", len);
-
- gpmi_send_data(this, buf, len);
-}
-
-static uint8_t gpmi_read_byte(struct nand_chip *chip)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- uint8_t *buf = this->data_buffer_dma;
-
- gpmi_read_buf(chip, buf, 1);
- return buf[0];
-}
-
/*
* Handles block mark swapping.
* It can be called in swapping the block mark, or swapping it back,
@@ -934,54 +1327,20 @@ static void block_mark_swapping(struct gpmi_nand_data *this,
p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}
-static int gpmi_ecc_read_page_data(struct nand_chip *chip,
- uint8_t *buf, int oob_required,
- int page)
+static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
+ int last, int meta)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(chip);
- dma_addr_t payload_phys;
- unsigned int i;
+ int i;
unsigned char *status;
- unsigned int max_bitflips = 0;
- int ret;
- bool direct = false;
-
- dev_dbg(this->dev, "page number is : %d\n", page);
-
- payload_phys = this->payload_phys;
-
- if (virt_addr_valid(buf)) {
- dma_addr_t dest_phys;
-
- dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size,
- DMA_FROM_DEVICE);
- if (!dma_mapping_error(this->dev, dest_phys)) {
- payload_phys = dest_phys;
- direct = true;
- }
- }
-
- /* go! */
- ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys);
-
- if (direct)
- dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size,
- DMA_FROM_DEVICE);
-
- if (ret) {
- dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
- return ret;
- }
+ unsigned int max_bitflips = 0;
/* Loop over status bytes, accumulating ECC status. */
- status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset;
-
- if (!direct)
- memcpy(buf, this->payload_virt, nfc_geo->payload_size);
+ status = this->auxiliary_virt + ALIGN(meta, 4);
- for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
+ for (i = first; i < last; i++, status++) {
if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
continue;
@@ -1061,6 +1420,50 @@ static int gpmi_ecc_read_page_data(struct nand_chip *chip,
max_bitflips = max_t(unsigned int, max_bitflips, *status);
}
+ return max_bitflips;
+}
+
+static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ unsigned int ecc_strength = geo->ecc_strength >> 1;
+ unsigned int gf_len = geo->gf_len;
+ unsigned int block_size = geo->ecc_chunk_size;
+
+ this->bch_flashlayout0 =
+ BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
+ BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
+ BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
+ BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
+ BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
+
+ this->bch_flashlayout1 =
+ BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
+ BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
+ BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
+ BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
+}
+
+static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct bch_geometry *geo = &this->bch_geometry;
+ unsigned int max_bitflips;
+ int ret;
+
+ gpmi_bch_layout_std(this);
+ this->bch = true;
+
+ ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
+ if (ret)
+ return ret;
+
+ max_bitflips = gpmi_count_bitflips(chip, buf, 0,
+ geo->ecc_chunk_count,
+ geo->auxiliary_status_offset);
+
/* handle the block mark swapping */
block_mark_swapping(this, buf, this->auxiliary_virt);
@@ -1082,30 +1485,20 @@ static int gpmi_ecc_read_page_data(struct nand_chip *chip,
return max_bitflips;
}
-static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
- int oob_required, int page)
-{
- nand_read_page_op(chip, page, 0, NULL, 0);
-
- return gpmi_ecc_read_page_data(chip, buf, oob_required, page);
-}
-
/* Fake a virtual small page for the subpage read */
static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
uint32_t len, uint8_t *buf, int page)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
- void __iomem *bch_regs = this->resources.bch_regs;
- struct bch_geometry old_geo = this->bch_geometry;
struct bch_geometry *geo = &this->bch_geometry;
int size = chip->ecc.size; /* ECC chunk size */
int meta, n, page_size;
- u32 r1_old, r2_old, r1_new, r2_new;
unsigned int max_bitflips;
+ unsigned int ecc_strength;
int first, last, marker_pos;
int ecc_parity_size;
int col = 0;
- int old_swap_block_mark = this->swap_block_mark;
+ int ret;
/* The size of ECC parity */
ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
@@ -1138,43 +1531,33 @@ static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
buf = buf + first * size;
}
- nand_read_page_op(chip, page, col, NULL, 0);
-
- /* Save the old environment */
- r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
- r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
+ ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
- /* change the BCH registers and bch_geometry{} */
n = last - first + 1;
page_size = meta + (size + ecc_parity_size) * n;
+ ecc_strength = geo->ecc_strength >> 1;
- r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
- BM_BCH_FLASH0LAYOUT0_META_SIZE);
- r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
- | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
- writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
+ this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
+ BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
+ BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
+ BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
+ BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
- r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
- r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
- writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
+ this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
+ BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
+ BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
+ BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
- geo->ecc_chunk_count = n;
- geo->payload_size = n * size;
- geo->page_size = page_size;
- geo->auxiliary_status_offset = ALIGN(meta, 4);
+ this->bch = true;
+
+ ret = nand_read_page_op(chip, page, col, buf, page_size);
+ if (ret)
+ return ret;
dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
page, offs, len, col, first, n, page_size);
- /* Read the subpage now */
- this->swap_block_mark = false;
- max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page);
-
- /* Restore */
- writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
- writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
- this->bch_geometry = old_geo;
- this->swap_block_mark = old_swap_block_mark;
+ max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
return max_bitflips;
}
@@ -1185,81 +1568,29 @@ static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
- const void *payload_virt;
- dma_addr_t payload_phys;
- const void *auxiliary_virt;
- dma_addr_t auxiliary_phys;
- int ret;
+ int ret;
dev_dbg(this->dev, "ecc write page.\n");
- nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+ gpmi_bch_layout_std(this);
+ this->bch = true;
+
+ memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
if (this->swap_block_mark) {
/*
- * If control arrives here, we're doing block mark swapping.
- * Since we can't modify the caller's buffers, we must copy them
- * into our own.
- */
- memcpy(this->payload_virt, buf, mtd->writesize);
- payload_virt = this->payload_virt;
- payload_phys = this->payload_phys;
-
- memcpy(this->auxiliary_virt, chip->oob_poi,
- nfc_geo->auxiliary_size);
- auxiliary_virt = this->auxiliary_virt;
- auxiliary_phys = this->auxiliary_phys;
-
- /* Handle block mark swapping. */
- block_mark_swapping(this,
- (void *)payload_virt, (void *)auxiliary_virt);
- } else {
- /*
- * If control arrives here, we're not doing block mark swapping,
- * so we can to try and use the caller's buffers.
+ * When doing bad block marker swapping we must always copy the
+ * input buffer as we can't modify the const buffer.
*/
- ret = send_page_prepare(this,
- buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- &payload_virt, &payload_phys);
- if (ret) {
- dev_err(this->dev, "Inadequate payload DMA buffer\n");
- return 0;
- }
-
- ret = send_page_prepare(this,
- chip->oob_poi, mtd->oobsize,
- this->auxiliary_virt, this->auxiliary_phys,
- nfc_geo->auxiliary_size,
- &auxiliary_virt, &auxiliary_phys);
- if (ret) {
- dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
- goto exit_auxiliary;
- }
+ memcpy(this->data_buffer_dma, buf, mtd->writesize);
+ buf = this->data_buffer_dma;
+ block_mark_swapping(this, this->data_buffer_dma,
+ this->auxiliary_virt);
}
- /* Ask the NFC. */
- ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
- if (ret)
- dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
-
- if (!this->swap_block_mark) {
- send_page_end(this, chip->oob_poi, mtd->oobsize,
- this->auxiliary_virt, this->auxiliary_phys,
- nfc_geo->auxiliary_size,
- auxiliary_virt, auxiliary_phys);
-exit_auxiliary:
- send_page_end(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- payload_virt, payload_phys);
- }
+ ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
- if (ret)
- return ret;
-
- return nand_prog_page_end_op(chip);
+ return ret;
}
/*
@@ -1326,14 +1657,16 @@ static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ int ret;
- dev_dbg(this->dev, "page number is %d\n", page);
/* clear the OOB buffer */
memset(chip->oob_poi, ~0, mtd->oobsize);
/* Read out the conventional OOB. */
- nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
- chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
+ ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
+ mtd->oobsize);
+ if (ret)
+ return ret;
/*
* Now, we want to make sure the block mark is correct. In the
@@ -1342,8 +1675,9 @@ static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
*/
if (GPMI_IS_MX23(this)) {
/* Read the block mark into the first byte of the OOB buffer. */
- nand_read_page_op(chip, page, 0, NULL, 0);
- chip->oob_poi[0] = chip->legacy.read_byte(chip);
+ ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
+ if (ret)
+ return ret;
}
return 0;
@@ -1392,9 +1726,12 @@ static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
size_t oob_byte_off;
uint8_t *oob = chip->oob_poi;
int step;
+ int ret;
- nand_read_page_op(chip, page, 0, tmp_buf,
- mtd->writesize + mtd->oobsize);
+ ret = nand_read_page_op(chip, page, 0, tmp_buf,
+ mtd->writesize + mtd->oobsize);
+ if (ret)
+ return ret;
/*
* If required, swap the bad block marker and the data stored in the
@@ -1606,13 +1943,12 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
unsigned int stride;
unsigned int page;
u8 *buffer = nand_get_data_buf(chip);
- int saved_chip_number;
int found_an_ncb_fingerprint = false;
+ int ret;
/* Compute the number of strides in a search area. */
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
- saved_chip_number = this->current_chip;
nand_select_target(chip, 0);
/*
@@ -1630,8 +1966,10 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
* Read the NCB fingerprint. The fingerprint is four bytes long
* and starts in the 12th byte of the page.
*/
- nand_read_page_op(chip, page, 12, NULL, 0);
- chip->legacy.read_buf(chip, buffer, strlen(fingerprint));
+ ret = nand_read_page_op(chip, page, 12, buffer,
+ strlen(fingerprint));
+ if (ret)
+ continue;
/* Look for the fingerprint. */
if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
@@ -1641,10 +1979,7 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
}
- if (saved_chip_number >= 0)
- nand_select_target(chip, saved_chip_number);
- else
- nand_deselect_target(chip);
+ nand_deselect_target(chip);
if (found_an_ncb_fingerprint)
dev_dbg(dev, "\tFound a fingerprint\n");
@@ -1668,7 +2003,6 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
unsigned int stride;
unsigned int page;
u8 *buffer = nand_get_data_buf(chip);
- int saved_chip_number;
int status;
/* Compute the search area geometry. */
@@ -1685,8 +2019,6 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
- /* Select chip 0. */
- saved_chip_number = this->current_chip;
nand_select_target(chip, 0);
/* Loop over blocks in the first search area, erasing them. */
@@ -1718,11 +2050,7 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
dev_err(dev, "[%s] Write failed.\n", __func__);
}
- /* Deselect chip 0. */
- if (saved_chip_number >= 0)
- nand_select_target(chip, saved_chip_number);
- else
- nand_deselect_target(chip);
+ nand_deselect_target(chip);
return 0;
}
@@ -1773,10 +2101,13 @@ static int mx23_boot_init(struct gpmi_nand_data *this)
/* Send the command to read the conventional block mark. */
nand_select_target(chip, chipnr);
- nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
- block_mark = chip->legacy.read_byte(chip);
+ ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
+ 1);
nand_deselect_target(chip);
+ if (ret)
+ continue;
+
/*
* Check if the block is marked bad. If so, we need to mark it
* again, but this time the result will be a mark in the
@@ -1890,9 +2221,330 @@ static int gpmi_nand_attach_chip(struct nand_chip *chip)
return 0;
}
+static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
+{
+ struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
+
+ this->ntransfers++;
+
+ if (this->ntransfers == GPMI_MAX_TRANSFERS)
+ return NULL;
+
+ return transfer;
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_command(
+ struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
+{
+ struct dma_chan *channel = get_dma_chan(this);
+ struct dma_async_tx_descriptor *desc;
+ struct gpmi_transfer *transfer;
+ int chip = this->nand.cur_cs;
+ u32 pio[3];
+
+ /* [1] send out the PIO words */
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
+ | BM_GPMI_CTRL0_ADDRESS_INCREMENT
+ | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
+ pio[1] = 0;
+ pio[2] = 0;
+ desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
+ DMA_TRANS_NONE, 0);
+ if (!desc)
+ return NULL;
+
+ transfer = get_next_transfer(this);
+ if (!transfer)
+ return NULL;
+
+ transfer->cmdbuf[0] = cmd;
+ if (naddr)
+ memcpy(&transfer->cmdbuf[1], addr, naddr);
+
+ sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
+ dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
+
+ transfer->direction = DMA_TO_DEVICE;
+
+ desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
+ MXS_DMA_CTRL_WAIT4END);
+ return desc;
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
+ struct gpmi_nand_data *this)
+{
+ struct dma_chan *channel = get_dma_chan(this);
+ u32 pio[2];
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+ | BF_GPMI_CTRL0_XFER_COUNT(0);
+ pio[1] = 0;
+
+ return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
+ MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_data_read(
+ struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
+{
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ struct gpmi_transfer *transfer;
+ u32 pio[6] = {};
+
+ transfer = get_next_transfer(this);
+ if (!transfer)
+ return NULL;
+
+ transfer->direction = DMA_FROM_DEVICE;
+
+ *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
+ DMA_FROM_DEVICE);
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+ | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
+
+ if (this->bch) {
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+ | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
+ | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
+ pio[3] = raw_len;
+ pio[4] = transfer->sgl.dma_address;
+ pio[5] = this->auxiliary_phys;
+ }
+
+ desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
+ DMA_TRANS_NONE, 0);
+ if (!desc)
+ return NULL;
+
+ if (!this->bch)
+ desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
+ DMA_DEV_TO_MEM,
+ MXS_DMA_CTRL_WAIT4END);
+
+ return desc;
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_data_write(
+ struct gpmi_nand_data *this, const void *buf, int raw_len)
+{
+ struct dma_chan *channel = get_dma_chan(this);
+ struct dma_async_tx_descriptor *desc;
+ struct gpmi_transfer *transfer;
+ u32 pio[6] = {};
+
+ transfer = get_next_transfer(this);
+ if (!transfer)
+ return NULL;
+
+ transfer->direction = DMA_TO_DEVICE;
+
+ prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+ | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
+
+ if (this->bch) {
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+ | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
+ BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
+ pio[3] = raw_len;
+ pio[4] = transfer->sgl.dma_address;
+ pio[5] = this->auxiliary_phys;
+ }
+
+ desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
+ DMA_TRANS_NONE,
+ (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
+ if (!desc)
+ return NULL;
+
+ if (!this->bch)
+ desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
+ DMA_MEM_TO_DEV,
+ MXS_DMA_CTRL_WAIT4END);
+
+ return desc;
+}
+
+static int gpmi_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ const struct nand_op_instr *instr;
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ struct dma_async_tx_descriptor *desc = NULL;
+ int i, ret, buf_len = 0, nbufs = 0;
+ u8 cmd = 0;
+ void *buf_read = NULL;
+ const void *buf_write = NULL;
+ bool direct = false;
+ struct completion *completion;
+ unsigned long to;
+
+ this->ntransfers = 0;
+ for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
+ this->transfers[i].direction = DMA_NONE;
+
+ ret = pm_runtime_get_sync(this->dev);
+ if (ret < 0)
+ return ret;
+
+ /*
+ * This driver currently supports only one NAND chip. Plus, dies share
+ * the same configuration. So once timings have been applied on the
+ * controller side, they will not change anymore. When the time will
+ * come, the check on must_apply_timings will have to be dropped.
+ */
+ if (this->hw.must_apply_timings) {
+ this->hw.must_apply_timings = false;
+ gpmi_nfc_apply_timings(this);
+ }
+
+ dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
+
+ for (i = 0; i < op->ninstrs; i++) {
+ instr = &op->instrs[i];
+
+ nand_op_trace(" ", instr);
+
+ switch (instr->type) {
+ case NAND_OP_WAITRDY_INSTR:
+ desc = gpmi_chain_wait_ready(this);
+ break;
+ case NAND_OP_CMD_INSTR:
+ cmd = instr->ctx.cmd.opcode;
+
+ /*
+ * When this command has an address cycle chain it
+ * together with the address cycle
+ */
+ if (i + 1 != op->ninstrs &&
+ op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
+ continue;
+
+ desc = gpmi_chain_command(this, cmd, NULL, 0);
+
+ break;
+ case NAND_OP_ADDR_INSTR:
+ desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
+ instr->ctx.addr.naddrs);
+ break;
+ case NAND_OP_DATA_OUT_INSTR:
+ buf_write = instr->ctx.data.buf.out;
+ buf_len = instr->ctx.data.len;
+ nbufs++;
+
+ desc = gpmi_chain_data_write(this, buf_write, buf_len);
+
+ break;
+ case NAND_OP_DATA_IN_INSTR:
+ if (!instr->ctx.data.len)
+ break;
+ buf_read = instr->ctx.data.buf.in;
+ buf_len = instr->ctx.data.len;
+ nbufs++;
+
+ desc = gpmi_chain_data_read(this, buf_read, buf_len,
+ &direct);
+ break;
+ }
+
+ if (!desc) {
+ ret = -ENXIO;
+ goto unmap;
+ }
+ }
+
+ dev_dbg(this->dev, "%s setup done\n", __func__);
+
+ if (nbufs > 1) {
+ dev_err(this->dev, "Multiple data instructions not supported\n");
+ ret = -EINVAL;
+ goto unmap;
+ }
+
+ if (this->bch) {
+ writel(this->bch_flashlayout0,
+ this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
+ writel(this->bch_flashlayout1,
+ this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
+ }
+
+ if (this->bch && buf_read) {
+ writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+ this->resources.bch_regs + HW_BCH_CTRL_SET);
+ completion = &this->bch_done;
+ } else {
+ desc->callback = dma_irq_callback;
+ desc->callback_param = this;
+ completion = &this->dma_done;
+ }
+
+ init_completion(completion);
+
+ dmaengine_submit(desc);
+ dma_async_issue_pending(get_dma_chan(this));
+
+ to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000));
+ if (!to) {
+ dev_err(this->dev, "DMA timeout, last DMA\n");
+ gpmi_dump_info(this);
+ ret = -ETIMEDOUT;
+ goto unmap;
+ }
+
+ writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+ this->resources.bch_regs + HW_BCH_CTRL_CLR);
+ gpmi_clear_bch(this);
+
+ ret = 0;
+
+unmap:
+ for (i = 0; i < this->ntransfers; i++) {
+ struct gpmi_transfer *transfer = &this->transfers[i];
+
+ if (transfer->direction != DMA_NONE)
+ dma_unmap_sg(this->dev, &transfer->sgl, 1,
+ transfer->direction);
+ }
+
+ if (!ret && buf_read && !direct)
+ memcpy(buf_read, this->data_buffer_dma,
+ gpmi_raw_len_to_len(this, buf_len));
+
+ this->bch = false;
+
+ pm_runtime_mark_last_busy(this->dev);
+ pm_runtime_put_autosuspend(this->dev);
+
+ return ret;
+}
+
static const struct nand_controller_ops gpmi_nand_controller_ops = {
.attach_chip = gpmi_nand_attach_chip,
.setup_data_interface = gpmi_setup_data_interface,
+ .exec_op = gpmi_nfc_exec_op,
};
static int gpmi_nand_init(struct gpmi_nand_data *this)
@@ -1901,9 +2553,6 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
- /* init current chip */
- this->current_chip = -1;
-
/* init the MTD data structures */
mtd->name = "gpmi-nand";
mtd->dev.parent = this->dev;
@@ -1911,14 +2560,8 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
nand_set_controller_data(chip, this);
nand_set_flash_node(chip, this->pdev->dev.of_node);
- chip->legacy.select_chip = gpmi_select_chip;
- chip->legacy.cmd_ctrl = gpmi_cmd_ctrl;
- chip->legacy.dev_ready = gpmi_dev_ready;
- chip->legacy.read_byte = gpmi_read_byte;
- chip->legacy.read_buf = gpmi_read_buf;
- chip->legacy.write_buf = gpmi_write_buf;
- chip->badblock_pattern = &gpmi_bbt_descr;
chip->legacy.block_markbad = gpmi_block_markbad;
+ chip->badblock_pattern = &gpmi_bbt_descr;
chip->options |= NAND_NO_SUBPAGE_WRITE;
/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
@@ -1934,7 +2577,10 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
if (ret)
goto err_out;
- chip->legacy.dummy_controller.ops = &gpmi_nand_controller_ops;
+ nand_controller_init(&this->base);
+ this->base.ops = &gpmi_nand_controller_ops;
+ chip->controller = &this->base;
+
ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
if (ret)
goto err_out;
@@ -2004,6 +2650,16 @@ static int gpmi_nand_probe(struct platform_device *pdev)
if (ret)
goto exit_acquire_resources;
+ ret = __gpmi_enable_clk(this, true);
+ if (ret)
+ goto exit_nfc_init;
+
+ pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
+ pm_runtime_use_autosuspend(&pdev->dev);
+ pm_runtime_set_active(&pdev->dev);
+ pm_runtime_enable(&pdev->dev);
+ pm_runtime_get_sync(&pdev->dev);
+
ret = gpmi_init(this);
if (ret)
goto exit_nfc_init;
@@ -2012,11 +2668,16 @@ static int gpmi_nand_probe(struct platform_device *pdev)
if (ret)
goto exit_nfc_init;
+ pm_runtime_mark_last_busy(&pdev->dev);
+ pm_runtime_put_autosuspend(&pdev->dev);
+
dev_info(this->dev, "driver registered.\n");
return 0;
exit_nfc_init:
+ pm_runtime_put(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
release_resources(this);
exit_acquire_resources:
@@ -2027,6 +2688,9 @@ static int gpmi_nand_remove(struct platform_device *pdev)
{
struct gpmi_nand_data *this = platform_get_drvdata(pdev);
+ pm_runtime_put_sync(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
+
nand_release(&this->nand);
gpmi_free_dma_buffer(this);
release_resources(this);
@@ -2069,8 +2733,23 @@ static int gpmi_pm_resume(struct device *dev)
}
#endif /* CONFIG_PM_SLEEP */
+static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
+{
+ struct gpmi_nand_data *this = dev_get_drvdata(dev);
+
+ return __gpmi_enable_clk(this, false);
+}
+
+static int __maybe_unused gpmi_runtime_resume(struct device *dev)
+{
+ struct gpmi_nand_data *this = dev_get_drvdata(dev);
+
+ return __gpmi_enable_clk(this, true);
+}
+
static const struct dev_pm_ops gpmi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
+ SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
};
static struct platform_driver gpmi_nand_driver = {